1 /* 2 ** 3 ** PCI Lower Bus Adapter (LBA) manager 4 ** 5 ** (c) Copyright 1999,2000 Grant Grundler 6 ** (c) Copyright 1999,2000 Hewlett-Packard Company 7 ** 8 ** This program is free software; you can redistribute it and/or modify 9 ** it under the terms of the GNU General Public License as published by 10 ** the Free Software Foundation; either version 2 of the License, or 11 ** (at your option) any later version. 12 ** 13 ** 14 ** This module primarily provides access to PCI bus (config/IOport 15 ** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class 16 ** with 4 digit model numbers - eg C3000 (and A400...sigh). 17 ** 18 ** LBA driver isn't as simple as the Dino driver because: 19 ** (a) this chip has substantial bug fixes between revisions 20 ** (Only one Dino bug has a software workaround :^( ) 21 ** (b) has more options which we don't (yet) support (DMA hints, OLARD) 22 ** (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver) 23 ** (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC). 24 ** (dino only deals with "Legacy" PDC) 25 ** 26 ** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver. 27 ** (I/O SAPIC is integratd in the LBA chip). 28 ** 29 ** FIXME: Add support to SBA and LBA drivers for DMA hint sets 30 ** FIXME: Add support for PCI card hot-plug (OLARD). 31 */ 32 33 #include <linux/delay.h> 34 #include <linux/types.h> 35 #include <linux/kernel.h> 36 #include <linux/spinlock.h> 37 #include <linux/init.h> /* for __init and __devinit */ 38 #include <linux/pci.h> 39 #include <linux/ioport.h> 40 #include <linux/slab.h> 41 42 #include <asm/byteorder.h> 43 #include <asm/pdc.h> 44 #include <asm/pdcpat.h> 45 #include <asm/page.h> 46 47 #include <asm/ropes.h> 48 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 49 #include <asm/parisc-device.h> 50 #include <asm/io.h> /* read/write stuff */ 51 52 #undef DEBUG_LBA /* general stuff */ 53 #undef DEBUG_LBA_PORT /* debug I/O Port access */ 54 #undef DEBUG_LBA_CFG /* debug Config Space Access (ie PCI Bus walk) */ 55 #undef DEBUG_LBA_PAT /* debug PCI Resource Mgt code - PDC PAT only */ 56 57 #undef FBB_SUPPORT /* Fast Back-Back xfers - NOT READY YET */ 58 59 60 #ifdef DEBUG_LBA 61 #define DBG(x...) printk(x) 62 #else 63 #define DBG(x...) 64 #endif 65 66 #ifdef DEBUG_LBA_PORT 67 #define DBG_PORT(x...) printk(x) 68 #else 69 #define DBG_PORT(x...) 70 #endif 71 72 #ifdef DEBUG_LBA_CFG 73 #define DBG_CFG(x...) printk(x) 74 #else 75 #define DBG_CFG(x...) 76 #endif 77 78 #ifdef DEBUG_LBA_PAT 79 #define DBG_PAT(x...) printk(x) 80 #else 81 #define DBG_PAT(x...) 82 #endif 83 84 85 /* 86 ** Config accessor functions only pass in the 8-bit bus number and not 87 ** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus 88 ** number based on what firmware wrote into the scratch register. 89 ** 90 ** The "secondary" bus number is set to this before calling 91 ** pci_register_ops(). If any PPB's are present, the scan will 92 ** discover them and update the "secondary" and "subordinate" 93 ** fields in the pci_bus structure. 94 ** 95 ** Changes in the configuration *may* result in a different 96 ** bus number for each LBA depending on what firmware does. 97 */ 98 99 #define MODULE_NAME "LBA" 100 101 /* non-postable I/O port space, densely packed */ 102 #define LBA_PORT_BASE (PCI_F_EXTEND | 0xfee00000UL) 103 static void __iomem *astro_iop_base __read_mostly; 104 105 static u32 lba_t32; 106 107 /* lba flags */ 108 #define LBA_FLAG_SKIP_PROBE 0x10 109 110 #define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE) 111 112 113 /* Looks nice and keeps the compiler happy */ 114 #define LBA_DEV(d) ((struct lba_device *) (d)) 115 116 117 /* 118 ** Only allow 8 subsidiary busses per LBA 119 ** Problem is the PCI bus numbering is globally shared. 120 */ 121 #define LBA_MAX_NUM_BUSES 8 122 123 /************************************ 124 * LBA register read and write support 125 * 126 * BE WARNED: register writes are posted. 127 * (ie follow writes which must reach HW with a read) 128 */ 129 #define READ_U8(addr) __raw_readb(addr) 130 #define READ_U16(addr) __raw_readw(addr) 131 #define READ_U32(addr) __raw_readl(addr) 132 #define WRITE_U8(value, addr) __raw_writeb(value, addr) 133 #define WRITE_U16(value, addr) __raw_writew(value, addr) 134 #define WRITE_U32(value, addr) __raw_writel(value, addr) 135 136 #define READ_REG8(addr) readb(addr) 137 #define READ_REG16(addr) readw(addr) 138 #define READ_REG32(addr) readl(addr) 139 #define READ_REG64(addr) readq(addr) 140 #define WRITE_REG8(value, addr) writeb(value, addr) 141 #define WRITE_REG16(value, addr) writew(value, addr) 142 #define WRITE_REG32(value, addr) writel(value, addr) 143 144 145 #define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8)) 146 #define LBA_CFG_BUS(tok) ((u8) ((tok)>>16)) 147 #define LBA_CFG_DEV(tok) ((u8) ((tok)>>11) & 0x1f) 148 #define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7) 149 150 151 /* 152 ** Extract LBA (Rope) number from HPA 153 ** REVISIT: 16 ropes for Stretch/Ike? 154 */ 155 #define ROPES_PER_IOC 8 156 #define LBA_NUM(x) ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1)) 157 158 159 static void 160 lba_dump_res(struct resource *r, int d) 161 { 162 int i; 163 164 if (NULL == r) 165 return; 166 167 printk(KERN_DEBUG "(%p)", r->parent); 168 for (i = d; i ; --i) printk(" "); 169 printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r, 170 (long)r->start, (long)r->end, r->flags); 171 lba_dump_res(r->child, d+2); 172 lba_dump_res(r->sibling, d); 173 } 174 175 176 /* 177 ** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex 178 ** workaround for cfg cycles: 179 ** -- preserve LBA state 180 ** -- prevent any DMA from occurring 181 ** -- turn on smart mode 182 ** -- probe with config writes before doing config reads 183 ** -- check ERROR_STATUS 184 ** -- clear ERROR_STATUS 185 ** -- restore LBA state 186 ** 187 ** The workaround is only used for device discovery. 