xref: /openbmc/linux/drivers/parisc/ccio-dma.c (revision cc3519b8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 ** ccio-dma.c:
4 **	DMA management routines for first generation cache-coherent machines.
5 **	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
6 **
7 **	(c) Copyright 2000 Grant Grundler
8 **	(c) Copyright 2000 Ryan Bradetich
9 **	(c) Copyright 2000 Hewlett-Packard Company
10 **
11 **  "Real Mode" operation refers to U2/Uturn chip operation.
12 **  U2/Uturn were designed to perform coherency checks w/o using
13 **  the I/O MMU - basically what x86 does.
14 **
15 **  Drawbacks of using Real Mode are:
16 **	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
17 **      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
18 **	o Ability to do scatter/gather in HW is lost.
19 **	o Doesn't work under PCX-U/U+ machines since they didn't follow
20 **        the coherency design originally worked out. Only PCX-W does.
21 */
22 
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/reboot.h>
32 #include <linux/proc_fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/dma-map-ops.h>
35 #include <linux/scatterlist.h>
36 #include <linux/iommu-helper.h>
37 #include <linux/export.h>
38 
39 #include <asm/byteorder.h>
40 #include <asm/cache.h>		/* for L1_CACHE_BYTES */
41 #include <linux/uaccess.h>
42 #include <asm/page.h>
43 #include <asm/dma.h>
44 #include <asm/io.h>
45 #include <asm/hardware.h>       /* for register_module() */
46 #include <asm/parisc-device.h>
47 
48 #include "iommu.h"
49 
50 /*
51 ** Choose "ccio" since that's what HP-UX calls it.
52 ** Make it easier for folks to migrate from one to the other :^)
53 */
54 #define MODULE_NAME "ccio"
55 
56 #undef DEBUG_CCIO_RES
57 #undef DEBUG_CCIO_RUN
58 #undef DEBUG_CCIO_INIT
59 #undef DEBUG_CCIO_RUN_SG
60 
61 #ifdef CONFIG_PROC_FS
62 /* depends on proc fs support. But costs CPU performance. */
63 #undef CCIO_COLLECT_STATS
64 #endif
65 
66 #ifdef DEBUG_CCIO_INIT
67 #define DBG_INIT(x...)  printk(x)
68 #else
69 #define DBG_INIT(x...)
70 #endif
71 
72 #ifdef DEBUG_CCIO_RUN
73 #define DBG_RUN(x...)   printk(x)
74 #else
75 #define DBG_RUN(x...)
76 #endif
77 
78 #ifdef DEBUG_CCIO_RES
79 #define DBG_RES(x...)   printk(x)
80 #else
81 #define DBG_RES(x...)
82 #endif
83 
84 #ifdef DEBUG_CCIO_RUN_SG
85 #define DBG_RUN_SG(x...) printk(x)
86 #else
87 #define DBG_RUN_SG(x...)
88 #endif
89 
90 #define WRITE_U32(value, addr) __raw_writel(value, addr)
91 #define READ_U32(addr) __raw_readl(addr)
92 
93 #define U2_IOA_RUNWAY 0x580
94 #define U2_BC_GSC     0x501
95 #define UTURN_IOA_RUNWAY 0x581
96 #define UTURN_BC_GSC     0x502
97 
98 #define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
99 #define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
100 #define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
101 
102 struct ioa_registers {
103 	/* Runway Supervisory Set */
104 	int32_t    unused1[12];
105 	uint32_t   io_command;             /* Offset 12 */
106 	uint32_t   io_status;              /* Offset 13 */
107 	uint32_t   io_control;             /* Offset 14 */
108 	int32_t    unused2[1];
109 
110 	/* Runway Auxiliary Register Set */
111 	uint32_t   io_err_resp;            /* Offset  0 */
112 	uint32_t   io_err_info;            /* Offset  1 */
113 	uint32_t   io_err_req;             /* Offset  2 */
114 	uint32_t   io_err_resp_hi;         /* Offset  3 */
115 	uint32_t   io_tlb_entry_m;         /* Offset  4 */
116 	uint32_t   io_tlb_entry_l;         /* Offset  5 */
117 	uint32_t   unused3[1];
118 	uint32_t   io_pdir_base;           /* Offset  7 */
119 	uint32_t   io_io_low_hv;           /* Offset  8 */
120 	uint32_t   io_io_high_hv;          /* Offset  9 */
121 	uint32_t   unused4[1];
122 	uint32_t   io_chain_id_mask;       /* Offset 11 */
123 	uint32_t   unused5[2];
124 	uint32_t   io_io_low;              /* Offset 14 */
125 	uint32_t   io_io_high;             /* Offset 15 */
126 };
127 
128 /*
129 ** IOA Registers
130 ** -------------
131 **
132 ** Runway IO_CONTROL Register (+0x38)
133 **
134 ** The Runway IO_CONTROL register controls the forwarding of transactions.
135 **
136 ** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
137 ** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
138 **
139 ** o mode field indicates the address translation of transactions
140 **   forwarded from Runway to GSC+:
141 **       Mode Name     Value        Definition
142 **       Off (default)   0          Opaque to matching addresses.
143 **       Include         1          Transparent for matching addresses.
144 **       Peek            3          Map matching addresses.
145 **
146 **       + "Off" mode: Runway transactions which match the I/O range
147 **         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
148 **       + "Include" mode: all addresses within the I/O range specified
149 **         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
150 **         forwarded. This is the I/O Adapter's normal operating mode.
151 **       + "Peek" mode: used during system configuration to initialize the
152 **         GSC+ bus. Runway Write_Shorts in the address range specified by
153 **         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
154 **         *AND* the GSC+ address is remapped to the Broadcast Physical
155 **         Address space by setting the 14 high order address bits of the
156 **         32 bit GSC+ address to ones.
157 **
158 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
159 **   "Real" mode is the poweron default.
160 **
161 **   TLB Mode  Value  Description
162 **   Real        0    No TLB translation. Address is directly mapped and the
163 **                    virtual address is composed of selected physical bits.
164 **   Error       1    Software fills the TLB manually.
165 **   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
166 **
167 **
168 ** IO_IO_LOW_HV	  +0x60 (HV dependent)
169 ** IO_IO_HIGH_HV  +0x64 (HV dependent)
170 ** IO_IO_LOW      +0x78	(Architected register)
171 ** IO_IO_HIGH     +0x7c	(Architected register)
172 **
173 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
174 ** I/O Adapter address space, respectively.
