xref: /openbmc/linux/drivers/parisc/ccio-dma.c (revision 750afb08)
1 /*
2 ** ccio-dma.c:
3 **	DMA management routines for first generation cache-coherent machines.
4 **	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 **	(c) Copyright 2000 Grant Grundler
7 **	(c) Copyright 2000 Ryan Bradetich
8 **	(c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
14 **
15 **
16 **  "Real Mode" operation refers to U2/Uturn chip operation.
17 **  U2/Uturn were designed to perform coherency checks w/o using
18 **  the I/O MMU - basically what x86 does.
19 **
20 **  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 **      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 **      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23 **
24 **  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25 **
26 **  Drawbacks of using Real Mode are:
27 **	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 **      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 **	o Ability to do scatter/gather in HW is lost.
30 **	o Doesn't work under PCX-U/U+ machines since they didn't follow
31 **        the coherency design originally worked out. Only PCX-W does.
32 */
33 
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 #include <linux/iommu-helper.h>
47 #include <linux/export.h>
48 
49 #include <asm/byteorder.h>
50 #include <asm/cache.h>		/* for L1_CACHE_BYTES */
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/dma.h>
54 #include <asm/io.h>
55 #include <asm/hardware.h>       /* for register_module() */
56 #include <asm/parisc-device.h>
57 
58 /*
59 ** Choose "ccio" since that's what HP-UX calls it.
60 ** Make it easier for folks to migrate from one to the other :^)
61 */
62 #define MODULE_NAME "ccio"
63 
64 #undef DEBUG_CCIO_RES
65 #undef DEBUG_CCIO_RUN
66 #undef DEBUG_CCIO_INIT
67 #undef DEBUG_CCIO_RUN_SG
68 
69 #ifdef CONFIG_PROC_FS
70 /* depends on proc fs support. But costs CPU performance. */
71 #undef CCIO_COLLECT_STATS
72 #endif
73 
74 #include <asm/runway.h>		/* for proc_runway_root */
75 
76 #ifdef DEBUG_CCIO_INIT
77 #define DBG_INIT(x...)  printk(x)
78 #else
79 #define DBG_INIT(x...)
80 #endif
81 
82 #ifdef DEBUG_CCIO_RUN
83 #define DBG_RUN(x...)   printk(x)
84 #else
85 #define DBG_RUN(x...)
86 #endif
87 
88 #ifdef DEBUG_CCIO_RES
89 #define DBG_RES(x...)   printk(x)
90 #else
91 #define DBG_RES(x...)
92 #endif
93 
94 #ifdef DEBUG_CCIO_RUN_SG
95 #define DBG_RUN_SG(x...) printk(x)
96 #else
97 #define DBG_RUN_SG(x...)
98 #endif
99 
100 #define CCIO_INLINE	inline
101 #define WRITE_U32(value, addr) __raw_writel(value, addr)
102 #define READ_U32(addr) __raw_readl(addr)
103 
104 #define U2_IOA_RUNWAY 0x580
105 #define U2_BC_GSC     0x501
106 #define UTURN_IOA_RUNWAY 0x581
107 #define UTURN_BC_GSC     0x502
108 
109 #define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
110 #define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
111 #define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
112 
113 struct ioa_registers {
114         /* Runway Supervisory Set */
115         int32_t    unused1[12];
116         uint32_t   io_command;             /* Offset 12 */
117         uint32_t   io_status;              /* Offset 13 */
118         uint32_t   io_control;             /* Offset 14 */
119         int32_t    unused2[1];
120 
121         /* Runway Auxiliary Register Set */
122         uint32_t   io_err_resp;            /* Offset  0 */
123         uint32_t   io_err_info;            /* Offset  1 */
124         uint32_t   io_err_req;             /* Offset  2 */
125         uint32_t   io_err_resp_hi;         /* Offset  3 */
126         uint32_t   io_tlb_entry_m;         /* Offset  4 */
127         uint32_t   io_tlb_entry_l;         /* Offset  5 */
128         uint32_t   unused3[1];
129         uint32_t   io_pdir_base;           /* Offset  7 */
130         uint32_t   io_io_low_hv;           /* Offset  8 */
131         uint32_t   io_io_high_hv;          /* Offset  9 */
132         uint32_t   unused4[1];
133         uint32_t   io_chain_id_mask;       /* Offset 11 */
134         uint32_t   unused5[2];
135         uint32_t   io_io_low;              /* Offset 14 */
136         uint32_t   io_io_high;             /* Offset 15 */
137 };
138 
139 /*
140 ** IOA Registers
141 ** -------------
142 **
143 ** Runway IO_CONTROL Register (+0x38)
144 **
145 ** The Runway IO_CONTROL register controls the forwarding of transactions.
