xref: /openbmc/linux/drivers/parisc/pdc_stable.c (revision 9a69abf8)
1 /*
2  *    Interfaces to retrieve and set PDC Stable options (firmware)
3  *
4  *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License, version 2, as
8  *    published by the Free Software Foundation.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *    GNU General Public License for more details.
14  *
15  *    You should have received a copy of the GNU General Public License
16  *    along with this program; if not, write to the Free Software
17  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  *
19  *
20  *    DEV NOTE: the PDC Procedures reference states that:
21  *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
22  *    96 bytes of Stable Storage is optional [...]. Failure to provide the
23  *    optional locations from 96 to 192 results in the loss of certain
24  *    functionality during boot."
25  *
26  *    Since locations between 96 and 192 are the various paths, most (if not
27  *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
28  *    following code can deal with just 96 bytes of Stable Storage, and all
29  *    sizes between 96 and 192 bytes (provided they are multiple of struct
30  *    device_path size, eg: 128, 160 and 192) to provide full information.
31  *    One last word: there's one path we can always count on: the primary path.
32  *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
33  *
34  *    The first OS-dependent area should always be available. Obviously, this is
35  *    not true for the other one. Also bear in mind that reading/writing from/to
36  *    osdep2 is much more expensive than from/to osdep1.
37  *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
38  *    2 bytes of storage available right after OSID. That's a total of 4 bytes
39  *    sacrificed: -ETOOLAZY :P
40  *
41  *    The current policy wrt file permissions is:
42  *	- write: root only
43  *	- read: (reading triggers PDC calls) ? root only : everyone
44  *    The rationale is that PDC calls could hog (DoS) the machine.
45  *
46  *	TODO:
47  *	- timer/fastsize write calls
48  */
49 
50 #undef PDCS_DEBUG
51 #ifdef PDCS_DEBUG
52 #define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
53 #else
54 #define DPRINTK(fmt, args...)
55 #endif
56 
57 #include <linux/module.h>
58 #include <linux/init.h>
59 #include <linux/kernel.h>
60 #include <linux/string.h>
61 #include <linux/capability.h>
62 #include <linux/ctype.h>
63 #include <linux/sysfs.h>
64 #include <linux/kobject.h>
65 #include <linux/device.h>
66 #include <linux/errno.h>
67 #include <linux/spinlock.h>
68 
69 #include <asm/pdc.h>
70 #include <asm/page.h>
71 #include <asm/uaccess.h>
72 #include <asm/hardware.h>
73 
74 #define PDCS_VERSION	"0.30"
75 #define PDCS_PREFIX	"PDC Stable Storage"
76 
77 #define PDCS_ADDR_PPRI	0x00
78 #define PDCS_ADDR_OSID	0x40
79 #define PDCS_ADDR_OSD1	0x48
80 #define PDCS_ADDR_DIAG	0x58
81 #define PDCS_ADDR_FSIZ	0x5C
82 #define PDCS_ADDR_PCON	0x60
83 #define PDCS_ADDR_PALT	0x80
84 #define PDCS_ADDR_PKBD	0xA0
85 #define PDCS_ADDR_OSD2	0xE0
86 
87 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
88 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(PDCS_VERSION);
91 
92 /* holds Stable Storage size. Initialized once and for all, no lock needed */
93 static unsigned long pdcs_size __read_mostly;
94 
95 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
96 static u16 pdcs_osid __read_mostly;
97 
98 /* This struct defines what we need to deal with a parisc pdc path entry */
99 struct pdcspath_entry {
100 	rwlock_t rw_lock;		/* to protect path entry access */
101 	short ready;			/* entry record is valid if != 0 */
102 	unsigned long addr;		/* entry address in stable storage */
103 	char *name;			/* entry name */
104 	struct device_path devpath;	/* device path in parisc representation */
105 	struct device *dev;		/* corresponding device */
106 	struct kobject kobj;
107 };
108 
109 struct pdcspath_attribute {
110 	struct attribute attr;
111 	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
112 	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
113 };
114 
115 #define PDCSPATH_ENTRY(_addr, _name) \
116 struct pdcspath_entry pdcspath_entry_##_name = { \
117 	.ready = 0, \
118 	.addr = _addr, \
119 	.name = __stringify(_name), \
120 };
121 
122 #define PDCS_ATTR(_name, _mode, _show, _store) \
123 struct kobj_attribute pdcs_attr_##_name = { \
124 	.attr = {.name = __stringify(_name), .mode = _mode}, \
125 	.show = _show, \
126 	.store = _store, \
127 };
128 
129 #define PATHS_ATTR(_name, _mode, _show, _store) \
130 struct pdcspath_attribute paths_attr_##_name = { \
131 	.attr = {.name = __stringify(_name), .mode = _mode}, \
132 	.show = _show, \
133 	.store = _store, \
134 };
135 
136 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
137 #define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
138 
139 /**
140  * pdcspath_fetch - This function populates the path entry structs.