175 **
176 ** 0  ... 7 | 8 ... 15 |  16   ...   31 |
177 ** 11111111 | 11111111 |      address   |
178 **
179 ** Each LOW/HIGH pair describes a disjoint address space region.
180 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
181 ** with both sets of LOW/HIGH registers. If the address is in the range
182 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
183 ** for forwarded to the respective GSC+ bus.
184 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
185 ** an address space region.
186 **
187 ** In order for a Runway address to reside within GSC+ extended address space:
188 **	Runway Address [0:7]    must identically compare to 8'b11111111
189 **	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
190 **	Runway Address [12:23]  must be greater than or equal to
191 **	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
192 **	Runway Address [24:39]  is not used in the comparison.
193 **
194 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
195 ** as follows:
196 **	GSC+ Address[0:3]	4'b1111
197 **	GSC+ Address[4:29]	Runway Address[12:37]
198 **	GSC+ Address[30:31]	2'b00
199 **
200 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
201 ** is interrogated and address space is defined. The operating system will
202 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
203 ** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
204 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
205 **
206 ** Writes to both sets of registers will take effect immediately, bypassing
207 ** the queues, which ensures that subsequent Runway transactions are checked
208 ** against the updated bounds values. However reads are queued, introducing
209 ** the possibility of a read being bypassed by a subsequent write to the same
210 ** register. This sequence can be avoided by having software wait for read
211 ** returns before issuing subsequent writes.
212 */
213 
214 struct ioc {
215 	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
216 	u8  *res_map;	                /* resource map, bit == pdir entry */
217 	__le64 *pdir_base;		/* physical base address */
218 	u32 pdir_size;			/* bytes, function of IOV Space size */
219 	u32 res_hint;			/* next available IOVP -
220 					   circular search */
221 	u32 res_size;			/* size of resource map in bytes */
222 	spinlock_t res_lock;
223 
224 #ifdef CCIO_COLLECT_STATS
225 #define CCIO_SEARCH_SAMPLE 0x100
226 	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
227 	unsigned long avg_idx;		  /* current index into avg_search */
228 	unsigned long used_pages;
229 	unsigned long msingle_calls;
230 	unsigned long msingle_pages;
231 	unsigned long msg_calls;
232 	unsigned long msg_pages;
233 	unsigned long usingle_calls;
234 	unsigned long usingle_pages;
235 	unsigned long usg_calls;
236 	unsigned long usg_pages;
237 #endif
238 	unsigned short cujo20_bug;
239 
240 	/* STUFF We don't need in performance path */
241 	u32 chainid_shift;		/* specify bit location of chain_id */
242 	struct ioc *next;		/* Linked list of discovered iocs */
243 	const char *name;		/* device name from firmware */
244 	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
245 	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
246 	struct resource mmio_region[2]; /* The "routed" MMIO regions */
247 };
248 
249 static struct ioc *ioc_list;
250 static int ioc_count;
251 
252 /**************************************************************
253 *
254 *   I/O Pdir Resource Management
255 *
256 *   Bits set in the resource map are in use.
257 *   Each bit can represent a number of pages.
258 *   LSbs represent lower addresses (IOVA's).
259 *
260 *   This was copied from sba_iommu.c. Don't try to unify
261 *   the two resource managers unless a way to have different
262 *   allocation policies is also adjusted. We'd like to avoid
263 *   I/O TLB thrashing by having resource allocation policy
264 *   match the I/O TLB replacement policy.
265 *
266 ***************************************************************/
267 #define IOVP_SIZE PAGE_SIZE
268 #define IOVP_SHIFT PAGE_SHIFT
269 #define IOVP_MASK PAGE_MASK
270 
271 /* Convert from IOVP to IOVA and vice versa. */
272 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
273 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
274 
275 #define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
276 #define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
277 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
278 
279 /*
280 ** Don't worry about the 150% average search length on a miss.
281 ** If the search wraps around, and passes the res_hint, it will
282 ** cause the kernel to panic anyhow.
283 */
284 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
285 	for (; res_ptr < res_end; ++res_ptr) { \
286 		int ret;\
287 		unsigned int idx;\
288 		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
289 		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
290 		if ((0 == (*res_ptr & mask)) && !ret) { \
291 			*res_ptr |= mask; \
292 			res_idx = idx;\
293 			ioc->res_hint = res_idx + (size >> 3); \
294 			goto resource_found; \
295 		} \
296 	}
297 
298 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
299        u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
300        u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
301 	CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
302 	res_ptr = (u##size *)&(ioc)->res_map[0]; \
303 	CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
304 
305 /*
306 ** Find available bit in this ioa's resource map.
307 ** Use a "circular" search:
308 **   o Most IOVA's are "temporary" - avg search time should be small.
309 ** o keep a history of what happened for debugging
310 ** o KISS.
311 **
312 ** Perf optimizations:
313 ** o search for log2(size) bits at a time.
314 ** o search for available resource bits using byte/word/whatever.
315 ** o use different search for "large" (eg > 4 pages) or "very large"
316 **   (eg > 16 pages) mappings.
317 */
318 
319 /**
320  * ccio_alloc_range - Allocate pages in the ioc's resource map.
321  * @ioc: The I/O Controller.
322  * @dev: The PCI device.
323  * @size: The requested number of bytes to be mapped into the
324  * I/O Pdir...
325  *
326  * This function searches the resource map of the ioc to locate a range
327  * of available pages for the requested size.
328  */
329 static int
330 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
331 {
332 	unsigned int pages_needed = size >> IOVP_SHIFT;
333 	unsigned int res_idx;
334 	unsigned long boundary_size;
335 #ifdef CCIO_COLLECT_STATS
336 	unsigned long cr_start = mfctl(16);
337 #endif
338 
339 	BUG_ON(pages_needed == 0);
340 	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
341 
342 	DBG_RES("%s() size: %zu pages_needed %d\n",
343 			__func__, size, pages_needed);
344 
345 	/*
346 	** "seek and ye shall find"...praying never hurts either...
347 	** ggg sacrifices another 710 to the computer gods.
348 	*/
349 
350 	boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
351 
352 	if (pages_needed <= 8) {
353 		/*
354 		 * LAN traffic will not thrash the TLB IFF the same NIC
355 		 * uses 8 adjacent pages to map separate payload data.
356 		 * ie the same byte in the resource bit map.
357 		 */
358 #if 0
359 		/* FIXME: bit search should shift it's way through
360 		 * an unsigned long - not byte at a time. As it is now,
361 		 * we effectively allocate this byte to this mapping.
