xref: /openbmc/linux/drivers/parisc/lba_pci.c (revision 87c2ce3b)
1 /*
2 **
3 **  PCI Lower Bus Adapter (LBA) manager
4 **
5 **	(c) Copyright 1999,2000 Grant Grundler
6 **	(c) Copyright 1999,2000 Hewlett-Packard Company
7 **
8 **	This program is free software; you can redistribute it and/or modify
9 **	it under the terms of the GNU General Public License as published by
10 **      the Free Software Foundation; either version 2 of the License, or
11 **      (at your option) any later version.
12 **
13 **
14 ** This module primarily provides access to PCI bus (config/IOport
15 ** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class
16 ** with 4 digit model numbers - eg C3000 (and A400...sigh).
17 **
18 ** LBA driver isn't as simple as the Dino driver because:
19 **   (a) this chip has substantial bug fixes between revisions
20 **       (Only one Dino bug has a software workaround :^(  )
21 **   (b) has more options which we don't (yet) support (DMA hints, OLARD)
22 **   (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver)
23 **   (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC).
24 **       (dino only deals with "Legacy" PDC)
25 **
26 ** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver.
27 ** (I/O SAPIC is integratd in the LBA chip).
28 **
29 ** FIXME: Add support to SBA and LBA drivers for DMA hint sets
30 ** FIXME: Add support for PCI card hot-plug (OLARD).
31 */
32 
33 #include <linux/delay.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/spinlock.h>
37 #include <linux/init.h>		/* for __init and __devinit */
38 #include <linux/pci.h>
39 #include <linux/ioport.h>
40 #include <linux/slab.h>
41 #include <linux/smp_lock.h>
42 
43 #include <asm/byteorder.h>
44 #include <asm/pdc.h>
45 #include <asm/pdcpat.h>
46 #include <asm/page.h>
47 #include <asm/system.h>
48 
49 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
50 #include <asm/parisc-device.h>
51 #include <asm/iosapic.h>	/* for iosapic_register() */
52 #include <asm/io.h>		/* read/write stuff */
53 
54 #undef DEBUG_LBA	/* general stuff */
55 #undef DEBUG_LBA_PORT	/* debug I/O Port access */
56 #undef DEBUG_LBA_CFG	/* debug Config Space Access (ie PCI Bus walk) */
57 #undef DEBUG_LBA_PAT	/* debug PCI Resource Mgt code - PDC PAT only */
58 
59 #undef FBB_SUPPORT	/* Fast Back-Back xfers - NOT READY YET */
60 
61 
62 #ifdef DEBUG_LBA
63 #define DBG(x...)	printk(x)
64 #else
65 #define DBG(x...)
66 #endif
67 
68 #ifdef DEBUG_LBA_PORT
69 #define DBG_PORT(x...)	printk(x)
70 #else
71 #define DBG_PORT(x...)
72 #endif
73 
74 #ifdef DEBUG_LBA_CFG
75 #define DBG_CFG(x...)	printk(x)
76 #else
77 #define DBG_CFG(x...)
78 #endif
79 
80 #ifdef DEBUG_LBA_PAT
81 #define DBG_PAT(x...)	printk(x)
82 #else
83 #define DBG_PAT(x...)
84 #endif
85 
86 
87 /*
88 ** Config accessor functions only pass in the 8-bit bus number and not
89 ** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus
90 ** number based on what firmware wrote into the scratch register.
91 **
92 ** The "secondary" bus number is set to this before calling
93 ** pci_register_ops(). If any PPB's are present, the scan will
94 ** discover them and update the "secondary" and "subordinate"
95 ** fields in the pci_bus structure.
96 **
97 ** Changes in the configuration *may* result in a different
98 ** bus number for each LBA depending on what firmware does.
99 */
100 
101 #define MODULE_NAME "LBA"
102 
103 #define LBA_FUNC_ID	0x0000	/* function id */
104 #define LBA_FCLASS	0x0008	/* function class, bist, header, rev... */
105 #define LBA_CAPABLE	0x0030	/* capabilities register */
106 
107 #define LBA_PCI_CFG_ADDR	0x0040	/* poke CFG address here */
108 #define LBA_PCI_CFG_DATA	0x0048	/* read or write data here */
109 
110 #define LBA_PMC_MTLT	0x0050	/* Firmware sets this - read only. */
111 #define LBA_FW_SCRATCH	0x0058	/* Firmware writes the PCI bus number here. */
112 #define LBA_ERROR_ADDR	0x0070	/* On error, address gets logged here */
113 
114 #define LBA_ARB_MASK	0x0080	/* bit 0 enable arbitration. PAT/PDC enables */
115 #define LBA_ARB_PRI	0x0088	/* firmware sets this. */
116 #define LBA_ARB_MODE	0x0090	/* firmware sets this. */
117 #define LBA_ARB_MTLT	0x0098	/* firmware sets this. */
118 
119 #define LBA_MOD_ID	0x0100	/* Module ID. PDC_PAT_CELL reports 4 */
120 
121 #define LBA_STAT_CTL	0x0108	/* Status & Control */
122 #define   LBA_BUS_RESET		0x01	/*  Deassert PCI Bus Reset Signal */
123 #define   CLEAR_ERRLOG		0x10	/*  "Clear Error Log" cmd */
124 #define   CLEAR_ERRLOG_ENABLE	0x20	/*  "Clear Error Log" Enable */
125 #define   HF_ENABLE	0x40	/*    enable HF mode (default is -1 mode) */
126 
127 #define LBA_LMMIO_BASE	0x0200	/* < 4GB I/O address range */
128 #define LBA_LMMIO_MASK	0x0208
129 
130 #define LBA_GMMIO_BASE	0x0210	/* > 4GB I/O address range */
131 #define LBA_GMMIO_MASK	0x0218
132 
133 #define LBA_WLMMIO_BASE	0x0220	/* All < 4GB ranges under the same *SBA* */
134 #define LBA_WLMMIO_MASK	0x0228
135 
136 #define LBA_WGMMIO_BASE	0x0230	/* All > 4GB ranges under the same *SBA* */
137 #define LBA_WGMMIO_MASK	0x0238
138 
139 #define LBA_IOS_BASE	0x0240	/* I/O port space for this LBA */
140 #define LBA_IOS_MASK	0x0248
141 
142 #define LBA_ELMMIO_BASE	0x0250	/* Extra LMMIO range */
143 #define LBA_ELMMIO_MASK	0x0258
144 
145 #define LBA_EIOS_BASE	0x0260	/* Extra I/O port space */
146 #define LBA_EIOS_MASK	0x0268
147 
148 #define LBA_GLOBAL_MASK	0x0270	/* Mercury only: Global Address Mask */
149 #define LBA_DMA_CTL	0x0278	/* firmware sets this */
150 
151 #define LBA_IBASE	0x0300	/* SBA DMA support */
152 #define LBA_IMASK	0x0308
153 
154 /* FIXME: ignore DMA Hint stuff until we can measure performance */
155 #define LBA_HINT_CFG	0x0310
156 #define LBA_HINT_BASE	0x0380	/* 14 registers at every 8 bytes. */
157 
158 #define LBA_BUS_MODE	0x0620
159 
160 /* ERROR regs are needed for config cycle kluges */
161 #define LBA_ERROR_CONFIG 0x0680
162 #define     LBA_SMART_MODE 0x20
163 #define LBA_ERROR_STATUS 0x0688
164 #define LBA_ROPE_CTL     0x06A0
165 
166 #define LBA_IOSAPIC_BASE	0x800 /* Offset of IRQ logic */
167 
168 /* non-postable I/O port space, densely packed */
169 #define LBA_PORT_BASE	(PCI_F_EXTEND | 0xfee00000UL)
170 static void __iomem *astro_iop_base;
171 
172 #define ELROY_HVERS	0x782
173 #define MERCURY_HVERS	0x783
174 #define QUICKSILVER_HVERS	0x784
175 
176 static inline int IS_ELROY(struct parisc_device *d)
177 {
178 	return (d->id.hversion == ELROY_HVERS);
179 }
180 
181 static inline int IS_MERCURY(struct parisc_device *d)
182 {
183 	return (d->id.hversion == MERCURY_HVERS);
184 }
185 
186 static inline int IS_QUICKSILVER(struct parisc_device *d)
187 {
188 	return (d->id.hversion == QUICKSILVER_HVERS);
189 }
190 
191 
192 /*
193 ** lba_device: Per instance Elroy data structure
194 */
195 struct lba_device {
196 	struct pci_hba_data hba;
197 
198 	spinlock_t	lba_lock;
199 	void		*iosapic_obj;
200 
201 #ifdef CONFIG_64BIT
202 	void __iomem *	iop_base;    /* PA_VIEW - for IO port accessor funcs */
203 #endif
204 
205 	int		flags;       /* state/functionality enabled */
206 	int		hw_rev;      /* HW revision of chip */
207 };
208 
209 
210 static u32 lba_t32;
211 
212 /* lba flags */
213 #define LBA_FLAG_SKIP_PROBE	0x10
214 
215 #define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE)
216 
217 
218 /* Looks nice and keeps the compiler happy */
219 #define LBA_DEV(d) ((struct lba_device *) (d))
220 
221 
222 /*
223 ** Only allow 8 subsidiary busses per LBA
224 ** Problem is the PCI bus numbering is globally shared.
