1 /* 2 ** ccio-dma.c: 3 ** DMA management routines for first generation cache-coherent machines. 4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU. 5 ** 6 ** (c) Copyright 2000 Grant Grundler 7 ** (c) Copyright 2000 Ryan Bradetich 8 ** (c) Copyright 2000 Hewlett-Packard Company 9 ** 10 ** This program is free software; you can redistribute it and/or modify 11 ** it under the terms of the GNU General Public License as published by 12 ** the Free Software Foundation; either version 2 of the License, or 13 ** (at your option) any later version. 14 ** 15 ** 16 ** "Real Mode" operation refers to U2/Uturn chip operation. 17 ** U2/Uturn were designed to perform coherency checks w/o using 18 ** the I/O MMU - basically what x86 does. 19 ** 20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at: 21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc 22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c 23 ** 24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c. 25 ** 26 ** Drawbacks of using Real Mode are: 27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal). 28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute. 29 ** o Ability to do scatter/gather in HW is lost. 30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow 31 ** the coherency design originally worked out. Only PCX-W does. 32 */ 33 34 #include <linux/types.h> 35 #include <linux/kernel.h> 36 #include <linux/init.h> 37 #include <linux/mm.h> 38 #include <linux/spinlock.h> 39 #include <linux/slab.h> 40 #include <linux/string.h> 41 #include <linux/pci.h> 42 #include <linux/reboot.h> 43 #include <linux/proc_fs.h> 44 #include <linux/seq_file.h> 45 #include <linux/scatterlist.h> 46 #include <linux/iommu-helper.h> 47 48 #include <asm/byteorder.h> 49 #include <asm/cache.h> /* for L1_CACHE_BYTES */ 50 #include <asm/uaccess.h> 51 #include <asm/page.h> 52 #include <asm/dma.h> 53 #include <asm/io.h> 54 #include <asm/hardware.h> /* for register_module() */ 55 #include <asm/parisc-device.h> 56 57 /* 58 ** Choose "ccio" since that's what HP-UX calls it. 59 ** Make it easier for folks to migrate from one to the other :^) 60 */ 61 #define MODULE_NAME "ccio" 62 63 #undef DEBUG_CCIO_RES 64 #undef DEBUG_CCIO_RUN 65 #undef DEBUG_CCIO_INIT 66 #undef DEBUG_CCIO_RUN_SG 67 68 #ifdef CONFIG_PROC_FS 69 /* depends on proc fs support. But costs CPU performance. */ 70 #undef CCIO_COLLECT_STATS 71 #endif 72 73 #include <linux/proc_fs.h> 74 #include <asm/runway.h> /* for proc_runway_root */ 75 76 #ifdef DEBUG_CCIO_INIT 77 #define DBG_INIT(x...) printk(x) 78 #else 79 #define DBG_INIT(x...) 80 #endif 81 82 #ifdef DEBUG_CCIO_RUN 83 #define DBG_RUN(x...) printk(x) 84 #else 85 #define DBG_RUN(x...) 86 #endif 87 88 #ifdef DEBUG_CCIO_RES 89 #define DBG_RES(x...) printk(x) 90 #else 91 #define DBG_RES(x...) 92 #endif 93 94 #ifdef DEBUG_CCIO_RUN_SG 95 #define DBG_RUN_SG(x...) printk(x) 96 #else 97 #define DBG_RUN_SG(x...) 98 #endif 99 100 #define CCIO_INLINE inline 101 #define WRITE_U32(value, addr) __raw_writel(value, addr) 102 #define READ_U32(addr) __raw_readl(addr) 103 104 #define U2_IOA_RUNWAY 0x580 105 #define U2_BC_GSC 0x501 106 #define UTURN_IOA_RUNWAY 0x581 107 #define UTURN_BC_GSC 0x502 108 109 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */ 110 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */ 111 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */ 112 113 struct ioa_registers { 114 /* Runway Supervisory Set */ 115 int32_t unused1[12]; 116 uint32_t io_command; /* Offset 12 */ 117 uint32_t io_status; /* Offset 13 */ 118 uint32_t io_control; /* Offset 14 */ 119 int32_t unused2[1]; 120 121 /* Runway Auxiliary Register Set */ 122 uint32_t io_err_resp; /* Offset 0 */ 123 uint32_t io_err_info; /* Offset 1 */ 124 uint32_t io_err_req; /* Offset 2 */ 125 uint32_t io_err_resp_hi; /* Offset 3 */ 126 uint32_t io_tlb_entry_m; /* Offset 4 */ 127 uint32_t io_tlb_entry_l; /* Offset 5 */ 128 uint32_t unused3[1]; 129 uint32_t io_pdir_base; /* Offset 7 */ 130 uint32_t io_io_low_hv; /* Offset 8 */ 131 uint32_t io_io_high_hv; /* Offset 9 */ 132 uint32_t unused4[1]; 133 uint32_t io_chain_id_mask; /* Offset 11 */ 134 uint32_t unused5[2]; 135 uint32_t io_io_low; /* Offset 14 */ 136 uint32_t io_io_high; /* Offset 15 */ 137 }; 138 139 /* 140 ** IOA Registers 141 ** ------------- 142 ** 143 ** Runway IO_CONTROL Register (+0x38) 144 ** 145 ** The Runway IO_CONTROL register controls the forwarding of transactions. 146 ** 147 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 | 148 ** | HV | TLB | reserved | HV | mode | reserved | 149 ** 150 ** o mode field indicates the address translation of transactions 151 ** forwarded from Runway to GSC+: 152 ** Mode Name Value Definition 153 ** Off (default) 0 Opaque to matching addresses. 154 ** Include 1 Transparent for matching addresses. 155 ** Peek 3 Map matching addresses. 156 ** 157 ** + "Off" mode: Runway transactions which match the I/O range 158 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored. 159 ** + "Include" mode: all addresses within the I/O range specified 160 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently 161 ** forwarded. This is the I/O Adapter's normal operating mode. 162 ** + "Peek" mode: used during system configuration to initialize the 163 ** GSC+ bus. Runway Write_Shorts in the address range specified by 164 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter 165 ** *AND* the GSC+ address is remapped to the Broadcast Physical 166 ** Address space by setting the 14 high order address bits of the 167 ** 32 bit GSC+ address to ones. 168 ** 169 ** o TLB field affects transactions which are forwarded from GSC+ to Runway. 170 ** "Real" mode is the poweron default. 171 ** 172 ** TLB Mode Value Description 173 ** Real 0 No TLB translation. Address is directly mapped and the 174 ** virtual address is composed of selected physical bits. 175 ** Error 1 Software fills the TLB manually. 176 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory). 177 ** 178 ** 179 ** IO_IO_LOW_HV +0x60 (HV dependent) 180 ** IO_IO_HIGH_HV +0x64 (HV dependent) 181 ** IO_IO_LOW +0x78 (Architected register) 182 ** IO_IO_HIGH +0x7c (Architected register) 183 ** 184 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the 185 ** I/O Adapter address space, respectively. 186 ** 187 ** 0 ... 7 | 8 ... 15 | 16 ... 31 | 188 ** 11111111 | 11111111 | address | 189 ** 190 ** Each LOW/HIGH pair describes a disjoint address space region. 