188 */ 189 190 static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d) 191 { 192 u8 first_bus = d->hba.hba_bus->secondary; 193 u8 last_sub_bus = d->hba.hba_bus->subordinate; 194 195 if ((bus < first_bus) || 196 (bus > last_sub_bus) || 197 ((bus - first_bus) >= LBA_MAX_NUM_BUSES)) { 198 return 0; 199 } 200 201 return 1; 202 } 203 204 205 206 #define LBA_CFG_SETUP(d, tok) { \ 207 /* Save contents of error config register. */ \ 208 error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); \ 209 \ 210 /* Save contents of status control register. */ \ 211 status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); \ 212 \ 213 /* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA \ 214 ** arbitration for full bus walks. \ 215 */ \ 216 /* Save contents of arb mask register. */ \ 217 arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK); \ 218 \ 219 /* \ 220 * Turn off all device arbitration bits (i.e. everything \ 221 * except arbitration enable bit). \ 222 */ \ 223 WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK); \ 224 \ 225 /* \ 226 * Set the smart mode bit so that master aborts don't cause \ 227 * LBA to go into PCI fatal mode (required). \ 228 */ \ 229 WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG); \ 230 } 231 232 233 #define LBA_CFG_PROBE(d, tok) { \ 234 /* \ 235 * Setup Vendor ID write and read back the address register \ 236 * to make sure that LBA is the bus master. \ 237 */ \ 238 WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\ 239 /* \ 240 * Read address register to ensure that LBA is the bus master, \ 241 * which implies that DMA traffic has stopped when DMA arb is off. \ 242 */ \ 243 lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ 244 /* \ 245 * Generate a cfg write cycle (will have no affect on \ 246 * Vendor ID register since read-only). \ 247 */ \ 248 WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA); \ 249 /* \ 250 * Make sure write has completed before proceeding further, \ 251 * i.e. before setting clear enable. \ 252 */ \ 253 lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ 254 } 255 256 257 /* 258 * HPREVISIT: 259 * -- Can't tell if config cycle got the error. 260 * 261 * OV bit is broken until rev 4.0, so can't use OV bit and 262 * LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle. 263 * 264 * As of rev 4.0, no longer need the error check. 265 * 266 * -- Even if we could tell, we still want to return -1 267 * for **ANY** error (not just master abort). 268 * 269 * -- Only clear non-fatal errors (we don't want to bring 270 * LBA out of pci-fatal mode). 271 * 272 * Actually, there is still a race in which 273 * we could be clearing a fatal error. We will 274 * live with this during our initial bus walk 275 * until rev 4.0 (no driver activity during 276 * initial bus walk). The initial bus walk 277 * has race conditions concerning the use of 278 * smart mode as well. 279 */ 280 281 #define LBA_MASTER_ABORT_ERROR 0xc 282 #define LBA_FATAL_ERROR 0x10 283 284 #define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) { \ 285 u32 error_status = 0; \ 286 /* \ 287 * Set clear enable (CE) bit. Unset by HW when new \ 288 * errors are logged -- LBA HW ERS section 14.3.3). \ 289 */ \ 290 WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \ 291 error_status = READ_REG32(base + LBA_ERROR_STATUS); \ 292 if ((error_status & 0x1f) != 0) { \ 293 /* \ 294 * Fail the config read request. \ 295 */ \ 296 error = 1; \ 297 if ((error_status & LBA_FATAL_ERROR) == 0) { \ 298 /* \ 299 * Clear error status (if fatal bit not set) by setting \ 300 * clear error log bit (CL). \ 301 */ \ 302 WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \ 303 } \ 304 } \ 305 } 306 307 #define LBA_CFG_TR4_ADDR_SETUP(d, addr) \ 308 WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); 309 310 #define LBA_CFG_ADDR_SETUP(d, addr) { \ 311 WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ 312 /* \ 313 * Read address register to ensure that LBA is the bus master, \ 314 * which implies that DMA traffic has stopped when DMA arb is off. \ 315 */ \ 316 lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ 317 } 318 319 320 #define LBA_CFG_RESTORE(d, base) { \ 321 /* \ 322 * Restore status control register (turn off clear enable). \ 323 */ \ 324 WRITE_REG32(status_control, base + LBA_STAT_CTL); \ 325 /* \ 326 * Restore error config register (turn off smart mode). \ 327 */ \ 328 WRITE_REG32(error_config, base + LBA_ERROR_CONFIG); \ 329 /* \ 330 * Restore arb mask register (reenables DMA arbitration). \ 331 */ \ 332 WRITE_REG32(arb_mask, base + LBA_ARB_MASK); \ 333 } 334 335 336 337 static unsigned int 338 lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size) 339 { 340 u32 data = ~0U; 341 int error = 0; 342 u32 arb_mask = 0; /* used by LBA_CFG_SETUP/RESTORE */ 343 u32 error_config = 0; /* used by LBA_CFG_SETUP/RESTORE */ 344 u32 status_control = 0; /* used by LBA_CFG_SETUP/RESTORE */ 345 346 LBA_CFG_SETUP(d, tok); 347 LBA_CFG_PROBE(d, tok); 348 LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error); 349 if (!error) { 350 void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; 351 352 LBA_CFG_ADDR_SETUP(d, tok | reg); 353 switch (size) { 354 case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break; 355 case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break; 356 case 4: data = READ_REG32(data_reg); break; 357 } 358 } 359 LBA_CFG_RESTORE(d, d->hba.base_addr); 360 return(data); 361 } 362 363 364 static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data) 365 { 366 struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); 367 u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; 368 u32 tok = LBA_CFG_TOK(local_bus, devfn); 369 void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; 370 371 if ((pos > 255) || (devfn > 255)) 372 return -EINVAL; 373 374 /* FIXME: B2K/C3600 workaround is always use old method... */ 375 /* if (!LBA_SKIP_PROBE(d)) */ { 376 /* original - Generate config cycle on broken elroy 377 with risk we will miss PCI bus errors. */ 378 *data = lba_rd_cfg(d, tok, pos, size); 379 DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __func__, tok, pos, *data); 380 return 0; 381 } 382 383 if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->secondary, devfn, d)) { 384 DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __func__, tok, pos); 385 /* either don't want to look or know device isn't present. */ 386 *data = ~0U; 387 return(0); 388 } 389 390 /* Basic Algorithm 391 ** Should only get here on fully working LBA rev. 392 ** This is how simple the code should have been. 393 */ 394 LBA_CFG_ADDR_SETUP(d, tok | pos); 395 switch(size) { 396 case 1: *data = READ_REG8 (data_reg + (pos & 3)); break; 397 case 2: *data = READ_REG16(data_reg + (pos & 2)); break; 398 case 4: *data = READ_REG32(data_reg); break; 399 } 400 DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __func__, tok, pos, *data); 401 return 0; 402 } 403 404 405 static void 406 lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size) 407 { 408 int error = 0; 409 u32 arb_mask = 0; 410 u32 error_config = 0; 411 u32 status_control = 0; 412 void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; 413 414 LBA_CFG_SETUP(d, tok); 415 LBA_CFG_ADDR_SETUP(d, tok | reg); 416 switch (size) { 417 case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break; 418 case 2: WRITE_REG16(data, data_reg + (reg & 2)); break; 419 case 4: WRITE_REG32(data, data_reg); break; 420 } 421 LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error); 422 LBA_CFG_RESTORE(d, d->hba.base_addr); 423 } 424 425 426 /* 427 * LBA 4.0 config write code implements non-postable semantics 428 * by doing a read of CONFIG ADDR after the write. 