1 /* 2 * Interfaces to retrieve and set PDC Stable options (firmware) 3 * 4 * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License, version 2, as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * 20 * DEV NOTE: the PDC Procedures reference states that: 21 * "A minimum of 96 bytes of Stable Storage is required. Providing more than 22 * 96 bytes of Stable Storage is optional [...]. Failure to provide the 23 * optional locations from 96 to 192 results in the loss of certain 24 * functionality during boot." 25 * 26 * Since locations between 96 and 192 are the various paths, most (if not 27 * all) PA-RISC machines should have them. Anyway, for safety reasons, the 28 * following code can deal with just 96 bytes of Stable Storage, and all 29 * sizes between 96 and 192 bytes (provided they are multiple of struct 30 * device_path size, eg: 128, 160 and 192) to provide full information. 31 * One last word: there's one path we can always count on: the primary path. 32 * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area. 33 * 34 * The first OS-dependent area should always be available. Obviously, this is 35 * not true for the other one. Also bear in mind that reading/writing from/to 36 * osdep2 is much more expensive than from/to osdep1. 37 * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first 38 * 2 bytes of storage available right after OSID. That's a total of 4 bytes 39 * sacrificed: -ETOOLAZY :P 40 * 41 * The current policy wrt file permissions is: 42 * - write: root only 43 * - read: (reading triggers PDC calls) ? root only : everyone 44 * The rationale is that PDC calls could hog (DoS) the machine. 45 * 46 * TODO: 47 * - timer/fastsize write calls 48 */ 49 50 #undef PDCS_DEBUG 51 #ifdef PDCS_DEBUG 52 #define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args) 53 #else 54 #define DPRINTK(fmt, args...) 55 #endif 56 57 #include <linux/module.h> 58 #include <linux/init.h> 59 #include <linux/kernel.h> 60 #include <linux/string.h> 61 #include <linux/capability.h> 62 #include <linux/ctype.h> 63 #include <linux/sysfs.h> 64 #include <linux/kobject.h> 65 #include <linux/device.h> 66 #include <linux/errno.h> 67 #include <linux/spinlock.h> 68 69 #include <asm/pdc.h> 70 #include <asm/page.h> 71 #include <asm/uaccess.h> 72 #include <asm/hardware.h> 73 74 #define PDCS_VERSION "0.30" 75 #define PDCS_PREFIX "PDC Stable Storage" 76 77 #define PDCS_ADDR_PPRI 0x00 78 #define PDCS_ADDR_OSID 0x40 79 #define PDCS_ADDR_OSD1 0x48 80 #define PDCS_ADDR_DIAG 0x58 81 #define PDCS_ADDR_FSIZ 0x5C 82 #define PDCS_ADDR_PCON 0x60 83 #define PDCS_ADDR_PALT 0x80 84 #define PDCS_ADDR_PKBD 0xA0 85 #define PDCS_ADDR_OSD2 0xE0 86 87 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>"); 88 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data"); 89 MODULE_LICENSE("GPL"); 90 MODULE_VERSION(PDCS_VERSION); 91 92 /* holds Stable Storage size. Initialized once and for all, no lock needed */ 93 static unsigned long pdcs_size __read_mostly; 94 95 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */ 96 static u16 pdcs_osid __read_mostly; 97 98 /* This struct defines what we need to deal with a parisc pdc path entry */ 99 struct pdcspath_entry { 100 rwlock_t rw_lock; /* to protect path entry access */ 101 short ready; /* entry record is valid if != 0 */ 102 unsigned long addr; /* entry address in stable storage */ 103 char *name; /* entry name */ 104 struct device_path devpath; /* device path in parisc representation */ 105 struct device *dev; /* corresponding device */ 106 struct kobject kobj; 107 }; 108 109 struct pdcspath_attribute { 110 struct attribute attr; 111 ssize_t (*show)(struct pdcspath_entry *entry, char *buf); 112 ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count); 113 }; 114 115 #define PDCSPATH_ENTRY(_addr, _name) \ 116 struct pdcspath_entry pdcspath_entry_##_name = { \ 117 .ready = 0, \ 118 .addr = _addr, \ 119 .name = __stringify(_name), \ 120 }; 121 122 #define PDCS_ATTR(_name, _mode, _show, _store) \ 123 struct kobj_attribute pdcs_attr_##_name = { \ 124 .attr = {.name = __stringify(_name), .mode = _mode}, \ 125 .show = _show, \ 126 .store = _store, \ 127 }; 128 129 #define PATHS_ATTR(_name, _mode, _show, _store) \ 130 struct pdcspath_attribute paths_attr_##_name = { \ 131 .attr = {.name = __stringify(_name), .mode = _mode}, \ 132 .show = _show, \ 133 .store = _store, \ 134 }; 135 136 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr) 137 #define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj) 138 139 /** 140 * pdcspath_fetch - This function populates the path entry structs. 