191 ** (2 per GSC+ port). Each incoming Runway transaction address is compared 192 ** with both sets of LOW/HIGH registers. If the address is in the range 193 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction 194 ** for forwarded to the respective GSC+ bus. 195 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying 196 ** an address space region. 197 ** 198 ** In order for a Runway address to reside within GSC+ extended address space: 199 ** Runway Address [0:7] must identically compare to 8'b11111111 200 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19] 201 ** Runway Address [12:23] must be greater than or equal to 202 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31]. 203 ** Runway Address [24:39] is not used in the comparison. 204 ** 205 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is 206 ** as follows: 207 ** GSC+ Address[0:3] 4'b1111 208 ** GSC+ Address[4:29] Runway Address[12:37] 209 ** GSC+ Address[30:31] 2'b00 210 ** 211 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus 212 ** is interrogated and address space is defined. The operating system will 213 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following 214 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW 215 ** and IO_IO_HIGH registers should not be subsequently altered by the OS. 216 ** 217 ** Writes to both sets of registers will take effect immediately, bypassing 218 ** the queues, which ensures that subsequent Runway transactions are checked 219 ** against the updated bounds values. However reads are queued, introducing 220 ** the possibility of a read being bypassed by a subsequent write to the same 221 ** register. This sequence can be avoided by having software wait for read 222 ** returns before issuing subsequent writes. 223 */ 224 225 struct ioc { 226 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */ 227 u8 *res_map; /* resource map, bit == pdir entry */ 228 u64 *pdir_base; /* physical base address */ 229 u32 pdir_size; /* bytes, function of IOV Space size */ 230 u32 res_hint; /* next available IOVP - 231 circular search */ 232 u32 res_size; /* size of resource map in bytes */ 233 spinlock_t res_lock; 234 235 #ifdef CCIO_COLLECT_STATS 236 #define CCIO_SEARCH_SAMPLE 0x100 237 unsigned long avg_search[CCIO_SEARCH_SAMPLE]; 238 unsigned long avg_idx; /* current index into avg_search */ 239 unsigned long used_pages; 240 unsigned long msingle_calls; 241 unsigned long msingle_pages; 242 unsigned long msg_calls; 243 unsigned long msg_pages; 244 unsigned long usingle_calls; 245 unsigned long usingle_pages; 246 unsigned long usg_calls; 247 unsigned long usg_pages; 248 #endif 249 unsigned short cujo20_bug; 250 251 /* STUFF We don't need in performance path */ 252 u32 chainid_shift; /* specify bit location of chain_id */ 253 struct ioc *next; /* Linked list of discovered iocs */ 254 const char *name; /* device name from firmware */ 255 unsigned int hw_path; /* the hardware path this ioc is associatd with */ 256 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */ 257 struct resource mmio_region[2]; /* The "routed" MMIO regions */ 258 }; 259 260 static struct ioc *ioc_list; 261 static int ioc_count; 262 263 /************************************************************** 264 * 265 * I/O Pdir Resource Management 266 * 267 * Bits set in the resource map are in use. 268 * Each bit can represent a number of pages. 269 * LSbs represent lower addresses (IOVA's). 270 * 271 * This was was copied from sba_iommu.c. Don't try to unify 272 * the two resource managers unless a way to have different 273 * allocation policies is also adjusted. We'd like to avoid 274 * I/O TLB thrashing by having resource allocation policy 275 * match the I/O TLB replacement policy. 276 * 277 ***************************************************************/ 278 #define IOVP_SIZE PAGE_SIZE 279 #define IOVP_SHIFT PAGE_SHIFT 280 #define IOVP_MASK PAGE_MASK 281 282 /* Convert from IOVP to IOVA and vice versa. */ 283 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset)) 284 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK) 285 286 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT) 287 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT) 288 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset) 289 290 /* 291 ** Don't worry about the 150% average search length on a miss. 292 ** If the search wraps around, and passes the res_hint, it will 293 ** cause the kernel to panic anyhow. 294 */ 295 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \ 296 for(; res_ptr < res_end; ++res_ptr) { \ 297 int ret;\ 298 unsigned int idx;\ 299 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \ 300 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\ 301 if ((0 == (*res_ptr & mask)) && !ret) { \ 302 *res_ptr |= mask; \ 303 res_idx = idx;\ 304 ioc->res_hint = res_idx + (size >> 3); \ 305 goto resource_found; \ 306 } \ 307 } 308 309 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \ 310 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \ 311 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \ 312 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \ 313 res_ptr = (u##size *)&(ioc)->res_map[0]; \ 314 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size); 315 316 /* 317 ** Find available bit in this ioa's resource map. 318 ** Use a "circular" search: 319 ** o Most IOVA's are "temporary" - avg search time should be small. 320 ** o keep a history of what happened for debugging 321 ** o KISS. 322 ** 323 ** Perf optimizations: 324 ** o search for log2(size) bits at a time. 325 ** o search for available resource bits using byte/word/whatever. 326 ** o use different search for "large" (eg > 4 pages) or "very large" 327 ** (eg > 16 pages) mappings. 328 */ 329 330 /** 331 * ccio_alloc_range - Allocate pages in the ioc's resource map. 332 * @ioc: The I/O Controller. 333 * @pages_needed: The requested number of pages to be mapped into the 334 * I/O Pdir... 335 * 336 * This function searches the resource map of the ioc to locate a range 337 * of available pages for the requested size. 338 */ 339 static int 340 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size) 341 { 342 unsigned int pages_needed = size >> IOVP_SHIFT; 343 unsigned int res_idx; 344 unsigned long boundary_size; 345 #ifdef CCIO_COLLECT_STATS 346 unsigned long cr_start = mfctl(16); 347 #endif 348 349 BUG_ON(pages_needed == 0); 350 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE); 351 352 DBG_RES("%s() size: %d pages_needed %d\n", 353 __func__, size, pages_needed); 354 355 /* 356 ** "seek and ye shall find"...praying never hurts either... 