225 */
226 #define LBA_MAX_NUM_BUSES 8
227 
228 /************************************
229  * LBA register read and write support
230  *
231  * BE WARNED: register writes are posted.
232  *  (ie follow writes which must reach HW with a read)
233  */
234 #define READ_U8(addr)  __raw_readb(addr)
235 #define READ_U16(addr) __raw_readw(addr)
236 #define READ_U32(addr) __raw_readl(addr)
237 #define WRITE_U8(value, addr)  __raw_writeb(value, addr)
238 #define WRITE_U16(value, addr) __raw_writew(value, addr)
239 #define WRITE_U32(value, addr) __raw_writel(value, addr)
240 
241 #define READ_REG8(addr)  readb(addr)
242 #define READ_REG16(addr) readw(addr)
243 #define READ_REG32(addr) readl(addr)
244 #define READ_REG64(addr) readq(addr)
245 #define WRITE_REG8(value, addr)  writeb(value, addr)
246 #define WRITE_REG16(value, addr) writew(value, addr)
247 #define WRITE_REG32(value, addr) writel(value, addr)
248 
249 
250 #define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8))
251 #define LBA_CFG_BUS(tok)  ((u8) ((tok)>>16))
252 #define LBA_CFG_DEV(tok)  ((u8) ((tok)>>11) & 0x1f)
253 #define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7)
254 
255 
256 /*
257 ** Extract LBA (Rope) number from HPA
258 ** REVISIT: 16 ropes for Stretch/Ike?
259 */
260 #define ROPES_PER_IOC	8
261 #define LBA_NUM(x)    ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1))
262 
263 
264 static void
265 lba_dump_res(struct resource *r, int d)
266 {
267 	int i;
268 
269 	if (NULL == r)
270 		return;
271 
272 	printk(KERN_DEBUG "(%p)", r->parent);
273 	for (i = d; i ; --i) printk(" ");
274 	printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r, r->start, r->end, r->flags);
275 	lba_dump_res(r->child, d+2);
276 	lba_dump_res(r->sibling, d);
277 }
278 
279 
280 /*
281 ** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex
282 ** workaround for cfg cycles:
283 **	-- preserve  LBA state
284 **	-- prevent any DMA from occurring
285 **	-- turn on smart mode
286 **	-- probe with config writes before doing config reads
287 **	-- check ERROR_STATUS
288 **	-- clear ERROR_STATUS
289 **	-- restore LBA state
290 **
291 ** The workaround is only used for device discovery.
292 */
293 
294 static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d)
295 {
296 	u8 first_bus = d->hba.hba_bus->secondary;
297 	u8 last_sub_bus = d->hba.hba_bus->subordinate;
298 
299 	if ((bus < first_bus) ||
300 	    (bus > last_sub_bus) ||
301 	    ((bus - first_bus) >= LBA_MAX_NUM_BUSES)) {
302 		return 0;
303 	}
304 
305 	return 1;
306 }
307 
308 
309 
310 #define LBA_CFG_SETUP(d, tok) {				\
311     /* Save contents of error config register.  */			\
312     error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG);		\
313 \
314     /* Save contents of status control register.  */			\
315     status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);		\
316 \
317     /* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA		\
318     ** arbitration for full bus walks.					\
319     */									\
320 	/* Save contents of arb mask register. */			\
321 	arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK);		\
322 \
323 	/*								\
324 	 * Turn off all device arbitration bits (i.e. everything	\
325 	 * except arbitration enable bit).				\
326 	 */								\
327 	WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK);		\
328 \
329     /*									\
330      * Set the smart mode bit so that master aborts don't cause		\
331      * LBA to go into PCI fatal mode (required).			\
332      */									\
333     WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG);	\
334 }
335 
336 
337 #define LBA_CFG_PROBE(d, tok) {				\
338     /*									\
339      * Setup Vendor ID write and read back the address register		\
340      * to make sure that LBA is the bus master.				\
341      */									\
342     WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\
343     /*									\
344      * Read address register to ensure that LBA is the bus master,	\
345      * which implies that DMA traffic has stopped when DMA arb is off.	\
346      */									\
347     lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\
348     /*									\
349      * Generate a cfg write cycle (will have no affect on		\
350      * Vendor ID register since read-only).				\
351      */									\
352     WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA);		\
353     /*									\
354      * Make sure write has completed before proceeding further,		\
355      * i.e. before setting clear enable.				\
356      */									\
357     lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\
358 }
359 
360 
361 /*
362  * HPREVISIT:
363  *   -- Can't tell if config cycle got the error.
364  *
365  *		OV bit is broken until rev 4.0, so can't use OV bit and
366  *		LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle.
367  *
368  *		As of rev 4.0, no longer need the error check.
369  *
370  *   -- Even if we could tell, we still want to return -1
371  *	for **ANY** error (not just master abort).
372  *
373  *   -- Only clear non-fatal errors (we don't want to bring
374  *	LBA out of pci-fatal mode).
375  *
376  *		Actually, there is still a race in which
377  *		we could be clearing a fatal error.  We will
378  *		live with this during our initial bus walk
379  *		until rev 4.0 (no driver activity during
380  *		initial bus walk).  The initial bus walk
381  *		has race conditions concerning the use of
382  *		smart mode as well.