362 		 */
363 		unsigned long mask = ~(~0UL >> pages_needed);
364 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
365 #else
366 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
367 #endif
368 	} else if (pages_needed <= 16) {
369 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
370 	} else if (pages_needed <= 32) {
371 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
372 #ifdef __LP64__
373 	} else if (pages_needed <= 64) {
374 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
375 #endif
376 	} else {
377 		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
378 		       __FILE__,  __func__, pages_needed);
379 	}
380 
381 	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
382 	      __func__);
383 
384 resource_found:
385 
386 	DBG_RES("%s() res_idx %d res_hint: %d\n",
387 		__func__, res_idx, ioc->res_hint);
388 
389 #ifdef CCIO_COLLECT_STATS
390 	{
391 		unsigned long cr_end = mfctl(16);
392 		unsigned long tmp = cr_end - cr_start;
393 		/* check for roll over */
394 		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
395 	}
396 	ioc->avg_search[ioc->avg_idx++] = cr_start;
397 	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
398 	ioc->used_pages += pages_needed;
399 #endif
400 	/*
401 	** return the bit address.
402 	*/
403 	return res_idx << 3;
404 }
405 
406 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
407         u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
408         BUG_ON((*res_ptr & mask) != mask); \
409 	*res_ptr &= ~(mask);
410 
411 /**
412  * ccio_free_range - Free pages from the ioc's resource map.
413  * @ioc: The I/O Controller.
414  * @iova: The I/O Virtual Address.
415  * @pages_mapped: The requested number of pages to be freed from the
416  * I/O Pdir.
417  *
418  * This function frees the resouces allocated for the iova.
419  */
420 static void
421 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
422 {
423 	unsigned long iovp = CCIO_IOVP(iova);
424 	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
425 
426 	BUG_ON(pages_mapped == 0);
427 	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
428 	BUG_ON(pages_mapped > BITS_PER_LONG);
429 
430 	DBG_RES("%s():  res_idx: %d pages_mapped %lu\n",
431 		__func__, res_idx, pages_mapped);
432 
433 #ifdef CCIO_COLLECT_STATS
434 	ioc->used_pages -= pages_mapped;
435 #endif
436 
437 	if(pages_mapped <= 8) {
438 #if 0
439 		/* see matching comments in alloc_range */
440 		unsigned long mask = ~(~0UL >> pages_mapped);
441 		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
442 #else
443 		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
444 #endif
445 	} else if(pages_mapped <= 16) {
446 		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
447 	} else if(pages_mapped <= 32) {
448 		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
449 #ifdef __LP64__
450 	} else if(pages_mapped <= 64) {
451 		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
452 #endif
453 	} else {
454 		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
455 		      __func__);
456 	}
457 }
458 
459 /****************************************************************
460 **
461 **          CCIO dma_ops support routines
462 **
463 *****************************************************************/
464 
465 typedef unsigned long space_t;
466 #define KERNEL_SPACE 0
467 
468 /*
469 ** DMA "Page Type" and Hints
470 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
471 **   set for subcacheline DMA transfers since we don't want to damage the
472 **   other part of a cacheline.
473 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
474 **   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
475 **   data can avoid this if the mapping covers full cache lines.
476 ** o STOP_MOST is needed for atomicity across cachelines.
477 **   Apparently only "some EISA devices" need this.
478 **   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
479 **   to use this hint iff the EISA devices needs this feature.
480 **   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
481 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
482 **   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
483 **   device can be fetched and multiply DMA streams will thrash the
484 **   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
485 **   and Invalidation of Prefetch Entries".
486 **
487 ** FIXME: the default hints need to be per GSC device - not global.
488 **
489 ** HP-UX dorks: linux device driver programming model is totally different
490 **    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
491 **    do special things to work on non-coherent platforms...linux has to
492 **    be much more careful with this.
493 */
494 #define IOPDIR_VALID    0x01UL
495 #define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
496 #ifdef CONFIG_EISA
497 #define HINT_STOP_MOST  0x04UL	/* LSL support */
498 #else
499 #define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
500 #endif
501 #define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
502 #define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
503 
504 
505 /*
506 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
507 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
508 ** when it passes in BIDIRECTIONAL flag.
509 */
510 static u32 hint_lookup[] = {
511 	[DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
512 	[DMA_TO_DEVICE]		= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
513 	[DMA_FROM_DEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
514 };
515 
516 /**
517  * ccio_io_pdir_entry - Initialize an I/O Pdir.
518  * @pdir_ptr: A pointer into I/O Pdir.
519  * @sid: The Space Identifier.
520  * @vba: The virtual address.
521  * @hints: The DMA Hint.
522  *
523  * Given a virtual address (vba, arg2) and space id, (sid, arg1),
524  * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
525  * entry consists of 8 bytes as shown below (MSB == bit 0):
526  *
527  *
528  * WORD 0:
529  * +------+----------------+-----------------------------------------------+
530  * | Phys | Virtual Index  |               Phys                            |
531  * | 0:3  |     0:11       |               4:19                            |
532  * |4 bits|   12 bits      |              16 bits                          |
533  * +------+----------------+-----------------------------------------------+
534  * WORD 1:
535  * +-----------------------+-----------------------------------------------+
536  * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
537  * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
538  * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
539  * +-----------------------+-----------------------------------------------+
540  *
541  * The virtual index field is filled with the results of the LCI
542  * (Load Coherence Index) instruction.  The 8 bits used for the virtual
543  * index are bits 12:19 of the value returned by LCI.
544  */
545 static void
546 ccio_io_pdir_entry(__le64 *pdir_ptr, space_t sid, unsigned long vba,
547 		   unsigned long hints)
548 {
549 	register unsigned long pa;
550 	register unsigned long ci; /* coherent index */
551 
552 	/* We currently only support kernel addresses */
553 	BUG_ON(sid != KERNEL_SPACE);
554 
555 	/*
556 	** WORD 1 - low order word
557 	** "hints" parm includes the VALID bit!
558 	** "dep" clobbers the physical address offset bits as well.