357 ** ggg sacrifices another 710 to the computer gods. 358 */ 359 360 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1, 361 1ULL << IOVP_SHIFT) >> IOVP_SHIFT; 362 363 if (pages_needed <= 8) { 364 /* 365 * LAN traffic will not thrash the TLB IFF the same NIC 366 * uses 8 adjacent pages to map separate payload data. 367 * ie the same byte in the resource bit map. 368 */ 369 #if 0 370 /* FIXME: bit search should shift it's way through 371 * an unsigned long - not byte at a time. As it is now, 372 * we effectively allocate this byte to this mapping. 373 */ 374 unsigned long mask = ~(~0UL >> pages_needed); 375 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8); 376 #else 377 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8); 378 #endif 379 } else if (pages_needed <= 16) { 380 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16); 381 } else if (pages_needed <= 32) { 382 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32); 383 #ifdef __LP64__ 384 } else if (pages_needed <= 64) { 385 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64); 386 #endif 387 } else { 388 panic("%s: %s() Too many pages to map. pages_needed: %u\n", 389 __FILE__, __func__, pages_needed); 390 } 391 392 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__, 393 __func__); 394 395 resource_found: 396 397 DBG_RES("%s() res_idx %d res_hint: %d\n", 398 __func__, res_idx, ioc->res_hint); 399 400 #ifdef CCIO_COLLECT_STATS 401 { 402 unsigned long cr_end = mfctl(16); 403 unsigned long tmp = cr_end - cr_start; 404 /* check for roll over */ 405 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp); 406 } 407 ioc->avg_search[ioc->avg_idx++] = cr_start; 408 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1; 409 #endif 410 #ifdef CCIO_COLLECT_STATS 411 ioc->used_pages += pages_needed; 412 #endif 413 /* 414 ** return the bit address. 415 */ 416 return res_idx << 3; 417 } 418 419 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \ 420 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \ 421 BUG_ON((*res_ptr & mask) != mask); \ 422 *res_ptr &= ~(mask); 423 424 /** 425 * ccio_free_range - Free pages from the ioc's resource map. 426 * @ioc: The I/O Controller. 427 * @iova: The I/O Virtual Address. 428 * @pages_mapped: The requested number of pages to be freed from the 429 * I/O Pdir. 430 * 431 * This function frees the resouces allocated for the iova. 432 */ 433 static void 434 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped) 435 { 436 unsigned long iovp = CCIO_IOVP(iova); 437 unsigned int res_idx = PDIR_INDEX(iovp) >> 3; 438 439 BUG_ON(pages_mapped == 0); 440 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE); 441 BUG_ON(pages_mapped > BITS_PER_LONG); 442 443 DBG_RES("%s(): res_idx: %d pages_mapped %d\n", 444 __func__, res_idx, pages_mapped); 445 446 #ifdef CCIO_COLLECT_STATS 447 ioc->used_pages -= pages_mapped; 448 #endif 449 450 if(pages_mapped <= 8) { 451 #if 0 452 /* see matching comments in alloc_range */ 453 unsigned long mask = ~(~0UL >> pages_mapped); 454 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8); 455 #else 456 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8); 457 #endif 458 } else if(pages_mapped <= 16) { 459 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16); 460 } else if(pages_mapped <= 32) { 461 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32); 462 #ifdef __LP64__ 463 } else if(pages_mapped <= 64) { 464 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64); 465 #endif 466 } else { 467 panic("%s:%s() Too many pages to unmap.\n", __FILE__, 468 __func__); 469 } 470 } 471 472 /**************************************************************** 473 ** 474 ** CCIO dma_ops support routines 475 ** 476 *****************************************************************/ 477 478 typedef unsigned long space_t; 479 #define KERNEL_SPACE 0 480 481 /* 482 ** DMA "Page Type" and Hints 483 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be 484 ** set for subcacheline DMA transfers since we don't want to damage the 485 ** other part of a cacheline. 486 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent(). 487 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming" 488 ** data can avoid this if the mapping covers full cache lines. 489 ** o STOP_MOST is needed for atomicity across cachelines. 490 ** Apparently only "some EISA devices" need this. 491 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs 492 ** to use this hint iff the EISA devices needs this feature. 493 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance. 494 ** o PREFETCH should *not* be set for cases like Multiple PCI devices 495 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC 496 ** device can be fetched and multiply DMA streams will thrash the 497 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules 498 ** and Invalidation of Prefetch Entries". 499 ** 500 ** FIXME: the default hints need to be per GSC device - not global. 501 ** 502 ** HP-UX dorks: linux device driver programming model is totally different 503 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers 504 ** do special things to work on non-coherent platforms...linux has to 505 ** be much more careful with this. 506 */ 507 #define IOPDIR_VALID 0x01UL 508 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */ 509 #ifdef CONFIG_EISA 510 #define HINT_STOP_MOST 0x04UL /* LSL support */ 511 #else 512 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */ 513 #endif 514 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */ 515 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */ 516 517 518 /* 519 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint. 520 ** ccio_alloc_consistent() depends on this to get SAFE_DMA 521 ** when it passes in BIDIRECTIONAL flag. 522 */ 523 static u32 hint_lookup[] = { 524 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID, 525 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID, 526 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID, 527 }; 528 529 /** 530 * ccio_io_pdir_entry - Initialize an I/O Pdir. 531 * @pdir_ptr: A pointer into I/O Pdir. 532 * @sid: The Space Identifier. 533 * @vba: The virtual address. 