383  */
384 
385 #define LBA_MASTER_ABORT_ERROR 0xc
386 #define LBA_FATAL_ERROR 0x10
387 
388 #define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) {		\
389     u32 error_status = 0;						\
390     /*									\
391      * Set clear enable (CE) bit. Unset by HW when new			\
392      * errors are logged -- LBA HW ERS section 14.3.3).		\
393      */									\
394     WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \
395     error_status = READ_REG32(base + LBA_ERROR_STATUS);		\
396     if ((error_status & 0x1f) != 0) {					\
397 	/*								\
398 	 * Fail the config read request.				\
399 	 */								\
400 	error = 1;							\
401 	if ((error_status & LBA_FATAL_ERROR) == 0) {			\
402 	    /*								\
403 	     * Clear error status (if fatal bit not set) by setting	\
404 	     * clear error log bit (CL).				\
405 	     */								\
406 	    WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \
407 	}								\
408     }									\
409 }
410 
411 #define LBA_CFG_TR4_ADDR_SETUP(d, addr)					\
412 	WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR);
413 
414 #define LBA_CFG_ADDR_SETUP(d, addr) {					\
415     WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\
416     /*									\
417      * Read address register to ensure that LBA is the bus master,	\
418      * which implies that DMA traffic has stopped when DMA arb is off.	\
419      */									\
420     lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR);	\
421 }
422 
423 
424 #define LBA_CFG_RESTORE(d, base) {					\
425     /*									\
426      * Restore status control register (turn off clear enable).		\
427      */									\
428     WRITE_REG32(status_control, base + LBA_STAT_CTL);			\
429     /*									\
430      * Restore error config register (turn off smart mode).		\
431      */									\
432     WRITE_REG32(error_config, base + LBA_ERROR_CONFIG);			\
433 	/*								\
434 	 * Restore arb mask register (reenables DMA arbitration).	\
435 	 */								\
436 	WRITE_REG32(arb_mask, base + LBA_ARB_MASK);			\
437 }
438 
439 
440 
441 static unsigned int
442 lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size)
443 {
444 	u32 data = ~0U;
445 	int error = 0;
446 	u32 arb_mask = 0;	/* used by LBA_CFG_SETUP/RESTORE */
447 	u32 error_config = 0;	/* used by LBA_CFG_SETUP/RESTORE */
448 	u32 status_control = 0;	/* used by LBA_CFG_SETUP/RESTORE */
449 
450 	LBA_CFG_SETUP(d, tok);
451 	LBA_CFG_PROBE(d, tok);
452 	LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
453 	if (!error) {
454 		void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
455 
456 		LBA_CFG_ADDR_SETUP(d, tok | reg);
457 		switch (size) {
458 		case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break;
459 		case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break;
460 		case 4: data = READ_REG32(data_reg); break;
461 		}
462 	}
463 	LBA_CFG_RESTORE(d, d->hba.base_addr);
464 	return(data);
465 }
466 
467 
468 static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
469 {
470 	struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
471 	u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary;
472 	u32 tok = LBA_CFG_TOK(local_bus, devfn);
473 	void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
474 
475 	if ((pos > 255) || (devfn > 255))
476 		return -EINVAL;
477 
478 /* FIXME: B2K/C3600 workaround is always use old method... */
479 	/* if (!LBA_SKIP_PROBE(d)) */ {
480 		/* original - Generate config cycle on broken elroy
481 		  with risk we will miss PCI bus errors. */
482 		*data = lba_rd_cfg(d, tok, pos, size);
483 		DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __FUNCTION__, tok, pos, *data);
484 		return 0;
485 	}
486 
487 	if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->secondary, devfn, d)) {
488 		DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __FUNCTION__, tok, pos);
489 		/* either don't want to look or know device isn't present. */
490 		*data = ~0U;
491 		return(0);
492 	}
493 
494 	/* Basic Algorithm
495 	** Should only get here on fully working LBA rev.
496 	** This is how simple the code should have been.
497 	*/
498 	LBA_CFG_ADDR_SETUP(d, tok | pos);
499 	switch(size) {
500 	case 1: *data = READ_REG8 (data_reg + (pos & 3)); break;
501 	case 2: *data = READ_REG16(data_reg + (pos & 2)); break;
502 	case 4: *data = READ_REG32(data_reg); break;
503 	}
504 	DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __FUNCTION__, tok, pos, *data);
505 	return 0;
506 }
507 
508 
509 static void
510 lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size)
511 {
512 	int error = 0;
513 	u32 arb_mask = 0;
514 	u32 error_config = 0;
515 	u32 status_control = 0;
516 	void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
517 
518 	LBA_CFG_SETUP(d, tok);
519 	LBA_CFG_ADDR_SETUP(d, tok | reg);
520 	switch (size) {
521 	case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break;
522 	case 2: WRITE_REG16(data, data_reg + (reg & 2)); break;
523 	case 4: WRITE_REG32(data, data_reg);             break;
524 	}
525 	LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
526 	LBA_CFG_RESTORE(d, d->hba.base_addr);
527 }
528 
529 
530 /*
531  * LBA 4.0 config write code implements non-postable semantics
532  * by doing a read of CONFIG ADDR after the write.
533  */
534 
535 static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
536 {
537 	struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
538 	u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary;
539 	u32 tok = LBA_CFG_TOK(local_bus,devfn);
540 
541 	if ((pos > 255) || (devfn > 255))
542 		return -EINVAL;
543 
544 	if (!LBA_SKIP_PROBE(d)) {
545 		/* Original Workaround */
546 		lba_wr_cfg(d, tok, pos, (u32) data, size);
547 		DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __FUNCTION__, tok, pos,data);
548 		return 0;
549 	}
550 
551 	if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->secondary, devfn, d))) {
552 		DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __FUNCTION__, tok, pos,data);
553 		return 1; /* New Workaround */
554 	}
555 
556 	DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __FUNCTION__, tok, pos, data);
557 
558 	/* Basic Algorithm */
559 	LBA_CFG_ADDR_SETUP(d, tok | pos);
560 	switch(size) {
561 	case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3));
562 		   break;
563 	case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2));
564 		   break;
565 	case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA);
566 		   break;
567 	}
568 	/* flush posted write */
569 	lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
570 	return 0;
571 }
572 
573 
574 static struct pci_ops elroy_cfg_ops = {
575 	.read =		elroy_cfg_read,
576 	.write =	elroy_cfg_write,
577 };
578 
579 /*
580  * The mercury_cfg_ops are slightly misnamed; they're also used for Elroy
581  * TR4.0 as no additional bugs were found in this areea between Elroy and
582  * Mercury
583  */
584 
585 static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
586 {
587 	struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
588 	u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary;
589 	u32 tok = LBA_CFG_TOK(local_bus, devfn);
590 	void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
591 
592 	if ((pos > 255) || (devfn > 255))
593 		return -EINVAL;
594 
595 	LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
596 	switch(size) {
597 	case 1:
598 		*data = READ_REG8(data_reg + (pos & 3));
599 		break;
600 	case 2:
601 		*data = READ_REG16(data_reg + (pos & 2));
602 		break;
603 	case 4:
604 		*data = READ_REG32(data_reg);             break;
605 		break;
606 	}
607 
608 	DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data);
609 	return 0;
610 }
611 
612 /*
613  * LBA 4.0 config write code implements non-postable semantics
614  * by doing a read of CONFIG ADDR after the write.
615  */
616 
617 static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
618 {
619 	struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
620 	void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
621 	u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary;
622 	u32 tok = LBA_CFG_TOK(local_bus,devfn);
623 
624 	if ((pos > 255) || (devfn > 255))
625 		return -EINVAL;
626 
627 	DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __FUNCTION__, tok, pos, data);
628 
629 	LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
630 	switch(size) {
631 	case 1:
632 		WRITE_REG8 (data, data_reg + (pos & 3));
633 		break;
634 	case 2:
635 		WRITE_REG16(data, data_reg + (pos & 2));
636 		break;
637 	case 4:
638 		WRITE_REG32(data, data_reg);
639 		break;
640 	}
641 
642 	/* flush posted write */
643 	lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
644 	return 0;
645 }
646 
647 static struct pci_ops mercury_cfg_ops = {
648 	.read =		mercury_cfg_read,
649 	.write =	mercury_cfg_write,
650 };
651 
652 
653 static void
654 lba_bios_init(void)
655 {
656 	DBG(MODULE_NAME ": lba_bios_init\n");
657 }
658 
659 
660 #ifdef CONFIG_64BIT
661 
662 /*
663 ** Determine if a device is already configured.
664 ** If so, reserve it resources.
665 **
666 ** Read PCI cfg command register and see if I/O or MMIO is enabled.
667 ** PAT has to enable the devices it's using.
668 **
669 ** Note: resources are fixed up before we try to claim them.