429 */ 430 431 static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data) 432 { 433 struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); 434 u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; 435 u32 tok = LBA_CFG_TOK(local_bus,devfn); 436 437 if ((pos > 255) || (devfn > 255)) 438 return -EINVAL; 439 440 if (!LBA_SKIP_PROBE(d)) { 441 /* Original Workaround */ 442 lba_wr_cfg(d, tok, pos, (u32) data, size); 443 DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __func__, tok, pos,data); 444 return 0; 445 } 446 447 if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->secondary, devfn, d))) { 448 DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __func__, tok, pos,data); 449 return 1; /* New Workaround */ 450 } 451 452 DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __func__, tok, pos, data); 453 454 /* Basic Algorithm */ 455 LBA_CFG_ADDR_SETUP(d, tok | pos); 456 switch(size) { 457 case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3)); 458 break; 459 case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2)); 460 break; 461 case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA); 462 break; 463 } 464 /* flush posted write */ 465 lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR); 466 return 0; 467 } 468 469 470 static struct pci_ops elroy_cfg_ops = { 471 .read = elroy_cfg_read, 472 .write = elroy_cfg_write, 473 }; 474 475 /* 476 * The mercury_cfg_ops are slightly misnamed; they're also used for Elroy 477 * TR4.0 as no additional bugs were found in this areea between Elroy and 478 * Mercury 479 */ 480 481 static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data) 482 { 483 struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); 484 u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; 485 u32 tok = LBA_CFG_TOK(local_bus, devfn); 486 void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; 487 488 if ((pos > 255) || (devfn > 255)) 489 return -EINVAL; 490 491 LBA_CFG_TR4_ADDR_SETUP(d, tok | pos); 492 switch(size) { 493 case 1: 494 *data = READ_REG8(data_reg + (pos & 3)); 495 break; 496 case 2: 497 *data = READ_REG16(data_reg + (pos & 2)); 498 break; 499 case 4: 500 *data = READ_REG32(data_reg); break; 501 break; 502 } 503 504 DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data); 505 return 0; 506 } 507 508 /* 509 * LBA 4.0 config write code implements non-postable semantics 510 * by doing a read of CONFIG ADDR after the write. 511 */ 512 513 static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data) 514 { 515 struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); 516 void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; 517 u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; 518 u32 tok = LBA_CFG_TOK(local_bus,devfn); 519 520 if ((pos > 255) || (devfn > 255)) 521 return -EINVAL; 522 523 DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __func__, tok, pos, data); 524 525 LBA_CFG_TR4_ADDR_SETUP(d, tok | pos); 526 switch(size) { 527 case 1: 528 WRITE_REG8 (data, data_reg + (pos & 3)); 529 break; 530 case 2: 531 WRITE_REG16(data, data_reg + (pos & 2)); 532 break; 533 case 4: 534 WRITE_REG32(data, data_reg); 535 break; 536 } 537 538 /* flush posted write */ 539 lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR); 540 return 0; 541 } 542 543 static struct pci_ops mercury_cfg_ops = { 544 .read = mercury_cfg_read, 545 .write = mercury_cfg_write, 546 }; 547 548 549 static void 550 lba_bios_init(void) 551 { 552 DBG(MODULE_NAME ": lba_bios_init\n"); 553 } 554 555 556 #ifdef CONFIG_64BIT 557 558 /* 559 * truncate_pat_collision: Deal with overlaps or outright collisions 560 * between PAT PDC reported ranges. 561 * 562 * Broken PA8800 firmware will report lmmio range that 563 * overlaps with CPU HPA. Just truncate the lmmio range. 564 * 565 * BEWARE: conflicts with this lmmio range may be an 566 * elmmio range which is pointing down another rope. 567 * 568 * FIXME: only deals with one collision per range...theoretically we 569 * could have several. Supporting more than one collision will get messy. 570 */ 571 static unsigned long 572 truncate_pat_collision(struct resource *root, struct resource *new) 573 { 574 unsigned long start = new->start; 575 unsigned long end = new->end; 576 struct resource *tmp = root->child; 577 578 if (end <= start || start < root->start || !tmp) 579 return 0; 580 581 /* find first overlap */ 582 while (tmp && tmp->end < start) 583 tmp = tmp->sibling; 584 585 /* no entries overlap */ 586 if (!tmp) return 0; 587 588 /* found one that starts behind the new one 589 ** Don't need to do anything. 590 */ 591 if (tmp->start >= end) return 0; 592 593 if (tmp->start <= start) { 594 /* "front" of new one overlaps */ 595 new->start = tmp->end + 1; 596 597 if (tmp->end >= end) { 598 /* AACCKK! totally overlaps! drop this range. */ 599 return 1; 600 } 601 } 602 603 if (tmp->end < end ) { 604 /* "end" of new one overlaps */ 605 new->end = tmp->start - 1; 606 } 607 608 printk(KERN_WARNING "LBA: Truncating lmmio_space [%lx/%lx] " 609 "to [%lx,%lx]\n", 610 start, end, 611 (long)new->start, (long)new->end ); 612 613 return 0; /* truncation successful */ 614 } 615 616 #else 617 #define truncate_pat_collision(r,n) (0) 618 #endif 619 620 /* 621 ** The algorithm is generic code. 622 ** But it needs to access local data structures to get the IRQ base. 623 ** Could make this a "pci_fixup_irq(bus, region)" but not sure 624 ** it's worth it. 625 ** 626 ** Called by do_pci_scan_bus() immediately after each PCI bus is walked. 