534 * @hints: The DMA Hint. 535 * 536 * Given a virtual address (vba, arg2) and space id, (sid, arg1), 537 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir 538 * entry consists of 8 bytes as shown below (MSB == bit 0): 539 * 540 * 541 * WORD 0: 542 * +------+----------------+-----------------------------------------------+ 543 * | Phys | Virtual Index | Phys | 544 * | 0:3 | 0:11 | 4:19 | 545 * |4 bits| 12 bits | 16 bits | 546 * +------+----------------+-----------------------------------------------+ 547 * WORD 1: 548 * +-----------------------+-----------------------------------------------+ 549 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid | 550 * | 20:39 | | Enable |Enable | |Enable|DMA | | 551 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit | 552 * +-----------------------+-----------------------------------------------+ 553 * 554 * The virtual index field is filled with the results of the LCI 555 * (Load Coherence Index) instruction. The 8 bits used for the virtual 556 * index are bits 12:19 of the value returned by LCI. 557 */ 558 void CCIO_INLINE 559 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba, 560 unsigned long hints) 561 { 562 register unsigned long pa; 563 register unsigned long ci; /* coherent index */ 564 565 /* We currently only support kernel addresses */ 566 BUG_ON(sid != KERNEL_SPACE); 567 568 mtsp(sid,1); 569 570 /* 571 ** WORD 1 - low order word 572 ** "hints" parm includes the VALID bit! 573 ** "dep" clobbers the physical address offset bits as well. 574 */ 575 pa = virt_to_phys(vba); 576 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints)); 577 ((u32 *)pdir_ptr)[1] = (u32) pa; 578 579 /* 580 ** WORD 0 - high order word 581 */ 582 583 #ifdef __LP64__ 584 /* 585 ** get bits 12:15 of physical address 586 ** shift bits 16:31 of physical address 587 ** and deposit them 588 */ 589 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa)); 590 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa)); 591 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci)); 592 #else 593 pa = 0; 594 #endif 595 /* 596 ** get CPU coherency index bits 597 ** Grab virtual index [0:11] 598 ** Deposit virt_idx bits into I/O PDIR word 599 */ 600 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba)); 601 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci)); 602 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci)); 603 604 ((u32 *)pdir_ptr)[0] = (u32) pa; 605 606 607 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) 608 ** PCX-U/U+ do. (eg C200/C240) 609 ** PCX-T'? Don't know. (eg C110 or similar K-class) 610 ** 611 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit". 612 ** Hopefully we can patch (NOP) these out at boot time somehow. 613 ** 614 ** "Since PCX-U employs an offset hash that is incompatible with 615 ** the real mode coherence index generation of U2, the PDIR entry 616 ** must be flushed to memory to retain coherence." 617 */ 618 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); 619 asm volatile("sync"); 620 } 621 622 /** 623 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB. 624 * @ioc: The I/O Controller. 625 * @iovp: The I/O Virtual Page. 626 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. 627 * 628 * Purge invalid I/O PDIR entries from the I/O TLB. 629 * 630 * FIXME: Can we change the byte_cnt to pages_mapped? 631 */ 632 static CCIO_INLINE void 633 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt) 634 { 635 u32 chain_size = 1 << ioc->chainid_shift; 636 637 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */ 638 byte_cnt += chain_size; 639 640 while(byte_cnt > chain_size) { 641 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command); 642 iovp += chain_size; 643 byte_cnt -= chain_size; 644 } 645 } 646 647 /** 648 * ccio_mark_invalid - Mark the I/O Pdir entries invalid. 649 * @ioc: The I/O Controller. 650 * @iova: The I/O Virtual Address. 651 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. 652 * 653 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O 654 * TLB entries. 655 * 656 * FIXME: at some threshhold it might be "cheaper" to just blow 657 * away the entire I/O TLB instead of individual entries. 658 * 659 * FIXME: Uturn has 256 TLB entries. We don't need to purge every 660 * PDIR entry - just once for each possible TLB entry. 661 * (We do need to maker I/O PDIR entries invalid regardless). 662 * 663 * FIXME: Can we change byte_cnt to pages_mapped? 664 */ 665 static CCIO_INLINE void 666 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) 667 { 668 u32 iovp = (u32)CCIO_IOVP(iova); 669 size_t saved_byte_cnt; 670 671 /* round up to nearest page size */ 672 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE); 673 674 while(byte_cnt > 0) { 675 /* invalidate one page at a time */ 676 unsigned int idx = PDIR_INDEX(iovp); 677 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]); 678 679 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64))); 680 pdir_ptr[7] = 0; /* clear only VALID bit */ 681 /* 682 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) 683 ** PCX-U/U+ do. (eg C200/C240) 684 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit". 685 ** 686 ** Hopefully someone figures out how to patch (NOP) the 687 ** FDC/SYNC out at boot time. 688 */ 689 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7])); 690 691 iovp += IOVP_SIZE; 692 byte_cnt -= IOVP_SIZE; 693 } 694 695 asm volatile("sync"); 696 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt); 697 } 698 699 /**************************************************************** 700 ** 701 ** CCIO dma_ops 702 ** 703 *****************************************************************/ 704 705 /** 706 * ccio_dma_supported - Verify the IOMMU supports the DMA address range. 707 * @dev: The PCI device. 708 * @mask: A bit mask describing the DMA address range of the device. 709 * 710 * This function implements the pci_dma_supported function. 711 */ 712 static int 713 ccio_dma_supported(struct device *dev, u64 mask) 714 { 715 if(dev == NULL) { 716 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n"); 717 BUG(); 718 return 0; 719 } 720 721 /* only support 32-bit devices (ie PCI/GSC) */ 722 return (int)(mask == 0xffffffffUL); 723 } 724 725 /** 726 * ccio_map_single - Map an address range into the IOMMU. 727 * @dev: The PCI device. 728 * @addr: The start address of the DMA region. 729 * @size: The length of the DMA region. 730 * @direction: The direction of the DMA transaction (to/from device). 731 * 732 * This function implements the pci_map_single function. 