146 **
147 ** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
148 ** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
149 **
150 ** o mode field indicates the address translation of transactions
151 **   forwarded from Runway to GSC+:
152 **       Mode Name     Value        Definition
153 **       Off (default)   0          Opaque to matching addresses.
154 **       Include         1          Transparent for matching addresses.
155 **       Peek            3          Map matching addresses.
156 **
157 **       + "Off" mode: Runway transactions which match the I/O range
158 **         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
159 **       + "Include" mode: all addresses within the I/O range specified
160 **         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
161 **         forwarded. This is the I/O Adapter's normal operating mode.
162 **       + "Peek" mode: used during system configuration to initialize the
163 **         GSC+ bus. Runway Write_Shorts in the address range specified by
164 **         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
165 **         *AND* the GSC+ address is remapped to the Broadcast Physical
166 **         Address space by setting the 14 high order address bits of the
167 **         32 bit GSC+ address to ones.
168 **
169 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
170 **   "Real" mode is the poweron default.
171 **
172 **   TLB Mode  Value  Description
173 **   Real        0    No TLB translation. Address is directly mapped and the
174 **                    virtual address is composed of selected physical bits.
175 **   Error       1    Software fills the TLB manually.
176 **   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
177 **
178 **
179 ** IO_IO_LOW_HV	  +0x60 (HV dependent)
180 ** IO_IO_HIGH_HV  +0x64 (HV dependent)
181 ** IO_IO_LOW      +0x78	(Architected register)
182 ** IO_IO_HIGH     +0x7c	(Architected register)
183 **
184 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
185 ** I/O Adapter address space, respectively.
186 **
187 ** 0  ... 7 | 8 ... 15 |  16   ...   31 |
188 ** 11111111 | 11111111 |      address   |
189 **
190 ** Each LOW/HIGH pair describes a disjoint address space region.
191 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
192 ** with both sets of LOW/HIGH registers. If the address is in the range
193 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
194 ** for forwarded to the respective GSC+ bus.
195 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
196 ** an address space region.
197 **
198 ** In order for a Runway address to reside within GSC+ extended address space:
199 **	Runway Address [0:7]    must identically compare to 8'b11111111
200 **	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
201 ** 	Runway Address [12:23]  must be greater than or equal to
202 **	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
203 **	Runway Address [24:39]  is not used in the comparison.
204 **
205 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
206 ** as follows:
207 **	GSC+ Address[0:3]	4'b1111
208 **	GSC+ Address[4:29]	Runway Address[12:37]
209 **	GSC+ Address[30:31]	2'b00
210 **
211 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
212 ** is interrogated and address space is defined. The operating system will
213 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
214 ** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
215 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
216 **
217 ** Writes to both sets of registers will take effect immediately, bypassing
218 ** the queues, which ensures that subsequent Runway transactions are checked
219 ** against the updated bounds values. However reads are queued, introducing
220 ** the possibility of a read being bypassed by a subsequent write to the same
221 ** register. This sequence can be avoided by having software wait for read
222 ** returns before issuing subsequent writes.
