1 /* 2 ** I/O Sapic Driver - PCI interrupt line support 3 ** 4 ** (c) Copyright 1999 Grant Grundler 5 ** (c) Copyright 1999 Hewlett-Packard Company 6 ** 7 ** This program is free software; you can redistribute it and/or modify 8 ** it under the terms of the GNU General Public License as published by 9 ** the Free Software Foundation; either version 2 of the License, or 10 ** (at your option) any later version. 11 ** 12 ** The I/O sapic driver manages the Interrupt Redirection Table which is 13 ** the control logic to convert PCI line based interrupts into a Message 14 ** Signaled Interrupt (aka Transaction Based Interrupt, TBI). 15 ** 16 ** Acronyms 17 ** -------- 18 ** HPA Hard Physical Address (aka MMIO address) 19 ** IRQ Interrupt ReQuest. Implies Line based interrupt. 20 ** IRT Interrupt Routing Table (provided by PAT firmware) 21 ** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA 22 ** table which is implemented in I/O SAPIC. 23 ** ISR Interrupt Service Routine. aka Interrupt handler. 24 ** MSI Message Signaled Interrupt. PCI 2.2 functionality. 25 ** aka Transaction Based Interrupt (or TBI). 26 ** PA Precision Architecture. HP's RISC architecture. 27 ** RISC Reduced Instruction Set Computer. 28 ** 29 ** 30 ** What's a Message Signalled Interrupt? 31 ** ------------------------------------- 32 ** MSI is a write transaction which targets a processor and is similar 33 ** to a processor write to memory or MMIO. MSIs can be generated by I/O 34 ** devices as well as processors and require *architecture* to work. 35 ** 36 ** PA only supports MSI. So I/O subsystems must either natively generate 37 ** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs 38 ** (e.g. PCI and EISA). IA64 supports MSIs via a "local SAPIC" which 39 ** acts on behalf of a processor. 40 ** 41 ** MSI allows any I/O device to interrupt any processor. This makes 42 ** load balancing of the interrupt processing possible on an SMP platform. 43 ** Interrupts are also ordered WRT to DMA data. It's possible on I/O 44 ** coherent systems to completely eliminate PIO reads from the interrupt 45 ** path. The device and driver must be designed and implemented to 46 ** guarantee all DMA has been issued (issues about atomicity here) 47 ** before the MSI is issued. I/O status can then safely be read from 48 ** DMA'd data by the ISR. 49 ** 50 ** 51 ** PA Firmware 52 ** ----------- 53 ** PA-RISC platforms have two fundamentally different types of firmware. 54 ** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register 55 ** and BARs similar to a traditional PC BIOS. 56 ** The newer "PAT" firmware supports PDC calls which return tables. 57 ** PAT firmware only initializes the PCI Console and Boot interface. 58 ** With these tables, the OS can program all other PCI devices. 59 ** 60 ** One such PAT PDC call returns the "Interrupt Routing Table" (IRT). 61 ** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC 62 ** input line. If the IRT is not available, this driver assumes 63 ** INTERRUPT_LINE register has been programmed by firmware. The latter 64 ** case also means online addition of PCI cards can NOT be supported 65 ** even if HW support is present. 66 ** 67 ** All platforms with PAT firmware to date (Oct 1999) use one Interrupt 68 ** Routing Table for the entire platform. 69 ** 70 ** Where's the iosapic? 71 ** -------------------- 72 ** I/O sapic is part of the "Core Electronics Complex". And on HP platforms 73 ** it's integrated as part of the PCI bus adapter, "lba". So no bus walk 74 ** will discover I/O Sapic. I/O Sapic driver learns about each device 75 ** when lba driver advertises the presence of the I/O sapic by calling 76 ** iosapic_register(). 