733 */ 734 static dma_addr_t 735 ccio_map_single(struct device *dev, void *addr, size_t size, 736 enum dma_data_direction direction) 737 { 738 int idx; 739 struct ioc *ioc; 740 unsigned long flags; 741 dma_addr_t iovp; 742 dma_addr_t offset; 743 u64 *pdir_start; 744 unsigned long hint = hint_lookup[(int)direction]; 745 746 BUG_ON(!dev); 747 ioc = GET_IOC(dev); 748 749 BUG_ON(size <= 0); 750 751 /* save offset bits */ 752 offset = ((unsigned long) addr) & ~IOVP_MASK; 753 754 /* round up to nearest IOVP_SIZE */ 755 size = ALIGN(size + offset, IOVP_SIZE); 756 spin_lock_irqsave(&ioc->res_lock, flags); 757 758 #ifdef CCIO_COLLECT_STATS 759 ioc->msingle_calls++; 760 ioc->msingle_pages += size >> IOVP_SHIFT; 761 #endif 762 763 idx = ccio_alloc_range(ioc, dev, size); 764 iovp = (dma_addr_t)MKIOVP(idx); 765 766 pdir_start = &(ioc->pdir_base[idx]); 767 768 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n", 769 __func__, addr, (long)iovp | offset, size); 770 771 /* If not cacheline aligned, force SAFE_DMA on the whole mess */ 772 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES)) 773 hint |= HINT_SAFE_DMA; 774 775 while(size > 0) { 776 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint); 777 778 DBG_RUN(" pdir %p %08x%08x\n", 779 pdir_start, 780 (u32) (((u32 *) pdir_start)[0]), 781 (u32) (((u32 *) pdir_start)[1])); 782 ++pdir_start; 783 addr += IOVP_SIZE; 784 size -= IOVP_SIZE; 785 } 786 787 spin_unlock_irqrestore(&ioc->res_lock, flags); 788 789 /* form complete address */ 790 return CCIO_IOVA(iovp, offset); 791 } 792 793 /** 794 * ccio_unmap_single - Unmap an address range from the IOMMU. 795 * @dev: The PCI device. 796 * @addr: The start address of the DMA region. 797 * @size: The length of the DMA region. 798 * @direction: The direction of the DMA transaction (to/from device). 799 * 800 * This function implements the pci_unmap_single function. 801 */ 802 static void 803 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size, 804 enum dma_data_direction direction) 805 { 806 struct ioc *ioc; 807 unsigned long flags; 808 dma_addr_t offset = iova & ~IOVP_MASK; 809 810 BUG_ON(!dev); 811 ioc = GET_IOC(dev); 812 813 DBG_RUN("%s() iovp 0x%lx/%x\n", 814 __func__, (long)iova, size); 815 816 iova ^= offset; /* clear offset bits */ 817 size += offset; 818 size = ALIGN(size, IOVP_SIZE); 819 820 spin_lock_irqsave(&ioc->res_lock, flags); 821 822 #ifdef CCIO_COLLECT_STATS 823 ioc->usingle_calls++; 824 ioc->usingle_pages += size >> IOVP_SHIFT; 825 #endif 826 827 ccio_mark_invalid(ioc, iova, size); 828 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT)); 829 spin_unlock_irqrestore(&ioc->res_lock, flags); 830 } 831 832 /** 833 * ccio_alloc_consistent - Allocate a consistent DMA mapping. 834 * @dev: The PCI device. 835 * @size: The length of the DMA region. 836 * @dma_handle: The DMA address handed back to the device (not the cpu). 837 * 838 * This function implements the pci_alloc_consistent function. 839 */ 840 static void * 841 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) 842 { 843 void *ret; 844 #if 0 845 /* GRANT Need to establish hierarchy for non-PCI devs as well 846 ** and then provide matching gsc_map_xxx() functions for them as well. 847 */ 848 if(!hwdev) { 849 /* only support PCI */ 850 *dma_handle = 0; 851 return 0; 852 } 853 #endif 854 ret = (void *) __get_free_pages(flag, get_order(size)); 855 856 if (ret) { 857 memset(ret, 0, size); 858 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL); 859 } 860 861 return ret; 862 } 863 864 /** 865 * ccio_free_consistent - Free a consistent DMA mapping. 866 * @dev: The PCI device. 867 * @size: The length of the DMA region. 868 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent. 869 * @dma_handle: The device address returned from the ccio_alloc_consistent. 870 * 871 * This function implements the pci_free_consistent function. 872 */ 873 static void 874 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr, 875 dma_addr_t dma_handle) 876 { 877 ccio_unmap_single(dev, dma_handle, size, 0); 878 free_pages((unsigned long)cpu_addr, get_order(size)); 879 } 880 881 /* 882 ** Since 0 is a valid pdir_base index value, can't use that 883 ** to determine if a value is valid or not. Use a flag to indicate 884 ** the SG list entry contains a valid pdir index. 885 */ 886 #define PIDE_FLAG 0x80000000UL 887 888 #ifdef CCIO_COLLECT_STATS 889 #define IOMMU_MAP_STATS 890 #endif 891 #include "iommu-helpers.h" 892 893 /** 894 * ccio_map_sg - Map the scatter/gather list into the IOMMU. 895 * @dev: The PCI device. 896 * @sglist: The scatter/gather list to be mapped in the IOMMU. 897 * @nents: The number of entries in the scatter/gather list. 898 * @direction: The direction of the DMA transaction (to/from device). 899 * 900 * This function implements the pci_map_sg function. 901 */ 902 static int 903 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 904 enum dma_data_direction direction) 905 { 906 struct ioc *ioc; 907 int coalesced, filled = 0; 908 unsigned long flags; 909 unsigned long hint = hint_lookup[(int)direction]; 910 unsigned long prev_len = 0, current_len = 0; 911 int i; 912 913 BUG_ON(!dev); 914 ioc = GET_IOC(dev); 915 916 DBG_RUN_SG("%s() START %d entries\n", __func__, nents); 917 918 /* Fast path single entry scatterlists. */ 919 if (nents == 1) { 920 sg_dma_address(sglist) = ccio_map_single(dev, 921 (void *)sg_virt_addr(sglist), sglist->length, 922 direction); 923 sg_dma_len(sglist) = sglist->length; 924 return 1; 925 } 926 927 for(i = 0; i < nents; i++) 928 prev_len += sglist[i].length; 929 930 spin_lock_irqsave(&ioc->res_lock, flags); 931 932 #ifdef CCIO_COLLECT_STATS 933 ioc->msg_calls++; 934 #endif 935 936 /* 937 ** First coalesce the chunks and allocate I/O pdir space 938 ** 939 ** If this is one DMA stream, we can properly map using the 940 ** correct virtual address associated with each DMA page. 941 ** w/o this association, we wouldn't have coherent DMA! 942 ** Access to the virtual address is what forces a two pass algorithm. 943 */ 944 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range); 945 946 /* 947 ** Program the I/O Pdir 948 ** 949 ** map the virtual addresses to the I/O Pdir 950 ** o dma_address will contain the pdir index 951 ** o dma_len will contain the number of bytes to map 952 ** o page/offset contain the virtual address. 953 */ 954 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry); 955 956 spin_unlock_irqrestore(&ioc->res_lock, flags); 957 958 BUG_ON(coalesced != filled); 959 960 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); 961 962 for (i = 0; i < filled; i++) 963 current_len += sg_dma_len(sglist + i); 964 965 BUG_ON(current_len != prev_len); 966 967 return filled; 968 } 969 970 /** 971 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU. 972 * @dev: The PCI device. 