559 	*/
560 	pa = lpa(vba);
561 	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
562 	((u32 *)pdir_ptr)[1] = (u32) pa;
563 
564 	/*
565 	** WORD 0 - high order word
566 	*/
567 
568 #ifdef __LP64__
569 	/*
570 	** get bits 12:15 of physical address
571 	** shift bits 16:31 of physical address
572 	** and deposit them
573 	*/
574 	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
575 	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
576 	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
577 #else
578 	pa = 0;
579 #endif
580 	/*
581 	** get CPU coherency index bits
582 	** Grab virtual index [0:11]
583 	** Deposit virt_idx bits into I/O PDIR word
584 	*/
585 	asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
586 	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
587 	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
588 
589 	((u32 *)pdir_ptr)[0] = (u32) pa;
590 
591 
592 	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
593 	**        PCX-U/U+ do. (eg C200/C240)
594 	**        PCX-T'? Don't know. (eg C110 or similar K-class)
595 	**
596 	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
597 	**
598 	** "Since PCX-U employs an offset hash that is incompatible with
599 	** the real mode coherence index generation of U2, the PDIR entry
600 	** must be flushed to memory to retain coherence."
601 	*/
602 	asm_io_fdc(pdir_ptr);
603 	asm_io_sync();
604 }
605 
606 /**
607  * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
608  * @ioc: The I/O Controller.
609  * @iovp: The I/O Virtual Page.
610  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
611  *
612  * Purge invalid I/O PDIR entries from the I/O TLB.
613  *
614  * FIXME: Can we change the byte_cnt to pages_mapped?
615  */
616 static void
617 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
618 {
619 	u32 chain_size = 1 << ioc->chainid_shift;
620 
621 	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
622 	byte_cnt += chain_size;
623 
624 	while(byte_cnt > chain_size) {
625 		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
626 		iovp += chain_size;
627 		byte_cnt -= chain_size;
628 	}
629 }
630 
631 /**
632  * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
633  * @ioc: The I/O Controller.
634  * @iova: The I/O Virtual Address.
635  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
636  *
637  * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
638  * TLB entries.
639  *
640  * FIXME: at some threshold it might be "cheaper" to just blow
641  *        away the entire I/O TLB instead of individual entries.
642  *
643  * FIXME: Uturn has 256 TLB entries. We don't need to purge every
644  *        PDIR entry - just once for each possible TLB entry.
645  *        (We do need to maker I/O PDIR entries invalid regardless).
646  *
647  * FIXME: Can we change byte_cnt to pages_mapped?
648  */
649 static void
650 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
651 {
652 	u32 iovp = (u32)CCIO_IOVP(iova);
653 	size_t saved_byte_cnt;
654 
655 	/* round up to nearest page size */
656 	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
657 
658 	while(byte_cnt > 0) {
659 		/* invalidate one page at a time */
660 		unsigned int idx = PDIR_INDEX(iovp);
661 		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
662 
663 		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
664 		pdir_ptr[7] = 0;	/* clear only VALID bit */
665 		/*
666 		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
667 		**   PCX-U/U+ do. (eg C200/C240)
668 		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
669 		*/
670 		asm_io_fdc(pdir_ptr);
671 
672 		iovp     += IOVP_SIZE;
673 		byte_cnt -= IOVP_SIZE;
674 	}
675 
676 	asm_io_sync();
677 	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
678 }
679 
680 /****************************************************************
681 **
682 **          CCIO dma_ops
683 **
684 *****************************************************************/
685 
686 /**
687  * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
688  * @dev: The PCI device.
689  * @mask: A bit mask describing the DMA address range of the device.
690  */
691 static int
692 ccio_dma_supported(struct device *dev, u64 mask)
693 {
694 	if(dev == NULL) {
695 		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
696 		BUG();
697 		return 0;
698 	}
699 
700 	/* only support 32-bit or better devices (ie PCI/GSC) */
701 	return (int)(mask >= 0xffffffffUL);
702 }
703 
704 /**
705  * ccio_map_single - Map an address range into the IOMMU.
706  * @dev: The PCI device.
707  * @addr: The start address of the DMA region.
708  * @size: The length of the DMA region.
709  * @direction: The direction of the DMA transaction (to/from device).
710  *
711  * This function implements the pci_map_single function.
712  */
713 static dma_addr_t
714 ccio_map_single(struct device *dev, void *addr, size_t size,
715 		enum dma_data_direction direction)
716 {
717 	int idx;
718 	struct ioc *ioc;
719 	unsigned long flags;
720 	dma_addr_t iovp;
721 	dma_addr_t offset;
722 	__le64 *pdir_start;
723 	unsigned long hint = hint_lookup[(int)direction];
724 
725 	BUG_ON(!dev);
726 	ioc = GET_IOC(dev);
727 	if (!ioc)
728 		return DMA_MAPPING_ERROR;
729 
730 	BUG_ON(size <= 0);
731 
732 	/* save offset bits */
733 	offset = ((unsigned long) addr) & ~IOVP_MASK;
734 
735 	/* round up to nearest IOVP_SIZE */
736 	size = ALIGN(size + offset, IOVP_SIZE);
737 	spin_lock_irqsave(&ioc->res_lock, flags);
738 
739 #ifdef CCIO_COLLECT_STATS
740 	ioc->msingle_calls++;
741 	ioc->msingle_pages += size >> IOVP_SHIFT;
742 #endif
743 
744 	idx = ccio_alloc_range(ioc, dev, size);
745 	iovp = (dma_addr_t)MKIOVP(idx);
746 
747 	pdir_start = &(ioc->pdir_base[idx]);
748 
749 	DBG_RUN("%s() %px -> %#lx size: %zu\n",
750 		__func__, addr, (long)(iovp | offset), size);
751 
752 	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
753 	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
754 		hint |= HINT_SAFE_DMA;
755 
756 	while(size > 0) {
757 		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
758 
759 		DBG_RUN(" pdir %p %08x%08x\n",
760 			pdir_start,
761 			(u32) (((u32 *) pdir_start)[0]),
762 			(u32) (((u32 *) pdir_start)[1]));
763 		++pdir_start;
764 		addr += IOVP_SIZE;
765 		size -= IOVP_SIZE;
766 	}
767 
768 	spin_unlock_irqrestore(&ioc->res_lock, flags);
769 
770 	/* form complete address */
771 	return CCIO_IOVA(iovp, offset);
772 }
773 
774 
775 static dma_addr_t
776 ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
777 		size_t size, enum dma_data_direction direction,
778 		unsigned long attrs)
779 {
780 	return ccio_map_single(dev, page_address(page) + offset, size,
781 			direction);
782 }
783 
784 
785 /**
786  * ccio_unmap_page - Unmap an address range from the IOMMU.
787  * @dev: The PCI device.
788  * @iova: The start address of the DMA region.
789  * @size: The length of the DMA region.
790  * @direction: The direction of the DMA transaction (to/from device).