77 ** 78 ** 79 ** IRQ handling notes 80 ** ------------------ 81 ** The IO-SAPIC can indicate to the CPU which interrupt was asserted. 82 ** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per 83 ** IO-SAPIC interrupt and call the device driver's handler directly. 84 ** The IO-SAPIC driver hijacks the CPU interrupt handler so it can 85 ** issue the End Of Interrupt command to the IO-SAPIC. 86 ** 87 ** Overview of exported iosapic functions 88 ** -------------------------------------- 89 ** (caveat: code isn't finished yet - this is just the plan) 90 ** 91 ** iosapic_init: 92 ** o initialize globals (lock, etc) 93 ** o try to read IRT. Presence of IRT determines if this is 94 ** a PAT platform or not. 95 ** 96 ** iosapic_register(): 97 ** o create iosapic_info instance data structure 98 ** o allocate vector_info array for this iosapic 99 ** o initialize vector_info - read corresponding IRdT? 100 ** 101 ** iosapic_xlate_pin: (only called by fixup_irq for PAT platform) 102 ** o intr_pin = read cfg (INTERRUPT_PIN); 103 ** o if (device under PCI-PCI bridge) 104 ** translate slot/pin 105 ** 106 ** iosapic_fixup_irq: 107 ** o if PAT platform (IRT present) 108 ** intr_pin = iosapic_xlate_pin(isi,pcidev): 109 ** intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin) 110 ** save IRT entry into vector_info later 111 ** write cfg INTERRUPT_LINE (with intr_line)? 112 ** else 113 ** intr_line = pcidev->irq 114 ** IRT pointer = NULL 115 ** endif 116 ** o locate vector_info (needs: isi, intr_line) 117 ** o allocate processor "irq" and get txn_addr/data 118 ** o request_irq(processor_irq, iosapic_interrupt, vector_info,...) 119 ** 120 ** iosapic_enable_irq: 121 ** o clear any pending IRQ on that line 122 ** o enable IRdT - call enable_irq(vector[line]->processor_irq) 123 ** o write EOI in case line is already asserted. 124 ** 125 ** iosapic_disable_irq: 126 ** o disable IRdT - call disable_irq(vector[line]->processor_irq) 127 */ 128 129 130 /* FIXME: determine which include files are really needed */ 131 #include <linux/types.h> 132 #include <linux/kernel.h> 133 #include <linux/spinlock.h> 134 #include <linux/pci.h> 135 #include <linux/init.h> 136 #include <linux/slab.h> 137 #include <linux/interrupt.h> 138 139 #include <asm/byteorder.h> /* get in-line asm for swab */ 140 #include <asm/pdc.h> 141 #include <asm/pdcpat.h> 142 #include <asm/page.h> 143 #include <asm/system.h> 144 #include <asm/io.h> /* read/write functions */ 145 #ifdef CONFIG_SUPERIO 146 #include <asm/superio.h> 147 #endif 148 149 #include <asm/ropes.h> 150 #include "./iosapic_private.h" 151 152 #define MODULE_NAME "iosapic" 153 154 /* "local" compile flags */ 155 #undef PCI_BRIDGE_FUNCS 156 #undef DEBUG_IOSAPIC 157 #undef DEBUG_IOSAPIC_IRT 158 159 160 #ifdef DEBUG_IOSAPIC 161 #define DBG(x...) printk(x) 162 #else /* DEBUG_IOSAPIC */ 163 #define DBG(x...) 164 #endif /* DEBUG_IOSAPIC */ 165 166 #ifdef DEBUG_IOSAPIC_IRT 167 #define DBG_IRT(x...) printk(x) 168 #else 169 #define DBG_IRT(x...) 170 #endif 171 172 #ifdef CONFIG_64BIT 173 #define COMPARE_IRTE_ADDR(irte, hpa) ((irte)->dest_iosapic_addr == (hpa)) 174 #else 175 #define COMPARE_IRTE_ADDR(irte, hpa) \ 176 ((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL)) 177 #endif 178 179 #define IOSAPIC_REG_SELECT 0x00 180 #define IOSAPIC_REG_WINDOW 0x10 181 #define IOSAPIC_REG_EOI 0x40 182 183 #define IOSAPIC_REG_VERSION 0x1 184 185 #define IOSAPIC_IRDT_ENTRY(idx) (0x10+(idx)*2) 186 #define IOSAPIC_IRDT_ENTRY_HI(idx) (0x11+(idx)*2) 187 188 static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg) 189 { 190 writel(reg, iosapic + IOSAPIC_REG_SELECT); 191 return readl(iosapic + IOSAPIC_REG_WINDOW); 192 } 193 194 static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val) 