670 */
671 static void
672 lba_claim_dev_resources(struct pci_dev *dev)
673 {
674 	u16 cmd;
675 	int i, srch_flags;
676 
677 	(void) pci_read_config_word(dev, PCI_COMMAND, &cmd);
678 
679 	srch_flags  = (cmd & PCI_COMMAND_IO) ? IORESOURCE_IO : 0;
680 	if (cmd & PCI_COMMAND_MEMORY)
681 		srch_flags |= IORESOURCE_MEM;
682 
683 	if (!srch_flags)
684 		return;
685 
686 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
687 		if (dev->resource[i].flags & srch_flags) {
688 			pci_claim_resource(dev, i);
689 			DBG("   claimed %s %d [%lx,%lx]/%lx\n",
690 				pci_name(dev), i,
691 				dev->resource[i].start,
692 				dev->resource[i].end,
693 				dev->resource[i].flags
694 				);
695 		}
696 	}
697 }
698 #else
699 #define lba_claim_dev_resources(dev)
700 #endif
701 
702 
703 /*
704 ** The algorithm is generic code.
705 ** But it needs to access local data structures to get the IRQ base.
706 ** Could make this a "pci_fixup_irq(bus, region)" but not sure
707 ** it's worth it.
708 **
709 ** Called by do_pci_scan_bus() immediately after each PCI bus is walked.
710 ** Resources aren't allocated until recursive buswalk below HBA is completed.
711 */
712 static void
713 lba_fixup_bus(struct pci_bus *bus)
714 {
715 	struct list_head *ln;
716 #ifdef FBB_SUPPORT
717 	u16 status;
718 #endif
719 	struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge));
720 	int lba_portbase = HBA_PORT_BASE(ldev->hba.hba_num);
721 
722 	DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n",
723 		bus, bus->secondary, bus->bridge->platform_data);
724 
725 	/*
726 	** Properly Setup MMIO resources for this bus.
727 	** pci_alloc_primary_bus() mangles this.
728 	*/
729 	if (bus->self) {
730 		/* PCI-PCI Bridge */
731 		pci_read_bridge_bases(bus);
732 	} else {
733 		/* Host-PCI Bridge */
734 		int err, i;
735 
736 		DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
737 			ldev->hba.io_space.name,
738 			ldev->hba.io_space.start, ldev->hba.io_space.end,
739 			ldev->hba.io_space.flags);
740 		DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
741 			ldev->hba.lmmio_space.name,
742 			ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end,
743 			ldev->hba.lmmio_space.flags);
744 
745 		err = request_resource(&ioport_resource, &(ldev->hba.io_space));
746 		if (err < 0) {
747 			lba_dump_res(&ioport_resource, 2);
748 			BUG();
749 		}
750 
751 		if (ldev->hba.elmmio_space.start) {
752 			err = request_resource(&iomem_resource,
753 					&(ldev->hba.elmmio_space));
754 			if (err < 0) {
755 
756 				printk("FAILED: lba_fixup_bus() request for "
757 						"elmmio_space [%lx/%lx]\n",
758 						ldev->hba.elmmio_space.start,
759 						ldev->hba.elmmio_space.end);
760 
761 				/* lba_dump_res(&iomem_resource, 2); */
762 				/* BUG(); */
763 			}
764 		}
765 
766 		err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space));
767 		if (err < 0) {
768 			/*   FIXME  overlaps with elmmio will fail here.
769 			 *   Need to prune (or disable) the distributed range.
770 			 *
771 			 *   BEWARE: conflicts with this lmmio range may be
772 			 *   elmmio range which is pointing down another rope.
773 			 */
774 
775 			printk("FAILED: lba_fixup_bus() request for "
776 					"lmmio_space [%lx/%lx]\n",
777 					ldev->hba.lmmio_space.start,
778 					ldev->hba.lmmio_space.end);
779 			/* lba_dump_res(&iomem_resource, 2); */
780 		}
781 
782 #ifdef CONFIG_64BIT
783 		/* GMMIO is  distributed range. Every LBA/Rope gets part it. */
784 		if (ldev->hba.gmmio_space.flags) {
785 			err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space));
786 			if (err < 0) {
787 				printk("FAILED: lba_fixup_bus() request for "
788 					"gmmio_space [%lx/%lx]\n",
789 					ldev->hba.gmmio_space.start,
790 					ldev->hba.gmmio_space.end);
791 				lba_dump_res(&iomem_resource, 2);
792 				BUG();
793 			}
794 		}
795 #endif
796 
797 		/* advertize Host bridge resources to PCI bus */
798 		bus->resource[0] = &(ldev->hba.io_space);
799 		bus->resource[1] = &(ldev->hba.lmmio_space);
800 		i=2;
801 		if (ldev->hba.elmmio_space.start)
802 			bus->resource[i++] = &(ldev->hba.elmmio_space);
803 		if (ldev->hba.gmmio_space.start)
804 			bus->resource[i++] = &(ldev->hba.gmmio_space);
805 
806 	}
807 
808 	list_for_each(ln, &bus->devices) {
809 		int i;
810 		struct pci_dev *dev = pci_dev_b(ln);
811 
812 		DBG("lba_fixup_bus() %s\n", pci_name(dev));
813 
814 		/* Virtualize Device/Bridge Resources. */
815 		for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
816 			struct resource *res = &dev->resource[i];
817 
818 			/* If resource not allocated - skip it */
819 			if (!res->start)
820 				continue;
821 
822 			if (res->flags & IORESOURCE_IO) {
823 				DBG("lba_fixup_bus() I/O Ports [%lx/%lx] -> ",
824 					res->start, res->end);
825 				res->start |= lba_portbase;
826 				res->end   |= lba_portbase;
827 				DBG("[%lx/%lx]\n", res->start, res->end);
828 			} else if (res->flags & IORESOURCE_MEM) {
829 				/*
830 				** Convert PCI (IO_VIEW) addresses to
831 				** processor (PA_VIEW) addresses
832 				 */
833 				DBG("lba_fixup_bus() MMIO [%lx/%lx] -> ",
834 					res->start, res->end);
835 				res->start = PCI_HOST_ADDR(HBA_DATA(ldev), res->start);
836 				res->end   = PCI_HOST_ADDR(HBA_DATA(ldev), res->end);
837 				DBG("[%lx/%lx]\n", res->start, res->end);
838 			} else {
839 				DBG("lba_fixup_bus() WTF? 0x%lx [%lx/%lx] XXX",
840 					res->flags, res->start, res->end);
841 			}
842 		}
843 
844 #ifdef FBB_SUPPORT
845 		/*
846 		** If one device does not support FBB transfers,
847 		** No one on the bus can be allowed to use them.
848 		*/
849 		(void) pci_read_config_word(dev, PCI_STATUS, &status);
850 		bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK);
851 #endif
852 
853 		if (is_pdc_pat()) {
854 			/* Claim resources for PDC's devices */
855 			lba_claim_dev_resources(dev);
856 		}
857 
858                 /*
859 		** P2PB's have no IRQs. ignore them.
860 		*/
861 		if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
862 			continue;
863 
864 		/* Adjust INTERRUPT_LINE for this dev */
865 		iosapic_fixup_irq(ldev->iosapic_obj, dev);
866 	}
867 
868 #ifdef FBB_SUPPORT
869 /* FIXME/REVISIT - finish figuring out to set FBB on both
870 ** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL.
871 ** Can't fixup here anyway....garr...