791  * @attrs: attributes
792  */
793 static void
794 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
795 		enum dma_data_direction direction, unsigned long attrs)
796 {
797 	struct ioc *ioc;
798 	unsigned long flags;
799 	dma_addr_t offset = iova & ~IOVP_MASK;
800 
801 	BUG_ON(!dev);
802 	ioc = GET_IOC(dev);
803 	if (!ioc) {
804 		WARN_ON(!ioc);
805 		return;
806 	}
807 
808 	DBG_RUN("%s() iovp %#lx/%zx\n",
809 		__func__, (long)iova, size);
810 
811 	iova ^= offset;        /* clear offset bits */
812 	size += offset;
813 	size = ALIGN(size, IOVP_SIZE);
814 
815 	spin_lock_irqsave(&ioc->res_lock, flags);
816 
817 #ifdef CCIO_COLLECT_STATS
818 	ioc->usingle_calls++;
819 	ioc->usingle_pages += size >> IOVP_SHIFT;
820 #endif
821 
822 	ccio_mark_invalid(ioc, iova, size);
823 	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
824 	spin_unlock_irqrestore(&ioc->res_lock, flags);
825 }
826 
827 /**
828  * ccio_alloc - Allocate a consistent DMA mapping.
829  * @dev: The PCI device.
830  * @size: The length of the DMA region.
831  * @dma_handle: The DMA address handed back to the device (not the cpu).
832  * @flag: allocation flags
833  * @attrs: attributes
834  *
835  * This function implements the pci_alloc_consistent function.
836  */
837 static void *
838 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
839 		unsigned long attrs)
840 {
841 	void *ret;
842 #if 0
843 /* GRANT Need to establish hierarchy for non-PCI devs as well
844 ** and then provide matching gsc_map_xxx() functions for them as well.
845 */
846 	if(!hwdev) {
847 		/* only support PCI */
848 		*dma_handle = 0;
849 		return 0;
850 	}
851 #endif
852 	ret = (void *) __get_free_pages(flag, get_order(size));
853 
854 	if (ret) {
855 		memset(ret, 0, size);
856 		*dma_handle = ccio_map_single(dev, ret, size, DMA_BIDIRECTIONAL);
857 	}
858 
859 	return ret;
860 }
861 
862 /**
863  * ccio_free - Free a consistent DMA mapping.
864  * @dev: The PCI device.
865  * @size: The length of the DMA region.
866  * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
867  * @dma_handle: The device address returned from the ccio_alloc_consistent.
868  * @attrs: attributes
869  *
870  * This function implements the pci_free_consistent function.
871  */
872 static void
873 ccio_free(struct device *dev, size_t size, void *cpu_addr,
874 		dma_addr_t dma_handle, unsigned long attrs)
875 {
876 	ccio_unmap_page(dev, dma_handle, size, 0, 0);
877 	free_pages((unsigned long)cpu_addr, get_order(size));
878 }
879 
880 /*
881 ** Since 0 is a valid pdir_base index value, can't use that
882 ** to determine if a value is valid or not. Use a flag to indicate
883 ** the SG list entry contains a valid pdir index.
884 */
885 #define PIDE_FLAG 0x80000000UL
886 
887 #ifdef CCIO_COLLECT_STATS
888 #define IOMMU_MAP_STATS
889 #endif
890 #include "iommu-helpers.h"
891 
892 /**
893  * ccio_map_sg - Map the scatter/gather list into the IOMMU.
894  * @dev: The PCI device.
895  * @sglist: The scatter/gather list to be mapped in the IOMMU.
896  * @nents: The number of entries in the scatter/gather list.
897  * @direction: The direction of the DMA transaction (to/from device).
898  * @attrs: attributes
899  *
900  * This function implements the pci_map_sg function.
901  */
902 static int
903 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
904 	    enum dma_data_direction direction, unsigned long attrs)
905 {
906 	struct ioc *ioc;
907 	int coalesced, filled = 0;
908 	unsigned long flags;
909 	unsigned long hint = hint_lookup[(int)direction];
910 	unsigned long prev_len = 0, current_len = 0;
911 	int i;
912 
913 	BUG_ON(!dev);
914 	ioc = GET_IOC(dev);
915 	if (!ioc)
916 		return -EINVAL;
917 
918 	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
919 
920 	/* Fast path single entry scatterlists. */
921 	if (nents == 1) {
922 		sg_dma_address(sglist) = ccio_map_single(dev,
923 				sg_virt(sglist), sglist->length,
924 				direction);
925 		sg_dma_len(sglist) = sglist->length;
926 		return 1;
927 	}
928 
929 	for(i = 0; i < nents; i++)
930 		prev_len += sglist[i].length;
931 
932 	spin_lock_irqsave(&ioc->res_lock, flags);
933 
934 #ifdef CCIO_COLLECT_STATS
935 	ioc->msg_calls++;
936 #endif
937 
938 	/*
939 	** First coalesce the chunks and allocate I/O pdir space
940 	**
941 	** If this is one DMA stream, we can properly map using the
942 	** correct virtual address associated with each DMA page.
943 	** w/o this association, we wouldn't have coherent DMA!
944 	** Access to the virtual address is what forces a two pass algorithm.
945 	*/
946 	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
947 
948 	/*
949 	** Program the I/O Pdir
950 	**
951 	** map the virtual addresses to the I/O Pdir
952 	** o dma_address will contain the pdir index
953 	** o dma_len will contain the number of bytes to map
954 	** o page/offset contain the virtual address.
955 	*/
956 	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
957 
958 	spin_unlock_irqrestore(&ioc->res_lock, flags);
959 
960 	BUG_ON(coalesced != filled);
961 
962 	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
963 
964 	for (i = 0; i < filled; i++)
965 		current_len += sg_dma_len(sglist + i);
966 
967 	BUG_ON(current_len != prev_len);
968 
969 	return filled;
970 }
971 
972 /**
973  * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
974  * @dev: The PCI device.
975  * @sglist: The scatter/gather list to be unmapped from the IOMMU.
976  * @nents: The number of entries in the scatter/gather list.
977  * @direction: The direction of the DMA transaction (to/from device).
978  * @attrs: attributes
979  *
980  * This function implements the pci_unmap_sg function.