195 { 196 writel(reg, iosapic + IOSAPIC_REG_SELECT); 197 writel(val, iosapic + IOSAPIC_REG_WINDOW); 198 } 199 200 #define IOSAPIC_VERSION_MASK 0x000000ff 201 #define IOSAPIC_VERSION(ver) ((int) (ver & IOSAPIC_VERSION_MASK)) 202 203 #define IOSAPIC_MAX_ENTRY_MASK 0x00ff0000 204 #define IOSAPIC_MAX_ENTRY_SHIFT 0x10 205 #define IOSAPIC_IRDT_MAX_ENTRY(ver) \ 206 (int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT) 207 208 /* bits in the "low" I/O Sapic IRdT entry */ 209 #define IOSAPIC_IRDT_ENABLE 0x10000 210 #define IOSAPIC_IRDT_PO_LOW 0x02000 211 #define IOSAPIC_IRDT_LEVEL_TRIG 0x08000 212 #define IOSAPIC_IRDT_MODE_LPRI 0x00100 213 214 /* bits in the "high" I/O Sapic IRdT entry */ 215 #define IOSAPIC_IRDT_ID_EID_SHIFT 0x10 216 217 218 static DEFINE_SPINLOCK(iosapic_lock); 219 220 static inline void iosapic_eoi(void __iomem *addr, unsigned int data) 221 { 222 __raw_writel(data, addr); 223 } 224 225 /* 226 ** REVISIT: future platforms may have more than one IRT. 227 ** If so, the following three fields form a structure which 228 ** then be linked into a list. Names are chosen to make searching 229 ** for them easy - not necessarily accurate (eg "cell"). 230 ** 231 ** Alternative: iosapic_info could point to the IRT it's in. 232 ** iosapic_register() could search a list of IRT's. 233 */ 234 static struct irt_entry *irt_cell; 235 static size_t irt_num_entry; 236 237 static struct irt_entry *iosapic_alloc_irt(int num_entries) 238 { 239 unsigned long a; 240 241 /* The IRT needs to be 8-byte aligned for the PDC call. 242 * Normally kmalloc would guarantee larger alignment, but 243 * if CONFIG_DEBUG_SLAB is enabled, then we can get only 244 * 4-byte alignment on 32-bit kernels 245 */ 246 a = (unsigned long)kmalloc(sizeof(struct irt_entry) * num_entries + 8, GFP_KERNEL); 247 a = (a + 7UL) & ~7UL; 248 return (struct irt_entry *)a; 249 } 250 251 /** 252 * iosapic_load_irt - Fill in the interrupt routing table 253 * @cell_num: The cell number of the CPU we're currently executing on 254 * @irt: The address to place the new IRT at 255 * @return The number of entries found 256 * 257 * The "Get PCI INT Routing Table Size" option returns the number of 258 * entries in the PCI interrupt routing table for the cell specified 259 * in the cell_number argument. The cell number must be for a cell 260 * within the caller's protection domain. 261 * 262 * The "Get PCI INT Routing Table" option returns, for the cell 263 * specified in the cell_number argument, the PCI interrupt routing 264 * table in the caller allocated memory pointed to by mem_addr. 265 * We assume the IRT only contains entries for I/O SAPIC and 266 * calculate the size based on the size of I/O sapic entries. 267 * 268 * The PCI interrupt routing table entry format is derived from the 269 * IA64 SAL Specification 2.4. The PCI interrupt routing table defines 270 * the routing of PCI interrupt signals between the PCI device output 271 * "pins" and the IO SAPICs' input "lines" (including core I/O PCI 272 * devices). This table does NOT include information for devices/slots 273 * behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec. 274 * for the architected method of routing of IRQ's behind PPB's. 275 */ 276 277 278 static int __init 279 iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt) 280 { 281 long status; /* PDC return value status */ 282 struct irt_entry *table; /* start of interrupt routing tbl */ 283 unsigned long num_entries = 0UL; 284 285 BUG_ON(!irt); 286 287 if (is_pdc_pat()) { 288 /* Use pat pdc routine to get interrupt routing table size */ 289 DBG("calling get_irt_size (cell %ld)\n", cell_num); 290 status = pdc_pat_get_irt_size(&num_entries, cell_num); 291 DBG("get_irt_size: %ld\n", status); 292 293 BUG_ON(status != PDC_OK); 294 BUG_ON(num_entries == 0); 295 296 /* 297 ** allocate memory for interrupt routing table 298 ** This interface isn't really right. We are assuming 299 ** the contents of the table are exclusively 300 ** for I/O sapic devices. 