627 ** Resources aren't allocated until recursive buswalk below HBA is completed. 628 */ 629 static void 630 lba_fixup_bus(struct pci_bus *bus) 631 { 632 struct list_head *ln; 633 #ifdef FBB_SUPPORT 634 u16 status; 635 #endif 636 struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge)); 637 638 DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n", 639 bus, bus->secondary, bus->bridge->platform_data); 640 641 /* 642 ** Properly Setup MMIO resources for this bus. 643 ** pci_alloc_primary_bus() mangles this. 644 */ 645 if (bus->parent) { 646 int i; 647 /* PCI-PCI Bridge */ 648 pci_read_bridge_bases(bus); 649 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 650 pci_claim_resource(bus->self, i); 651 } 652 } else { 653 /* Host-PCI Bridge */ 654 int err; 655 656 DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n", 657 ldev->hba.io_space.name, 658 ldev->hba.io_space.start, ldev->hba.io_space.end, 659 ldev->hba.io_space.flags); 660 DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n", 661 ldev->hba.lmmio_space.name, 662 ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end, 663 ldev->hba.lmmio_space.flags); 664 665 err = request_resource(&ioport_resource, &(ldev->hba.io_space)); 666 if (err < 0) { 667 lba_dump_res(&ioport_resource, 2); 668 BUG(); 669 } 670 671 if (ldev->hba.elmmio_space.start) { 672 err = request_resource(&iomem_resource, 673 &(ldev->hba.elmmio_space)); 674 if (err < 0) { 675 676 printk("FAILED: lba_fixup_bus() request for " 677 "elmmio_space [%lx/%lx]\n", 678 (long)ldev->hba.elmmio_space.start, 679 (long)ldev->hba.elmmio_space.end); 680 681 /* lba_dump_res(&iomem_resource, 2); */ 682 /* BUG(); */ 683 } 684 } 685 686 if (ldev->hba.lmmio_space.flags) { 687 err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space)); 688 if (err < 0) { 689 printk(KERN_ERR "FAILED: lba_fixup_bus() request for " 690 "lmmio_space [%lx/%lx]\n", 691 (long)ldev->hba.lmmio_space.start, 692 (long)ldev->hba.lmmio_space.end); 693 } 694 } 695 696 #ifdef CONFIG_64BIT 697 /* GMMIO is distributed range. Every LBA/Rope gets part it. */ 698 if (ldev->hba.gmmio_space.flags) { 699 err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space)); 700 if (err < 0) { 701 printk("FAILED: lba_fixup_bus() request for " 702 "gmmio_space [%lx/%lx]\n", 703 (long)ldev->hba.gmmio_space.start, 704 (long)ldev->hba.gmmio_space.end); 705 lba_dump_res(&iomem_resource, 2); 706 BUG(); 707 } 708 } 709 #endif 710 711 } 712 713 list_for_each(ln, &bus->devices) { 714 int i; 715 struct pci_dev *dev = pci_dev_b(ln); 716 717 DBG("lba_fixup_bus() %s\n", pci_name(dev)); 718 719 /* Virtualize Device/Bridge Resources. */ 720 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 721 struct resource *res = &dev->resource[i]; 722 723 /* If resource not allocated - skip it */ 724 if (!res->start) 725 continue; 726 727 /* 728 ** FIXME: this will result in whinging for devices 729 ** that share expansion ROMs (think quad tulip), but 730 ** isn't harmful. 731 */ 732 pci_claim_resource(dev, i); 733 } 734 735 #ifdef FBB_SUPPORT 736 /* 737 ** If one device does not support FBB transfers, 738 ** No one on the bus can be allowed to use them. 739 */ 740 (void) pci_read_config_word(dev, PCI_STATUS, &status); 741 bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK); 742 #endif 743 744 /* 745 ** P2PB's have no IRQs. ignore them. 746 */ 747 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) 748 continue; 749 750 /* Adjust INTERRUPT_LINE for this dev */ 751 iosapic_fixup_irq(ldev->iosapic_obj, dev); 752 } 753 754 #ifdef FBB_SUPPORT 755 /* FIXME/REVISIT - finish figuring out to set FBB on both 756 ** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL. 757 ** Can't fixup here anyway....garr... 758 */ 759 if (fbb_enable) { 760 if (bus->parent) { 761 u8 control; 762 /* enable on PPB */ 763 (void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control); 764 (void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK); 765 766 } else { 767 /* enable on LBA */ 768 } 769 fbb_enable = PCI_COMMAND_FAST_BACK; 770 } 771 772 /* Lastly enable FBB/PERR/SERR on all devices too */ 773 list_for_each(ln, &bus->devices) { 774 (void) pci_read_config_word(dev, PCI_COMMAND, &status); 775 status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable; 776 (void) pci_write_config_word(dev, PCI_COMMAND, status); 777 } 778 #endif 779 } 780 781 782 static struct pci_bios_ops lba_bios_ops = { 783 .init = lba_bios_init, 784 .fixup_bus = lba_fixup_bus, 785 }; 786 787 788 789 790 /******************************************************* 791 ** 792 ** LBA Sprockets "I/O Port" Space Accessor Functions 793 ** 794 ** This set of accessor functions is intended for use with 795 ** "legacy firmware" (ie Sprockets on Allegro/Forte boxes). 796 ** 797 ** Many PCI devices don't require use of I/O port space (eg Tulip, 798 ** NCR720) since they export the same registers to both MMIO and 799 ** I/O port space. In general I/O port space is slower than 800 ** MMIO since drivers are designed so PIO writes can be posted. 801 ** 802 ********************************************************/ 803 804 #define LBA_PORT_IN(size, mask) \ 805 static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \ 806 { \ 807 u##size t; \ 808 t = READ_REG##size(astro_iop_base + addr); \ 809 DBG_PORT(" 0x%x\n", t); \ 810 return (t); \ 811 } 812 813 LBA_PORT_IN( 8, 3) 814 LBA_PORT_IN(16, 2) 815 LBA_PORT_IN(32, 0) 816 817 818 819 /* 820 ** BUG X4107: Ordering broken - DMA RD return can bypass PIO WR 821 ** 822 ** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is 823 ** guarantee non-postable completion semantics - not avoid X4107. 824 ** The READ_U32 only guarantees the write data gets to elroy but 825 ** out to the PCI bus. We can't read stuff from I/O port space 826 ** since we don't know what has side-effects. Attempting to read 827 ** from configuration space would be suicidal given the number of 828 ** bugs in that elroy functionality. 829 ** 830 ** Description: 831 ** DMA read results can improperly pass PIO writes (X4107). The 832 ** result of this bug is that if a processor modifies a location in 833 ** memory after having issued PIO writes, the PIO writes are not 834 ** guaranteed to be completed before a PCI device is allowed to see 835 ** the modified data in a DMA read. 836 ** 837 ** Note that IKE bug X3719 in TR1 IKEs will result in the same 838 ** symptom. 