xref: /openbmc/linux/drivers/parisc/pdc_stable.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  *    Interfaces to retrieve and set PDC Stable options (firmware)
3  *
4  *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License, version 2, as
8  *    published by the Free Software Foundation.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *    GNU General Public License for more details.
14  *
15  *    You should have received a copy of the GNU General Public License
16  *    along with this program; if not, write to the Free Software
17  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  *
19  *
20  *    DEV NOTE: the PDC Procedures reference states that:
21  *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
22  *    96 bytes of Stable Storage is optional [...]. Failure to provide the
23  *    optional locations from 96 to 192 results in the loss of certain
24  *    functionality during boot."
25  *
26  *    Since locations between 96 and 192 are the various paths, most (if not
27  *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
28  *    following code can deal with just 96 bytes of Stable Storage, and all
29  *    sizes between 96 and 192 bytes (provided they are multiple of struct
30  *    device_path size, eg: 128, 160 and 192) to provide full information.
31  *    One last word: there's one path we can always count on: the primary path.
32  *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
33  *
34  *    The first OS-dependent area should always be available. Obviously, this is
35  *    not true for the other one. Also bear in mind that reading/writing from/to
36  *    osdep2 is much more expensive than from/to osdep1.
37  *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
38  *    2 bytes of storage available right after OSID. That's a total of 4 bytes
39  *    sacrificed: -ETOOLAZY :P
40  *
41  *    The current policy wrt file permissions is:
42  *	- write: root only
43  *	- read: (reading triggers PDC calls) ? root only : everyone
44  *    The rationale is that PDC calls could hog (DoS) the machine.
45  *
46  *	TODO:
47  *	- timer/fastsize write calls
48  */
49 
50 #undef PDCS_DEBUG
51 #ifdef PDCS_DEBUG
52 #define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
53 #else
54 #define DPRINTK(fmt, args...)
55 #endif
56 
57 #include <linux/module.h>
58 #include <linux/init.h>
59 #include <linux/kernel.h>
60 #include <linux/string.h>
61 #include <linux/capability.h>
62 #include <linux/ctype.h>
63 #include <linux/sysfs.h>
64 #include <linux/kobject.h>
65 #include <linux/device.h>
66 #include <linux/errno.h>
67 #include <linux/spinlock.h>
68 
69 #include <asm/pdc.h>
70 #include <asm/page.h>
71 #include <linux/uaccess.h>
72 #include <asm/hardware.h>
73 
74 #define PDCS_VERSION	"0.30"
75 #define PDCS_PREFIX	"PDC Stable Storage"
76 
77 #define PDCS_ADDR_PPRI	0x00
78 #define PDCS_ADDR_OSID	0x40
79 #define PDCS_ADDR_OSD1	0x48
80 #define PDCS_ADDR_DIAG	0x58
81 #define PDCS_ADDR_FSIZ	0x5C
82 #define PDCS_ADDR_PCON	0x60
83 #define PDCS_ADDR_PALT	0x80
84 #define PDCS_ADDR_PKBD	0xA0
85 #define PDCS_ADDR_OSD2	0xE0
86 
87 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
88 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(PDCS_VERSION);
91 
92 /* holds Stable Storage size. Initialized once and for all, no lock needed */
93 static unsigned long pdcs_size __read_mostly;
94 
95 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
96 static u16 pdcs_osid __read_mostly;
97 
98 /* This struct defines what we need to deal with a parisc pdc path entry */
99 struct pdcspath_entry {
100 	rwlock_t rw_lock;		/* to protect path entry access */
101 	short ready;			/* entry record is valid if != 0 */
102 	unsigned long addr;		/* entry address in stable storage */
103 	char *name;			/* entry name */
104 	struct device_path devpath;	/* device path in parisc representation */
105 	struct device *dev;		/* corresponding device */
106 	struct kobject kobj;
107 };
108 
109 struct pdcspath_attribute {
110 	struct attribute attr;
111 	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
112 	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
113 };
114 
115 #define PDCSPATH_ENTRY(_addr, _name) \
116 struct pdcspath_entry pdcspath_entry_##_name = { \
117 	.ready = 0, \
118 	.addr = _addr, \
119 	.name = __stringify(_name), \
120 };
121 
122 #define PDCS_ATTR(_name, _mode, _show, _store) \
123 struct kobj_attribute pdcs_attr_##_name = { \
124 	.attr = {.name = __stringify(_name), .mode = _mode}, \
125 	.show = _show, \
126 	.store = _store, \
127 };
128 
129 #define PATHS_ATTR(_name, _mode, _show, _store) \
130 struct pdcspath_attribute paths_attr_##_name = { \
131 	.attr = {.name = __stringify(_name), .mode = _mode}, \
132 	.show = _show, \
133 	.store = _store, \
134 };
135 
136 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
137 #define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
138 
139 /**
140  * pdcspath_fetch - This function populates the path entry structs.