973 * @sglist: The scatter/gather list to be unmapped from the IOMMU. 974 * @nents: The number of entries in the scatter/gather list. 975 * @direction: The direction of the DMA transaction (to/from device). 976 * 977 * This function implements the pci_unmap_sg function. 978 */ 979 static void 980 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 981 enum dma_data_direction direction) 982 { 983 struct ioc *ioc; 984 985 BUG_ON(!dev); 986 ioc = GET_IOC(dev); 987 988 DBG_RUN_SG("%s() START %d entries, %08lx,%x\n", 989 __func__, nents, sg_virt_addr(sglist), sglist->length); 990 991 #ifdef CCIO_COLLECT_STATS 992 ioc->usg_calls++; 993 #endif 994 995 while(sg_dma_len(sglist) && nents--) { 996 997 #ifdef CCIO_COLLECT_STATS 998 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT; 999 #endif 1000 ccio_unmap_single(dev, sg_dma_address(sglist), 1001 sg_dma_len(sglist), direction); 1002 ++sglist; 1003 } 1004 1005 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); 1006 } 1007 1008 static struct hppa_dma_ops ccio_ops = { 1009 .dma_supported = ccio_dma_supported, 1010 .alloc_consistent = ccio_alloc_consistent, 1011 .alloc_noncoherent = ccio_alloc_consistent, 1012 .free_consistent = ccio_free_consistent, 1013 .map_single = ccio_map_single, 1014 .unmap_single = ccio_unmap_single, 1015 .map_sg = ccio_map_sg, 1016 .unmap_sg = ccio_unmap_sg, 1017 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */ 1018 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */ 1019 .dma_sync_sg_for_cpu = NULL, /* ditto */ 1020 .dma_sync_sg_for_device = NULL, /* ditto */ 1021 }; 1022 1023 #ifdef CONFIG_PROC_FS 1024 static int ccio_proc_info(struct seq_file *m, void *p) 1025 { 1026 int len = 0; 1027 struct ioc *ioc = ioc_list; 1028 1029 while (ioc != NULL) { 1030 unsigned int total_pages = ioc->res_size << 3; 1031 unsigned long avg = 0, min, max; 1032 int j; 1033 1034 len += seq_printf(m, "%s\n", ioc->name); 1035 1036 len += seq_printf(m, "Cujo 2.0 bug : %s\n", 1037 (ioc->cujo20_bug ? "yes" : "no")); 1038 1039 len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n", 1040 total_pages * 8, total_pages); 1041 1042 #ifdef CCIO_COLLECT_STATS 1043 len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n", 1044 total_pages - ioc->used_pages, ioc->used_pages, 1045 (int)(ioc->used_pages * 100 / total_pages)); 1046 #endif 1047 1048 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", 1049 ioc->res_size, total_pages); 1050 1051 #ifdef CCIO_COLLECT_STATS 1052 min = max = ioc->avg_search[0]; 1053 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) { 1054 avg += ioc->avg_search[j]; 1055 if(ioc->avg_search[j] > max) 1056 max = ioc->avg_search[j]; 1057 if(ioc->avg_search[j] < min) 1058 min = ioc->avg_search[j]; 1059 } 1060 avg /= CCIO_SEARCH_SAMPLE; 1061 len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n", 1062 min, avg, max); 1063 #endif 1064 #ifdef CCIO_COLLECT_STATS 1065 len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n", 1066 ioc->msingle_calls, ioc->msingle_pages, 1067 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls)); 1068 1069 /* KLUGE - unmap_sg calls unmap_single for each mapped page */ 1070 min = ioc->usingle_calls - ioc->usg_calls; 1071 max = ioc->usingle_pages - ioc->usg_pages; 1072 len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n", 1073 min, max, (int)((max * 1000)/min)); 1074 1075 len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n", 1076 ioc->msg_calls, ioc->msg_pages, 1077 (int)((ioc->msg_pages * 1000)/ioc->msg_calls)); 1078 1079 len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n", 1080 ioc->usg_calls, ioc->usg_pages, 1081 (int)((ioc->usg_pages * 1000)/ioc->usg_calls)); 1082 #endif /* CCIO_COLLECT_STATS */ 1083 1084 ioc = ioc->next; 1085 } 1086 1087 return 0; 1088 } 1089 1090 static int ccio_proc_info_open(struct inode *inode, struct file *file) 1091 { 1092 return single_open(file, &ccio_proc_info, NULL); 1093 } 1094 1095 static const struct file_operations ccio_proc_info_fops = { 1096 .owner = THIS_MODULE, 1097 .open = ccio_proc_info_open, 1098 .read = seq_read, 1099 .llseek = seq_lseek, 1100 .release = single_release, 1101 }; 1102 1103 static int ccio_proc_bitmap_info(struct seq_file *m, void *p) 1104 { 1105 int len = 0; 1106 struct ioc *ioc = ioc_list; 1107 1108 while (ioc != NULL) { 1109 u32 *res_ptr = (u32 *)ioc->res_map; 1110 int j; 1111 1112 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) { 1113 if ((j & 7) == 0) 1114 len += seq_puts(m, "\n "); 1115 len += seq_printf(m, "%08x", *res_ptr); 1116 res_ptr++; 1117 } 1118 len += seq_puts(m, "\n\n"); 1119 ioc = ioc->next; 1120 break; /* XXX - remove me */ 1121 } 1122 1123 return 0; 1124 } 1125 1126 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file) 1127 { 1128 return single_open(file, &ccio_proc_bitmap_info, NULL); 1129 } 1130 1131 static const struct file_operations ccio_proc_bitmap_fops = { 1132 .owner = THIS_MODULE, 1133 .open = ccio_proc_bitmap_open, 1134 .read = seq_read, 1135 .llseek = seq_lseek, 1136 .release = single_release, 1137 }; 1138 #endif 1139 1140 /** 1141 * ccio_find_ioc - Find the ioc in the ioc_list 1142 * @hw_path: The hardware path of the ioc. 1143 * 1144 * This function searches the ioc_list for an ioc that matches 1145 * the provide hardware path. 1146 */ 1147 static struct ioc * ccio_find_ioc(int hw_path) 1148 { 1149 int i; 1150 struct ioc *ioc; 1151 1152 ioc = ioc_list; 1153 for (i = 0; i < ioc_count; i++) { 1154 if (ioc->hw_path == hw_path) 1155 return ioc; 1156 1157 ioc = ioc->next; 1158 } 1159 1160 return NULL; 1161 } 1162 1163 /** 1164 * ccio_get_iommu - Find the iommu which controls this device 1165 * @dev: The parisc device. 