223 */
224 
225 struct ioc {
226 	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
227 	u8  *res_map;	                /* resource map, bit == pdir entry */
228 	u64 *pdir_base;	                /* physical base address */
229 	u32 pdir_size; 			/* bytes, function of IOV Space size */
230 	u32 res_hint;	                /* next available IOVP -
231 					   circular search */
232 	u32 res_size;		    	/* size of resource map in bytes */
233 	spinlock_t res_lock;
234 
235 #ifdef CCIO_COLLECT_STATS
236 #define CCIO_SEARCH_SAMPLE 0x100
237 	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
238 	unsigned long avg_idx;		  /* current index into avg_search */
239 	unsigned long used_pages;
240 	unsigned long msingle_calls;
241 	unsigned long msingle_pages;
242 	unsigned long msg_calls;
243 	unsigned long msg_pages;
244 	unsigned long usingle_calls;
245 	unsigned long usingle_pages;
246 	unsigned long usg_calls;
247 	unsigned long usg_pages;
248 #endif
249 	unsigned short cujo20_bug;
250 
251 	/* STUFF We don't need in performance path */
252 	u32 chainid_shift; 		/* specify bit location of chain_id */
253 	struct ioc *next;		/* Linked list of discovered iocs */
254 	const char *name;		/* device name from firmware */
255 	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
256 	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
257 	struct resource mmio_region[2]; /* The "routed" MMIO regions */
258 };
259 
260 static struct ioc *ioc_list;
261 static int ioc_count;
262 
263 /**************************************************************
264 *
265 *   I/O Pdir Resource Management
266 *
267 *   Bits set in the resource map are in use.
268 *   Each bit can represent a number of pages.
269 *   LSbs represent lower addresses (IOVA's).
270 *
271 *   This was was copied from sba_iommu.c. Don't try to unify
272 *   the two resource managers unless a way to have different
273 *   allocation policies is also adjusted. We'd like to avoid
274 *   I/O TLB thrashing by having resource allocation policy
275 *   match the I/O TLB replacement policy.
276 *
277 ***************************************************************/
278 #define IOVP_SIZE PAGE_SIZE
279 #define IOVP_SHIFT PAGE_SHIFT
280 #define IOVP_MASK PAGE_MASK
281 
282 /* Convert from IOVP to IOVA and vice versa. */
283 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
284 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
285 
286 #define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
287 #define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
288 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
289 
290 /*
291 ** Don't worry about the 150% average search length on a miss.
292 ** If the search wraps around, and passes the res_hint, it will
293 ** cause the kernel to panic anyhow.
294 */
295 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
296        for(; res_ptr < res_end; ++res_ptr) { \
297 		int ret;\
298 		unsigned int idx;\
299 		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
300 		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
301 		if ((0 == (*res_ptr & mask)) && !ret) { \
302 			*res_ptr |= mask; \
303 			res_idx = idx;\
304 			ioc->res_hint = res_idx + (size >> 3); \
305 			goto resource_found; \
306 		} \
307 	}
308 
309 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
310        u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
311        u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
312        CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
313        res_ptr = (u##size *)&(ioc)->res_map[0]; \
314        CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
315 
316 /*
317 ** Find available bit in this ioa's resource map.
318 ** Use a "circular" search:
319 **   o Most IOVA's are "temporary" - avg search time should be small.
320 ** o keep a history of what happened for debugging
321 ** o KISS.
322 **
323 ** Perf optimizations:
324 ** o search for log2(size) bits at a time.
325 ** o search for available resource bits using byte/word/whatever.
326 ** o use different search for "large" (eg > 4 pages) or "very large"
327 **   (eg > 16 pages) mappings.
328 */
329 
330 /**
331  * ccio_alloc_range - Allocate pages in the ioc's resource map.
332  * @ioc: The I/O Controller.
333  * @pages_needed: The requested number of pages to be mapped into the
334  * I/O Pdir...
335  *
336  * This function searches the resource map of the ioc to locate a range
337  * of available pages for the requested size.