981  */
982 static void
983 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
984 	      enum dma_data_direction direction, unsigned long attrs)
985 {
986 	struct ioc *ioc;
987 
988 	BUG_ON(!dev);
989 	ioc = GET_IOC(dev);
990 	if (!ioc) {
991 		WARN_ON(!ioc);
992 		return;
993 	}
994 
995 	DBG_RUN_SG("%s() START %d entries, %p,%x\n",
996 		__func__, nents, sg_virt(sglist), sglist->length);
997 
998 #ifdef CCIO_COLLECT_STATS
999 	ioc->usg_calls++;
1000 #endif
1001 
1002 	while (nents && sg_dma_len(sglist)) {
1003 
1004 #ifdef CCIO_COLLECT_STATS
1005 		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1006 #endif
1007 		ccio_unmap_page(dev, sg_dma_address(sglist),
1008 				  sg_dma_len(sglist), direction, 0);
1009 		++sglist;
1010 		nents--;
1011 	}
1012 
1013 	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1014 }
1015 
1016 static const struct dma_map_ops ccio_ops = {
1017 	.dma_supported =	ccio_dma_supported,
1018 	.alloc =		ccio_alloc,
1019 	.free =			ccio_free,
1020 	.map_page =		ccio_map_page,
1021 	.unmap_page =		ccio_unmap_page,
1022 	.map_sg =		ccio_map_sg,
1023 	.unmap_sg =		ccio_unmap_sg,
1024 	.get_sgtable =		dma_common_get_sgtable,
1025 	.alloc_pages =		dma_common_alloc_pages,
1026 	.free_pages =		dma_common_free_pages,
1027 };
1028 
1029 #ifdef CONFIG_PROC_FS
1030 static int ccio_proc_info(struct seq_file *m, void *p)
1031 {
1032 	struct ioc *ioc = ioc_list;
1033 
1034 	while (ioc != NULL) {
1035 		unsigned int total_pages = ioc->res_size << 3;
1036 #ifdef CCIO_COLLECT_STATS
1037 		unsigned long avg = 0, min, max;
1038 		int j;
1039 #endif
1040 
1041 		seq_printf(m, "%s\n", ioc->name);
1042 
1043 		seq_printf(m, "Cujo 2.0 bug    : %s\n",
1044 			   (ioc->cujo20_bug ? "yes" : "no"));
1045 
1046 		seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1047 			   total_pages * 8, total_pages);
1048 
1049 #ifdef CCIO_COLLECT_STATS
1050 		seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1051 			   total_pages - ioc->used_pages, ioc->used_pages,
1052 			   (int)(ioc->used_pages * 100 / total_pages));
1053 #endif
1054 
1055 		seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1056 			   ioc->res_size, total_pages);
1057 
1058 #ifdef CCIO_COLLECT_STATS
1059 		min = max = ioc->avg_search[0];
1060 		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1061 			avg += ioc->avg_search[j];
1062 			if(ioc->avg_search[j] > max)
1063 				max = ioc->avg_search[j];
1064 			if(ioc->avg_search[j] < min)
1065 				min = ioc->avg_search[j];
1066 		}
1067 		avg /= CCIO_SEARCH_SAMPLE;
1068 		seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1069 			   min, avg, max);
1070 
1071 		seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1072 			   ioc->msingle_calls, ioc->msingle_pages,
1073 			   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1074 
1075 		/* KLUGE - unmap_sg calls unmap_page for each mapped page */
1076 		min = ioc->usingle_calls - ioc->usg_calls;
1077 		max = ioc->usingle_pages - ioc->usg_pages;
1078 		seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1079 			   min, max, (int)((max * 1000)/min));
1080 
1081 		seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1082 			   ioc->msg_calls, ioc->msg_pages,
1083 			   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1084 
1085 		seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1086 			   ioc->usg_calls, ioc->usg_pages,
1087 			   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1088 #endif	/* CCIO_COLLECT_STATS */
1089 
1090 		ioc = ioc->next;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1097 {
1098 	struct ioc *ioc = ioc_list;
1099 
1100 	while (ioc != NULL) {
1101 		seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1102 			     ioc->res_size, false);
1103 		seq_putc(m, '\n');
1104 		ioc = ioc->next;
1105 		break; /* XXX - remove me */
1106 	}
1107 
1108 	return 0;
1109 }
1110 #endif /* CONFIG_PROC_FS */
1111 
1112 /**
1113  * ccio_find_ioc - Find the ioc in the ioc_list
1114  * @hw_path: The hardware path of the ioc.
1115  *
1116  * This function searches the ioc_list for an ioc that matches
1117  * the provide hardware path.
1118  */
1119 static struct ioc * ccio_find_ioc(int hw_path)
1120 {
1121 	int i;
1122 	struct ioc *ioc;
1123 
1124 	ioc = ioc_list;
1125 	for (i = 0; i < ioc_count; i++) {
1126 		if (ioc->hw_path == hw_path)
1127 			return ioc;
1128 
1129 		ioc = ioc->next;
1130 	}
1131 
1132 	return NULL;
1133 }
1134 
1135 /**
1136  * ccio_get_iommu - Find the iommu which controls this device
1137  * @dev: The parisc device.
1138  *
1139  * This function searches through the registered IOMMU's and returns
1140  * the appropriate IOMMU for the device based on its hardware path.
1141  */
1142 void * ccio_get_iommu(const struct parisc_device *dev)
1143 {
1144 	dev = find_pa_parent_type(dev, HPHW_IOA);
1145 	if (!dev)
1146 		return NULL;
1147 
1148 	return ccio_find_ioc(dev->hw_path);
1149 }
1150 
1151 #define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1152 
1153 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1154  * to/from certain pages.  To avoid this happening, we mark these pages
1155  * as `used', and ensure that nothing will try to allocate from them.
1156  */
1157 void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1158 {
1159 	unsigned int idx;
1160 	struct parisc_device *dev = parisc_parent(cujo);
1161 	struct ioc *ioc = ccio_get_iommu(dev);
1162 	u8 *res_ptr;
1163 
1164 	ioc->cujo20_bug = 1;
1165 	res_ptr = ioc->res_map;
1166 	idx = PDIR_INDEX(iovp) >> 3;
1167 
1168 	while (idx < ioc->res_size) {
1169 		res_ptr[idx] |= 0xff;
1170 		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1171 	}
1172 }
1173 
1174 #if 0
1175 /* GRANT -  is this needed for U2 or not? */
1176 
1177 /*
1178 ** Get the size of the I/O TLB for this I/O MMU.
1179 **
1180 ** If spa_shift is non-zero (ie probably U2),
1181 ** then calculate the I/O TLB size using spa_shift.
1182 **
1183 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1184 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1185 ** I think only Java (K/D/R-class too?) systems don't do this.