1166 * 1167 * This function searches through the registered IOMMU's and returns 1168 * the appropriate IOMMU for the device based on its hardware path. 1169 */ 1170 void * ccio_get_iommu(const struct parisc_device *dev) 1171 { 1172 dev = find_pa_parent_type(dev, HPHW_IOA); 1173 if (!dev) 1174 return NULL; 1175 1176 return ccio_find_ioc(dev->hw_path); 1177 } 1178 1179 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */ 1180 1181 /* Cujo 2.0 has a bug which will silently corrupt data being transferred 1182 * to/from certain pages. To avoid this happening, we mark these pages 1183 * as `used', and ensure that nothing will try to allocate from them. 1184 */ 1185 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp) 1186 { 1187 unsigned int idx; 1188 struct parisc_device *dev = parisc_parent(cujo); 1189 struct ioc *ioc = ccio_get_iommu(dev); 1190 u8 *res_ptr; 1191 1192 ioc->cujo20_bug = 1; 1193 res_ptr = ioc->res_map; 1194 idx = PDIR_INDEX(iovp) >> 3; 1195 1196 while (idx < ioc->res_size) { 1197 res_ptr[idx] |= 0xff; 1198 idx += PDIR_INDEX(CUJO_20_STEP) >> 3; 1199 } 1200 } 1201 1202 #if 0 1203 /* GRANT - is this needed for U2 or not? */ 1204 1205 /* 1206 ** Get the size of the I/O TLB for this I/O MMU. 1207 ** 1208 ** If spa_shift is non-zero (ie probably U2), 1209 ** then calculate the I/O TLB size using spa_shift. 1210 ** 1211 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB 1212 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift. 1213 ** I think only Java (K/D/R-class too?) systems don't do this. 1214 */ 1215 static int 1216 ccio_get_iotlb_size(struct parisc_device *dev) 1217 { 1218 if (dev->spa_shift == 0) { 1219 panic("%s() : Can't determine I/O TLB size.\n", __func__); 1220 } 1221 return (1 << dev->spa_shift); 1222 } 1223 #else 1224 1225 /* Uturn supports 256 TLB entries */ 1226 #define CCIO_CHAINID_SHIFT 8 1227 #define CCIO_CHAINID_MASK 0xff 1228 #endif /* 0 */ 1229 1230 /* We *can't* support JAVA (T600). Venture there at your own risk. */ 1231 static const struct parisc_device_id ccio_tbl[] = { 1232 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */ 1233 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */ 1234 { 0, } 1235 }; 1236 1237 static int ccio_probe(struct parisc_device *dev); 1238 1239 static struct parisc_driver ccio_driver = { 1240 .name = "ccio", 1241 .id_table = ccio_tbl, 1242 .probe = ccio_probe, 1243 }; 1244 1245 /** 1246 * ccio_ioc_init - Initalize the I/O Controller 1247 * @ioc: The I/O Controller. 1248 * 1249 * Initalize the I/O Controller which includes setting up the 1250 * I/O Page Directory, the resource map, and initalizing the 1251 * U2/Uturn chip into virtual mode. 1252 */ 1253 static void 1254 ccio_ioc_init(struct ioc *ioc) 1255 { 1256 int i; 1257 unsigned int iov_order; 1258 u32 iova_space_size; 1259 1260 /* 1261 ** Determine IOVA Space size from memory size. 1262 ** 1263 ** Ideally, PCI drivers would register the maximum number 1264 ** of DMA they can have outstanding for each device they 1265 ** own. Next best thing would be to guess how much DMA 1266 ** can be outstanding based on PCI Class/sub-class. Both 1267 ** methods still require some "extra" to support PCI 1268 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD). 1269 */ 1270 1271 iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver)); 1272 1273 /* limit IOVA space size to 1MB-1GB */ 1274 1275 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) { 1276 iova_space_size = 1 << (20 - PAGE_SHIFT); 1277 #ifdef __LP64__ 1278 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) { 1279 iova_space_size = 1 << (30 - PAGE_SHIFT); 1280 #endif 1281 } 1282 1283 /* 1284 ** iova space must be log2() in size. 1285 ** thus, pdir/res_map will also be log2(). 1286 */ 1287 1288 /* We could use larger page sizes in order to *decrease* the number 1289 ** of mappings needed. (ie 8k pages means 1/2 the mappings). 1290 ** 1291 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either 1292 ** since the pages must also be physically contiguous - typically 1293 ** this is the case under linux." 1294 */ 1295 1296 iov_order = get_order(iova_space_size << PAGE_SHIFT); 1297 1298 /* iova_space_size is now bytes, not pages */ 1299 iova_space_size = 1 << (iov_order + PAGE_SHIFT); 1300 1301 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64); 1302 1303 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */ 1304 1305 /* Verify it's a power of two */ 1306 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT)); 1307 1308 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n", 1309 __func__, ioc->ioc_regs, 1310 (unsigned long) num_physpages >> (20 - PAGE_SHIFT), 1311 iova_space_size>>20, 1312 iov_order + PAGE_SHIFT); 1313 1314 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 1315 get_order(ioc->pdir_size)); 1316 if(NULL == ioc->pdir_base) { 1317 panic("%s() could not allocate I/O Page Table\n", __func__); 1318 } 1319 memset(ioc->pdir_base, 0, ioc->pdir_size); 1320 1321 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base); 1322 DBG_INIT(" base %p\n", ioc->pdir_base); 1323 1324 /* resource map size dictated by pdir_size */ 1325 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3; 1326 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); 1327 1328 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 1329 get_order(ioc->res_size)); 1330 if(NULL == ioc->res_map) { 1331 panic("%s() could not allocate resource map\n", __func__); 1332 } 1333 memset(ioc->res_map, 0, ioc->res_size); 1334 1335 /* Initialize the res_hint to 16 */ 1336 ioc->res_hint = 16; 1337 1338 /* Initialize the spinlock */ 1339 spin_lock_init(&ioc->res_lock); 1340 1341 /* 1342 ** Chainid is the upper most bits of an IOVP used to determine 1343 ** which TLB entry an IOVP will use. 1344 */ 1345 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT; 1346 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift); 1347 1348 /* 1349 ** Initialize IOA hardware 1350 */ 1351 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 1352 &ioc->ioc_regs->io_chain_id_mask); 1353 1354 WRITE_U32(virt_to_phys(ioc->pdir_base), 1355 &ioc->ioc_regs->io_pdir_base); 1356 1357 /* 1358 ** Go to "Virtual Mode" 1359 */ 1360 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control); 1361 1362 /* 1363 ** Initialize all I/O TLB entries to 0 (Valid bit off). 1364 */ 1365 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m); 1366 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l); 1367 1368 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) { 1369 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)), 1370 &ioc->ioc_regs->io_command); 1371 } 1372 } 1373 1374 static void __init 1375 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr) 1376 { 1377 int result; 1378 1379 res->parent = NULL; 1380 res->flags = IORESOURCE_MEM; 1381 /* 1382 * bracing ((signed) ...) are required for 64bit kernel because 1383 * we only want to sign extend the lower 16 bits of the register. 1384 * The upper 16-bits of range registers are hardcoded to 0xffff. 