338  */
339 static int
340 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
341 {
342 	unsigned int pages_needed = size >> IOVP_SHIFT;
343 	unsigned int res_idx;
344 	unsigned long boundary_size;
345 #ifdef CCIO_COLLECT_STATS
346 	unsigned long cr_start = mfctl(16);
347 #endif
348 
349 	BUG_ON(pages_needed == 0);
350 	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
351 
352 	DBG_RES("%s() size: %d pages_needed %d\n",
353 		__func__, size, pages_needed);
354 
355 	/*
356 	** "seek and ye shall find"...praying never hurts either...
357 	** ggg sacrifices another 710 to the computer gods.
358 	*/
359 
360 	boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
361 			      1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
362 
363 	if (pages_needed <= 8) {
364 		/*
365 		 * LAN traffic will not thrash the TLB IFF the same NIC
366 		 * uses 8 adjacent pages to map separate payload data.
367 		 * ie the same byte in the resource bit map.
368 		 */
369 #if 0
370 		/* FIXME: bit search should shift it's way through
371 		 * an unsigned long - not byte at a time. As it is now,
372 		 * we effectively allocate this byte to this mapping.
373 		 */
374 		unsigned long mask = ~(~0UL >> pages_needed);
375 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
376 #else
377 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
378 #endif
379 	} else if (pages_needed <= 16) {
380 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
381 	} else if (pages_needed <= 32) {
382 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
383 #ifdef __LP64__
384 	} else if (pages_needed <= 64) {
385 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
386 #endif
387 	} else {
388 		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
389 		       __FILE__,  __func__, pages_needed);
390 	}
391 
392 	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
393 	      __func__);
394 
395 resource_found:
396 
397 	DBG_RES("%s() res_idx %d res_hint: %d\n",
398 		__func__, res_idx, ioc->res_hint);
399 
400 #ifdef CCIO_COLLECT_STATS
401 	{
402 		unsigned long cr_end = mfctl(16);
403 		unsigned long tmp = cr_end - cr_start;
404 		/* check for roll over */
405 		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
406 	}
407 	ioc->avg_search[ioc->avg_idx++] = cr_start;
408 	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
409 	ioc->used_pages += pages_needed;
410 #endif
411 	/*
412 	** return the bit address.
413 	*/
414 	return res_idx << 3;
415 }
416 
417 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
418         u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
419         BUG_ON((*res_ptr & mask) != mask); \
420         *res_ptr &= ~(mask);
421 
422 /**
423  * ccio_free_range - Free pages from the ioc's resource map.
424  * @ioc: The I/O Controller.
425  * @iova: The I/O Virtual Address.
426  * @pages_mapped: The requested number of pages to be freed from the
427  * I/O Pdir.
428  *
429  * This function frees the resouces allocated for the iova.
430  */
431 static void
432 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
433 {
434 	unsigned long iovp = CCIO_IOVP(iova);
435 	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
436 
437 	BUG_ON(pages_mapped == 0);
438 	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
439 	BUG_ON(pages_mapped > BITS_PER_LONG);
440 
441 	DBG_RES("%s():  res_idx: %d pages_mapped %d\n",
442 		__func__, res_idx, pages_mapped);
443 
444 #ifdef CCIO_COLLECT_STATS
445 	ioc->used_pages -= pages_mapped;
446 #endif
447 
448 	if(pages_mapped <= 8) {
449 #if 0
450 		/* see matching comments in alloc_range */
451 		unsigned long mask = ~(~0UL >> pages_mapped);
452 		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
453 #else
454 		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
455 #endif
456 	} else if(pages_mapped <= 16) {
457 		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
458 	} else if(pages_mapped <= 32) {
459 		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
460 #ifdef __LP64__
461 	} else if(pages_mapped <= 64) {
462 		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
463 #endif
464 	} else {
465 		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
466 		      __func__);
467 	}
468 }
469 
470 /****************************************************************
471 **
472 **          CCIO dma_ops support routines
473 **
474 *****************************************************************/
475 
476 typedef unsigned long space_t;
477 #define KERNEL_SPACE 0
478 
479 /*
480 ** DMA "Page Type" and Hints
481 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
482 **   set for subcacheline DMA transfers since we don't want to damage the
483 **   other part of a cacheline.