141  * @entry: A pointer to an allocated pdcspath_entry.
142  *
143  * The general idea is that you don't read from the Stable Storage every time
144  * you access the files provided by the facilities. We store a copy of the
145  * content of the stable storage WRT various paths in these structs. We read
146  * these structs when reading the files, and we will write to these structs when
147  * writing to the files, and only then write them back to the Stable Storage.
148  *
149  * This function expects to be called with @entry->rw_lock write-hold.
150  */
151 static int
152 pdcspath_fetch(struct pdcspath_entry *entry)
153 {
154 	struct device_path *devpath;
155 
156 	if (!entry)
157 		return -EINVAL;
158 
159 	devpath = &entry->devpath;
160 
161 	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
162 			entry, devpath, entry->addr);
163 
164 	/* addr, devpath and count must be word aligned */
165 	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
166 		return -EIO;
167 
168 	/* Find the matching device.
169 	   NOTE: hardware_path overlays with device_path, so the nice cast can
170 	   be used */
171 	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
172 
173 	entry->ready = 1;
174 
175 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
176 
177 	return 0;
178 }
179 
180 /**
181  * pdcspath_store - This function writes a path to stable storage.
182  * @entry: A pointer to an allocated pdcspath_entry.
183  *
184  * It can be used in two ways: either by passing it a preset devpath struct
185  * containing an already computed hardware path, or by passing it a device
186  * pointer, from which it'll find out the corresponding hardware path.
187  * For now we do not handle the case where there's an error in writing to the
188  * Stable Storage area, so you'd better not mess up the data :P
189  *
190  * This function expects to be called with @entry->rw_lock write-hold.
191  */
192 static void
193 pdcspath_store(struct pdcspath_entry *entry)
194 {
195 	struct device_path *devpath;
196 
197 	BUG_ON(!entry);
198 
199 	devpath = &entry->devpath;
200 
201 	/* We expect the caller to set the ready flag to 0 if the hardware
202 	   path struct provided is invalid, so that we know we have to fill it.
203 	   First case, we don't have a preset hwpath... */
204 	if (!entry->ready) {
205 		/* ...but we have a device, map it */
206 		BUG_ON(!entry->dev);
207 		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
208 	}
209 	/* else, we expect the provided hwpath to be valid. */
210 
211 	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
212 			entry, devpath, entry->addr);
213 
214 	/* addr, devpath and count must be word aligned */
215 	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
216 		WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
217 				"It is likely that the Stable Storage data has been corrupted.\n"
218 				"Please check it carefully upon next reboot.\n", __func__);
219 
220 	/* kobject is already registered */
221 	entry->ready = 2;
222 
223 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
224 }
225 
226 /**
227  * pdcspath_hwpath_read - This function handles hardware path pretty printing.
228  * @entry: An allocated and populated pdscpath_entry struct.
229  * @buf: The output buffer to write to.
230  *
231  * We will call this function to format the output of the hwpath attribute file.
232  */
233 static ssize_t
234 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
235 {
236 	char *out = buf;
237 	struct device_path *devpath;
238 	short i;
239 
240 	if (!entry || !buf)
241 		return -EINVAL;
242 
243 	read_lock(&entry->rw_lock);
244 	devpath = &entry->devpath;
245 	i = entry->ready;
246 	read_unlock(&entry->rw_lock);
247 
248 	if (!i)	/* entry is not ready */
249 		return -ENODATA;
250 
251 	for (i = 0; i < 6; i++) {
252 		if (devpath->bc[i] >= 128)
253 			continue;
254 		out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
255 	}
256 	out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
257 
258 	return out - buf;
259 }
260 
261 /**
262  * pdcspath_hwpath_write - This function handles hardware path modifying.