839 ** 840 ** Workaround: 841 ** The workaround for this bug is to always follow a PIO write with 842 ** a PIO read to the same bus before starting DMA on that PCI bus. 843 ** 844 */ 845 #define LBA_PORT_OUT(size, mask) \ 846 static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \ 847 { \ 848 DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, d, addr, val); \ 849 WRITE_REG##size(val, astro_iop_base + addr); \ 850 if (LBA_DEV(d)->hw_rev < 3) \ 851 lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \ 852 } 853 854 LBA_PORT_OUT( 8, 3) 855 LBA_PORT_OUT(16, 2) 856 LBA_PORT_OUT(32, 0) 857 858 859 static struct pci_port_ops lba_astro_port_ops = { 860 .inb = lba_astro_in8, 861 .inw = lba_astro_in16, 862 .inl = lba_astro_in32, 863 .outb = lba_astro_out8, 864 .outw = lba_astro_out16, 865 .outl = lba_astro_out32 866 }; 867 868 869 #ifdef CONFIG_64BIT 870 #define PIOP_TO_GMMIO(lba, addr) \ 871 ((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3)) 872 873 /******************************************************* 874 ** 875 ** LBA PAT "I/O Port" Space Accessor Functions 876 ** 877 ** This set of accessor functions is intended for use with 878 ** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes). 879 ** 880 ** This uses the PIOP space located in the first 64MB of GMMIO. 881 ** Each rope gets a full 64*KB* (ie 4 bytes per page) this way. 882 ** bits 1:0 stay the same. bits 15:2 become 25:12. 883 ** Then add the base and we can generate an I/O Port cycle. 884 ********************************************************/ 885 #undef LBA_PORT_IN 886 #define LBA_PORT_IN(size, mask) \ 887 static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \ 888 { \ 889 u##size t; \ 890 DBG_PORT("%s(0x%p, 0x%x) ->", __func__, l, addr); \ 891 t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \ 892 DBG_PORT(" 0x%x\n", t); \ 893 return (t); \ 894 } 895 896 LBA_PORT_IN( 8, 3) 897 LBA_PORT_IN(16, 2) 898 LBA_PORT_IN(32, 0) 899 900 901 #undef LBA_PORT_OUT 902 #define LBA_PORT_OUT(size, mask) \ 903 static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \ 904 { \ 905 void __iomem *where = PIOP_TO_GMMIO(LBA_DEV(l), addr); \ 906 DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, l, addr, val); \ 907 WRITE_REG##size(val, where); \ 908 /* flush the I/O down to the elroy at least */ \ 909 lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \ 910 } 911 912 LBA_PORT_OUT( 8, 3) 913 LBA_PORT_OUT(16, 2) 914 LBA_PORT_OUT(32, 0) 915 916 917 static struct pci_port_ops lba_pat_port_ops = { 918 .inb = lba_pat_in8, 919 .inw = lba_pat_in16, 920 .inl = lba_pat_in32, 921 .outb = lba_pat_out8, 922 .outw = lba_pat_out16, 923 .outl = lba_pat_out32 924 }; 925 926 927 928 /* 929 ** make range information from PDC available to PCI subsystem. 930 ** We make the PDC call here in order to get the PCI bus range 931 ** numbers. The rest will get forwarded in pcibios_fixup_bus(). 932 ** We don't have a struct pci_bus assigned to us yet. 933 */ 934 static void 935 lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev) 936 { 937 unsigned long bytecnt; 938 long io_count; 939 long status; /* PDC return status */ 940 long pa_count; 941 pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell; /* PA_VIEW */ 942 pdc_pat_cell_mod_maddr_block_t *io_pdc_cell; /* IO_VIEW */ 943 int i; 944 945 pa_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL); 946 if (!pa_pdc_cell) 947 return; 948 949 io_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL); 950 if (!io_pdc_cell) { 951 kfree(pa_pdc_cell); 952 return; 953 } 954 955 /* return cell module (IO view) */ 956 status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index, 957 PA_VIEW, pa_pdc_cell); 958 pa_count = pa_pdc_cell->mod[1]; 959 960 status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index, 961 IO_VIEW, io_pdc_cell); 962 io_count = io_pdc_cell->mod[1]; 963 964 /* We've already done this once for device discovery...*/ 965 if (status != PDC_OK) { 966 panic("pdc_pat_cell_module() call failed for LBA!\n"); 967 } 968 969 if (PAT_GET_ENTITY(pa_pdc_cell->mod_info) != PAT_ENTITY_LBA) { 970 panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n"); 971 } 972 973 /* 974 ** Inspect the resources PAT tells us about 975 */ 976 for (i = 0; i < pa_count; i++) { 977 struct { 978 unsigned long type; 979 unsigned long start; 980 unsigned long end; /* aka finish */ 981 } *p, *io; 982 struct resource *r; 983 984 p = (void *) &(pa_pdc_cell->mod[2+i*3]); 985 io = (void *) &(io_pdc_cell->mod[2+i*3]); 986 987 /* Convert the PAT range data to PCI "struct resource" */ 988 switch(p->type & 0xff) { 989 case PAT_PBNUM: 990 lba_dev->hba.bus_num.start = p->start; 991 lba_dev->hba.bus_num.end = p->end; 992 break; 993 994 case PAT_LMMIO: 995 /* used to fix up pre-initialized MEM BARs */ 996 if (!lba_dev->hba.lmmio_space.start) { 997 sprintf(lba_dev->hba.lmmio_name, 998 "PCI%02x LMMIO", 999 (int)lba_dev->hba.bus_num.start); 1000 lba_dev->hba.lmmio_space_offset = p->start - 1001 io->start; 1002 r = &lba_dev->hba.lmmio_space; 1003 r->name = lba_dev->hba.lmmio_name; 1004 } else if (!lba_dev->hba.elmmio_space.start) { 1005 sprintf(lba_dev->hba.elmmio_name, 1006 "PCI%02x ELMMIO", 1007 (int)lba_dev->hba.bus_num.start); 1008 r = &lba_dev->hba.elmmio_space; 1009 r->name = lba_dev->hba.elmmio_name; 1010 } else { 1011 printk(KERN_WARNING MODULE_NAME 1012 " only supports 2 LMMIO resources!\n"); 1013 break; 1014 } 1015 1016 r->start = p->start; 1017 r->end = p->end; 1018 r->flags = IORESOURCE_MEM; 1019 r->parent = r->sibling = r->child = NULL; 1020 break; 1021 1022 case PAT_GMMIO: 1023 /* MMIO space > 4GB phys addr; for 64-bit BAR */ 1024 sprintf(lba_dev->hba.gmmio_name, "PCI%02x GMMIO", 1025 (int)lba_dev->hba.bus_num.start); 1026 r = &lba_dev->hba.gmmio_space; 1027 r->name = lba_dev->hba.gmmio_name; 1028 r->start = p->start; 1029 r->end = p->end; 1030 r->flags = IORESOURCE_MEM; 1031 r->parent = r->sibling = r->child = NULL; 1032 break; 1033 1034 case PAT_NPIOP: 1035 printk(KERN_WARNING MODULE_NAME 1036 " range[%d] : ignoring NPIOP (0x%lx)\n", 1037 i, p->start); 1038 break; 1039 1040 case PAT_PIOP: 1041 /* 1042 ** Postable I/O port space is per PCI host adapter. 