141 * @entry: A pointer to an allocated pdcspath_entry. 142 * 143 * The general idea is that you don't read from the Stable Storage every time 144 * you access the files provided by the facilities. We store a copy of the 145 * content of the stable storage WRT various paths in these structs. We read 146 * these structs when reading the files, and we will write to these structs when 147 * writing to the files, and only then write them back to the Stable Storage. 148 * 149 * This function expects to be called with @entry->rw_lock write-hold. 150 */ 151 static int 152 pdcspath_fetch(struct pdcspath_entry *entry) 153 { 154 struct device_path *devpath; 155 156 if (!entry) 157 return -EINVAL; 158 159 devpath = &entry->devpath; 160 161 DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__, 162 entry, devpath, entry->addr); 163 164 /* addr, devpath and count must be word aligned */ 165 if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) 166 return -EIO; 167 168 /* Find the matching device. 169 NOTE: hardware_path overlays with device_path, so the nice cast can 170 be used */ 171 entry->dev = hwpath_to_device((struct hardware_path *)devpath); 172 173 entry->ready = 1; 174 175 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); 176 177 return 0; 178 } 179 180 /** 181 * pdcspath_store - This function writes a path to stable storage. 182 * @entry: A pointer to an allocated pdcspath_entry. 183 * 184 * It can be used in two ways: either by passing it a preset devpath struct 185 * containing an already computed hardware path, or by passing it a device 186 * pointer, from which it'll find out the corresponding hardware path. 187 * For now we do not handle the case where there's an error in writing to the 188 * Stable Storage area, so you'd better not mess up the data :P 189 * 190 * This function expects to be called with @entry->rw_lock write-hold. 191 */ 192 static void 193 pdcspath_store(struct pdcspath_entry *entry) 194 { 195 struct device_path *devpath; 196 197 BUG_ON(!entry); 198 199 devpath = &entry->devpath; 200 201 /* We expect the caller to set the ready flag to 0 if the hardware 202 path struct provided is invalid, so that we know we have to fill it. 203 First case, we don't have a preset hwpath... */ 204 if (!entry->ready) { 205 /* ...but we have a device, map it */ 206 BUG_ON(!entry->dev); 207 device_to_hwpath(entry->dev, (struct hardware_path *)devpath); 208 } 209 /* else, we expect the provided hwpath to be valid. */ 210 211 DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__, 212 entry, devpath, entry->addr); 213 214 /* addr, devpath and count must be word aligned */ 215 if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) 216 WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n" 217 "It is likely that the Stable Storage data has been corrupted.\n" 218 "Please check it carefully upon next reboot.\n", __func__); 219 220 /* kobject is already registered */ 221 entry->ready = 2; 222 223 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); 224 } 225 226 /** 227 * pdcspath_hwpath_read - This function handles hardware path pretty printing. 228 * @entry: An allocated and populated pdscpath_entry struct. 229 * @buf: The output buffer to write to. 230 * 231 * We will call this function to format the output of the hwpath attribute file. 232 */ 233 static ssize_t 234 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf) 235 { 236 char *out = buf; 237 struct device_path *devpath; 238 short i; 239 240 if (!entry || !buf) 241 return -EINVAL; 242 243 read_lock(&entry->rw_lock); 244 devpath = &entry->devpath; 245 i = entry->ready; 246 read_unlock(&entry->rw_lock); 247 248 if (!i) /* entry is not ready */ 249 return -ENODATA; 250 251 for (i = 0; i < 6; i++) { 252 if (devpath->bc[i] >= 128) 253 continue; 254 out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]); 255 } 256 out += sprintf(out, "%u\n", (unsigned char)devpath->mod); 257 258 return out - buf; 259 } 260 261 /** 262 * pdcspath_hwpath_write - This function handles hardware path modifying. 