141  * @entry: A pointer to an allocated pdcspath_entry.
142  *
143  * The general idea is that you don't read from the Stable Storage every time
144  * you access the files provided by the facilities. We store a copy of the
145  * content of the stable storage WRT various paths in these structs. We read
146  * these structs when reading the files, and we will write to these structs when
147  * writing to the files, and only then write them back to the Stable Storage.
148  *
149  * This function expects to be called with @entry->rw_lock write-hold.
150  */
151 static int
152 pdcspath_fetch(struct pdcspath_entry *entry)
153 {
154 	struct device_path *devpath;
155 
156 	if (!entry)
157 		return -EINVAL;
158 
159 	devpath = &entry->devpath;
160 
161 	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
162 			entry, devpath, entry->addr);
163 
164 	/* addr, devpath and count must be word aligned */
165 	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
166 		return -EIO;
167 
168 	/* Find the matching device.
169 	   NOTE: hardware_path overlays with device_path, so the nice cast can
170 	   be used */
171 	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
172 
173 	entry->ready = 1;
174 
175 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
176 
177 	return 0;
178 }
179 
180 /**
181  * pdcspath_store - This function writes a path to stable storage.
182  * @entry: A pointer to an allocated pdcspath_entry.
183  *
184  * It can be used in two ways: either by passing it a preset devpath struct
185  * containing an already computed hardware path, or by passing it a device
186  * pointer, from which it'll find out the corresponding hardware path.
187  * For now we do not handle the case where there's an error in writing to the
188  * Stable Storage area, so you'd better not mess up the data :P
189  *
190  * This function expects to be called with @entry->rw_lock write-hold.
191  */
192 static void
193 pdcspath_store(struct pdcspath_entry *entry)
194 {
195 	struct device_path *devpath;
196 
197 	BUG_ON(!entry);
198 
199 	devpath = &entry->devpath;
200 
201 	/* We expect the caller to set the ready flag to 0 if the hardware
202 	   path struct provided is invalid, so that we know we have to fill it.
203 	   First case, we don't have a preset hwpath... */
204 	if (!entry->ready) {
205 		/* ...but we have a device, map it */
206 		BUG_ON(!entry->dev);
207 		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
208 	}
209 	/* else, we expect the provided hwpath to be valid. */
210 
211 	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
212 			entry, devpath, entry->addr);
213 
214 	/* addr, devpath and count must be word aligned */
215 	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
216 		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
217 				"It is likely that the Stable Storage data has been corrupted.\n"
218 				"Please check it carefully upon next reboot.\n", __func__);
219 
220 	/* kobject is already registered */
221 	entry->ready = 2;
222 
223 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
224 }
225 
226 /**
227  * pdcspath_hwpath_read - This function handles hardware path pretty printing.
228  * @entry: An allocated and populated pdscpath_entry struct.
229  * @buf: The output buffer to write to.
230  *
231  * We will call this function to format the output of the hwpath attribute file.
232  */
233 static ssize_t
234 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
235 {
236 	char *out = buf;
237 	struct device_path *devpath;
238 	short i;
239 
240 	if (!entry || !buf)
241 		return -EINVAL;
242 
243 	read_lock(&entry->rw_lock);
244 	devpath = &entry->devpath;
245 	i = entry->ready;
246 	read_unlock(&entry->rw_lock);
247 
248 	if (!i)	/* entry is not ready */
249 		return -ENODATA;
250 
251 	for (i = 0; i < 6; i++) {
252 		if (devpath->bc[i] >= 128)
253 			continue;
254 		out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
255 	}
256 	out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
257 
258 	return out - buf;
259 }
260 
261 /**
262  * pdcspath_hwpath_write - This function handles hardware path modifying.