263  * @entry: An allocated and populated pdscpath_entry struct.
264  * @buf: The input buffer to read from.
265  * @count: The number of bytes to be read.
266  *
267  * We will call this function to change the current hardware path.
268  * Hardware paths are to be given '/'-delimited, without brackets.
269  * We make sure that the provided path actually maps to an existing
270  * device, BUT nothing would prevent some foolish user to set the path to some
271  * PCI bridge or even a CPU...
272  * A better work around would be to make sure we are at the end of a device tree
273  * for instance, but it would be IMHO beyond the simple scope of that driver.
274  * The aim is to provide a facility. Data correctness is left to userland.
275  */
276 static ssize_t
277 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
278 {
279 	struct hardware_path hwpath;
280 	unsigned short i;
281 	char in[64], *temp;
282 	struct device *dev;
283 	int ret;
284 
285 	if (!entry || !buf || !count)
286 		return -EINVAL;
287 
288 	/* We'll use a local copy of buf */
289 	count = min_t(size_t, count, sizeof(in)-1);
290 	strncpy(in, buf, count);
291 	in[count] = '\0';
292 
293 	/* Let's clean up the target. 0xff is a blank pattern */
294 	memset(&hwpath, 0xff, sizeof(hwpath));
295 
296 	/* First, pick the mod field (the last one of the input string) */
297 	if (!(temp = strrchr(in, '/')))
298 		return -EINVAL;
299 
300 	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
301 	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
302 	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
303 
304 	/* Then, loop for each delimiter, making sure we don't have too many.
305 	   we write the bc fields in a down-top way. No matter what, we stop
306 	   before writing the last field. If there are too many fields anyway,
307 	   then the user is a moron and it'll be caught up later when we'll
308 	   check the consistency of the given hwpath. */
309 	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
310 		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
311 		in[temp-in] = '\0';
312 		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
313 	}
314 
315 	/* Store the final field */
316 	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
317 	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
318 
319 	/* Now we check that the user isn't trying to lure us */
320 	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
321 		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
322 			"hardware path: %s\n", __func__, entry->name, buf);
323 		return -EINVAL;
324 	}
325 
326 	/* So far so good, let's get in deep */
327 	write_lock(&entry->rw_lock);
328 	entry->ready = 0;
329 	entry->dev = dev;
330 
331 	/* Now, dive in. Write back to the hardware */
332 	pdcspath_store(entry);
333 
334 	/* Update the symlink to the real device */
335 	sysfs_remove_link(&entry->kobj, "device");
336 	write_unlock(&entry->rw_lock);
337 
338 	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
339 	WARN_ON(ret);
340 
341 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
342 		entry->name, buf);
343 
344 	return count;
345 }
346 
347 /**
348  * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
349  * @entry: An allocated and populated pdscpath_entry struct.
350  * @buf: The output buffer to write to.
351  *
352  * We will call this function to format the output of the layer attribute file.
353  */
354 static ssize_t
355 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
356 {
357 	char *out = buf;
358 	struct device_path *devpath;
359 	short i;
360 
361 	if (!entry || !buf)
362 		return -EINVAL;
363 
364 	read_lock(&entry->rw_lock);
365 	devpath = &entry->devpath;
366 	i = entry->ready;
367 	read_unlock(&entry->rw_lock);
368 
369 	if (!i)	/* entry is not ready */
370 		return -ENODATA;
371 
372 	for (i = 0; i < 6 && devpath->layers[i]; i++)
373 		out += sprintf(out, "%u ", devpath->layers[i]);
374 
375 	out += sprintf(out, "\n");
376 
377 	return out - buf;
378 }
379 
380 /**
381  * pdcspath_layer_write - This function handles extended layer modifying.
382  * @entry: An allocated and populated pdscpath_entry struct.
383  * @buf: The input buffer to read from.
384  * @count: The number of bytes to be read.