301 */ 302 table = iosapic_alloc_irt(num_entries); 303 if (table == NULL) { 304 printk(KERN_WARNING MODULE_NAME ": read_irt : can " 305 "not alloc mem for IRT\n"); 306 return 0; 307 } 308 309 /* get PCI INT routing table */ 310 status = pdc_pat_get_irt(table, cell_num); 311 DBG("pdc_pat_get_irt: %ld\n", status); 312 WARN_ON(status != PDC_OK); 313 } else { 314 /* 315 ** C3000/J5000 (and similar) platforms with Sprockets PDC 316 ** will return exactly one IRT for all iosapics. 317 ** So if we have one, don't need to get it again. 318 */ 319 if (irt_cell) 320 return 0; 321 322 /* Should be using the Elroy's HPA, but it's ignored anyway */ 323 status = pdc_pci_irt_size(&num_entries, 0); 324 DBG("pdc_pci_irt_size: %ld\n", status); 325 326 if (status != PDC_OK) { 327 /* Not a "legacy" system with I/O SAPIC either */ 328 return 0; 329 } 330 331 BUG_ON(num_entries == 0); 332 333 table = iosapic_alloc_irt(num_entries); 334 if (!table) { 335 printk(KERN_WARNING MODULE_NAME ": read_irt : can " 336 "not alloc mem for IRT\n"); 337 return 0; 338 } 339 340 /* HPA ignored by this call too. */ 341 status = pdc_pci_irt(num_entries, 0, table); 342 BUG_ON(status != PDC_OK); 343 } 344 345 /* return interrupt table address */ 346 *irt = table; 347 348 #ifdef DEBUG_IOSAPIC_IRT 349 { 350 struct irt_entry *p = table; 351 int i; 352 353 printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num); 354 printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n", 355 table, 356 num_entries, 357 (int) sizeof(struct irt_entry)); 358 359 for (i = 0 ; i < num_entries ; i++, p++) { 360 printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n", 361 p->entry_type, p->entry_length, p->interrupt_type, 362 p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id, 363 p->src_seg_id, p->dest_iosapic_intin, 364 ((u32 *) p)[2], 365 ((u32 *) p)[3] 366 ); 367 } 368 } 369 #endif /* DEBUG_IOSAPIC_IRT */ 370 371 return num_entries; 372 } 373 374 375 376 void __init iosapic_init(void) 377 { 378 unsigned long cell = 0; 379 380 DBG("iosapic_init()\n"); 381 382 #ifdef __LP64__ 383 if (is_pdc_pat()) { 384 int status; 385 struct pdc_pat_cell_num cell_info; 386 387 status = pdc_pat_cell_get_number(&cell_info); 388 if (status == PDC_OK) { 389 cell = cell_info.cell_num; 390 } 391 } 392 #endif 393 394 /* get interrupt routing table for this cell */ 395 irt_num_entry = iosapic_load_irt(cell, &irt_cell); 396 if (irt_num_entry == 0) 397 irt_cell = NULL; /* old PDC w/o iosapic */ 398 } 399 400 401 /* 402 ** Return the IRT entry in case we need to look something else up. 403 */ 404 static struct irt_entry * 405 irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin) 406 { 407 struct irt_entry *i = irt_cell; 408 int cnt; /* track how many entries we've looked at */ 409 u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1); 410 411 DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin); 412 413 for (cnt=0; cnt < irt_num_entry; cnt++, i++) { 414 415 /* 416 ** Validate: entry_type, entry_length, interrupt_type 417 ** 418 ** Difference between validate vs compare is the former 419 ** should print debug info and is not expected to "fail" 420 ** on current platforms. 