263  * @entry: An allocated and populated pdscpath_entry struct.
264  * @buf: The input buffer to read from.
265  * @count: The number of bytes to be read.
266  *
267  * We will call this function to change the current hardware path.
268  * Hardware paths are to be given '/'-delimited, without brackets.
269  * We make sure that the provided path actually maps to an existing
270  * device, BUT nothing would prevent some foolish user to set the path to some
271  * PCI bridge or even a CPU...
272  * A better work around would be to make sure we are at the end of a device tree
273  * for instance, but it would be IMHO beyond the simple scope of that driver.
274  * The aim is to provide a facility. Data correctness is left to userland.
275  */
276 static ssize_t
277 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
278 {
279 	struct hardware_path hwpath;
280 	unsigned short i;
281 	char in[count+1], *temp;
282 	struct device *dev;
283 	int ret;
284 
285 	if (!entry || !buf || !count)
286 		return -EINVAL;
287 
288 	/* We'll use a local copy of buf */
289 	memset(in, 0, count+1);
290 	strncpy(in, buf, count);
291 
292 	/* Let's clean up the target. 0xff is a blank pattern */
293 	memset(&hwpath, 0xff, sizeof(hwpath));
294 
295 	/* First, pick the mod field (the last one of the input string) */
296 	if (!(temp = strrchr(in, '/')))
297 		return -EINVAL;
298 
299 	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
300 	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
301 	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
302 
303 	/* Then, loop for each delimiter, making sure we don't have too many.
304 	   we write the bc fields in a down-top way. No matter what, we stop
305 	   before writing the last field. If there are too many fields anyway,
306 	   then the user is a moron and it'll be caught up later when we'll
307 	   check the consistency of the given hwpath. */
308 	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
309 		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
310 		in[temp-in] = '\0';
311 		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
312 	}
313 
314 	/* Store the final field */
315 	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
316 	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
317 
318 	/* Now we check that the user isn't trying to lure us */
319 	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
320 		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
321 			"hardware path: %s\n", __func__, entry->name, buf);
322 		return -EINVAL;
323 	}
324 
325 	/* So far so good, let's get in deep */
326 	write_lock(&entry->rw_lock);
327 	entry->ready = 0;
328 	entry->dev = dev;
329 
330 	/* Now, dive in. Write back to the hardware */
331 	pdcspath_store(entry);
332 
333 	/* Update the symlink to the real device */
334 	sysfs_remove_link(&entry->kobj, "device");
335 	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
336 	WARN_ON(ret);
337 
338 	write_unlock(&entry->rw_lock);
339 
340 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
341 		entry->name, buf);
342 
343 	return count;
344 }
345 
346 /**
347  * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
348  * @entry: An allocated and populated pdscpath_entry struct.
349  * @buf: The output buffer to write to.
350  *
351  * We will call this function to format the output of the layer attribute file.
352  */
353 static ssize_t
354 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
355 {
356 	char *out = buf;
357 	struct device_path *devpath;
358 	short i;
359 
360 	if (!entry || !buf)
361 		return -EINVAL;
362 
363 	read_lock(&entry->rw_lock);
364 	devpath = &entry->devpath;
365 	i = entry->ready;
366 	read_unlock(&entry->rw_lock);
367 
368 	if (!i)	/* entry is not ready */
369 		return -ENODATA;
370 
371 	for (i = 0; i < 6 && devpath->layers[i]; i++)
372 		out += sprintf(out, "%u ", devpath->layers[i]);
373 
374 	out += sprintf(out, "\n");
375 
376 	return out - buf;
377 }
378 
379 /**
380  * pdcspath_layer_write - This function handles extended layer modifying.
381  * @entry: An allocated and populated pdscpath_entry struct.
382  * @buf: The input buffer to read from.