385  *
386  * We will call this function to change the current layer value.
387  * Layers are to be given '.'-delimited, without brackets.
388  * XXX beware we are far less checky WRT input data provided than for hwpath.
389  * Potential harm can be done, since there's no way to check the validity of
390  * the layer fields.
391  */
392 static ssize_t
393 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
394 {
395 	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
396 	unsigned short i;
397 	char in[64], *temp;
398 
399 	if (!entry || !buf || !count)
400 		return -EINVAL;
401 
402 	/* We'll use a local copy of buf */
403 	count = min_t(size_t, count, sizeof(in)-1);
404 	strncpy(in, buf, count);
405 	in[count] = '\0';
406 
407 	/* Let's clean up the target. 0 is a blank pattern */
408 	memset(&layers, 0, sizeof(layers));
409 
410 	/* First, pick the first layer */
411 	if (unlikely(!isdigit(*in)))
412 		return -EINVAL;
413 	layers[0] = simple_strtoul(in, NULL, 10);
414 	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
415 
416 	temp = in;
417 	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
418 		if (unlikely(!isdigit(*(++temp))))
419 			return -EINVAL;
420 		layers[i] = simple_strtoul(temp, NULL, 10);
421 		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
422 	}
423 
424 	/* So far so good, let's get in deep */
425 	write_lock(&entry->rw_lock);
426 
427 	/* First, overwrite the current layers with the new ones, not touching
428 	   the hardware path. */
429 	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
430 
431 	/* Now, dive in. Write back to the hardware */
432 	pdcspath_store(entry);
433 	write_unlock(&entry->rw_lock);
434 
435 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
436 		entry->name, buf);
437 
438 	return count;
439 }
440 
441 /**
442  * pdcspath_attr_show - Generic read function call wrapper.
443  * @kobj: The kobject to get info from.
444  * @attr: The attribute looked upon.
445  * @buf: The output buffer.
446  */
447 static ssize_t
448 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
449 {
450 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
451 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
452 	ssize_t ret = 0;
453 
454 	if (pdcs_attr->show)
455 		ret = pdcs_attr->show(entry, buf);
456 
457 	return ret;
458 }
459 
460 /**
461  * pdcspath_attr_store - Generic write function call wrapper.
462  * @kobj: The kobject to write info to.
463  * @attr: The attribute to be modified.
464  * @buf: The input buffer.
465  * @count: The size of the buffer.
466  */
467 static ssize_t
468 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
469 			const char *buf, size_t count)
470 {
471 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
472 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
473 	ssize_t ret = 0;
474 
475 	if (!capable(CAP_SYS_ADMIN))
476 		return -EACCES;
477 
478 	if (pdcs_attr->store)
479 		ret = pdcs_attr->store(entry, buf, count);
480 
481 	return ret;
482 }
483 
484 static const struct sysfs_ops pdcspath_attr_ops = {
485 	.show = pdcspath_attr_show,
486 	.store = pdcspath_attr_store,
487 };
488 
489 /* These are the two attributes of any PDC path. */
490 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
491 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
492 
493 static struct attribute *paths_subsys_attrs[] = {
494 	&paths_attr_hwpath.attr,
495 	&paths_attr_layer.attr,
496 	NULL,
497 };
498 
499 /* Specific kobject type for our PDC paths */
500 static struct kobj_type ktype_pdcspath = {
501 	.sysfs_ops = &pdcspath_attr_ops,
502 	.default_attrs = paths_subsys_attrs,
503 };
504 
505 /* We hard define the 4 types of path we expect to find */
506 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
507 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
508 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
509 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
510 
511 /* An array containing all PDC paths we will deal with */
512 static struct pdcspath_entry *pdcspath_entries[] = {
513 	&pdcspath_entry_primary,
514 	&pdcspath_entry_alternative,
515 	&pdcspath_entry_console,
516 	&pdcspath_entry_keyboard,
517 	NULL,
518 };
519 
520 
521 /* For more insight of what's going on here, refer to PDC Procedures doc,
522  * Section PDC_STABLE */
523 
524 /**
525  * pdcs_size_read - Stable Storage size output.
526  * @buf: The output buffer to write to.