263 * @entry: An allocated and populated pdscpath_entry struct. 264 * @buf: The input buffer to read from. 265 * @count: The number of bytes to be read. 266 * 267 * We will call this function to change the current hardware path. 268 * Hardware paths are to be given '/'-delimited, without brackets. 269 * We make sure that the provided path actually maps to an existing 270 * device, BUT nothing would prevent some foolish user to set the path to some 271 * PCI bridge or even a CPU... 272 * A better work around would be to make sure we are at the end of a device tree 273 * for instance, but it would be IMHO beyond the simple scope of that driver. 274 * The aim is to provide a facility. Data correctness is left to userland. 275 */ 276 static ssize_t 277 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count) 278 { 279 struct hardware_path hwpath; 280 unsigned short i; 281 char in[count+1], *temp; 282 struct device *dev; 283 int ret; 284 285 if (!entry || !buf || !count) 286 return -EINVAL; 287 288 /* We'll use a local copy of buf */ 289 memset(in, 0, count+1); 290 strncpy(in, buf, count); 291 292 /* Let's clean up the target. 0xff is a blank pattern */ 293 memset(&hwpath, 0xff, sizeof(hwpath)); 294 295 /* First, pick the mod field (the last one of the input string) */ 296 if (!(temp = strrchr(in, '/'))) 297 return -EINVAL; 298 299 hwpath.mod = simple_strtoul(temp+1, NULL, 10); 300 in[temp-in] = '\0'; /* truncate the remaining string. just precaution */ 301 DPRINTK("%s: mod: %d\n", __func__, hwpath.mod); 302 303 /* Then, loop for each delimiter, making sure we don't have too many. 304 we write the bc fields in a down-top way. No matter what, we stop 305 before writing the last field. If there are too many fields anyway, 306 then the user is a moron and it'll be caught up later when we'll 307 check the consistency of the given hwpath. */ 308 for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) { 309 hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10); 310 in[temp-in] = '\0'; 311 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]); 312 } 313 314 /* Store the final field */ 315 hwpath.bc[i] = simple_strtoul(in, NULL, 10); 316 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]); 317 318 /* Now we check that the user isn't trying to lure us */ 319 if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) { 320 printk(KERN_WARNING "%s: attempt to set invalid \"%s\" " 321 "hardware path: %s\n", __func__, entry->name, buf); 322 return -EINVAL; 323 } 324 325 /* So far so good, let's get in deep */ 326 write_lock(&entry->rw_lock); 327 entry->ready = 0; 328 entry->dev = dev; 329 330 /* Now, dive in. Write back to the hardware */ 331 pdcspath_store(entry); 332 333 /* Update the symlink to the real device */ 334 sysfs_remove_link(&entry->kobj, "device"); 335 ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); 336 WARN_ON(ret); 337 338 write_unlock(&entry->rw_lock); 339 340 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n", 341 entry->name, buf); 342 343 return count; 344 } 345 346 /** 347 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing. 348 * @entry: An allocated and populated pdscpath_entry struct. 349 * @buf: The output buffer to write to. 350 * 351 * We will call this function to format the output of the layer attribute file. 352 */ 353 static ssize_t 354 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf) 355 { 356 char *out = buf; 357 struct device_path *devpath; 358 short i; 359 360 if (!entry || !buf) 361 return -EINVAL; 362 363 read_lock(&entry->rw_lock); 364 devpath = &entry->devpath; 365 i = entry->ready; 366 read_unlock(&entry->rw_lock); 367 368 if (!i) /* entry is not ready */ 369 return -ENODATA; 370 371 for (i = 0; i < 6 && devpath->layers[i]; i++) 372 out += sprintf(out, "%u ", devpath->layers[i]); 373 374 out += sprintf(out, "\n"); 375 376 return out - buf; 377 } 378 379 /** 380 * pdcspath_layer_write - This function handles extended layer modifying. 