1186 */
1187 static int
1188 ccio_get_iotlb_size(struct parisc_device *dev)
1189 {
1190 	if (dev->spa_shift == 0) {
1191 		panic("%s() : Can't determine I/O TLB size.\n", __func__);
1192 	}
1193 	return (1 << dev->spa_shift);
1194 }
1195 #else
1196 
1197 /* Uturn supports 256 TLB entries */
1198 #define CCIO_CHAINID_SHIFT	8
1199 #define CCIO_CHAINID_MASK	0xff
1200 #endif /* 0 */
1201 
1202 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1203 static const struct parisc_device_id ccio_tbl[] __initconst = {
1204 	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1205 	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1206 	{ 0, }
1207 };
1208 
1209 static int ccio_probe(struct parisc_device *dev);
1210 
1211 static struct parisc_driver ccio_driver __refdata = {
1212 	.name =		"ccio",
1213 	.id_table =	ccio_tbl,
1214 	.probe =	ccio_probe,
1215 };
1216 
1217 /**
1218  * ccio_ioc_init - Initialize the I/O Controller
1219  * @ioc: The I/O Controller.
1220  *
1221  * Initialize the I/O Controller which includes setting up the
1222  * I/O Page Directory, the resource map, and initalizing the
1223  * U2/Uturn chip into virtual mode.
1224  */
1225 static void __init
1226 ccio_ioc_init(struct ioc *ioc)
1227 {
1228 	int i;
1229 	unsigned int iov_order;
1230 	u32 iova_space_size;
1231 
1232 	/*
1233 	** Determine IOVA Space size from memory size.
1234 	**
1235 	** Ideally, PCI drivers would register the maximum number
1236 	** of DMA they can have outstanding for each device they
1237 	** own.  Next best thing would be to guess how much DMA
1238 	** can be outstanding based on PCI Class/sub-class. Both
1239 	** methods still require some "extra" to support PCI
1240 	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1241 	*/
1242 
1243 	iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1244 
1245 	/* limit IOVA space size to 1MB-1GB */
1246 
1247 	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1248 		iova_space_size =  1 << (20 - PAGE_SHIFT);
1249 #ifdef __LP64__
1250 	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1251 		iova_space_size =  1 << (30 - PAGE_SHIFT);
1252 #endif
1253 	}
1254 
1255 	/*
1256 	** iova space must be log2() in size.
1257 	** thus, pdir/res_map will also be log2().
1258 	*/
1259 
1260 	/* We could use larger page sizes in order to *decrease* the number
1261 	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1262 	**
1263 	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1264 	**   since the pages must also be physically contiguous - typically
1265 	**   this is the case under linux."
1266 	*/
1267 
1268 	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1269 
1270 	/* iova_space_size is now bytes, not pages */
1271 	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1272 
1273 	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1274 
1275 	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1276 
1277 	/* Verify it's a power of two */
1278 	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1279 
1280 	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1281 			__func__, ioc->ioc_regs,
1282 			(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1283 			iova_space_size>>20,
1284 			iov_order + PAGE_SHIFT);
1285 
1286 	ioc->pdir_base = (__le64 *)__get_free_pages(GFP_KERNEL,
1287 						 get_order(ioc->pdir_size));
1288 	if(NULL == ioc->pdir_base) {
1289 		panic("%s() could not allocate I/O Page Table\n", __func__);
1290 	}
1291 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1292 
1293 	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1294 	DBG_INIT(" base %p\n", ioc->pdir_base);
1295 
1296 	/* resource map size dictated by pdir_size */
1297 	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1298 	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1299 
1300 	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1301 					      get_order(ioc->res_size));
1302 	if(NULL == ioc->res_map) {
1303 		panic("%s() could not allocate resource map\n", __func__);
1304 	}
1305 	memset(ioc->res_map, 0, ioc->res_size);
1306 
1307 	/* Initialize the res_hint to 16 */
1308 	ioc->res_hint = 16;
1309 
1310 	/* Initialize the spinlock */
1311 	spin_lock_init(&ioc->res_lock);
1312 
1313 	/*
1314 	** Chainid is the upper most bits of an IOVP used to determine
1315 	** which TLB entry an IOVP will use.
1316 	*/
1317 	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1318 	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1319 
1320 	/*
1321 	** Initialize IOA hardware
1322 	*/
1323 	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1324 		  &ioc->ioc_regs->io_chain_id_mask);
1325 
1326 	WRITE_U32(virt_to_phys(ioc->pdir_base),
1327 		  &ioc->ioc_regs->io_pdir_base);
1328 
1329 	/*
1330 	** Go to "Virtual Mode"
1331 	*/
1332 	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1333 
1334 	/*
1335 	** Initialize all I/O TLB entries to 0 (Valid bit off).
1336 	*/
1337 	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1338 	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1339 
1340 	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1341 		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1342 			  &ioc->ioc_regs->io_command);
1343 	}
1344 }
1345 
1346 static void __init
1347 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1348 {
1349 	int result;
1350 
1351 	res->parent = NULL;
1352 	res->flags = IORESOURCE_MEM;
1353 	/*
1354 	 * bracing ((signed) ...) are required for 64bit kernel because
1355 	 * we only want to sign extend the lower 16 bits of the register.
1356 	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1357 	 */
1358 	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1359 	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1360 	res->name = name;
1361 	/*
1362 	 * Check if this MMIO range is disable
1363 	 */
1364 	if (res->end + 1 == res->start)
1365 		return;
1366 
1367 	/* On some platforms (e.g. K-Class), we have already registered
1368 	 * resources for devices reported by firmware. Some are children
1369 	 * of ccio.
1370 	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1371 	 */
1372 	result = insert_resource(&iomem_resource, res);
1373 	if (result < 0) {
1374 		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1375 			__func__, (unsigned long)res->start, (unsigned long)res->end);
1376 	}
1377 }
1378 
1379 static int __init ccio_init_resources(struct ioc *ioc)
1380 {
1381 	struct resource *res = ioc->mmio_region;
1382 	char *name = kmalloc(14, GFP_KERNEL);
1383 	if (unlikely(!name))
1384 		return -ENOMEM;
1385 	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1386 
1387 	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1388 	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1389 	return 0;
1390 }
1391 
1392 static int new_ioc_area(struct resource *res, unsigned long size,
1393 		unsigned long min, unsigned long max, unsigned long align)
1394 {
1395 	if (max <= min)
1396 		return -EBUSY;
1397 
1398 	res->start = (max - size + 1) &~ (align - 1);
1399 	res->end = res->start + size;
1400 
1401 	/* We might be trying to expand the MMIO range to include
1402 	 * a child device that has already registered it's MMIO space.