527  */
528 static ssize_t pdcs_size_read(struct kobject *kobj,
529 			      struct kobj_attribute *attr,
530 			      char *buf)
531 {
532 	char *out = buf;
533 
534 	if (!buf)
535 		return -EINVAL;
536 
537 	/* show the size of the stable storage */
538 	out += sprintf(out, "%ld\n", pdcs_size);
539 
540 	return out - buf;
541 }
542 
543 /**
544  * pdcs_auto_read - Stable Storage autoboot/search flag output.
545  * @buf: The output buffer to write to.
546  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
547  */
548 static ssize_t pdcs_auto_read(struct kobject *kobj,
549 			      struct kobj_attribute *attr,
550 			      char *buf, int knob)
551 {
552 	char *out = buf;
553 	struct pdcspath_entry *pathentry;
554 
555 	if (!buf)
556 		return -EINVAL;
557 
558 	/* Current flags are stored in primary boot path entry */
559 	pathentry = &pdcspath_entry_primary;
560 
561 	read_lock(&pathentry->rw_lock);
562 	out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
563 					"On" : "Off");
564 	read_unlock(&pathentry->rw_lock);
565 
566 	return out - buf;
567 }
568 
569 /**
570  * pdcs_autoboot_read - Stable Storage autoboot flag output.
571  * @buf: The output buffer to write to.
572  */
573 static ssize_t pdcs_autoboot_read(struct kobject *kobj,
574 				  struct kobj_attribute *attr, char *buf)
575 {
576 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
577 }
578 
579 /**
580  * pdcs_autosearch_read - Stable Storage autoboot flag output.
581  * @buf: The output buffer to write to.
582  */
583 static ssize_t pdcs_autosearch_read(struct kobject *kobj,
584 				    struct kobj_attribute *attr, char *buf)
585 {
586 	return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
587 }
588 
589 /**
590  * pdcs_timer_read - Stable Storage timer count output (in seconds).
591  * @buf: The output buffer to write to.
592  *
593  * The value of the timer field correponds to a number of seconds in powers of 2.
594  */
595 static ssize_t pdcs_timer_read(struct kobject *kobj,
596 			       struct kobj_attribute *attr, char *buf)
597 {
598 	char *out = buf;
599 	struct pdcspath_entry *pathentry;
600 
601 	if (!buf)
602 		return -EINVAL;
603 
604 	/* Current flags are stored in primary boot path entry */
605 	pathentry = &pdcspath_entry_primary;
606 
607 	/* print the timer value in seconds */
608 	read_lock(&pathentry->rw_lock);
609 	out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
610 				(1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
611 	read_unlock(&pathentry->rw_lock);
612 
613 	return out - buf;
614 }
615 
616 /**
617  * pdcs_osid_read - Stable Storage OS ID register output.
618  * @buf: The output buffer to write to.
619  */
620 static ssize_t pdcs_osid_read(struct kobject *kobj,
621 			      struct kobj_attribute *attr, char *buf)
622 {
623 	char *out = buf;
624 
625 	if (!buf)
626 		return -EINVAL;
627 
628 	out += sprintf(out, "%s dependent data (0x%.4x)\n",
629 		os_id_to_string(pdcs_osid), pdcs_osid);
630 
631 	return out - buf;
632 }
633 
634 /**
635  * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
636  * @buf: The output buffer to write to.
637  *
638  * This can hold 16 bytes of OS-Dependent data.
639  */
640 static ssize_t pdcs_osdep1_read(struct kobject *kobj,
641 				struct kobj_attribute *attr, char *buf)
642 {
643 	char *out = buf;
644 	u32 result[4];
645 
646 	if (!buf)
647 		return -EINVAL;
648 
649 	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
650 		return -EIO;
651 
652 	out += sprintf(out, "0x%.8x\n", result[0]);
653 	out += sprintf(out, "0x%.8x\n", result[1]);
654 	out += sprintf(out, "0x%.8x\n", result[2]);
655 	out += sprintf(out, "0x%.8x\n", result[3]);
656 
657 	return out - buf;
658 }
659 
660 /**
661  * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
662  * @buf: The output buffer to write to.
663  *
664  * I have NFC how to interpret the content of that register ;-).