484 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
485 **   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
486 **   data can avoid this if the mapping covers full cache lines.
487 ** o STOP_MOST is needed for atomicity across cachelines.
488 **   Apparently only "some EISA devices" need this.
489 **   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
490 **   to use this hint iff the EISA devices needs this feature.
491 **   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
492 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
493 **   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
494 **   device can be fetched and multiply DMA streams will thrash the
495 **   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
496 **   and Invalidation of Prefetch Entries".
497 **
498 ** FIXME: the default hints need to be per GSC device - not global.
499 **
500 ** HP-UX dorks: linux device driver programming model is totally different
501 **    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
502 **    do special things to work on non-coherent platforms...linux has to
503 **    be much more careful with this.
504 */
505 #define IOPDIR_VALID    0x01UL
506 #define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
507 #ifdef CONFIG_EISA
508 #define HINT_STOP_MOST  0x04UL	/* LSL support */
509 #else
510 #define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
511 #endif
512 #define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
513 #define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
514 
515 
516 /*
517 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
518 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
519 ** when it passes in BIDIRECTIONAL flag.
520 */
521 static u32 hint_lookup[] = {
522 	[PCI_DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
523 	[PCI_DMA_TODEVICE]	= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
524 	[PCI_DMA_FROMDEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
525 };
526 
527 /**
528  * ccio_io_pdir_entry - Initialize an I/O Pdir.
529  * @pdir_ptr: A pointer into I/O Pdir.
530  * @sid: The Space Identifier.
531  * @vba: The virtual address.
532  * @hints: The DMA Hint.
533  *
534  * Given a virtual address (vba, arg2) and space id, (sid, arg1),
535  * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
536  * entry consists of 8 bytes as shown below (MSB == bit 0):
537  *
538  *
539  * WORD 0:
540  * +------+----------------+-----------------------------------------------+
541  * | Phys | Virtual Index  |               Phys                            |
542  * | 0:3  |     0:11       |               4:19                            |
543  * |4 bits|   12 bits      |              16 bits                          |
544  * +------+----------------+-----------------------------------------------+
545  * WORD 1:
546  * +-----------------------+-----------------------------------------------+
547  * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
548  * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
549  * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
550  * +-----------------------+-----------------------------------------------+
551  *
552  * The virtual index field is filled with the results of the LCI
553  * (Load Coherence Index) instruction.  The 8 bits used for the virtual
554  * index are bits 12:19 of the value returned by LCI.
555  */
556 static void CCIO_INLINE
557 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
558 		   unsigned long hints)
559 {
560 	register unsigned long pa;
561 	register unsigned long ci; /* coherent index */
562 
563 	/* We currently only support kernel addresses */
564 	BUG_ON(sid != KERNEL_SPACE);
565 
566 	mtsp(sid,1);
567 
568 	/*
569 	** WORD 1 - low order word
570 	** "hints" parm includes the VALID bit!
571 	** "dep" clobbers the physical address offset bits as well.
572 	*/
573 	pa = virt_to_phys(vba);
574 	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
575 	((u32 *)pdir_ptr)[1] = (u32) pa;
576 
577 	/*
578 	** WORD 0 - high order word
579 	*/
580 
581 #ifdef __LP64__
582 	/*
583 	** get bits 12:15 of physical address
584 	** shift bits 16:31 of physical address
585 	** and deposit them
586 	*/
587 	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
588 	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
589 	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
590 #else
591 	pa = 0;
592 #endif
593 	/*
594 	** get CPU coherency index bits
595 	** Grab virtual index [0:11]
596 	** Deposit virt_idx bits into I/O PDIR word
597 	*/
598 	asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
599 	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
600 	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
601 
602 	((u32 *)pdir_ptr)[0] = (u32) pa;
603 
604 
605 	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
606 	**        PCX-U/U+ do. (eg C200/C240)
607 	**        PCX-T'? Don't know. (eg C110 or similar K-class)
608 	**
609 	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
610 	**
611 	** "Since PCX-U employs an offset hash that is incompatible with
612 	** the real mode coherence index generation of U2, the PDIR entry
613 	** must be flushed to memory to retain coherence."