872 */
873 	if (fbb_enable) {
874 		if (bus->self) {
875 			u8 control;
876 			/* enable on PPB */
877 			(void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control);
878 			(void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK);
879 
880 		} else {
881 			/* enable on LBA */
882 		}
883 		fbb_enable = PCI_COMMAND_FAST_BACK;
884 	}
885 
886 	/* Lastly enable FBB/PERR/SERR on all devices too */
887 	list_for_each(ln, &bus->devices) {
888 		(void) pci_read_config_word(dev, PCI_COMMAND, &status);
889 		status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable;
890 		(void) pci_write_config_word(dev, PCI_COMMAND, status);
891 	}
892 #endif
893 }
894 
895 
896 struct pci_bios_ops lba_bios_ops = {
897 	.init =		lba_bios_init,
898 	.fixup_bus =	lba_fixup_bus,
899 };
900 
901 
902 
903 
904 /*******************************************************
905 **
906 ** LBA Sprockets "I/O Port" Space Accessor Functions
907 **
908 ** This set of accessor functions is intended for use with
909 ** "legacy firmware" (ie Sprockets on Allegro/Forte boxes).
910 **
911 ** Many PCI devices don't require use of I/O port space (eg Tulip,
912 ** NCR720) since they export the same registers to both MMIO and
913 ** I/O port space. In general I/O port space is slower than
914 ** MMIO since drivers are designed so PIO writes can be posted.
915 **
916 ********************************************************/
917 
918 #define LBA_PORT_IN(size, mask) \
919 static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \
920 { \
921 	u##size t; \
922 	t = READ_REG##size(astro_iop_base + addr); \
923 	DBG_PORT(" 0x%x\n", t); \
924 	return (t); \
925 }
926 
927 LBA_PORT_IN( 8, 3)
928 LBA_PORT_IN(16, 2)
929 LBA_PORT_IN(32, 0)
930 
931 
932 
933 /*
934 ** BUG X4107:  Ordering broken - DMA RD return can bypass PIO WR
935 **
936 ** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is
937 ** guarantee non-postable completion semantics - not avoid X4107.
938 ** The READ_U32 only guarantees the write data gets to elroy but
939 ** out to the PCI bus. We can't read stuff from I/O port space
940 ** since we don't know what has side-effects. Attempting to read
941 ** from configuration space would be suicidal given the number of
942 ** bugs in that elroy functionality.
943 **
944 **      Description:
945 **          DMA read results can improperly pass PIO writes (X4107).  The
946 **          result of this bug is that if a processor modifies a location in
947 **          memory after having issued PIO writes, the PIO writes are not
948 **          guaranteed to be completed before a PCI device is allowed to see
949 **          the modified data in a DMA read.
950 **
951 **          Note that IKE bug X3719 in TR1 IKEs will result in the same
952 **          symptom.
953 **
954 **      Workaround:
955 **          The workaround for this bug is to always follow a PIO write with
956 **          a PIO read to the same bus before starting DMA on that PCI bus.
957 **
958 */
959 #define LBA_PORT_OUT(size, mask) \
960 static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \
961 { \
962 	DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __FUNCTION__, d, addr, val); \
963 	WRITE_REG##size(val, astro_iop_base + addr); \
964 	if (LBA_DEV(d)->hw_rev < 3) \
965 		lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \
966 }
967 
968 LBA_PORT_OUT( 8, 3)
969 LBA_PORT_OUT(16, 2)
970 LBA_PORT_OUT(32, 0)
971 
972 
973 static struct pci_port_ops lba_astro_port_ops = {
974 	.inb =	lba_astro_in8,
975 	.inw =	lba_astro_in16,
976 	.inl =	lba_astro_in32,
977 	.outb =	lba_astro_out8,
978 	.outw =	lba_astro_out16,
979 	.outl =	lba_astro_out32
980 };
981 
982 
983 #ifdef CONFIG_64BIT
984 #define PIOP_TO_GMMIO(lba, addr) \
985 	((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3))
986 
987 /*******************************************************
988 **
989 ** LBA PAT "I/O Port" Space Accessor Functions
990 **
991 ** This set of accessor functions is intended for use with
992 ** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes).
993 **
994 ** This uses the PIOP space located in the first 64MB of GMMIO.
995 ** Each rope gets a full 64*KB* (ie 4 bytes per page) this way.
996 ** bits 1:0 stay the same.  bits 15:2 become 25:12.
997 ** Then add the base and we can generate an I/O Port cycle.
998 ********************************************************/
999 #undef LBA_PORT_IN
1000 #define LBA_PORT_IN(size, mask) \
1001 static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \
1002 { \
1003 	u##size t; \
1004 	DBG_PORT("%s(0x%p, 0x%x) ->", __FUNCTION__, l, addr); \
1005 	t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \
1006 	DBG_PORT(" 0x%x\n", t); \
1007 	return (t); \
1008 }
1009 
1010 LBA_PORT_IN( 8, 3)
1011 LBA_PORT_IN(16, 2)
1012 LBA_PORT_IN(32, 0)
1013 
1014 
1015 #undef LBA_PORT_OUT
1016 #define LBA_PORT_OUT(size, mask) \
1017 static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \
1018 { \
1019 	void *where = (void *) PIOP_TO_GMMIO(LBA_DEV(l), addr); \
1020 	DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __FUNCTION__, l, addr, val); \
1021 	WRITE_REG##size(val, where); \
1022 	/* flush the I/O down to the elroy at least */ \
1023 	lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \
1024 }
1025 
1026 LBA_PORT_OUT( 8, 3)
1027 LBA_PORT_OUT(16, 2)
1028 LBA_PORT_OUT(32, 0)
1029 
1030 
1031 static struct pci_port_ops lba_pat_port_ops = {
1032 	.inb =	lba_pat_in8,
1033 	.inw =	lba_pat_in16,
1034 	.inl =	lba_pat_in32,
1035 	.outb =	lba_pat_out8,
1036 	.outw =	lba_pat_out16,
1037 	.outl =	lba_pat_out32
1038 };
1039 
1040 
1041 
1042 /*
1043 ** make range information from PDC available to PCI subsystem.
1044 ** We make the PDC call here in order to get the PCI bus range
1045 ** numbers. The rest will get forwarded in pcibios_fixup_bus().
1046 ** We don't have a struct pci_bus assigned to us yet.