665  */
666 static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
667 				    struct kobj_attribute *attr, char *buf)
668 {
669 	char *out = buf;
670 	u32 result;
671 
672 	if (!buf)
673 		return -EINVAL;
674 
675 	/* get diagnostic */
676 	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
677 		return -EIO;
678 
679 	out += sprintf(out, "0x%.4x\n", (result >> 16));
680 
681 	return out - buf;
682 }
683 
684 /**
685  * pdcs_fastsize_read - Stable Storage FastSize register output.
686  * @buf: The output buffer to write to.
687  *
688  * This register holds the amount of system RAM to be tested during boot sequence.
689  */
690 static ssize_t pdcs_fastsize_read(struct kobject *kobj,
691 				  struct kobj_attribute *attr, char *buf)
692 {
693 	char *out = buf;
694 	u32 result;
695 
696 	if (!buf)
697 		return -EINVAL;
698 
699 	/* get fast-size */
700 	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
701 		return -EIO;
702 
703 	if ((result & 0x0F) < 0x0E)
704 		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
705 	else
706 		out += sprintf(out, "All");
707 	out += sprintf(out, "\n");
708 
709 	return out - buf;
710 }
711 
712 /**
713  * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
714  * @buf: The output buffer to write to.
715  *
716  * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
717  */
718 static ssize_t pdcs_osdep2_read(struct kobject *kobj,
719 				struct kobj_attribute *attr, char *buf)
720 {
721 	char *out = buf;
722 	unsigned long size;
723 	unsigned short i;
724 	u32 result;
725 
726 	if (unlikely(pdcs_size <= 224))
727 		return -ENODATA;
728 
729 	size = pdcs_size - 224;
730 
731 	if (!buf)
732 		return -EINVAL;
733 
734 	for (i=0; i<size; i+=4) {
735 		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
736 					sizeof(result)) != PDC_OK))
737 			return -EIO;
738 		out += sprintf(out, "0x%.8x\n", result);
739 	}
740 
741 	return out - buf;
742 }
743 
744 /**
745  * pdcs_auto_write - This function handles autoboot/search flag modifying.
746  * @buf: The input buffer to read from.
747  * @count: The number of bytes to be read.
748  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
749  *
750  * We will call this function to change the current autoboot flag.
751  * We expect a precise syntax:
752  *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
753  */
754 static ssize_t pdcs_auto_write(struct kobject *kobj,
755 			       struct kobj_attribute *attr, const char *buf,
756 			       size_t count, int knob)
757 {
758 	struct pdcspath_entry *pathentry;
759 	unsigned char flags;
760 	char in[8], *temp;
761 	char c;
762 
763 	if (!capable(CAP_SYS_ADMIN))
764 		return -EACCES;
765 
766 	if (!buf || !count)
767 		return -EINVAL;
768 
769 	/* We'll use a local copy of buf */
770 	count = min_t(size_t, count, sizeof(in)-1);
771 	strncpy(in, buf, count);
772 	in[count] = '\0';
773 
774 	/* Current flags are stored in primary boot path entry */
775 	pathentry = &pdcspath_entry_primary;
776 
777 	/* Be nice to the existing flag record */
778 	read_lock(&pathentry->rw_lock);
779 	flags = pathentry->devpath.flags;
780 	read_unlock(&pathentry->rw_lock);
781 
782 	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
783 
784 	temp = skip_spaces(in);
785 
786 	c = *temp++ - '0';
787 	if ((c != 0) && (c != 1))
788 		goto parse_error;
789 	if (c == 0)
790 		flags &= ~knob;
791 	else
792 		flags |= knob;
793 
794 	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
795 
796 	/* So far so good, let's get in deep */
797 	write_lock(&pathentry->rw_lock);
798 
799 	/* Change the path entry flags first */
800 	pathentry->devpath.flags = flags;
801 
802 	/* Now, dive in. Write back to the hardware */
803 	pdcspath_store(pathentry);
804 	write_unlock(&pathentry->rw_lock);
805 
806 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
807 		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
808 		(flags & knob) ? "On" : "Off");
809 
810 	return count;
811 
812 parse_error:
813 	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
814 	return -EINVAL;
815 }
816 
817 /**
818  * pdcs_autoboot_write - This function handles autoboot flag modifying.