614 	*/
615 	asm_io_fdc(pdir_ptr);
616 	asm_io_sync();
617 }
618 
619 /**
620  * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
621  * @ioc: The I/O Controller.
622  * @iovp: The I/O Virtual Page.
623  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
624  *
625  * Purge invalid I/O PDIR entries from the I/O TLB.
626  *
627  * FIXME: Can we change the byte_cnt to pages_mapped?
628  */
629 static CCIO_INLINE void
630 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
631 {
632 	u32 chain_size = 1 << ioc->chainid_shift;
633 
634 	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
635 	byte_cnt += chain_size;
636 
637 	while(byte_cnt > chain_size) {
638 		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
639 		iovp += chain_size;
640 		byte_cnt -= chain_size;
641 	}
642 }
643 
644 /**
645  * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
646  * @ioc: The I/O Controller.
647  * @iova: The I/O Virtual Address.
648  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
649  *
650  * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
651  * TLB entries.
652  *
653  * FIXME: at some threshold it might be "cheaper" to just blow
654  *        away the entire I/O TLB instead of individual entries.
655  *
656  * FIXME: Uturn has 256 TLB entries. We don't need to purge every
657  *        PDIR entry - just once for each possible TLB entry.
658  *        (We do need to maker I/O PDIR entries invalid regardless).
659  *
660  * FIXME: Can we change byte_cnt to pages_mapped?
661  */
662 static CCIO_INLINE void
663 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
664 {
665 	u32 iovp = (u32)CCIO_IOVP(iova);
666 	size_t saved_byte_cnt;
667 
668 	/* round up to nearest page size */
669 	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
670 
671 	while(byte_cnt > 0) {
672 		/* invalidate one page at a time */
673 		unsigned int idx = PDIR_INDEX(iovp);
674 		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
675 
676 		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
677 		pdir_ptr[7] = 0;	/* clear only VALID bit */
678 		/*
679 		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
680 		**   PCX-U/U+ do. (eg C200/C240)
681 		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
682 		*/
683 		asm_io_fdc(pdir_ptr);
684 
685 		iovp     += IOVP_SIZE;
686 		byte_cnt -= IOVP_SIZE;
687 	}
688 
689 	asm_io_sync();
690 	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
691 }
692 
693 /****************************************************************
694 **
695 **          CCIO dma_ops
696 **
697 *****************************************************************/
698 
699 /**
700  * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
701  * @dev: The PCI device.
702  * @mask: A bit mask describing the DMA address range of the device.
703  */
704 static int
705 ccio_dma_supported(struct device *dev, u64 mask)
706 {
707 	if(dev == NULL) {
708 		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
709 		BUG();
710 		return 0;
711 	}
712 
713 	/* only support 32-bit devices (ie PCI/GSC) */
714 	return (int)(mask == 0xffffffffUL);
715 }
716 
717 /**
718  * ccio_map_single - Map an address range into the IOMMU.
719  * @dev: The PCI device.
720  * @addr: The start address of the DMA region.
721  * @size: The length of the DMA region.
722  * @direction: The direction of the DMA transaction (to/from device).
723  *
724  * This function implements the pci_map_single function.