381 * @entry: An allocated and populated pdscpath_entry struct. 382 * @buf: The input buffer to read from. 383 * @count: The number of bytes to be read. 384 * 385 * We will call this function to change the current layer value. 386 * Layers are to be given '.'-delimited, without brackets. 387 * XXX beware we are far less checky WRT input data provided than for hwpath. 388 * Potential harm can be done, since there's no way to check the validity of 389 * the layer fields. 390 */ 391 static ssize_t 392 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count) 393 { 394 unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */ 395 unsigned short i; 396 char in[count+1], *temp; 397 398 if (!entry || !buf || !count) 399 return -EINVAL; 400 401 /* We'll use a local copy of buf */ 402 memset(in, 0, count+1); 403 strncpy(in, buf, count); 404 405 /* Let's clean up the target. 0 is a blank pattern */ 406 memset(&layers, 0, sizeof(layers)); 407 408 /* First, pick the first layer */ 409 if (unlikely(!isdigit(*in))) 410 return -EINVAL; 411 layers[0] = simple_strtoul(in, NULL, 10); 412 DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]); 413 414 temp = in; 415 for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) { 416 if (unlikely(!isdigit(*(++temp)))) 417 return -EINVAL; 418 layers[i] = simple_strtoul(temp, NULL, 10); 419 DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]); 420 } 421 422 /* So far so good, let's get in deep */ 423 write_lock(&entry->rw_lock); 424 425 /* First, overwrite the current layers with the new ones, not touching 426 the hardware path. */ 427 memcpy(&entry->devpath.layers, &layers, sizeof(layers)); 428 429 /* Now, dive in. Write back to the hardware */ 430 pdcspath_store(entry); 431 write_unlock(&entry->rw_lock); 432 433 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n", 434 entry->name, buf); 435 436 return count; 437 } 438 439 /** 440 * pdcspath_attr_show - Generic read function call wrapper. 441 * @kobj: The kobject to get info from. 442 * @attr: The attribute looked upon. 443 * @buf: The output buffer. 444 */ 445 static ssize_t 446 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) 447 { 448 struct pdcspath_entry *entry = to_pdcspath_entry(kobj); 449 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); 450 ssize_t ret = 0; 451 452 if (pdcs_attr->show) 453 ret = pdcs_attr->show(entry, buf); 454 455 return ret; 456 } 457 458 /** 459 * pdcspath_attr_store - Generic write function call wrapper. 460 * @kobj: The kobject to write info to. 461 * @attr: The attribute to be modified. 462 * @buf: The input buffer. 463 * @count: The size of the buffer. 464 */ 465 static ssize_t 466 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr, 467 const char *buf, size_t count) 468 { 469 struct pdcspath_entry *entry = to_pdcspath_entry(kobj); 470 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); 471 ssize_t ret = 0; 472 473 if (!capable(CAP_SYS_ADMIN)) 474 return -EACCES; 475 476 if (pdcs_attr->store) 477 ret = pdcs_attr->store(entry, buf, count); 478 479 return ret; 480 } 481 482 static const struct sysfs_ops pdcspath_attr_ops = { 483 .show = pdcspath_attr_show, 484 .store = pdcspath_attr_store, 485 }; 486 487 /* These are the two attributes of any PDC path. */ 488 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write); 489 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write); 490 491 static struct attribute *paths_subsys_attrs[] = { 492 &paths_attr_hwpath.attr, 493 &paths_attr_layer.attr, 494 NULL, 495 }; 496 497 /* Specific kobject type for our PDC paths */ 498 static struct kobj_type ktype_pdcspath = { 499 .sysfs_ops = &pdcspath_attr_ops, 500 .default_attrs = paths_subsys_attrs, 501 }; 502 503 /* We hard define the 4 types of path we expect to find */ 504 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary); 505 