1385 */ 1386 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16); 1387 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1); 1388 res->name = name; 1389 /* 1390 * Check if this MMIO range is disable 1391 */ 1392 if (res->end + 1 == res->start) 1393 return; 1394 1395 /* On some platforms (e.g. K-Class), we have already registered 1396 * resources for devices reported by firmware. Some are children 1397 * of ccio. 1398 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem). 1399 */ 1400 result = insert_resource(&iomem_resource, res); 1401 if (result < 0) { 1402 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 1403 __func__, res->start, res->end); 1404 } 1405 } 1406 1407 static void __init ccio_init_resources(struct ioc *ioc) 1408 { 1409 struct resource *res = ioc->mmio_region; 1410 char *name = kmalloc(14, GFP_KERNEL); 1411 1412 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path); 1413 1414 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low); 1415 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv); 1416 } 1417 1418 static int new_ioc_area(struct resource *res, unsigned long size, 1419 unsigned long min, unsigned long max, unsigned long align) 1420 { 1421 if (max <= min) 1422 return -EBUSY; 1423 1424 res->start = (max - size + 1) &~ (align - 1); 1425 res->end = res->start + size; 1426 1427 /* We might be trying to expand the MMIO range to include 1428 * a child device that has already registered it's MMIO space. 1429 * Use "insert" instead of request_resource(). 1430 */ 1431 if (!insert_resource(&iomem_resource, res)) 1432 return 0; 1433 1434 return new_ioc_area(res, size, min, max - size, align); 1435 } 1436 1437 static int expand_ioc_area(struct resource *res, unsigned long size, 1438 unsigned long min, unsigned long max, unsigned long align) 1439 { 1440 unsigned long start, len; 1441 1442 if (!res->parent) 1443 return new_ioc_area(res, size, min, max, align); 1444 1445 start = (res->start - size) &~ (align - 1); 1446 len = res->end - start + 1; 1447 if (start >= min) { 1448 if (!adjust_resource(res, start, len)) 1449 return 0; 1450 } 1451 1452 start = res->start; 1453 len = ((size + res->end + align) &~ (align - 1)) - start; 1454 if (start + len <= max) { 1455 if (!adjust_resource(res, start, len)) 1456 return 0; 1457 } 1458 1459 return -EBUSY; 1460 } 1461 1462 /* 1463 * Dino calls this function. Beware that we may get called on systems 1464 * which have no IOC (725, B180, C160L, etc) but do have a Dino. 1465 * So it's legal to find no parent IOC. 1466 * 1467 * Some other issues: one of the resources in the ioc may be unassigned. 1468 */ 1469 int ccio_allocate_resource(const struct parisc_device *dev, 1470 struct resource *res, unsigned long size, 1471 unsigned long min, unsigned long max, unsigned long align) 1472 { 1473 struct resource *parent = &iomem_resource; 1474 struct ioc *ioc = ccio_get_iommu(dev); 1475 if (!ioc) 1476 goto out; 1477 1478 parent = ioc->mmio_region; 1479 if (parent->parent && 1480 !allocate_resource(parent, res, size, min, max, align, NULL, NULL)) 1481 return 0; 1482 1483 if ((parent + 1)->parent && 1484 !allocate_resource(parent + 1, res, size, min, max, align, 1485 NULL, NULL)) 1486 return 0; 1487 1488 if (!expand_ioc_area(parent, size, min, max, align)) { 1489 __raw_writel(((parent->start)>>16) | 0xffff0000, 1490 &ioc->ioc_regs->io_io_low); 1491 __raw_writel(((parent->end)>>16) | 0xffff0000, 1492 &ioc->ioc_regs->io_io_high); 1493 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) { 1494 parent++; 1495 __raw_writel(((parent->start)>>16) | 0xffff0000, 1496 &ioc->ioc_regs->io_io_low_hv); 1497 __raw_writel(((parent->end)>>16) | 0xffff0000, 1498 &ioc->ioc_regs->io_io_high_hv); 1499 } else { 1500 return -EBUSY; 1501 } 1502 1503 out: 1504 return allocate_resource(parent, res, size, min, max, align, NULL,NULL); 1505 } 1506 1507 int ccio_request_resource(const struct parisc_device *dev, 1508 struct resource *res) 1509 { 1510 struct resource *parent; 1511 struct ioc *ioc = ccio_get_iommu(dev); 1512 1513 if (!ioc) { 1514 parent = &iomem_resource; 1515 } else if ((ioc->mmio_region->start <= res->start) && 1516 (res->end <= ioc->mmio_region->end)) { 1517 parent = ioc->mmio_region; 1518 } else if (((ioc->mmio_region + 1)->start <= res->start) && 1519 (res->end <= (ioc->mmio_region + 1)->end)) { 1520 parent = ioc->mmio_region + 1; 1521 } else { 1522 return -EBUSY; 1523 } 1524 1525 /* "transparent" bus bridges need to register MMIO resources 1526 * firmware assigned them. e.g. children of hppb.c (e.g. K-class) 1527 * registered their resources in the PDC "bus walk" (See 1528 * arch/parisc/kernel/inventory.c). 1529 */ 1530 return insert_resource(parent, res); 1531 } 1532 1533 /** 1534 * ccio_probe - Determine if ccio should claim this device. 1535 * @dev: The device which has been found 1536 * 1537 * Determine if ccio should claim this chip (return 0) or not (return 1). 1538 * If so, initialize the chip and tell other partners in crime they 1539 * have work to do. 1540 */ 1541 static int __init ccio_probe(struct parisc_device *dev) 1542 { 1543 int i; 1544 struct ioc *ioc, **ioc_p = &ioc_list; 1545 1546 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL); 1547 if (ioc == NULL) { 1548 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n"); 1549 return 1; 1550 } 1551 1552 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn"; 1553 1554 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start); 1555 1556 for (i = 0; i < ioc_count; i++) { 1557 ioc_p = &(*ioc_p)->next; 1558 } 1559 *ioc_p = ioc; 1560 1561 ioc->hw_path = dev->hw_path; 1562 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096); 1563 ccio_ioc_init(ioc); 1564 ccio_init_resources(ioc); 1565 hppa_dma_ops = &ccio_ops; 1566 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL); 1567 1568 /* if this fails, no I/O cards will work, so may as well bug */ 1569 BUG_ON(dev->dev.platform_data == NULL); 1570 HBA_DATA(dev->dev.platform_data)->iommu = ioc; 1571 1572 if (ioc_count == 0) { 1573 proc_create(MODULE_NAME, 0, proc_runway_root, 1574 &ccio_proc_info_fops); 1575 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root, 1576 &ccio_proc_bitmap_fops); 1577 } 1578 1579 ioc_count++; 1580 1581 parisc_vmerge_boundary = IOVP_SIZE; 1582 parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE; 1583 parisc_has_iommu(); 1584 return 0; 1585 } 1586 1587 /** 1588 * ccio_init - ccio initialization procedure. 1589 * 1590 * Register this driver. 1591 */ 1592 void __init ccio_init(void) 1593 { 1594 register_parisc_driver(&ccio_driver); 1595 } 1596 1597