1047 */
1048 static void
1049 lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
1050 {
1051 	unsigned long bytecnt;
1052 	pdc_pat_cell_mod_maddr_block_t pa_pdc_cell;	/* PA_VIEW */
1053 	pdc_pat_cell_mod_maddr_block_t io_pdc_cell;	/* IO_VIEW */
1054 	long io_count;
1055 	long status;	/* PDC return status */
1056 	long pa_count;
1057 	int i;
1058 
1059 	/* return cell module (IO view) */
1060 	status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
1061 				PA_VIEW, & pa_pdc_cell);
1062 	pa_count = pa_pdc_cell.mod[1];
1063 
1064 	status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
1065 				IO_VIEW, &io_pdc_cell);
1066 	io_count = io_pdc_cell.mod[1];
1067 
1068 	/* We've already done this once for device discovery...*/
1069 	if (status != PDC_OK) {
1070 		panic("pdc_pat_cell_module() call failed for LBA!\n");
1071 	}
1072 
1073 	if (PAT_GET_ENTITY(pa_pdc_cell.mod_info) != PAT_ENTITY_LBA) {
1074 		panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n");
1075 	}
1076 
1077 	/*
1078 	** Inspect the resources PAT tells us about
1079 	*/
1080 	for (i = 0; i < pa_count; i++) {
1081 		struct {
1082 			unsigned long type;
1083 			unsigned long start;
1084 			unsigned long end;	/* aka finish */
1085 		} *p, *io;
1086 		struct resource *r;
1087 
1088 		p = (void *) &(pa_pdc_cell.mod[2+i*3]);
1089 		io = (void *) &(io_pdc_cell.mod[2+i*3]);
1090 
1091 		/* Convert the PAT range data to PCI "struct resource" */
1092 		switch(p->type & 0xff) {
1093 		case PAT_PBNUM:
1094 			lba_dev->hba.bus_num.start = p->start;
1095 			lba_dev->hba.bus_num.end   = p->end;
1096 			break;
1097 
1098 		case PAT_LMMIO:
1099 			/* used to fix up pre-initialized MEM BARs */
1100 			if (!lba_dev->hba.lmmio_space.start) {
1101 				sprintf(lba_dev->hba.lmmio_name,
1102 						"PCI%02lx LMMIO",
1103 						lba_dev->hba.bus_num.start);
1104 				lba_dev->hba.lmmio_space_offset = p->start -
1105 					io->start;
1106 				r = &lba_dev->hba.lmmio_space;
1107 				r->name = lba_dev->hba.lmmio_name;
1108 			} else if (!lba_dev->hba.elmmio_space.start) {
1109 				sprintf(lba_dev->hba.elmmio_name,
1110 						"PCI%02lx ELMMIO",
1111 						lba_dev->hba.bus_num.start);
1112 				r = &lba_dev->hba.elmmio_space;
1113 				r->name = lba_dev->hba.elmmio_name;
1114 			} else {
1115 				printk(KERN_WARNING MODULE_NAME
1116 					" only supports 2 LMMIO resources!\n");
1117 				break;
1118 			}
1119 
1120 			r->start  = p->start;
1121 			r->end    = p->end;
1122 			r->flags  = IORESOURCE_MEM;
1123 			r->parent = r->sibling = r->child = NULL;
1124 			break;
1125 
1126 		case PAT_GMMIO:
1127 			/* MMIO space > 4GB phys addr; for 64-bit BAR */
1128 			sprintf(lba_dev->hba.gmmio_name, "PCI%02lx GMMIO",
1129 					lba_dev->hba.bus_num.start);
1130 			r = &lba_dev->hba.gmmio_space;
1131 			r->name  = lba_dev->hba.gmmio_name;
1132 			r->start  = p->start;
1133 			r->end    = p->end;
1134 			r->flags  = IORESOURCE_MEM;
1135 			r->parent = r->sibling = r->child = NULL;
1136 			break;
1137 
1138 		case PAT_NPIOP:
1139 			printk(KERN_WARNING MODULE_NAME
1140 				" range[%d] : ignoring NPIOP (0x%lx)\n",
1141 				i, p->start);
1142 			break;
1143 
1144 		case PAT_PIOP:
1145 			/*
1146 			** Postable I/O port space is per PCI host adapter.
1147 			** base of 64MB PIOP region
1148 			*/
1149 			lba_dev->iop_base = ioremap(p->start, 64 * 1024 * 1024);
1150 
1151 			sprintf(lba_dev->hba.io_name, "PCI%02lx Ports",
1152 					lba_dev->hba.bus_num.start);
1153 			r = &lba_dev->hba.io_space;
1154 			r->name  = lba_dev->hba.io_name;
1155 			r->start  = HBA_PORT_BASE(lba_dev->hba.hba_num);
1156 			r->end    = r->start + HBA_PORT_SPACE_SIZE - 1;
1157 			r->flags  = IORESOURCE_IO;
1158 			r->parent = r->sibling = r->child = NULL;
1159 			break;
1160 
1161 		default:
1162 			printk(KERN_WARNING MODULE_NAME
1163 				" range[%d] : unknown pat range type (0x%lx)\n",
1164 				i, p->type & 0xff);
1165 			break;
1166 		}
1167 	}
1168 }
1169 #else
1170 /* keep compiler from complaining about missing declarations */
1171 #define lba_pat_port_ops lba_astro_port_ops
1172 #define lba_pat_resources(pa_dev, lba_dev)
1173 #endif	/* CONFIG_64BIT */
1174 
1175 
1176 extern void sba_distributed_lmmio(struct parisc_device *, struct resource *);
1177 extern void sba_directed_lmmio(struct parisc_device *, struct resource *);
1178 
1179 
1180 static void
1181 lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
1182 {
1183 	struct resource *r;
1184 	int lba_num;
1185 
1186 	lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND;
1187 
1188 	/*
1189 	** With "legacy" firmware, the lowest byte of FW_SCRATCH
1190 	** represents bus->secondary and the second byte represents
1191 	** bus->subsidiary (i.e. highest PPB programmed by firmware).
1192 	** PCI bus walk *should* end up with the same result.
1193 	** FIXME: But we don't have sanity checks in PCI or LBA.
1194 	*/
1195 	lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH);
1196 	r = &(lba_dev->hba.bus_num);
1197 	r->name = "LBA PCI Busses";
1198 	r->start = lba_num & 0xff;
1199 	r->end = (lba_num>>8) & 0xff;
1200 
1201 	/* Set up local PCI Bus resources - we don't need them for
1202 	** Legacy boxes but it's nice to see in /proc/iomem.
1203 	*/
1204 	r = &(lba_dev->hba.lmmio_space);
1205 	sprintf(lba_dev->hba.lmmio_name, "PCI%02lx LMMIO",
1206 					lba_dev->hba.bus_num.start);
1207 	r->name  = lba_dev->hba.lmmio_name;
1208 
1209 #if 1
1210 	/* We want the CPU -> IO routing of addresses.
1211 	 * The SBA BASE/MASK registers control CPU -> IO routing.
1212 	 * Ask SBA what is routed to this rope/LBA.
1213 	 */
1214 	sba_distributed_lmmio(pa_dev, r);
1215 #else
1216 	/*
1217 	 * The LBA BASE/MASK registers control IO -> System routing.
1218 	 *
1219 	 * The following code works but doesn't get us what we want.
1220 	 * Well, only because firmware (v5.0) on C3000 doesn't program
1221 	 * the LBA BASE/MASE registers to be the exact inverse of
1222 	 * the corresponding SBA registers. Other Astro/Pluto
1223 	 * based platform firmware may do it right.
1224 	 *
1225 	 * Should someone want to mess with MSI, they may need to
1226 	 * reprogram LBA BASE/MASK registers. Thus preserve the code
1227 	 * below until MSI is known to work on C3000/A500/N4000/RP3440.
1228 	 *
1229 	 * Using the code below, /proc/iomem shows:
1230 	 * ...
1231 	 * f0000000-f0ffffff : PCI00 LMMIO
1232 	 *   f05d0000-f05d0000 : lcd_data
1233 	 *   f05d0008-f05d0008 : lcd_cmd
1234 	 * f1000000-f1ffffff : PCI01 LMMIO
1235 	 * f4000000-f4ffffff : PCI02 LMMIO
1236 	 *   f4000000-f4001fff : sym53c8xx
1237 	 *   f4002000-f4003fff : sym53c8xx
1238 	 *   f4004000-f40043ff : sym53c8xx
1239 	 *   f4005000-f40053ff : sym53c8xx
1240 	 *   f4007000-f4007fff : ohci_hcd
1241 	 *   f4008000-f40083ff : tulip
1242 	 * f6000000-f6ffffff : PCI03 LMMIO
1243 	 * f8000000-fbffffff : PCI00 ELMMIO
1244 	 *   fa100000-fa4fffff : stifb mmio
1245 	 *   fb000000-fb1fffff : stifb fb
1246 	 *
1247 	 * But everything listed under PCI02 actually lives under PCI00.
1248 	 * This is clearly wrong.
1249 	 *
1250 	 * Asking SBA how things are routed tells the correct story:
1251 	 * LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000
1252 	 * DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006
1253 	 * DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004
1254 	 * DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000
1255 	 * DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000
1256 	 *
1257 	 * Which looks like this in /proc/iomem:
1258 	 * f4000000-f47fffff : PCI00 LMMIO
1259 	 *   f4000000-f4001fff : sym53c8xx
1260 	 *   ...[deteled core devices - same as above]...