383  * @count: The number of bytes to be read.
384  *
385  * We will call this function to change the current layer value.
386  * Layers are to be given '.'-delimited, without brackets.
387  * XXX beware we are far less checky WRT input data provided than for hwpath.
388  * Potential harm can be done, since there's no way to check the validity of
389  * the layer fields.
390  */
391 static ssize_t
392 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
393 {
394 	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
395 	unsigned short i;
396 	char in[count+1], *temp;
397 
398 	if (!entry || !buf || !count)
399 		return -EINVAL;
400 
401 	/* We'll use a local copy of buf */
402 	memset(in, 0, count+1);
403 	strncpy(in, buf, count);
404 
405 	/* Let's clean up the target. 0 is a blank pattern */
406 	memset(&layers, 0, sizeof(layers));
407 
408 	/* First, pick the first layer */
409 	if (unlikely(!isdigit(*in)))
410 		return -EINVAL;
411 	layers[0] = simple_strtoul(in, NULL, 10);
412 	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
413 
414 	temp = in;
415 	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
416 		if (unlikely(!isdigit(*(++temp))))
417 			return -EINVAL;
418 		layers[i] = simple_strtoul(temp, NULL, 10);
419 		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
420 	}
421 
422 	/* So far so good, let's get in deep */
423 	write_lock(&entry->rw_lock);
424 
425 	/* First, overwrite the current layers with the new ones, not touching
426 	   the hardware path. */
427 	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
428 
429 	/* Now, dive in. Write back to the hardware */
430 	pdcspath_store(entry);
431 	write_unlock(&entry->rw_lock);
432 
433 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
434 		entry->name, buf);
435 
436 	return count;
437 }
438 
439 /**
440  * pdcspath_attr_show - Generic read function call wrapper.
441  * @kobj: The kobject to get info from.
442  * @attr: The attribute looked upon.
443  * @buf: The output buffer.
444  */
445 static ssize_t
446 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
447 {
448 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
449 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
450 	ssize_t ret = 0;
451 
452 	if (pdcs_attr->show)
453 		ret = pdcs_attr->show(entry, buf);
454 
455 	return ret;
456 }
457 
458 /**
459  * pdcspath_attr_store - Generic write function call wrapper.
460  * @kobj: The kobject to write info to.
461  * @attr: The attribute to be modified.
462  * @buf: The input buffer.
463  * @count: The size of the buffer.
464  */
465 static ssize_t
466 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
467 			const char *buf, size_t count)
468 {
469 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
470 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
471 	ssize_t ret = 0;
472 
473 	if (!capable(CAP_SYS_ADMIN))
474 		return -EACCES;
475 
476 	if (pdcs_attr->store)
477 		ret = pdcs_attr->store(entry, buf, count);
478 
479 	return ret;
480 }
481 
482 static const struct sysfs_ops pdcspath_attr_ops = {
483 	.show = pdcspath_attr_show,
484 	.store = pdcspath_attr_store,
485 };
486 
487 /* These are the two attributes of any PDC path. */
488 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
489 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
490 
491 static struct attribute *paths_subsys_attrs[] = {
492 	&paths_attr_hwpath.attr,
493 	&paths_attr_layer.attr,
494 	NULL,
495 };
496 
497 /* Specific kobject type for our PDC paths */
498 static struct kobj_type ktype_pdcspath = {
499 	.sysfs_ops = &pdcspath_attr_ops,
500 	.default_attrs = paths_subsys_attrs,
501 };
502 
503 /* We hard define the 4 types of path we expect to find */
504 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
505 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
506 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
507 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
508 
509 /* An array containing all PDC paths we will deal with */
510 static struct pdcspath_entry *pdcspath_entries[] = {
511 	&pdcspath_entry_primary,
512 	&pdcspath_entry_alternative,
513 	&pdcspath_entry_console,
514 	&pdcspath_entry_keyboard,
515 	NULL,
516 };
517 
518 
519 /* For more insight of what's going on here, refer to PDC Procedures doc,
520  * Section PDC_STABLE */
521 
522 /**
523  * pdcs_size_read - Stable Storage size output.
524  * @buf: The output buffer to write to.