819  * @buf: The input buffer to read from.
820  * @count: The number of bytes to be read.
821  *
822  * We will call this function to change the current boot flags.
823  * We expect a precise syntax:
824  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
825  */
826 static ssize_t pdcs_autoboot_write(struct kobject *kobj,
827 				   struct kobj_attribute *attr,
828 				   const char *buf, size_t count)
829 {
830 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
831 }
832 
833 /**
834  * pdcs_autosearch_write - This function handles autosearch flag modifying.
835  * @buf: The input buffer to read from.
836  * @count: The number of bytes to be read.
837  *
838  * We will call this function to change the current boot flags.
839  * We expect a precise syntax:
840  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
841  */
842 static ssize_t pdcs_autosearch_write(struct kobject *kobj,
843 				     struct kobj_attribute *attr,
844 				     const char *buf, size_t count)
845 {
846 	return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
847 }
848 
849 /**
850  * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
851  * @buf: The input buffer to read from.
852  * @count: The number of bytes to be read.
853  *
854  * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
855  * write approach. It's up to userspace to deal with it when constructing
856  * its input buffer.
857  */
858 static ssize_t pdcs_osdep1_write(struct kobject *kobj,
859 				 struct kobj_attribute *attr,
860 				 const char *buf, size_t count)
861 {
862 	u8 in[16];
863 
864 	if (!capable(CAP_SYS_ADMIN))
865 		return -EACCES;
866 
867 	if (!buf || !count)
868 		return -EINVAL;
869 
870 	if (unlikely(pdcs_osid != OS_ID_LINUX))
871 		return -EPERM;
872 
873 	if (count > 16)
874 		return -EMSGSIZE;
875 
876 	/* We'll use a local copy of buf */
877 	memset(in, 0, 16);
878 	memcpy(in, buf, count);
879 
880 	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
881 		return -EIO;
882 
883 	return count;
884 }
885 
886 /**
887  * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
888  * @buf: The input buffer to read from.
889  * @count: The number of bytes to be read.
890  *
891  * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
892  * byte-by-byte write approach. It's up to userspace to deal with it when
893  * constructing its input buffer.
894  */
895 static ssize_t pdcs_osdep2_write(struct kobject *kobj,
896 				 struct kobj_attribute *attr,
897 				 const char *buf, size_t count)
898 {
899 	unsigned long size;
900 	unsigned short i;
901 	u8 in[4];
902 
903 	if (!capable(CAP_SYS_ADMIN))
904 		return -EACCES;
905 
906 	if (!buf || !count)
907 		return -EINVAL;
908 
909 	if (unlikely(pdcs_size <= 224))
910 		return -ENOSYS;
911 
912 	if (unlikely(pdcs_osid != OS_ID_LINUX))
913 		return -EPERM;
914 
915 	size = pdcs_size - 224;
916 
917 	if (count > size)
918 		return -EMSGSIZE;
919 
920 	/* We'll use a local copy of buf */
921 
922 	for (i=0; i<count; i+=4) {
923 		memset(in, 0, 4);
924 		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
925 		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
926 					sizeof(in)) != PDC_OK))
927 			return -EIO;
928 	}
929 
930 	return count;
931 }
932 
933 /* The remaining attributes. */
934 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
935 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
936 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
937 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
938 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
939 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
940 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
941 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
942 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
943 
944 static struct attribute *pdcs_subsys_attrs[] = {
945 	&pdcs_attr_size.attr,
946 	&pdcs_attr_autoboot.attr,
947 	&pdcs_attr_autosearch.attr,
948 	&pdcs_attr_timer.attr,
949 	&pdcs_attr_osid.attr,
950 	&pdcs_attr_osdep1.attr,
951 	&pdcs_attr_diagnostic.attr,
952 	&pdcs_attr_fastsize.attr,
953 	&pdcs_attr_osdep2.attr,
954 	NULL,
955 };
956 
957 static const struct attribute_group pdcs_attr_group = {
958 	.attrs = pdcs_subsys_attrs,
959 };
960 
961 static struct kobject *stable_kobj;
962 static struct kset *paths_kset;
963 
964 /**
965  * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
966  *
967  * It creates kobjects corresponding to each path entry with nice sysfs
968  * links to the real device. This is where the magic takes place: when
969  * registering the subsystem attributes during module init, each kobject hereby
970  * created will show in the sysfs tree as a folder containing files as defined
971  * by path_subsys_attr[].