421 */ 422 if (i->entry_type != IRT_IOSAPIC_TYPE) { 423 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type); 424 continue; 425 } 426 427 if (i->entry_length != IRT_IOSAPIC_LENGTH) { 428 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d length %d\n", i, cnt, i->entry_length); 429 continue; 430 } 431 432 if (i->interrupt_type != IRT_VECTORED_INTR) { 433 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d interrupt_type %d\n", i, cnt, i->interrupt_type); 434 continue; 435 } 436 437 if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa)) 438 continue; 439 440 if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno) 441 continue; 442 443 /* 444 ** Ignore: src_bus_id and rc_seg_id correlate with 445 ** iosapic_info->isi_hpa on HP platforms. 446 ** If needed, pass in "PFA" (aka config space addr) 447 ** instead of slot. 448 */ 449 450 /* Found it! */ 451 return i; 452 } 453 454 printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n", 455 isi->isi_hpa, slot, intr_pin); 456 return NULL; 457 } 458 459 460 /* 461 ** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges. 462 ** Legacy PDC already does this translation for us and stores it in INTR_LINE. 463 ** 464 ** PAT PDC needs to basically do what legacy PDC does: 465 ** o read PIN 466 ** o adjust PIN in case device is "behind" a PPB 467 ** (eg 4-port 100BT and SCSI/LAN "Combo Card") 468 ** o convert slot/pin to I/O SAPIC input line. 469 ** 470 ** HP platforms only support: 471 ** o one level of skewing for any number of PPBs 472 ** o only support PCI-PCI Bridges. 473 */ 474 static struct irt_entry * 475 iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev) 476 { 477 u8 intr_pin, intr_slot; 478 479 pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin); 480 481 DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n", 482 pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin); 483 484 if (intr_pin == 0) { 485 /* The device does NOT support/use IRQ lines. */ 486 return NULL; 487 } 488 489 /* Check if pcidev behind a PPB */ 490 if (pcidev->bus->parent) { 491 /* Convert pcidev INTR_PIN into something we 492 ** can lookup in the IRT. 493 */ 494 #ifdef PCI_BRIDGE_FUNCS 495 /* 496 ** Proposal #1: 497 ** 498 ** call implementation specific translation function 499 ** This is architecturally "cleaner". HP-UX doesn't 500 ** support other secondary bus types (eg. E/ISA) directly. 501 ** May be needed for other processor (eg IA64) architectures 502 ** or by some ambitous soul who wants to watch TV. 503 */ 504 if (pci_bridge_funcs->xlate_intr_line) { 505 intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev); 506 } 507 #else /* PCI_BRIDGE_FUNCS */ 508 struct pci_bus *p = pcidev->bus; 509 /* 510 ** Proposal #2: 511 ** The "pin" is skewed ((pin + dev - 1) % 4). 512 ** 513 ** This isn't very clean since I/O SAPIC must assume: 514 ** - all platforms only have PCI busses. 515 ** - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA) 516 ** - IRQ routing is only skewed once regardless of 517 ** the number of PPB's between iosapic and device. 518 ** (Bit3 expansion chassis follows this rule) 519 ** 520 ** Advantage is it's really easy to implement. 521 */ 522 intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin); 523 #endif /* PCI_BRIDGE_FUNCS */ 524 525 /* 526 * Locate the host slot of the PPB. 527 */ 528 while (p->parent->parent) 529 p = p->parent; 530 531 intr_slot = PCI_SLOT(p->self->devfn); 532 } else { 533 intr_slot = PCI_SLOT(pcidev->devfn); 534 } 535 DBG_IRT("iosapic_xlate_pin: bus %d slot %d pin %d\n", 536 pcidev->bus->secondary, intr_slot, intr_pin); 537 538 return irt_find_irqline(isi, intr_slot, intr_pin); 539 } 540 541 static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1) 542 { 543 struct iosapic_info *isp = vi->iosapic; 544 u8 idx = vi->irqline; 545 546 *dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx)); 547 *dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx)); 548 } 549 550 551 static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1) 552 { 553 struct iosapic_info *isp = vi->iosapic; 554 555 DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n", 556 vi->irqline, isp->isi_hpa, dp0, dp1); 557 558 iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0); 559 560 /* Read the window register to flush the writes down to HW */ 561 dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW); 562 563 iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1); 564 565 /* Read the window register to flush the writes down to HW */ 566 dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW); 567 } 568 569 /* 570 ** set_irt prepares the data (dp0, dp1) according to the vector_info 571 ** and target cpu (id_eid). dp0/dp1 are then used to program I/O SAPIC 572 ** IRdT for the given "vector" (aka IRQ line). 573 */ 574 static void 575 iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1) 576 { 577 u32 mode = 0; 578 struct irt_entry *p = vi->irte; 579 580 if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO) 581 mode |= IOSAPIC_IRDT_PO_LOW; 582 583 if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG) 584 mode |= IOSAPIC_IRDT_LEVEL_TRIG; 585 586 /* 587 ** IA64 REVISIT 588 ** PA doesn't support EXTINT or LPRIO bits. 589 */ 590 591 *dp0 = mode | (u32) vi->txn_data; 592 593 /* 594 ** Extracting id_eid isn't a real clean way of getting it. 595 ** But the encoding is the same for both PA and IA64 platforms. 596 */ 597 if (is_pdc_pat()) { 598 /* 599 ** PAT PDC just hands it to us "right". 600 ** txn_addr comes from cpu_data[x].txn_addr. 601 */ 602 *dp1 = (u32) (vi->txn_addr); 603 } else { 604 /* 605 ** eg if base_addr == 0xfffa0000), 606 ** we want to get 0xa0ff0000. 607 ** 608 ** eid 0x0ff00000 -> 0x00ff0000 609 ** id 0x000ff000 -> 0xff000000 610 */ 611 *dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) | 612 (((u32)vi->txn_addr & 0x000ff000) << 12); 613 } 614 DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1); 615 } 616 617 618 static void iosapic_mask_irq(unsigned int irq) 619 { 620 unsigned long flags; 621 struct vector_info *vi = get_irq_chip_data(irq); 622 u32 d0, d1; 623 624 spin_lock_irqsave(&iosapic_lock, flags); 625 iosapic_rd_irt_entry(vi, &d0, &d1); 626 d0 |= IOSAPIC_IRDT_ENABLE; 627 iosapic_wr_irt_entry(vi, d0, d1); 628 spin_unlock_irqrestore(&iosapic_lock, flags); 629 } 630 631 static void iosapic_unmask_irq(unsigned int irq) 632 { 633 struct vector_info *vi = get_irq_chip_data(irq); 634 u32 d0, d1; 635 636 /* data is initialized by fixup_irq */ 637 WARN_ON(vi->txn_irq == 0); 638 639 iosapic_set_irt_data(vi, &d0, &d1); 640 iosapic_wr_irt_entry(vi, d0, d1); 641 642 #ifdef DEBUG_IOSAPIC_IRT 643 { 644 u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL); 645 printk("iosapic_enable_irq(): regs %p", vi->eoi_addr); 646 for ( ; t < vi->eoi_addr; t++) 647 printk(" %x", readl(t)); 648 printk("\n"); 649 } 650 651 printk("iosapic_enable_irq(): sel "); 652 { 653 struct iosapic_info *isp = vi->iosapic; 654 655 for (d0=0x10; d0<0x1e; d0++) { 656 d1 = iosapic_read(isp->addr, d0); 657 printk(" %x", d1); 658 } 659 } 660 printk("\n"); 661 #endif 662 663 /* 664 * Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is 665 * asserted. IRQ generally should not be asserted when a driver 666 * enables their IRQ. It can lead to "interesting" race conditions 667 * in the driver initialization sequence. 