525  */
526 static ssize_t pdcs_size_read(struct kobject *kobj,
527 			      struct kobj_attribute *attr,
528 			      char *buf)
529 {
530 	char *out = buf;
531 
532 	if (!buf)
533 		return -EINVAL;
534 
535 	/* show the size of the stable storage */
536 	out += sprintf(out, "%ld\n", pdcs_size);
537 
538 	return out - buf;
539 }
540 
541 /**
542  * pdcs_auto_read - Stable Storage autoboot/search flag output.
543  * @buf: The output buffer to write to.
544  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
545  */
546 static ssize_t pdcs_auto_read(struct kobject *kobj,
547 			      struct kobj_attribute *attr,
548 			      char *buf, int knob)
549 {
550 	char *out = buf;
551 	struct pdcspath_entry *pathentry;
552 
553 	if (!buf)
554 		return -EINVAL;
555 
556 	/* Current flags are stored in primary boot path entry */
557 	pathentry = &pdcspath_entry_primary;
558 
559 	read_lock(&pathentry->rw_lock);
560 	out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
561 					"On" : "Off");
562 	read_unlock(&pathentry->rw_lock);
563 
564 	return out - buf;
565 }
566 
567 /**
568  * pdcs_autoboot_read - Stable Storage autoboot flag output.
569  * @buf: The output buffer to write to.
570  */
571 static ssize_t pdcs_autoboot_read(struct kobject *kobj,
572 				  struct kobj_attribute *attr, char *buf)
573 {
574 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
575 }
576 
577 /**
578  * pdcs_autosearch_read - Stable Storage autoboot flag output.
579  * @buf: The output buffer to write to.
580  */
581 static ssize_t pdcs_autosearch_read(struct kobject *kobj,
582 				    struct kobj_attribute *attr, char *buf)
583 {
584 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
585 }
586 
587 /**
588  * pdcs_timer_read - Stable Storage timer count output (in seconds).
589  * @buf: The output buffer to write to.
590  *
591  * The value of the timer field correponds to a number of seconds in powers of 2.
592  */
593 static ssize_t pdcs_timer_read(struct kobject *kobj,
594 			       struct kobj_attribute *attr, char *buf)
595 {
596 	char *out = buf;
597 	struct pdcspath_entry *pathentry;
598 
599 	if (!buf)
600 		return -EINVAL;
601 
602 	/* Current flags are stored in primary boot path entry */
603 	pathentry = &pdcspath_entry_primary;
604 
605 	/* print the timer value in seconds */
606 	read_lock(&pathentry->rw_lock);
607 	out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
608 				(1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
609 	read_unlock(&pathentry->rw_lock);
610 
611 	return out - buf;
612 }
613 
614 /**
615  * pdcs_osid_read - Stable Storage OS ID register output.
616  * @buf: The output buffer to write to.
617  */
618 static ssize_t pdcs_osid_read(struct kobject *kobj,
619 			      struct kobj_attribute *attr, char *buf)
620 {
621 	char *out = buf;
622 
623 	if (!buf)
624 		return -EINVAL;
625 
626 	out += sprintf(out, "%s dependent data (0x%.4x)\n",
627 		os_id_to_string(pdcs_osid), pdcs_osid);
628 
629 	return out - buf;
630 }
631 
632 /**
633  * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
634  * @buf: The output buffer to write to.
635  *
636  * This can hold 16 bytes of OS-Dependent data.
637  */
638 static ssize_t pdcs_osdep1_read(struct kobject *kobj,
639 				struct kobj_attribute *attr, char *buf)
640 {
641 	char *out = buf;
642 	u32 result[4];
643 
644 	if (!buf)
645 		return -EINVAL;
646 
647 	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
648 		return -EIO;
649 
650 	out += sprintf(out, "0x%.8x\n", result[0]);
651 	out += sprintf(out, "0x%.8x\n", result[1]);
652 	out += sprintf(out, "0x%.8x\n", result[2]);
653 	out += sprintf(out, "0x%.8x\n", result[3]);
654 
655 	return out - buf;
656 }
657 
658 /**
659  * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
660  * @buf: The output buffer to write to.