1043 ** base of 64MB PIOP region 1044 */ 1045 lba_dev->iop_base = ioremap_nocache(p->start, 64 * 1024 * 1024); 1046 1047 sprintf(lba_dev->hba.io_name, "PCI%02x Ports", 1048 (int)lba_dev->hba.bus_num.start); 1049 r = &lba_dev->hba.io_space; 1050 r->name = lba_dev->hba.io_name; 1051 r->start = HBA_PORT_BASE(lba_dev->hba.hba_num); 1052 r->end = r->start + HBA_PORT_SPACE_SIZE - 1; 1053 r->flags = IORESOURCE_IO; 1054 r->parent = r->sibling = r->child = NULL; 1055 break; 1056 1057 default: 1058 printk(KERN_WARNING MODULE_NAME 1059 " range[%d] : unknown pat range type (0x%lx)\n", 1060 i, p->type & 0xff); 1061 break; 1062 } 1063 } 1064 1065 kfree(pa_pdc_cell); 1066 kfree(io_pdc_cell); 1067 } 1068 #else 1069 /* keep compiler from complaining about missing declarations */ 1070 #define lba_pat_port_ops lba_astro_port_ops 1071 #define lba_pat_resources(pa_dev, lba_dev) 1072 #endif /* CONFIG_64BIT */ 1073 1074 1075 extern void sba_distributed_lmmio(struct parisc_device *, struct resource *); 1076 extern void sba_directed_lmmio(struct parisc_device *, struct resource *); 1077 1078 1079 static void 1080 lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev) 1081 { 1082 struct resource *r; 1083 int lba_num; 1084 1085 lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND; 1086 1087 /* 1088 ** With "legacy" firmware, the lowest byte of FW_SCRATCH 1089 ** represents bus->secondary and the second byte represents 1090 ** bus->subsidiary (i.e. highest PPB programmed by firmware). 1091 ** PCI bus walk *should* end up with the same result. 1092 ** FIXME: But we don't have sanity checks in PCI or LBA. 1093 */ 1094 lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH); 1095 r = &(lba_dev->hba.bus_num); 1096 r->name = "LBA PCI Busses"; 1097 r->start = lba_num & 0xff; 1098 r->end = (lba_num>>8) & 0xff; 1099 1100 /* Set up local PCI Bus resources - we don't need them for 1101 ** Legacy boxes but it's nice to see in /proc/iomem. 1102 */ 1103 r = &(lba_dev->hba.lmmio_space); 1104 sprintf(lba_dev->hba.lmmio_name, "PCI%02x LMMIO", 1105 (int)lba_dev->hba.bus_num.start); 1106 r->name = lba_dev->hba.lmmio_name; 1107 1108 #if 1 1109 /* We want the CPU -> IO routing of addresses. 1110 * The SBA BASE/MASK registers control CPU -> IO routing. 1111 * Ask SBA what is routed to this rope/LBA. 1112 */ 1113 sba_distributed_lmmio(pa_dev, r); 1114 #else 1115 /* 1116 * The LBA BASE/MASK registers control IO -> System routing. 1117 * 1118 * The following code works but doesn't get us what we want. 1119 * Well, only because firmware (v5.0) on C3000 doesn't program 1120 * the LBA BASE/MASE registers to be the exact inverse of 1121 * the corresponding SBA registers. Other Astro/Pluto 1122 * based platform firmware may do it right. 1123 * 1124 * Should someone want to mess with MSI, they may need to 1125 * reprogram LBA BASE/MASK registers. Thus preserve the code 1126 * below until MSI is known to work on C3000/A500/N4000/RP3440. 1127 * 1128 * Using the code below, /proc/iomem shows: 1129 * ... 1130 * f0000000-f0ffffff : PCI00 LMMIO 1131 * f05d0000-f05d0000 : lcd_data 1132 * f05d0008-f05d0008 : lcd_cmd 1133 * f1000000-f1ffffff : PCI01 LMMIO 1134 * f4000000-f4ffffff : PCI02 LMMIO 1135 * f4000000-f4001fff : sym53c8xx 1136 * f4002000-f4003fff : sym53c8xx 1137 * f4004000-f40043ff : sym53c8xx 1138 * f4005000-f40053ff : sym53c8xx 1139 * f4007000-f4007fff : ohci_hcd 1140 * f4008000-f40083ff : tulip 1141 * f6000000-f6ffffff : PCI03 LMMIO 1142 * f8000000-fbffffff : PCI00 ELMMIO 1143 * fa100000-fa4fffff : stifb mmio 1144 * fb000000-fb1fffff : stifb fb 1145 * 1146 * But everything listed under PCI02 actually lives under PCI00. 1147 * This is clearly wrong. 1148 * 1149 * Asking SBA how things are routed tells the correct story: 1150 * LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000 1151 * DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006 1152 * DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004 1153 * DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000 1154 * DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000 1155 * 1156 * Which looks like this in /proc/iomem: 1157 * f4000000-f47fffff : PCI00 LMMIO 1158 * f4000000-f4001fff : sym53c8xx 1159 * ...[deteled core devices - same as above]... 1160 * f4008000-f40083ff : tulip 1161 * f4800000-f4ffffff : PCI01 LMMIO 1162 * f6000000-f67fffff : PCI02 LMMIO 1163 * f7000000-f77fffff : PCI03 LMMIO 1164 * f9000000-f9ffffff : PCI02 ELMMIO 1165 * fa000000-fbffffff : PCI03 ELMMIO 1166 * fa100000-fa4fffff : stifb mmio 1167 * fb000000-fb1fffff : stifb fb 1168 * 1169 * ie all Built-in core are under now correctly under PCI00. 1170 * The "PCI02 ELMMIO" directed range is for: 1171 * +-[02]---03.0 3Dfx Interactive, Inc. Voodoo 2 1172 * 1173 * All is well now. 1174 */ 1175 r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE); 1176 if (r->start & 1) { 1177 unsigned long rsize; 1178 1179 r->flags = IORESOURCE_MEM; 1180 /* mmio_mask also clears Enable bit */ 1181 r->start &= mmio_mask; 1182 r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start); 1183 rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK); 1184 1185 /* 1186 ** Each rope only gets part of the distributed range. 1187 ** Adjust "window" for this rope. 1188 */ 1189 rsize /= ROPES_PER_IOC; 1190 r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start); 1191 r->end = r->start + rsize; 1192 } else { 1193 r->end = r->start = 0; /* Not enabled. */ 1194 } 1195 #endif 1196 1197 /* 1198 ** "Directed" ranges are used when the "distributed range" isn't 1199 ** sufficient for all devices below a given LBA. Typically devices 1200 ** like graphics cards or X25 may need a directed range when the 1201 ** bus has multiple slots (ie multiple devices) or the device 1202 ** needs more than the typical 4 or 8MB a distributed range offers. 1203 ** 1204 ** The main reason for ignoring it now frigging complications. 1205 ** Directed ranges may overlap (and have precedence) over 1206 ** distributed ranges. Or a distributed range assigned to a unused 1207 ** rope may be used by a directed range on a different rope. 1208 ** Support for graphics devices may require fixing this 1209 ** since they may be assigned a directed range which overlaps 1210 ** an existing (but unused portion of) distributed range. 