1261 	 *   f4008000-f40083ff : tulip
1262 	 * f4800000-f4ffffff : PCI01 LMMIO
1263 	 * f6000000-f67fffff : PCI02 LMMIO
1264 	 * f7000000-f77fffff : PCI03 LMMIO
1265 	 * f9000000-f9ffffff : PCI02 ELMMIO
1266 	 * fa000000-fbffffff : PCI03 ELMMIO
1267 	 *   fa100000-fa4fffff : stifb mmio
1268 	 *   fb000000-fb1fffff : stifb fb
1269 	 *
1270 	 * ie all Built-in core are under now correctly under PCI00.
1271 	 * The "PCI02 ELMMIO" directed range is for:
1272 	 *  +-[02]---03.0  3Dfx Interactive, Inc. Voodoo 2
1273 	 *
1274 	 * All is well now.
1275 	 */
1276 	r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE);
1277 	if (r->start & 1) {
1278 		unsigned long rsize;
1279 
1280 		r->flags = IORESOURCE_MEM;
1281 		/* mmio_mask also clears Enable bit */
1282 		r->start &= mmio_mask;
1283 		r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start);
1284 		rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK);
1285 
1286 		/*
1287 		** Each rope only gets part of the distributed range.
1288 		** Adjust "window" for this rope.
1289 		*/
1290 		rsize /= ROPES_PER_IOC;
1291 		r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start);
1292 		r->end = r->start + rsize;
1293 	} else {
1294 		r->end = r->start = 0;	/* Not enabled. */
1295 	}
1296 #endif
1297 
1298 	/*
1299 	** "Directed" ranges are used when the "distributed range" isn't
1300 	** sufficient for all devices below a given LBA.  Typically devices
1301 	** like graphics cards or X25 may need a directed range when the
1302 	** bus has multiple slots (ie multiple devices) or the device
1303 	** needs more than the typical 4 or 8MB a distributed range offers.
1304 	**
1305 	** The main reason for ignoring it now frigging complications.
1306 	** Directed ranges may overlap (and have precedence) over
1307 	** distributed ranges. Or a distributed range assigned to a unused
1308 	** rope may be used by a directed range on a different rope.
1309 	** Support for graphics devices may require fixing this
1310 	** since they may be assigned a directed range which overlaps
1311 	** an existing (but unused portion of) distributed range.
1312 	*/
1313 	r = &(lba_dev->hba.elmmio_space);
1314 	sprintf(lba_dev->hba.elmmio_name, "PCI%02lx ELMMIO",
1315 					lba_dev->hba.bus_num.start);
1316 	r->name  = lba_dev->hba.elmmio_name;
1317 
1318 #if 1
1319 	/* See comment which precedes call to sba_directed_lmmio() */
1320 	sba_directed_lmmio(pa_dev, r);
1321 #else
1322 	r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE);
1323 
1324 	if (r->start & 1) {
1325 		unsigned long rsize;
1326 		r->flags = IORESOURCE_MEM;
1327 		/* mmio_mask also clears Enable bit */
1328 		r->start &= mmio_mask;
1329 		r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start);
1330 		rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK);
1331 		r->end = r->start + ~rsize;
1332 	}
1333 #endif
1334 
1335 	r = &(lba_dev->hba.io_space);
1336 	sprintf(lba_dev->hba.io_name, "PCI%02lx Ports",
1337 					lba_dev->hba.bus_num.start);
1338 	r->name  = lba_dev->hba.io_name;
1339 	r->flags = IORESOURCE_IO;
1340 	r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L;
1341 	r->end   = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1));
1342 
1343 	/* Virtualize the I/O Port space ranges */
1344 	lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num);
1345 	r->start |= lba_num;
1346 	r->end   |= lba_num;
1347 }
1348 
1349 
1350 /**************************************************************************
1351 **
1352 **   LBA initialization code (HW and SW)
1353 **
1354 **   o identify LBA chip itself
1355 **   o initialize LBA chip modes (HardFail)
1356 **   o FIXME: initialize DMA hints for reasonable defaults
1357 **   o enable configuration functions
1358 **   o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked)
1359 **
1360 **************************************************************************/
1361 
1362 static int __init
1363 lba_hw_init(struct lba_device *d)
1364 {
1365 	u32 stat;
1366 	u32 bus_reset;	/* PDC_PAT_BUG */
1367 
1368 #if 0
1369 	printk(KERN_DEBUG "LBA %lx  STAT_CTL %Lx  ERROR_CFG %Lx  STATUS %Lx DMA_CTL %Lx\n",
1370 		d->hba.base_addr,
1371 		READ_REG64(d->hba.base_addr + LBA_STAT_CTL),
1372 		READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG),
1373 		READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS),
1374 		READ_REG64(d->hba.base_addr + LBA_DMA_CTL) );
1375 	printk(KERN_DEBUG "	ARB mask %Lx  pri %Lx  mode %Lx  mtlt %Lx\n",
1376 		READ_REG64(d->hba.base_addr + LBA_ARB_MASK),
1377 		READ_REG64(d->hba.base_addr + LBA_ARB_PRI),
1378 		READ_REG64(d->hba.base_addr + LBA_ARB_MODE),
1379 		READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) );
1380 	printk(KERN_DEBUG "	HINT cfg 0x%Lx\n",
1381 		READ_REG64(d->hba.base_addr + LBA_HINT_CFG));
1382 	printk(KERN_DEBUG "	HINT reg ");
1383 	{ int i;
1384 	for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8)
1385 		printk(" %Lx", READ_REG64(d->hba.base_addr + i));
1386 	}
1387 	printk("\n");
1388 #endif	/* DEBUG_LBA_PAT */
1389 
1390 #ifdef CONFIG_64BIT
1391 /*
1392  * FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support
1393  * Only N-Class and up can really make use of Get slot status.
1394  * maybe L-class too but I've never played with it there.
1395  */
1396 #endif
1397 
1398 	/* PDC_PAT_BUG: exhibited in rev 40.48  on L2000 */
1399 	bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1;
1400 	if (bus_reset) {
1401 		printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n");
1402 	}
1403 
1404 	stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG);
1405 	if (stat & LBA_SMART_MODE) {
1406 		printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n");
1407 		stat &= ~LBA_SMART_MODE;
1408 		WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG);
1409 	}
1410 
1411 	/* Set HF mode as the default (vs. -1 mode). */
1412         stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);
1413 	WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
1414 
1415 	/*
1416 	** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal
1417 	** if it's not already set. If we just cleared the PCI Bus Reset
1418 	** signal, wait a bit for the PCI devices to recover and setup.
1419 	*/
1420 	if (bus_reset)
1421 		mdelay(pci_post_reset_delay);
1422 
1423 	if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) {
1424 		/*
1425 		** PDC_PAT_BUG: PDC rev 40.48 on L2000.
1426 		** B2000/C3600/J6000 also have this problem?
1427 		**
1428 		** Elroys with hot pluggable slots don't get configured
1429 		** correctly if the slot is empty.  ARB_MASK is set to 0
1430 		** and we can't master transactions on the bus if it's
1431 		** not at least one. 0x3 enables elroy and first slot.
1432 		*/
1433 		printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n");
1434 		WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK);
1435 	}
1436 
1437 	/*
1438 	** FIXME: Hint registers are programmed with default hint
1439 	** values by firmware. Hints should be sane even if we
1440 	** can't reprogram them the way drivers want.
1441 	*/
1442 	return 0;
1443 }
1444 
1445 
1446 
1447 /*
1448 ** Determine if lba should claim this chip (return 0) or not (return 1).
1449 ** If so, initialize the chip and tell other partners in crime they
1450 ** have work to do.