661  *
662  * I have NFC how to interpret the content of that register ;-).
663  */
664 static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
665 				    struct kobj_attribute *attr, char *buf)
666 {
667 	char *out = buf;
668 	u32 result;
669 
670 	if (!buf)
671 		return -EINVAL;
672 
673 	/* get diagnostic */
674 	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
675 		return -EIO;
676 
677 	out += sprintf(out, "0x%.4x\n", (result >> 16));
678 
679 	return out - buf;
680 }
681 
682 /**
683  * pdcs_fastsize_read - Stable Storage FastSize register output.
684  * @buf: The output buffer to write to.
685  *
686  * This register holds the amount of system RAM to be tested during boot sequence.
687  */
688 static ssize_t pdcs_fastsize_read(struct kobject *kobj,
689 				  struct kobj_attribute *attr, char *buf)
690 {
691 	char *out = buf;
692 	u32 result;
693 
694 	if (!buf)
695 		return -EINVAL;
696 
697 	/* get fast-size */
698 	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
699 		return -EIO;
700 
701 	if ((result & 0x0F) < 0x0E)
702 		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
703 	else
704 		out += sprintf(out, "All");
705 	out += sprintf(out, "\n");
706 
707 	return out - buf;
708 }
709 
710 /**
711  * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
712  * @buf: The output buffer to write to.
713  *
714  * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
715  */
716 static ssize_t pdcs_osdep2_read(struct kobject *kobj,
717 				struct kobj_attribute *attr, char *buf)
718 {
719 	char *out = buf;
720 	unsigned long size;
721 	unsigned short i;
722 	u32 result;
723 
724 	if (unlikely(pdcs_size <= 224))
725 		return -ENODATA;
726 
727 	size = pdcs_size - 224;
728 
729 	if (!buf)
730 		return -EINVAL;
731 
732 	for (i=0; i<size; i+=4) {
733 		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
734 					sizeof(result)) != PDC_OK))
735 			return -EIO;
736 		out += sprintf(out, "0x%.8x\n", result);
737 	}
738 
739 	return out - buf;
740 }
741 
742 /**
743  * pdcs_auto_write - This function handles autoboot/search flag modifying.
744  * @buf: The input buffer to read from.
745  * @count: The number of bytes to be read.
746  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
747  *
748  * We will call this function to change the current autoboot flag.
749  * We expect a precise syntax:
750  *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
751  */
752 static ssize_t pdcs_auto_write(struct kobject *kobj,
753 			       struct kobj_attribute *attr, const char *buf,
754 			       size_t count, int knob)
755 {
756 	struct pdcspath_entry *pathentry;
757 	unsigned char flags;
758 	char in[count+1], *temp;
759 	char c;
760 
761 	if (!capable(CAP_SYS_ADMIN))
762 		return -EACCES;
763 
764 	if (!buf || !count)
765 		return -EINVAL;
766 
767 	/* We'll use a local copy of buf */
768 	memset(in, 0, count+1);
769 	strncpy(in, buf, count);
770 
771 	/* Current flags are stored in primary boot path entry */
772 	pathentry = &pdcspath_entry_primary;
773 
774 	/* Be nice to the existing flag record */
775 	read_lock(&pathentry->rw_lock);
776 	flags = pathentry->devpath.flags;
777 	read_unlock(&pathentry->rw_lock);
778 
779 	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
780 
781 	temp = skip_spaces(in);
782 
783 	c = *temp++ - '0';
784 	if ((c != 0) && (c != 1))
785 		goto parse_error;
786 	if (c == 0)
787 		flags &= ~knob;
788 	else
789 		flags |= knob;
790 
791 	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
792 
793 	/* So far so good, let's get in deep */
794 	write_lock(&pathentry->rw_lock);
795 
796 	/* Change the path entry flags first */
797 	pathentry->devpath.flags = flags;
798 
799 	/* Now, dive in. Write back to the hardware */
800 	pdcspath_store(pathentry);
801 	write_unlock(&pathentry->rw_lock);
802 
803 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
804 		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
805 		(flags & knob) ? "On" : "Off");
806 
807 	return count;
808 
809 parse_error:
810 	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
811 	return -EINVAL;
812 }
813 
814 /**
815  * pdcs_autoboot_write - This function handles autoboot flag modifying.