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console); 506 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative); 507 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard); 508 509 /* An array containing all PDC paths we will deal with */ 510 static struct pdcspath_entry *pdcspath_entries[] = { 511 &pdcspath_entry_primary, 512 &pdcspath_entry_alternative, 513 &pdcspath_entry_console, 514 &pdcspath_entry_keyboard, 515 NULL, 516 }; 517 518 519 /* For more insight of what's going on here, refer to PDC Procedures doc, 520 * Section PDC_STABLE */ 521 522 /** 523 * pdcs_size_read - Stable Storage size output. 524 * @buf: The output buffer to write to. 525 */ 526 static ssize_t pdcs_size_read(struct kobject *kobj, 527 struct kobj_attribute *attr, 528 char *buf) 529 { 530 char *out = buf; 531 532 if (!buf) 533 return -EINVAL; 534 535 /* show the size of the stable storage */ 536 out += sprintf(out, "%ld\n", pdcs_size); 537 538 return out - buf; 539 } 540 541 /** 542 * pdcs_auto_read - Stable Storage autoboot/search flag output. 543 * @buf: The output buffer to write to. 544 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag 545 */ 546 static ssize_t pdcs_auto_read(struct kobject *kobj, 547 struct kobj_attribute *attr, 548 char *buf, int knob) 549 { 550 char *out = buf; 551 struct pdcspath_entry *pathentry; 552 553 if (!buf) 554 return -EINVAL; 555 556 /* Current flags are stored in primary boot path entry */ 557 pathentry = &pdcspath_entry_primary; 558 559 read_lock(&pathentry->rw_lock); 560 out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ? 561 "On" : "Off"); 562 read_unlock(&pathentry->rw_lock); 563 564 return out - buf; 565 } 566 567 /** 568 * pdcs_autoboot_read - Stable Storage autoboot flag output. 569 * @buf: The output buffer to write to. 570 */ 571 static ssize_t pdcs_autoboot_read(struct kobject *kobj, 572 struct kobj_attribute *attr, char *buf) 573 { 574 return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT); 575 } 576 577 /** 578 * pdcs_autosearch_read - Stable Storage autoboot flag output. 579 * @buf: The output buffer to write to. 580 */ 581 static ssize_t pdcs_autosearch_read(struct kobject *kobj, 582 struct kobj_attribute *attr, char *buf) 583 { 584 return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH); 585 } 586 587 /** 588 * pdcs_timer_read - Stable Storage timer count output (in seconds). 589 * @buf: The output buffer to write to. 590 * 591 * The value of the timer field correponds to a number of seconds in powers of 2. 592 */ 593 static ssize_t pdcs_timer_read(struct kobject *kobj, 594 struct kobj_attribute *attr, char *buf) 595 { 596 char *out = buf; 597 struct pdcspath_entry *pathentry; 598 599 if (!buf) 600 return -EINVAL; 601 602 /* Current flags are stored in primary boot path entry */ 603 pathentry = &pdcspath_entry_primary; 604 605 /* print the timer value in seconds */ 606 read_lock(&pathentry->rw_lock); 607 out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ? 608 (1 << (pathentry->devpath.flags & PF_TIMER)) : 0); 609 read_unlock(&pathentry->rw_lock); 610 611 return out - buf; 612 } 613 614 /** 615 * pdcs_osid_read - Stable Storage OS ID register output. 616 * @buf: The output buffer to write to. 617 */ 618 static ssize_t pdcs_osid_read(struct kobject *kobj, 619 struct kobj_attribute *attr, char *buf) 620 { 621 char *out = buf; 622 623 if (!buf) 624 return -EINVAL; 625 626 out += sprintf(out, "%s dependent data (0x%.4x)\n", 627 os_id_to_string(pdcs_osid), pdcs_osid); 628 629 return out - buf; 630 } 631 632 /** 633 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output. 634 * @buf: The output buffer to write to. 635 * 636 * This can hold 16 bytes of OS-Dependent data. 637 */ 638 static ssize_t pdcs_osdep1_read(struct kobject *kobj, 639 struct kobj_attribute *attr, char *buf) 640 { 641 char *out = buf; 642 u32 result[4]; 643 644 if (!buf) 645 return -EINVAL; 646 647 if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK) 648 return -EIO; 649 650 out += sprintf(out, "0x%.8x\n", result[0]); 651 out += sprintf(out, "0x%.8x\n", result[1]); 652 out += sprintf(out, "0x%.8x\n", result[2]); 653 out += sprintf(out, "0x%.8x\n", result[3]); 654 655 return out - buf; 656 } 657 658 /** 659 * pdcs_diagnostic_read - Stable Storage Diagnostic register output. 