668 */ 669 DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", irq, 670 vi->eoi_addr, vi->eoi_data); 671 iosapic_eoi(vi->eoi_addr, vi->eoi_data); 672 } 673 674 static void iosapic_eoi_irq(unsigned int irq) 675 { 676 struct vector_info *vi = get_irq_chip_data(irq); 677 678 iosapic_eoi(vi->eoi_addr, vi->eoi_data); 679 cpu_eoi_irq(irq); 680 } 681 682 #ifdef CONFIG_SMP 683 static int iosapic_set_affinity_irq(unsigned int irq, 684 const struct cpumask *dest) 685 { 686 struct vector_info *vi = get_irq_chip_data(irq); 687 u32 d0, d1, dummy_d0; 688 unsigned long flags; 689 int dest_cpu; 690 691 dest_cpu = cpu_check_affinity(irq, dest); 692 if (dest_cpu < 0) 693 return -1; 694 695 cpumask_copy(irq_desc[irq].affinity, cpumask_of(dest_cpu)); 696 vi->txn_addr = txn_affinity_addr(irq, dest_cpu); 697 698 spin_lock_irqsave(&iosapic_lock, flags); 699 /* d1 contains the destination CPU, so only want to set that 700 * entry */ 701 iosapic_rd_irt_entry(vi, &d0, &d1); 702 iosapic_set_irt_data(vi, &dummy_d0, &d1); 703 iosapic_wr_irt_entry(vi, d0, d1); 704 spin_unlock_irqrestore(&iosapic_lock, flags); 705 706 return 0; 707 } 708 #endif 709 710 static struct irq_chip iosapic_interrupt_type = { 711 .name = "IO-SAPIC-level", 712 .unmask = iosapic_unmask_irq, 713 .mask = iosapic_mask_irq, 714 .ack = cpu_ack_irq, 715 .eoi = iosapic_eoi_irq, 716 #ifdef CONFIG_SMP 717 .set_affinity = iosapic_set_affinity_irq, 718 #endif 719 }; 720 721 int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev) 722 { 723 struct iosapic_info *isi = isi_obj; 724 struct irt_entry *irte = NULL; /* only used if PAT PDC */ 725 struct vector_info *vi; 726 int isi_line; /* line used by device */ 727 728 if (!isi) { 729 printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n", 730 pci_name(pcidev)); 731 return -1; 732 } 733 734 #ifdef CONFIG_SUPERIO 735 /* 736 * HACK ALERT! (non-compliant PCI device support) 737 * 738 * All SuckyIO interrupts are routed through the PIC's on function 1. 739 * But SuckyIO OHCI USB controller gets an IRT entry anyway because 740 * it advertises INT D for INT_PIN. Use that IRT entry to get the 741 * SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*). 742 */ 743 if (is_superio_device(pcidev)) { 744 /* We must call superio_fixup_irq() to register the pdev */ 745 pcidev->irq = superio_fixup_irq(pcidev); 746 747 /* Don't return if need to program the IOSAPIC's IRT... */ 748 if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN) 749 return pcidev->irq; 750 } 751 #endif /* CONFIG_SUPERIO */ 752 753 /* lookup IRT entry for isi/slot/pin set */ 754 irte = iosapic_xlate_pin(isi, pcidev); 755 if (!irte) { 756 printk("iosapic: no IRTE for %s (IRQ not connected?)\n", 757 pci_name(pcidev)); 758 return -1; 759 } 760 DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n", 761 irte, 762 irte->entry_type, 763 irte->entry_length, 764 irte->polarity_trigger, 765 irte->src_bus_irq_devno, 766 irte->src_bus_id, 767 irte->src_seg_id, 768 irte->dest_iosapic_intin, 769 (u32) irte->dest_iosapic_addr); 770 isi_line = irte->dest_iosapic_intin; 771 772 /* get vector info for this input line */ 773 vi = isi->isi_vector + isi_line; 774 DBG_IRT("iosapic_fixup_irq: line %d vi 0x%p\n", isi_line, vi); 775 776 /* If this IRQ line has already been setup, skip it */ 777 if (vi->irte) 778 goto out; 779 780 vi->irte = irte; 781 782 /* 783 * Allocate processor IRQ 784 * 785 * XXX/FIXME The txn_alloc_irq() code and related code should be 786 * moved to enable_irq(). That way we only allocate processor IRQ 787 * bits for devices that actually have drivers claiming them. 788 * Right now we assign an IRQ to every PCI device present, 789 * regardless of whether it's used or not. 790 */ 791 vi->txn_irq = txn_alloc_irq(8); 792 793 if (vi->txn_irq < 0) 794 panic("I/O sapic: couldn't get TXN IRQ\n"); 795 796 /* enable_irq() will use txn_* to program IRdT */ 797 vi->txn_addr = txn_alloc_addr(vi->txn_irq); 798 vi->txn_data = txn_alloc_data(vi->txn_irq); 799 800 vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI; 