725  */
726 static dma_addr_t
727 ccio_map_single(struct device *dev, void *addr, size_t size,
728 		enum dma_data_direction direction)
729 {
730 	int idx;
731 	struct ioc *ioc;
732 	unsigned long flags;
733 	dma_addr_t iovp;
734 	dma_addr_t offset;
735 	u64 *pdir_start;
736 	unsigned long hint = hint_lookup[(int)direction];
737 
738 	BUG_ON(!dev);
739 	ioc = GET_IOC(dev);
740 	if (!ioc)
741 		return DMA_MAPPING_ERROR;
742 
743 	BUG_ON(size <= 0);
744 
745 	/* save offset bits */
746 	offset = ((unsigned long) addr) & ~IOVP_MASK;
747 
748 	/* round up to nearest IOVP_SIZE */
749 	size = ALIGN(size + offset, IOVP_SIZE);
750 	spin_lock_irqsave(&ioc->res_lock, flags);
751 
752 #ifdef CCIO_COLLECT_STATS
753 	ioc->msingle_calls++;
754 	ioc->msingle_pages += size >> IOVP_SHIFT;
755 #endif
756 
757 	idx = ccio_alloc_range(ioc, dev, size);
758 	iovp = (dma_addr_t)MKIOVP(idx);
759 
760 	pdir_start = &(ioc->pdir_base[idx]);
761 
762 	DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
763 		__func__, addr, (long)iovp | offset, size);
764 
765 	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
766 	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
767 		hint |= HINT_SAFE_DMA;
768 
769 	while(size > 0) {
770 		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
771 
772 		DBG_RUN(" pdir %p %08x%08x\n",
773 			pdir_start,
774 			(u32) (((u32 *) pdir_start)[0]),
775 			(u32) (((u32 *) pdir_start)[1]));
776 		++pdir_start;
777 		addr += IOVP_SIZE;
778 		size -= IOVP_SIZE;
779 	}
780 
781 	spin_unlock_irqrestore(&ioc->res_lock, flags);
782 
783 	/* form complete address */
784 	return CCIO_IOVA(iovp, offset);
785 }
786 
787 
788 static dma_addr_t
789 ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
790 		size_t size, enum dma_data_direction direction,
791 		unsigned long attrs)
792 {
793 	return ccio_map_single(dev, page_address(page) + offset, size,
794 			direction);
795 }
796 
797 
798 /**
799  * ccio_unmap_page - Unmap an address range from the IOMMU.
800  * @dev: The PCI device.
801  * @addr: The start address of the DMA region.
802  * @size: The length of the DMA region.
803  * @direction: The direction of the DMA transaction (to/from device).
804  */
805 static void
806 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
807 		enum dma_data_direction direction, unsigned long attrs)
808 {
809 	struct ioc *ioc;
810 	unsigned long flags;
811 	dma_addr_t offset = iova & ~IOVP_MASK;
812 
813 	BUG_ON(!dev);
814 	ioc = GET_IOC(dev);
815 	if (!ioc) {
816 		WARN_ON(!ioc);
817 		return;
818 	}
819 
820 	DBG_RUN("%s() iovp 0x%lx/%x\n",
821 		__func__, (long)iova, size);
822 
823 	iova ^= offset;        /* clear offset bits */
824 	size += offset;
825 	size = ALIGN(size, IOVP_SIZE);
826 
827 	spin_lock_irqsave(&ioc->res_lock, flags);
828 
829 #ifdef CCIO_COLLECT_STATS
830 	ioc->usingle_calls++;
831 	ioc->usingle_pages += size >> IOVP_SHIFT;
832 #endif
833 
834 	ccio_mark_invalid(ioc, iova, size);
835 	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
836 	spin_unlock_irqrestore(&ioc->res_lock, flags);
837 }
838 
839 /**
840  * ccio_alloc - Allocate a consistent DMA mapping.
841  * @dev: The PCI device.
842  * @size: The length of the DMA region.
843  * @dma_handle: The DMA address handed back to the device (not the cpu).
844  *
845  * This function implements the pci_alloc_consistent function.
846  */
847 static void *
848 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
849 		unsigned long attrs)
850 {
851       void *ret;
852 #if 0
853 /* GRANT Need to establish hierarchy for non-PCI devs as well
854 ** and then provide matching gsc_map_xxx() functions for them as well.