1403 	 * Use "insert" instead of request_resource().
1404 	 */
1405 	if (!insert_resource(&iomem_resource, res))
1406 		return 0;
1407 
1408 	return new_ioc_area(res, size, min, max - size, align);
1409 }
1410 
1411 static int expand_ioc_area(struct resource *res, unsigned long size,
1412 		unsigned long min, unsigned long max, unsigned long align)
1413 {
1414 	unsigned long start, len;
1415 
1416 	if (!res->parent)
1417 		return new_ioc_area(res, size, min, max, align);
1418 
1419 	start = (res->start - size) &~ (align - 1);
1420 	len = res->end - start + 1;
1421 	if (start >= min) {
1422 		if (!adjust_resource(res, start, len))
1423 			return 0;
1424 	}
1425 
1426 	start = res->start;
1427 	len = ((size + res->end + align) &~ (align - 1)) - start;
1428 	if (start + len <= max) {
1429 		if (!adjust_resource(res, start, len))
1430 			return 0;
1431 	}
1432 
1433 	return -EBUSY;
1434 }
1435 
1436 /*
1437  * Dino calls this function.  Beware that we may get called on systems
1438  * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1439  * So it's legal to find no parent IOC.
1440  *
1441  * Some other issues: one of the resources in the ioc may be unassigned.
1442  */
1443 int ccio_allocate_resource(const struct parisc_device *dev,
1444 		struct resource *res, unsigned long size,
1445 		unsigned long min, unsigned long max, unsigned long align)
1446 {
1447 	struct resource *parent = &iomem_resource;
1448 	struct ioc *ioc = ccio_get_iommu(dev);
1449 	if (!ioc)
1450 		goto out;
1451 
1452 	parent = ioc->mmio_region;
1453 	if (parent->parent &&
1454 	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1455 		return 0;
1456 
1457 	if ((parent + 1)->parent &&
1458 	    !allocate_resource(parent + 1, res, size, min, max, align,
1459 				NULL, NULL))
1460 		return 0;
1461 
1462 	if (!expand_ioc_area(parent, size, min, max, align)) {
1463 		__raw_writel(((parent->start)>>16) | 0xffff0000,
1464 			     &ioc->ioc_regs->io_io_low);
1465 		__raw_writel(((parent->end)>>16) | 0xffff0000,
1466 			     &ioc->ioc_regs->io_io_high);
1467 	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1468 		parent++;
1469 		__raw_writel(((parent->start)>>16) | 0xffff0000,
1470 			     &ioc->ioc_regs->io_io_low_hv);
1471 		__raw_writel(((parent->end)>>16) | 0xffff0000,
1472 			     &ioc->ioc_regs->io_io_high_hv);
1473 	} else {
1474 		return -EBUSY;
1475 	}
1476 
1477  out:
1478 	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1479 }
1480 
1481 int ccio_request_resource(const struct parisc_device *dev,
1482 		struct resource *res)
1483 {
1484 	struct resource *parent;
1485 	struct ioc *ioc = ccio_get_iommu(dev);
1486 
1487 	if (!ioc) {
1488 		parent = &iomem_resource;
1489 	} else if ((ioc->mmio_region->start <= res->start) &&
1490 			(res->end <= ioc->mmio_region->end)) {
1491 		parent = ioc->mmio_region;
1492 	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1493 			(res->end <= (ioc->mmio_region + 1)->end)) {
1494 		parent = ioc->mmio_region + 1;
1495 	} else {
1496 		return -EBUSY;
1497 	}
1498 
1499 	/* "transparent" bus bridges need to register MMIO resources
1500 	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1501 	 * registered their resources in the PDC "bus walk" (See
1502 	 * arch/parisc/kernel/inventory.c).
1503 	 */
1504 	return insert_resource(parent, res);
1505 }
1506 
1507 /**
1508  * ccio_probe - Determine if ccio should claim this device.
1509  * @dev: The device which has been found
1510  *
1511  * Determine if ccio should claim this chip (return 0) or not (return 1).
1512  * If so, initialize the chip and tell other partners in crime they
1513  * have work to do.
1514  */
1515 static int __init ccio_probe(struct parisc_device *dev)
1516 {
1517 	int i;
1518 	struct ioc *ioc, **ioc_p = &ioc_list;
1519 	struct pci_hba_data *hba;
1520 
1521 	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1522 	if (ioc == NULL) {
1523 		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1524 		return -ENOMEM;
1525 	}
1526 
1527 	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1528 
1529 	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1530 		(unsigned long)dev->hpa.start);
1531 
1532 	for (i = 0; i < ioc_count; i++) {
1533 		ioc_p = &(*ioc_p)->next;
1534 	}
1535 	*ioc_p = ioc;
1536 
1537 	ioc->hw_path = dev->hw_path;
1538 	ioc->ioc_regs = ioremap(dev->hpa.start, 4096);
1539 	if (!ioc->ioc_regs) {
1540 		kfree(ioc);
1541 		return -ENOMEM;
1542 	}
1543 	ccio_ioc_init(ioc);
1544 	if (ccio_init_resources(ioc)) {
1545 		iounmap(ioc->ioc_regs);
1546 		kfree(ioc);
1547 		return -ENOMEM;
1548 	}
1549 	hppa_dma_ops = &ccio_ops;
1550 
1551 	hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1552 	/* if this fails, no I/O cards will work, so may as well bug */
1553 	BUG_ON(hba == NULL);
1554 
1555 	hba->iommu = ioc;
1556 	dev->dev.platform_data = hba;
1557 
1558 #ifdef CONFIG_PROC_FS
1559 	if (ioc_count == 0) {
1560 		struct proc_dir_entry *runway;
1561 
1562 		runway = proc_mkdir("bus/runway", NULL);
1563 		if (runway) {
1564 			proc_create_single(MODULE_NAME, 0, runway,
1565 				ccio_proc_info);
1566 			proc_create_single(MODULE_NAME"-bitmap", 0, runway,
1567 				ccio_proc_bitmap_info);
1568 		}
1569 	}
1570 #endif
1571 	ioc_count++;
1572 	return 0;
1573 }
1574 
1575 /**
1576  * ccio_init - ccio initialization procedure.
1577  *
1578  * Register this driver.
1579  */
1580 static int __init ccio_init(void)
1581 {
1582 	return register_parisc_driver(&ccio_driver);
1583 }
1584 arch_initcall(ccio_init);
1585