1451 */
1452 static int __init
1453 lba_driver_probe(struct parisc_device *dev)
1454 {
1455 	struct lba_device *lba_dev;
1456 	struct pci_bus *lba_bus;
1457 	struct pci_ops *cfg_ops;
1458 	u32 func_class;
1459 	void *tmp_obj;
1460 	char *version;
1461 	void __iomem *addr = ioremap(dev->hpa.start, 4096);
1462 
1463 	/* Read HW Rev First */
1464 	func_class = READ_REG32(addr + LBA_FCLASS);
1465 
1466 	if (IS_ELROY(dev)) {
1467 		func_class &= 0xf;
1468 		switch (func_class) {
1469 		case 0:	version = "TR1.0"; break;
1470 		case 1:	version = "TR2.0"; break;
1471 		case 2:	version = "TR2.1"; break;
1472 		case 3:	version = "TR2.2"; break;
1473 		case 4:	version = "TR3.0"; break;
1474 		case 5:	version = "TR4.0"; break;
1475 		default: version = "TR4+";
1476 		}
1477 
1478 		printk(KERN_INFO "%s version %s (0x%x) found at 0x%lx\n",
1479 			MODULE_NAME, version, func_class & 0xf, dev->hpa.start);
1480 
1481 		if (func_class < 2) {
1482 			printk(KERN_WARNING "Can't support LBA older than "
1483 				"TR2.1 - continuing under adversity.\n");
1484 		}
1485 
1486 #if 0
1487 /* Elroy TR4.0 should work with simple algorithm.
1488    But it doesn't.  Still missing something. *sigh*
1489 */
1490 		if (func_class > 4) {
1491 			cfg_ops = &mercury_cfg_ops;
1492 		} else
1493 #endif
1494 		{
1495 			cfg_ops = &elroy_cfg_ops;
1496 		}
1497 
1498 	} else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) {
1499 		func_class &= 0xff;
1500 		version = kmalloc(6, GFP_KERNEL);
1501 		sprintf(version,"TR%d.%d",(func_class >> 4),(func_class & 0xf));
1502 		/* We could use one printk for both Elroy and Mercury,
1503                  * but for the mask for func_class.
1504                  */
1505 		printk(KERN_INFO "%s version %s (0x%x) found at 0x%lx\n",
1506 		       MODULE_NAME, version, func_class & 0xff, dev->hpa.start);
1507 		cfg_ops = &mercury_cfg_ops;
1508 	} else {
1509 		printk(KERN_ERR "Unknown LBA found at 0x%lx\n", dev->hpa.start);
1510 		return -ENODEV;
1511 	}
1512 
1513 	/*
1514 	** Tell I/O SAPIC driver we have a IRQ handler/region.
1515 	*/
1516 	tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE);
1517 
1518 	/* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't
1519 	**	have an IRT entry will get NULL back from iosapic code.
1520 	*/
1521 
1522 	lba_dev = kmalloc(sizeof(struct lba_device), GFP_KERNEL);
1523 	if (!lba_dev) {
1524 		printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n");
1525 		return(1);
1526 	}
1527 
1528 	memset(lba_dev, 0, sizeof(struct lba_device));
1529 
1530 
1531 	/* ---------- First : initialize data we already have --------- */
1532 
1533 	lba_dev->hw_rev = func_class;
1534 	lba_dev->hba.base_addr = addr;
1535 	lba_dev->hba.dev = dev;
1536 	lba_dev->iosapic_obj = tmp_obj;  /* save interrupt handle */
1537 	lba_dev->hba.iommu = sba_get_iommu(dev);  /* get iommu data */
1538 
1539 	/* ------------ Second : initialize common stuff ---------- */
1540 	pci_bios = &lba_bios_ops;
1541 	pcibios_register_hba(HBA_DATA(lba_dev));
1542 	spin_lock_init(&lba_dev->lba_lock);
1543 
1544 	if (lba_hw_init(lba_dev))
1545 		return(1);
1546 
1547 	/* ---------- Third : setup I/O Port and MMIO resources  --------- */
1548 
1549 	if (is_pdc_pat()) {
1550 		/* PDC PAT firmware uses PIOP region of GMMIO space. */
1551 		pci_port = &lba_pat_port_ops;
1552 		/* Go ask PDC PAT what resources this LBA has */
1553 		lba_pat_resources(dev, lba_dev);
1554 	} else {
1555 		if (!astro_iop_base) {
1556 			/* Sprockets PDC uses NPIOP region */
1557 			astro_iop_base = ioremap(LBA_PORT_BASE, 64 * 1024);
1558 			pci_port = &lba_astro_port_ops;
1559 		}
1560 
1561 		/* Poke the chip a bit for /proc output */
1562 		lba_legacy_resources(dev, lba_dev);
1563 	}
1564 
1565 	/*
1566 	** Tell PCI support another PCI bus was found.
1567 	** Walks PCI bus for us too.
1568 	*/
1569 	dev->dev.platform_data = lba_dev;
1570 	lba_bus = lba_dev->hba.hba_bus =
1571 		pci_scan_bus_parented(&dev->dev, lba_dev->hba.bus_num.start,
1572 				cfg_ops, NULL);
1573 	if (lba_bus)
1574 		pci_bus_add_devices(lba_bus);
1575 
1576 	/* This is in lieu of calling pci_assign_unassigned_resources() */
1577 	if (is_pdc_pat()) {
1578 		/* assign resources to un-initialized devices */
1579 
1580 		DBG_PAT("LBA pci_bus_size_bridges()\n");
1581 		pci_bus_size_bridges(lba_bus);
1582 
1583 		DBG_PAT("LBA pci_bus_assign_resources()\n");
1584 		pci_bus_assign_resources(lba_bus);
1585 
1586 #ifdef DEBUG_LBA_PAT
1587 		DBG_PAT("\nLBA PIOP resource tree\n");
1588 		lba_dump_res(&lba_dev->hba.io_space, 2);
1589 		DBG_PAT("\nLBA LMMIO resource tree\n");
1590 		lba_dump_res(&lba_dev->hba.lmmio_space, 2);
1591 #endif
1592 	}
1593 	pci_enable_bridges(lba_bus);
1594 
1595 
1596 	/*
1597 	** Once PCI register ops has walked the bus, access to config
1598 	** space is restricted. Avoids master aborts on config cycles.
1599 	** Early LBA revs go fatal on *any* master abort.
1600 	*/
1601 	if (cfg_ops == &elroy_cfg_ops) {
1602 		lba_dev->flags |= LBA_FLAG_SKIP_PROBE;
1603 	}
1604 
1605 	/* Whew! Finally done! Tell services we got this one covered. */
1606 	return 0;
1607 }
1608 
1609 static struct parisc_device_id lba_tbl[] = {
1610 	{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa },
1611 	{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa },
1612 	{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa },
1613 	{ 0, }
1614 };
1615 
1616 static struct parisc_driver lba_driver = {
1617 	.name =		MODULE_NAME,
1618 	.id_table =	lba_tbl,
1619 	.probe =	lba_driver_probe,
1620 };
1621 
1622 /*
1623 ** One time initialization to let the world know the LBA was found.
1624 ** Must be called exactly once before pci_init().
1625 */
1626 void __init lba_init(void)
1627 {
1628 	register_parisc_driver(&lba_driver);
1629 }
1630 
1631 /*
1632 ** Initialize the IBASE/IMASK registers for LBA (Elroy).
1633 ** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA).
1634 ** sba_iommu is responsible for locking (none needed at init time).
1635 */
1636 void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask)
1637 {
1638 	void __iomem * base_addr = ioremap(lba->hpa.start, 4096);
1639 
1640 	imask <<= 2;	/* adjust for hints - 2 more bits */
1641 
1642 	/* Make sure we aren't trying to set bits that aren't writeable. */
1643 	WARN_ON((ibase & 0x001fffff) != 0);
1644 	WARN_ON((imask & 0x001fffff) != 0);
1645 
1646 	DBG("%s() ibase 0x%x imask 0x%x\n", __FUNCTION__, ibase, imask);
1647 	WRITE_REG32( imask, base_addr + LBA_IMASK);
1648 	WRITE_REG32( ibase, base_addr + LBA_IBASE);
1649 	iounmap(base_addr);
1650 }
1651 
1652