1211 */ 1212 r = &(lba_dev->hba.elmmio_space); 1213 sprintf(lba_dev->hba.elmmio_name, "PCI%02x ELMMIO", 1214 (int)lba_dev->hba.bus_num.start); 1215 r->name = lba_dev->hba.elmmio_name; 1216 1217 #if 1 1218 /* See comment which precedes call to sba_directed_lmmio() */ 1219 sba_directed_lmmio(pa_dev, r); 1220 #else 1221 r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE); 1222 1223 if (r->start & 1) { 1224 unsigned long rsize; 1225 r->flags = IORESOURCE_MEM; 1226 /* mmio_mask also clears Enable bit */ 1227 r->start &= mmio_mask; 1228 r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start); 1229 rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK); 1230 r->end = r->start + ~rsize; 1231 } 1232 #endif 1233 1234 r = &(lba_dev->hba.io_space); 1235 sprintf(lba_dev->hba.io_name, "PCI%02x Ports", 1236 (int)lba_dev->hba.bus_num.start); 1237 r->name = lba_dev->hba.io_name; 1238 r->flags = IORESOURCE_IO; 1239 r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L; 1240 r->end = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1)); 1241 1242 /* Virtualize the I/O Port space ranges */ 1243 lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num); 1244 r->start |= lba_num; 1245 r->end |= lba_num; 1246 } 1247 1248 1249 /************************************************************************** 1250 ** 1251 ** LBA initialization code (HW and SW) 1252 ** 1253 ** o identify LBA chip itself 1254 ** o initialize LBA chip modes (HardFail) 1255 ** o FIXME: initialize DMA hints for reasonable defaults 1256 ** o enable configuration functions 1257 ** o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked) 1258 ** 1259 **************************************************************************/ 1260 1261 static int __init 1262 lba_hw_init(struct lba_device *d) 1263 { 1264 u32 stat; 1265 u32 bus_reset; /* PDC_PAT_BUG */ 1266 1267 #if 0 1268 printk(KERN_DEBUG "LBA %lx STAT_CTL %Lx ERROR_CFG %Lx STATUS %Lx DMA_CTL %Lx\n", 1269 d->hba.base_addr, 1270 READ_REG64(d->hba.base_addr + LBA_STAT_CTL), 1271 READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG), 1272 READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS), 1273 READ_REG64(d->hba.base_addr + LBA_DMA_CTL) ); 1274 printk(KERN_DEBUG " ARB mask %Lx pri %Lx mode %Lx mtlt %Lx\n", 1275 READ_REG64(d->hba.base_addr + LBA_ARB_MASK), 1276 READ_REG64(d->hba.base_addr + LBA_ARB_PRI), 1277 READ_REG64(d->hba.base_addr + LBA_ARB_MODE), 1278 READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) ); 1279 printk(KERN_DEBUG " HINT cfg 0x%Lx\n", 1280 READ_REG64(d->hba.base_addr + LBA_HINT_CFG)); 1281 printk(KERN_DEBUG " HINT reg "); 1282 { int i; 1283 for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8) 1284 printk(" %Lx", READ_REG64(d->hba.base_addr + i)); 1285 } 1286 printk("\n"); 1287 #endif /* DEBUG_LBA_PAT */ 1288 1289 #ifdef CONFIG_64BIT 1290 /* 1291 * FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support 1292 * Only N-Class and up can really make use of Get slot status. 1293 * maybe L-class too but I've never played with it there. 1294 */ 1295 #endif 1296 1297 /* PDC_PAT_BUG: exhibited in rev 40.48 on L2000 */ 1298 bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1; 1299 if (bus_reset) { 1300 printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n"); 1301 } 1302 1303 stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); 1304 if (stat & LBA_SMART_MODE) { 1305 printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n"); 1306 stat &= ~LBA_SMART_MODE; 1307 WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG); 1308 } 1309 1310 /* Set HF mode as the default (vs. -1 mode). */ 1311 stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); 1312 WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL); 1313 1314 /* 1315 ** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal 1316 ** if it's not already set. If we just cleared the PCI Bus Reset 1317 ** signal, wait a bit for the PCI devices to recover and setup. 1318 */ 1319 if (bus_reset) 1320 mdelay(pci_post_reset_delay); 1321 1322 if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) { 1323 /* 1324 ** PDC_PAT_BUG: PDC rev 40.48 on L2000. 1325 ** B2000/C3600/J6000 also have this problem? 1326 ** 1327 ** Elroys with hot pluggable slots don't get configured 1328 ** correctly if the slot is empty. ARB_MASK is set to 0 1329 ** and we can't master transactions on the bus if it's 1330 ** not at least one. 0x3 enables elroy and first slot. 1331 */ 1332 printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n"); 1333 WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK); 1334 } 1335 1336 /* 1337 ** FIXME: Hint registers are programmed with default hint 1338 ** values by firmware. Hints should be sane even if we 1339 ** can't reprogram them the way drivers want. 1340 */ 1341 return 0; 1342 } 1343 1344 /* 1345 * Unfortunately, when firmware numbers busses, it doesn't take into account 1346 * Cardbus bridges. So we have to renumber the busses to suit ourselves. 1347 * Elroy/Mercury don't actually know what bus number they're attached to; 1348 * we use bus 0 to indicate the directly attached bus and any other bus 1349 * number will be taken care of by the PCI-PCI bridge. 1350 */ 1351 static unsigned int lba_next_bus = 0; 1352 1353 /* 1354 * Determine if lba should claim this chip (return 0) or not (return 1). 1355 * If so, initialize the chip and tell other partners in crime they 1356 * have work to do. 1357 */ 1358 static int __init 1359 lba_driver_probe(struct parisc_device *dev) 1360 { 1361 struct lba_device *lba_dev; 1362 LIST_HEAD(resources); 1363 struct pci_bus *lba_bus; 1364 struct pci_ops *cfg_ops; 1365 u32 func_class; 1366 void *tmp_obj; 1367 char *version; 1368 void __iomem *addr = ioremap_nocache(dev->hpa.start, 4096); 1369 1370 /* Read HW Rev First */ 1371 func_class = READ_REG32(addr + LBA_FCLASS); 1372 1373 if (IS_ELROY(dev)) { 1374 func_class &= 0xf; 1375 switch (func_class) { 1376 case 0: version = "TR1.0"; break; 1377 case 1: version = "TR2.0"; break; 1378 case 2: version = "TR2.1"; break; 1379 case 3: version = "TR2.2"; break; 1380 case 4: version = "TR3.0"; break; 1381 case 5: version = "TR4.0"; break; 1382 default: version = "TR4+"; 1383 } 1384 1385 printk(KERN_INFO "Elroy version %s (0x%x) found at 0x%lx\n", 1386 version, func_class & 0xf, (long)dev->hpa.start); 1387 1388 if (func_class < 2) { 1389 printk(KERN_WARNING "Can't support LBA older than " 1390 "TR2.1 - continuing under adversity.\n"); 1391 } 1392 1393 #if 0 1394 /* Elroy TR4.0 should work with simple algorithm. 1395 But it doesn't. Still missing something. *sigh* 1396 */ 1397 if (func_class > 4) { 1398 cfg_ops = &mercury_cfg_ops; 1399 } else 1400 #endif 1401 { 1402 cfg_ops = &elroy_cfg_ops; 1403 } 1404 1405 } else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) { 1406 int major, minor; 1407 1408 func_class &= 0xff; 1409 major = func_class >> 4, minor = func_class & 0xf; 1410 1411 /* We could use one printk for both Elroy and Mercury, 1412 * but for the mask for func_class. 