801 vi->eoi_data = cpu_to_le32(vi->txn_data); 802 803 cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi); 804 805 out: 806 pcidev->irq = vi->txn_irq; 807 808 DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n", 809 PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn), 810 pcidev->vendor, pcidev->device, isi_line, pcidev->irq); 811 812 return pcidev->irq; 813 } 814 815 816 /* 817 ** squirrel away the I/O Sapic Version 818 */ 819 static unsigned int 820 iosapic_rd_version(struct iosapic_info *isi) 821 { 822 return iosapic_read(isi->addr, IOSAPIC_REG_VERSION); 823 } 824 825 826 /* 827 ** iosapic_register() is called by "drivers" with an integrated I/O SAPIC. 828 ** Caller must be certain they have an I/O SAPIC and know its MMIO address. 829 ** 830 ** o allocate iosapic_info and add it to the list 831 ** o read iosapic version and squirrel that away 832 ** o read size of IRdT. 833 ** o allocate and initialize isi_vector[] 834 ** o allocate irq region 835 */ 836 void *iosapic_register(unsigned long hpa) 837 { 838 struct iosapic_info *isi = NULL; 839 struct irt_entry *irte = irt_cell; 840 struct vector_info *vip; 841 int cnt; /* track how many entries we've looked at */ 842 843 /* 844 * Astro based platforms can only support PCI OLARD if they implement 845 * PAT PDC. Legacy PDC omits LBAs with no PCI devices from the IRT. 846 * Search the IRT and ignore iosapic's which aren't in the IRT. 847 */ 848 for (cnt=0; cnt < irt_num_entry; cnt++, irte++) { 849 WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type); 850 if (COMPARE_IRTE_ADDR(irte, hpa)) 851 break; 852 } 853 854 if (cnt >= irt_num_entry) { 855 DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa); 856 return NULL; 857 } 858 859 isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL); 860 if (!isi) { 861 BUG(); 862 return NULL; 863 } 864 865 isi->addr = ioremap_nocache(hpa, 4096); 866 isi->isi_hpa = hpa; 867 isi->isi_version = iosapic_rd_version(isi); 868 isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1; 869 870 vip = isi->isi_vector = kcalloc(isi->isi_num_vectors, 871 sizeof(struct vector_info), GFP_KERNEL); 872 if (vip == NULL) { 873 kfree(isi); 874 return NULL; 875 } 876 877 for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) { 878 vip->irqline = (unsigned char) cnt; 879 vip->iosapic = isi; 880 } 881 return isi; 882 } 883 884 885 #ifdef DEBUG_IOSAPIC 886 887 static void 888 iosapic_prt_irt(void *irt, long num_entry) 889 { 890 unsigned int i, *irp = (unsigned int *) irt; 891 892 893 printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry); 894 895 for (i=0; i<num_entry; i++, irp += 4) { 896 printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n", 897 irp, i, irp[0], irp[1], irp[2], irp[3]); 898 } 899 } 900 901 902 static void 903 iosapic_prt_vi(struct vector_info *vi) 904 { 905 printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi); 906 printk(KERN_DEBUG "\t\tstatus: %.4x\n", vi->status); 907 printk(KERN_DEBUG "\t\ttxn_irq: %d\n", vi->txn_irq); 908 printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr); 909 printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data); 910 printk(KERN_DEBUG "\t\teoi_addr: %p\n", vi->eoi_addr); 911 printk(KERN_DEBUG "\t\teoi_data: %x\n", vi->eoi_data); 912 } 913 914 915 static void 916 iosapic_prt_isi(struct iosapic_info *isi) 917 { 918 printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi); 919 printk(KERN_DEBUG "\t\tisi_hpa: %lx\n", isi->isi_hpa); 920 printk(KERN_DEBUG "\t\tisi_status: %x\n", isi->isi_status); 921 printk(KERN_DEBUG "\t\tisi_version: %x\n", isi->isi_version); 922 printk(KERN_DEBUG "\t\tisi_vector: %p\n", isi->isi_vector); 923 } 924 #endif /* DEBUG_IOSAPIC */ 925