816  * @buf: The input buffer to read from.
817  * @count: The number of bytes to be read.
818  *
819  * We will call this function to change the current boot flags.
820  * We expect a precise syntax:
821  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
822  */
823 static ssize_t pdcs_autoboot_write(struct kobject *kobj,
824 				   struct kobj_attribute *attr,
825 				   const char *buf, size_t count)
826 {
827 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
828 }
829 
830 /**
831  * pdcs_autosearch_write - This function handles autosearch flag modifying.
832  * @buf: The input buffer to read from.
833  * @count: The number of bytes to be read.
834  *
835  * We will call this function to change the current boot flags.
836  * We expect a precise syntax:
837  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
838  */
839 static ssize_t pdcs_autosearch_write(struct kobject *kobj,
840 				     struct kobj_attribute *attr,
841 				     const char *buf, size_t count)
842 {
843 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
844 }
845 
846 /**
847  * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
848  * @buf: The input buffer to read from.
849  * @count: The number of bytes to be read.
850  *
851  * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
852  * write approach. It's up to userspace to deal with it when constructing
853  * its input buffer.
854  */
855 static ssize_t pdcs_osdep1_write(struct kobject *kobj,
856 				 struct kobj_attribute *attr,
857 				 const char *buf, size_t count)
858 {
859 	u8 in[16];
860 
861 	if (!capable(CAP_SYS_ADMIN))
862 		return -EACCES;
863 
864 	if (!buf || !count)
865 		return -EINVAL;
866 
867 	if (unlikely(pdcs_osid != OS_ID_LINUX))
868 		return -EPERM;
869 
870 	if (count > 16)
871 		return -EMSGSIZE;
872 
873 	/* We'll use a local copy of buf */
874 	memset(in, 0, 16);
875 	memcpy(in, buf, count);
876 
877 	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
878 		return -EIO;
879 
880 	return count;
881 }
882 
883 /**
884  * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
885  * @buf: The input buffer to read from.
886  * @count: The number of bytes to be read.
887  *
888  * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
889  * byte-by-byte write approach. It's up to userspace to deal with it when
890  * constructing its input buffer.
891  */
892 static ssize_t pdcs_osdep2_write(struct kobject *kobj,
893 				 struct kobj_attribute *attr,
894 				 const char *buf, size_t count)
895 {
896 	unsigned long size;
897 	unsigned short i;
898 	u8 in[4];
899 
900 	if (!capable(CAP_SYS_ADMIN))
901 		return -EACCES;
902 
903 	if (!buf || !count)
904 		return -EINVAL;
905 
906 	if (unlikely(pdcs_size <= 224))
907 		return -ENOSYS;
908 
909 	if (unlikely(pdcs_osid != OS_ID_LINUX))
910 		return -EPERM;
911 
912 	size = pdcs_size - 224;
913 
914 	if (count > size)
915 		return -EMSGSIZE;
916 
917 	/* We'll use a local copy of buf */
918 
919 	for (i=0; i<count; i+=4) {
920 		memset(in, 0, 4);
921 		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
922 		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
923 					sizeof(in)) != PDC_OK))
924 			return -EIO;
925 	}
926 
927 	return count;
928 }
929 
930 /* The remaining attributes. */
931 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
932 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
933 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
934 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
935 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
936 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
937 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
938 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
939 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
940 
941 static struct attribute *pdcs_subsys_attrs[] = {
942 	&pdcs_attr_size.attr,
943 	&pdcs_attr_autoboot.attr,
944 	&pdcs_attr_autosearch.attr,
945 	&pdcs_attr_timer.attr,
946 	&pdcs_attr_osid.attr,
947 	&pdcs_attr_osdep1.attr,
948 	&pdcs_attr_diagnostic.attr,
949 	&pdcs_attr_fastsize.attr,
950 	&pdcs_attr_osdep2.attr,
951 	NULL,
952 };
953 
954 static struct attribute_group pdcs_attr_group = {
955 	.attrs = pdcs_subsys_attrs,
956 };
957 
958 static struct kobject *stable_kobj;
959 static struct kset *paths_kset;
960 
961 /**
962  * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
963  *
964  * It creates kobjects corresponding to each path entry with nice sysfs
965  * links to the real device. This is where the magic takes place: when
966  * registering the subsystem attributes during module init, each kobject hereby
967  * created will show in the sysfs tree as a folder containing files as defined
968  * by path_subsys_attr[].