972  */
973 static inline int __init
974 pdcs_register_pathentries(void)
975 {
976 	unsigned short i;
977 	struct pdcspath_entry *entry;
978 	int err;
979 
980 	/* Initialize the entries rw_lock before anything else */
981 	for (i = 0; (entry = pdcspath_entries[i]); i++)
982 		rwlock_init(&entry->rw_lock);
983 
984 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
985 		write_lock(&entry->rw_lock);
986 		err = pdcspath_fetch(entry);
987 		write_unlock(&entry->rw_lock);
988 
989 		if (err < 0)
990 			continue;
991 
992 		entry->kobj.kset = paths_kset;
993 		err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
994 					   "%s", entry->name);
995 		if (err)
996 			return err;
997 
998 		/* kobject is now registered */
999 		write_lock(&entry->rw_lock);
1000 		entry->ready = 2;
1001 		write_unlock(&entry->rw_lock);
1002 
1003 		/* Add a nice symlink to the real device */
1004 		if (entry->dev) {
1005 			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
1006 			WARN_ON(err);
1007 		}
1008 
1009 		kobject_uevent(&entry->kobj, KOBJ_ADD);
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * pdcs_unregister_pathentries - Routine called when unregistering the module.
1017  */
1018 static inline void
1019 pdcs_unregister_pathentries(void)
1020 {
1021 	unsigned short i;
1022 	struct pdcspath_entry *entry;
1023 
1024 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1025 		read_lock(&entry->rw_lock);
1026 		if (entry->ready >= 2)
1027 			kobject_put(&entry->kobj);
1028 		read_unlock(&entry->rw_lock);
1029 	}
1030 }
1031 
1032 /*
1033  * For now we register the stable subsystem with the firmware subsystem
1034  * and the paths subsystem with the stable subsystem
1035  */
1036 static int __init
1037 pdc_stable_init(void)
1038 {
1039 	int rc = 0, error = 0;
1040 	u32 result;
1041 
1042 	/* find the size of the stable storage */
1043 	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1044 		return -ENODEV;
1045 
1046 	/* make sure we have enough data */
1047 	if (pdcs_size < 96)
1048 		return -ENODATA;
1049 
1050 	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1051 
1052 	/* get OSID */
1053 	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1054 		return -EIO;
1055 
1056 	/* the actual result is 16 bits away */
1057 	pdcs_osid = (u16)(result >> 16);
1058 
1059 	/* For now we'll register the directory at /sys/firmware/stable */
1060 	stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1061 	if (!stable_kobj) {
1062 		rc = -ENOMEM;
1063 		goto fail_firmreg;
1064 	}
1065 
1066 	/* Don't forget the root entries */
1067 	error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1068 
1069 	/* register the paths kset as a child of the stable kset */
1070 	paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1071 	if (!paths_kset) {
1072 		rc = -ENOMEM;
1073 		goto fail_ksetreg;
1074 	}
1075 
1076 	/* now we create all "files" for the paths kset */
1077 	if ((rc = pdcs_register_pathentries()))
1078 		goto fail_pdcsreg;
1079 
1080 	return rc;
1081 
1082 fail_pdcsreg:
1083 	pdcs_unregister_pathentries();
1084 	kset_unregister(paths_kset);
1085 
1086 fail_ksetreg:
1087 	kobject_put(stable_kobj);
1088 
1089 fail_firmreg:
1090 	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1091 	return rc;
1092 }
1093 
1094 static void __exit
1095 pdc_stable_exit(void)
1096 {
1097 	pdcs_unregister_pathentries();
1098 	kset_unregister(paths_kset);
1099 	kobject_put(stable_kobj);
1100 }
1101 
1102 
1103 module_init(pdc_stable_init);
1104 module_exit(pdc_stable_exit);
1105