660 * @buf: The output buffer to write to. 661 * 662 * I have NFC how to interpret the content of that register ;-). 663 */ 664 static ssize_t pdcs_diagnostic_read(struct kobject *kobj, 665 struct kobj_attribute *attr, char *buf) 666 { 667 char *out = buf; 668 u32 result; 669 670 if (!buf) 671 return -EINVAL; 672 673 /* get diagnostic */ 674 if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK) 675 return -EIO; 676 677 out += sprintf(out, "0x%.4x\n", (result >> 16)); 678 679 return out - buf; 680 } 681 682 /** 683 * pdcs_fastsize_read - Stable Storage FastSize register output. 684 * @buf: The output buffer to write to. 685 * 686 * This register holds the amount of system RAM to be tested during boot sequence. 687 */ 688 static ssize_t pdcs_fastsize_read(struct kobject *kobj, 689 struct kobj_attribute *attr, char *buf) 690 { 691 char *out = buf; 692 u32 result; 693 694 if (!buf) 695 return -EINVAL; 696 697 /* get fast-size */ 698 if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK) 699 return -EIO; 700 701 if ((result & 0x0F) < 0x0E) 702 out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256); 703 else 704 out += sprintf(out, "All"); 705 out += sprintf(out, "\n"); 706 707 return out - buf; 708 } 709 710 /** 711 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output. 712 * @buf: The output buffer to write to. 713 * 714 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available. 715 */ 716 static ssize_t pdcs_osdep2_read(struct kobject *kobj, 717 struct kobj_attribute *attr, char *buf) 718 { 719 char *out = buf; 720 unsigned long size; 721 unsigned short i; 722 u32 result; 723 724 if (unlikely(pdcs_size <= 224)) 725 return -ENODATA; 726 727 size = pdcs_size - 224; 728 729 if (!buf) 730 return -EINVAL; 731 732 for (i=0; i<size; i+=4) { 733 if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result, 734 sizeof(result)) != PDC_OK)) 735 return -EIO; 736 out += sprintf(out, "0x%.8x\n", result); 737 } 738 739 return out - buf; 740 } 741 742 /** 743 * pdcs_auto_write - This function handles autoboot/search flag modifying. 744 * @buf: The input buffer to read from. 745 * @count: The number of bytes to be read. 746 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag 747 * 748 * We will call this function to change the current autoboot flag. 749 * We expect a precise syntax: 750 * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On 751 */ 752 static ssize_t pdcs_auto_write(struct kobject *kobj, 753 struct kobj_attribute *attr, const char *buf, 754 size_t count, int knob) 755 { 756 struct pdcspath_entry *pathentry; 757 unsigned char flags; 758 char in[count+1], *temp; 759 char c; 760 761 if (!capable(CAP_SYS_ADMIN)) 762 return -EACCES; 763 764 if (!buf || !count) 765 return -EINVAL; 766 767 /* We'll use a local copy of buf */ 768 memset(in, 0, count+1); 769 strncpy(in, buf, count); 770 771 /* Current flags are stored in primary boot path entry */ 772 pathentry = &pdcspath_entry_primary; 773 774 /* Be nice to the existing flag record */ 775 read_lock(&pathentry->rw_lock); 776 flags = pathentry->devpath.flags; 777 read_unlock(&pathentry->rw_lock); 778 779 DPRINTK("%s: flags before: 0x%X\n", __func__, flags); 780 781 temp = skip_spaces(in); 782 783 c = *temp++ - '0'; 784 if ((c != 0) && (c != 1)) 785 goto parse_error; 786 if (c == 0) 787 flags &= ~knob; 788 else 789 flags |= knob; 790 791 DPRINTK("%s: flags after: 0x%X\n", __func__, flags); 792 793 /* So far so good, let's get in deep */ 794 write_lock(&pathentry->rw_lock); 795 796 /* Change the path entry flags first */ 797 pathentry->devpath.flags = flags; 798 799 /* Now, dive in. Write back to the hardware */ 800 pdcspath_store(pathentry); 801 write_unlock(&pathentry->rw_lock); 802 803 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n", 804 (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch", 805 (flags & knob) ? "On" : "Off"); 806 807 return count; 808 809 parse_error: 810 printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__); 811 return -EINVAL; 812 } 813 814 /** 815 * pdcs_autoboot_write - This function handles autoboot flag modifying. 