1413 */ 1414 printk(KERN_INFO "%s version TR%d.%d (0x%x) found at 0x%lx\n", 1415 IS_MERCURY(dev) ? "Mercury" : "Quicksilver", major, 1416 minor, func_class, (long)dev->hpa.start); 1417 1418 cfg_ops = &mercury_cfg_ops; 1419 } else { 1420 printk(KERN_ERR "Unknown LBA found at 0x%lx\n", 1421 (long)dev->hpa.start); 1422 return -ENODEV; 1423 } 1424 1425 /* Tell I/O SAPIC driver we have a IRQ handler/region. */ 1426 tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE); 1427 1428 /* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't 1429 ** have an IRT entry will get NULL back from iosapic code. 1430 */ 1431 1432 lba_dev = kzalloc(sizeof(struct lba_device), GFP_KERNEL); 1433 if (!lba_dev) { 1434 printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n"); 1435 return(1); 1436 } 1437 1438 1439 /* ---------- First : initialize data we already have --------- */ 1440 1441 lba_dev->hw_rev = func_class; 1442 lba_dev->hba.base_addr = addr; 1443 lba_dev->hba.dev = dev; 1444 lba_dev->iosapic_obj = tmp_obj; /* save interrupt handle */ 1445 lba_dev->hba.iommu = sba_get_iommu(dev); /* get iommu data */ 1446 parisc_set_drvdata(dev, lba_dev); 1447 1448 /* ------------ Second : initialize common stuff ---------- */ 1449 pci_bios = &lba_bios_ops; 1450 pcibios_register_hba(HBA_DATA(lba_dev)); 1451 spin_lock_init(&lba_dev->lba_lock); 1452 1453 if (lba_hw_init(lba_dev)) 1454 return(1); 1455 1456 /* ---------- Third : setup I/O Port and MMIO resources --------- */ 1457 1458 if (is_pdc_pat()) { 1459 /* PDC PAT firmware uses PIOP region of GMMIO space. */ 1460 pci_port = &lba_pat_port_ops; 1461 /* Go ask PDC PAT what resources this LBA has */ 1462 lba_pat_resources(dev, lba_dev); 1463 } else { 1464 if (!astro_iop_base) { 1465 /* Sprockets PDC uses NPIOP region */ 1466 astro_iop_base = ioremap_nocache(LBA_PORT_BASE, 64 * 1024); 1467 pci_port = &lba_astro_port_ops; 1468 } 1469 1470 /* Poke the chip a bit for /proc output */ 1471 lba_legacy_resources(dev, lba_dev); 1472 } 1473 1474 if (lba_dev->hba.bus_num.start < lba_next_bus) 1475 lba_dev->hba.bus_num.start = lba_next_bus; 1476 1477 /* Overlaps with elmmio can (and should) fail here. 1478 * We will prune (or ignore) the distributed range. 1479 * 1480 * FIXME: SBA code should register all elmmio ranges first. 1481 * that would take care of elmmio ranges routed 1482 * to a different rope (already discovered) from 1483 * getting registered *after* LBA code has already 1484 * registered it's distributed lmmio range. 1485 */ 1486 if (truncate_pat_collision(&iomem_resource, 1487 &(lba_dev->hba.lmmio_space))) { 1488 printk(KERN_WARNING "LBA: lmmio_space [%lx/%lx] duplicate!\n", 1489 (long)lba_dev->hba.lmmio_space.start, 1490 (long)lba_dev->hba.lmmio_space.end); 1491 lba_dev->hba.lmmio_space.flags = 0; 1492 } 1493 1494 pci_add_resource_offset(&resources, &lba_dev->hba.io_space, 1495 HBA_PORT_BASE(lba_dev->hba.hba_num)); 1496 if (lba_dev->hba.elmmio_space.start) 1497 pci_add_resource_offset(&resources, &lba_dev->hba.elmmio_space, 1498 lba_dev->hba.lmmio_space_offset); 1499 if (lba_dev->hba.lmmio_space.flags) 1500 pci_add_resource_offset(&resources, &lba_dev->hba.lmmio_space, 1501 lba_dev->hba.lmmio_space_offset); 1502 if (lba_dev->hba.gmmio_space.flags) 1503 pci_add_resource(&resources, &lba_dev->hba.gmmio_space); 1504 1505 dev->dev.platform_data = lba_dev; 1506 lba_bus = lba_dev->hba.hba_bus = 1507 pci_create_root_bus(&dev->dev, lba_dev->hba.bus_num.start, 1508 cfg_ops, NULL, &resources); 1509 if (!lba_bus) { 1510 pci_free_resource_list(&resources); 1511 return 0; 1512 } 1513 1514 lba_bus->subordinate = pci_scan_child_bus(lba_bus); 1515 1516 /* This is in lieu of calling pci_assign_unassigned_resources() */ 1517 if (is_pdc_pat()) { 1518 /* assign resources to un-initialized devices */ 1519 1520 DBG_PAT("LBA pci_bus_size_bridges()\n"); 1521 pci_bus_size_bridges(lba_bus); 1522 1523 DBG_PAT("LBA pci_bus_assign_resources()\n"); 1524 pci_bus_assign_resources(lba_bus); 1525 1526 #ifdef DEBUG_LBA_PAT 1527 DBG_PAT("\nLBA PIOP resource tree\n"); 1528 lba_dump_res(&lba_dev->hba.io_space, 2); 1529 DBG_PAT("\nLBA LMMIO resource tree\n"); 1530 lba_dump_res(&lba_dev->hba.lmmio_space, 2); 1531 #endif 1532 } 1533 pci_enable_bridges(lba_bus); 1534 1535 /* 1536 ** Once PCI register ops has walked the bus, access to config 1537 ** space is restricted. Avoids master aborts on config cycles. 1538 ** Early LBA revs go fatal on *any* master abort. 1539 */ 1540 if (cfg_ops == &elroy_cfg_ops) { 1541 lba_dev->flags |= LBA_FLAG_SKIP_PROBE; 1542 } 1543 1544 lba_next_bus = lba_bus->subordinate + 1; 1545 pci_bus_add_devices(lba_bus); 1546 1547 /* Whew! Finally done! Tell services we got this one covered. */ 1548 return 0; 1549 } 1550 1551 static struct parisc_device_id lba_tbl[] = { 1552 { HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa }, 1553 { HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa }, 1554 { HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa }, 1555 { 0, } 1556 }; 1557 1558 static struct parisc_driver lba_driver = { 1559 .name = MODULE_NAME, 1560 .id_table = lba_tbl, 1561 .probe = lba_driver_probe, 1562 }; 1563 1564 /* 1565 ** One time initialization to let the world know the LBA was found. 1566 ** Must be called exactly once before pci_init(). 1567 */ 1568 void __init lba_init(void) 1569 { 1570 register_parisc_driver(&lba_driver); 1571 } 1572 1573 /* 1574 ** Initialize the IBASE/IMASK registers for LBA (Elroy). 1575 ** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA). 1576 ** sba_iommu is responsible for locking (none needed at init time). 1577 */ 1578 void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask) 1579 { 1580 void __iomem * base_addr = ioremap_nocache(lba->hpa.start, 4096); 1581 1582 imask <<= 2; /* adjust for hints - 2 more bits */ 1583 1584 /* Make sure we aren't trying to set bits that aren't writeable. */ 1585 WARN_ON((ibase & 0x001fffff) != 0); 1586 WARN_ON((imask & 0x001fffff) != 0); 1587 1588 DBG("%s() ibase 0x%x imask 0x%x\n", __func__, ibase, imask); 1589 WRITE_REG32( imask, base_addr + LBA_IMASK); 1590 WRITE_REG32( ibase, base_addr + LBA_IBASE); 1591 iounmap(base_addr); 1592 } 1593 1594