969  */
970 static inline int __init
971 pdcs_register_pathentries(void)
972 {
973 	unsigned short i;
974 	struct pdcspath_entry *entry;
975 	int err;
976 
977 	/* Initialize the entries rw_lock before anything else */
978 	for (i = 0; (entry = pdcspath_entries[i]); i++)
979 		rwlock_init(&entry->rw_lock);
980 
981 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
982 		write_lock(&entry->rw_lock);
983 		err = pdcspath_fetch(entry);
984 		write_unlock(&entry->rw_lock);
985 
986 		if (err < 0)
987 			continue;
988 
989 		entry->kobj.kset = paths_kset;
990 		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
991 					   "%s", entry->name);
992 		if (err)
993 			return err;
994 
995 		/* kobject is now registered */
996 		write_lock(&entry->rw_lock);
997 		entry->ready = 2;
998 
999 		/* Add a nice symlink to the real device */
1000 		if (entry->dev) {
1001 			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
1002 			WARN_ON(err);
1003 		}
1004 
1005 		write_unlock(&entry->rw_lock);
1006 		kobject_uevent(&entry->kobj, KOBJ_ADD);
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 /**
1013  * pdcs_unregister_pathentries - Routine called when unregistering the module.
1014  */
1015 static inline void
1016 pdcs_unregister_pathentries(void)
1017 {
1018 	unsigned short i;
1019 	struct pdcspath_entry *entry;
1020 
1021 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1022 		read_lock(&entry->rw_lock);
1023 		if (entry->ready >= 2)
1024 			kobject_put(&entry->kobj);
1025 		read_unlock(&entry->rw_lock);
1026 	}
1027 }
1028 
1029 /*
1030  * For now we register the stable subsystem with the firmware subsystem
1031  * and the paths subsystem with the stable subsystem
1032  */
1033 static int __init
1034 pdc_stable_init(void)
1035 {
1036 	int rc = 0, error = 0;
1037 	u32 result;
1038 
1039 	/* find the size of the stable storage */
1040 	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1041 		return -ENODEV;
1042 
1043 	/* make sure we have enough data */
1044 	if (pdcs_size < 96)
1045 		return -ENODATA;
1046 
1047 	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1048 
1049 	/* get OSID */
1050 	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1051 		return -EIO;
1052 
1053 	/* the actual result is 16 bits away */
1054 	pdcs_osid = (u16)(result >> 16);
1055 
1056 	/* For now we'll register the directory at /sys/firmware/stable */
1057 	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1058 	if (!stable_kobj) {
1059 		rc = -ENOMEM;
1060 		goto fail_firmreg;
1061 	}
1062 
1063 	/* Don't forget the root entries */
1064 	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1065 
1066 	/* register the paths kset as a child of the stable kset */
1067 	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1068 	if (!paths_kset) {
1069 		rc = -ENOMEM;
1070 		goto fail_ksetreg;
1071 	}
1072 
1073 	/* now we create all "files" for the paths kset */
1074 	if ((rc = pdcs_register_pathentries()))
1075 		goto fail_pdcsreg;
1076 
1077 	return rc;
1078 
1079 fail_pdcsreg:
1080 	pdcs_unregister_pathentries();
1081 	kset_unregister(paths_kset);
1082 
1083 fail_ksetreg:
1084 	kobject_put(stable_kobj);
1085 
1086 fail_firmreg:
1087 	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1088 	return rc;
1089 }
1090 
1091 static void __exit
1092 pdc_stable_exit(void)
1093 {
1094 	pdcs_unregister_pathentries();
1095 	kset_unregister(paths_kset);
1096 	kobject_put(stable_kobj);
1097 }
1098 
1099 
1100 module_init(pdc_stable_init);
1101 module_exit(pdc_stable_exit);
1102