816 * @buf: The input buffer to read from. 817 * @count: The number of bytes to be read. 818 * 819 * We will call this function to change the current boot flags. 820 * We expect a precise syntax: 821 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On 822 */ 823 static ssize_t pdcs_autoboot_write(struct kobject *kobj, 824 struct kobj_attribute *attr, 825 const char *buf, size_t count) 826 { 827 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT); 828 } 829 830 /** 831 * pdcs_autosearch_write - This function handles autosearch flag modifying. 832 * @buf: The input buffer to read from. 833 * @count: The number of bytes to be read. 834 * 835 * We will call this function to change the current boot flags. 836 * We expect a precise syntax: 837 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On 838 */ 839 static ssize_t pdcs_autosearch_write(struct kobject *kobj, 840 struct kobj_attribute *attr, 841 const char *buf, size_t count) 842 { 843 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH); 844 } 845 846 /** 847 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input. 848 * @buf: The input buffer to read from. 849 * @count: The number of bytes to be read. 850 * 851 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte 852 * write approach. It's up to userspace to deal with it when constructing 853 * its input buffer. 854 */ 855 static ssize_t pdcs_osdep1_write(struct kobject *kobj, 856 struct kobj_attribute *attr, 857 const char *buf, size_t count) 858 { 859 u8 in[16]; 860 861 if (!capable(CAP_SYS_ADMIN)) 862 return -EACCES; 863 864 if (!buf || !count) 865 return -EINVAL; 866 867 if (unlikely(pdcs_osid != OS_ID_LINUX)) 868 return -EPERM; 869 870 if (count > 16) 871 return -EMSGSIZE; 872 873 /* We'll use a local copy of buf */ 874 memset(in, 0, 16); 875 memcpy(in, buf, count); 876 877 if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK) 878 return -EIO; 879 880 return count; 881 } 882 883 /** 884 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input. 885 * @buf: The input buffer to read from. 886 * @count: The number of bytes to be read. 887 * 888 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a 889 * byte-by-byte write approach. It's up to userspace to deal with it when 890 * constructing its input buffer. 891 */ 892 static ssize_t pdcs_osdep2_write(struct kobject *kobj, 893 struct kobj_attribute *attr, 894 const char *buf, size_t count) 895 { 896 unsigned long size; 897 unsigned short i; 898 u8 in[4]; 899 900 if (!capable(CAP_SYS_ADMIN)) 901 return -EACCES; 902 903 if (!buf || !count) 904 return -EINVAL; 905 906 if (unlikely(pdcs_size <= 224)) 907 return -ENOSYS; 908 909 if (unlikely(pdcs_osid != OS_ID_LINUX)) 910 return -EPERM; 911 912 size = pdcs_size - 224; 913 914 if (count > size) 915 return -EMSGSIZE; 916 917 /* We'll use a local copy of buf */ 918 919 for (i=0; i<count; i+=4) { 920 memset(in, 0, 4); 921 memcpy(in, buf+i, (count-i < 4) ? count-i : 4); 922 if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in, 923 sizeof(in)) != PDC_OK)) 924 return -EIO; 925 } 926 927 return count; 928 } 929 930 /* The remaining attributes. */ 931 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL); 932 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write); 933 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write); 934 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL); 935 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL); 936 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write); 937 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL); 938 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL); 939 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write); 940 941 static struct attribute *pdcs_subsys_attrs[] = { 942 &pdcs_attr_size.attr, 943 &pdcs_attr_autoboot.attr, 944 &pdcs_attr_autosearch.attr, 945 &pdcs_attr_timer.attr, 946 &pdcs_attr_osid.attr, 947 &pdcs_attr_osdep1.attr, 948 &pdcs_attr_diagnostic.attr, 949 &pdcs_attr_fastsize.attr, 950 &pdcs_attr_osdep2.attr, 951 NULL, 952 }; 953 954 static struct attribute_group pdcs_attr_group = { 955 .attrs = pdcs_subsys_attrs, 956 }; 957 958 static struct kobject *stable_kobj; 959 static struct kset *paths_kset; 960 961 /** 962 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage. 963 * 964 * It creates kobjects corresponding to each path entry with nice sysfs 965 * links to the real device. This is where the magic takes place: when 966 * registering the subsystem attributes during module init, each kobject hereby 967 * created will show in the sysfs tree as a folder containing files as defined 968 * by path_subsys_attr[]. 969 */ 970 static inline int __init 971 pdcs_register_pathentries(void) 972 { 973 unsigned short i; 974 struct pdcspath_entry *entry; 975 int err; 976 977 /* Initialize the entries rw_lock before anything else */ 978 for (i = 0; (entry = pdcspath_entries[i]); i++) 979 rwlock_init(&entry->rw_lock); 980 981 for (i = 0; (entry = pdcspath_entries[i]); i++) { 982 write_lock(&entry->rw_lock); 983 err = pdcspath_fetch(entry); 984 write_unlock(&entry->rw_lock); 985 986 if (err < 0) 987 continue; 988 989 entry->kobj.kset = paths_kset; 990 err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL, 991 "%s", entry->name); 992 if (err) 993 return err; 994 995 /* kobject is now registered */ 996 write_lock(&entry->rw_lock); 997 entry->ready = 2; 998 999 /* Add a nice symlink to the real device */ 1000 if (entry->dev) { 1001 err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); 1002 WARN_ON(err); 1003 } 1004 1005 write_unlock(&entry->rw_lock); 1006 kobject_uevent(&entry->kobj, KOBJ_ADD); 1007 } 1008 1009 return 0; 1010 } 1011 1012 /** 1013 * pdcs_unregister_pathentries - Routine called when unregistering the module. 1014 */ 1015 static inline void 1016 pdcs_unregister_pathentries(void) 1017 { 1018 unsigned short i; 1019 struct pdcspath_entry *entry; 1020 1021 for (i = 0; (entry = pdcspath_entries[i]); i++) { 1022 read_lock(&entry->rw_lock); 1023 if (entry->ready >= 2) 1024 kobject_put(&entry->kobj); 1025 read_unlock(&entry->rw_lock); 1026 } 1027 } 1028 1029 /* 1030 * For now we register the stable subsystem with the firmware subsystem 1031 * and the paths subsystem with the stable subsystem 1032 */ 1033 static int __init 1034 pdc_stable_init(void) 1035 { 1036 int rc = 0, error = 0; 1037 u32 result; 1038 1039 /* find the size of the stable storage */ 1040 if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 1041 return -ENODEV; 1042 1043 /* make sure we have enough data */ 1044 if (pdcs_size < 96) 1045 return -ENODATA; 1046 1047 printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION); 1048 1049 /* get OSID */ 1050 if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK) 1051 return -EIO; 1052 1053 /* the actual result is 16 bits away */ 1054 pdcs_osid = (u16)(result >> 16); 1055 1056 /* For now we'll register the directory at /sys/firmware/stable */ 1057 stable_kobj = kobject_create_and_add("stable", firmware_kobj); 1058 if (!stable_kobj) { 1059 rc = -ENOMEM; 1060 goto fail_firmreg; 1061 } 1062 1063 /* Don't forget the root entries */ 1064 error = sysfs_create_group(stable_kobj, &pdcs_attr_group); 1065 1066 /* register the paths kset as a child of the stable kset */ 1067 paths_kset = kset_create_and_add("paths", NULL, stable_kobj); 1068 if (!paths_kset) { 1069 rc = -ENOMEM; 1070 goto fail_ksetreg; 1071 } 1072 1073 /* now we create all "files" for the paths kset */ 1074 if ((rc = pdcs_register_pathentries())) 1075 goto fail_pdcsreg; 1076 1077 return rc; 1078 1079 fail_pdcsreg: 1080 pdcs_unregister_pathentries(); 1081 kset_unregister(paths_kset); 1082 1083 fail_ksetreg: 1084 kobject_put(stable_kobj); 1085 1086 fail_firmreg: 1087 printk(KERN_INFO PDCS_PREFIX " bailing out\n"); 1088 return rc; 1089 } 1090 1091 static void __exit 1092 pdc_stable_exit(void) 1093 { 1094 pdcs_unregister_pathentries(); 1095 kset_unregister(paths_kset); 1096 kobject_put(stable_kobj); 1097 } 1098 1099 1100 module_init(pdc_stable_init); 1101 module_exit(pdc_stable_exit); 1102