855 */
856 	if(!hwdev) {
857 		/* only support PCI */
858 		*dma_handle = 0;
859 		return 0;
860 	}
861 #endif
862         ret = (void *) __get_free_pages(flag, get_order(size));
863 
864 	if (ret) {
865 		memset(ret, 0, size);
866 		*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
867 	}
868 
869 	return ret;
870 }
871 
872 /**
873  * ccio_free - Free a consistent DMA mapping.
874  * @dev: The PCI device.
875  * @size: The length of the DMA region.
876  * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
877  * @dma_handle: The device address returned from the ccio_alloc_consistent.
878  *
879  * This function implements the pci_free_consistent function.
880  */
881 static void
882 ccio_free(struct device *dev, size_t size, void *cpu_addr,
883 		dma_addr_t dma_handle, unsigned long attrs)
884 {
885 	ccio_unmap_page(dev, dma_handle, size, 0, 0);
886 	free_pages((unsigned long)cpu_addr, get_order(size));
887 }
888 
889 /*
890 ** Since 0 is a valid pdir_base index value, can't use that
891 ** to determine if a value is valid or not. Use a flag to indicate
892 ** the SG list entry contains a valid pdir index.
893 */
894 #define PIDE_FLAG 0x80000000UL
895 
896 #ifdef CCIO_COLLECT_STATS
897 #define IOMMU_MAP_STATS
898 #endif
899 #include "iommu-helpers.h"
900 
901 /**
902  * ccio_map_sg - Map the scatter/gather list into the IOMMU.
903  * @dev: The PCI device.
904  * @sglist: The scatter/gather list to be mapped in the IOMMU.
905  * @nents: The number of entries in the scatter/gather list.
906  * @direction: The direction of the DMA transaction (to/from device).
907  *
908  * This function implements the pci_map_sg function.
909  */
910 static int
911 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
912 	    enum dma_data_direction direction, unsigned long attrs)
913 {
914 	struct ioc *ioc;
915 	int coalesced, filled = 0;
916 	unsigned long flags;
917 	unsigned long hint = hint_lookup[(int)direction];
918 	unsigned long prev_len = 0, current_len = 0;
919 	int i;
920 
921 	BUG_ON(!dev);
922 	ioc = GET_IOC(dev);
923 	if (!ioc)
924 		return 0;
925 
926 	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
927 
928 	/* Fast path single entry scatterlists. */
929 	if (nents == 1) {
930 		sg_dma_address(sglist) = ccio_map_single(dev,
931 				sg_virt(sglist), sglist->length,
932 				direction);
933 		sg_dma_len(sglist) = sglist->length;
934 		return 1;
935 	}
936 
937 	for(i = 0; i < nents; i++)
938 		prev_len += sglist[i].length;
939 
940 	spin_lock_irqsave(&ioc->res_lock, flags);
941 
942 #ifdef CCIO_COLLECT_STATS
943 	ioc->msg_calls++;
944 #endif
945 
946 	/*
947 	** First coalesce the chunks and allocate I/O pdir space
948 	**
949 	** If this is one DMA stream, we can properly map using the
950 	** correct virtual address associated with each DMA page.
951 	** w/o this association, we wouldn't have coherent DMA!
952 	** Access to the virtual address is what forces a two pass algorithm.
953 	*/
954 	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
955 
956 	/*
957 	** Program the I/O Pdir
958 	**
959 	** map the virtual addresses to the I/O Pdir
960 	** o dma_address will contain the pdir index
961 	** o dma_len will contain the number of bytes to map
962 	** o page/offset contain the virtual address.
963 	*/
964 	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
965 
966 	spin_unlock_irqrestore(&ioc->res_lock, flags);
967 
968 	BUG_ON(coalesced != filled);
969 
970 	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
971 
972 	for (i = 0; i < filled; i++)
973 		current_len += sg_dma_len(sglist + i);
974 
975 	BUG_ON(current_len != prev_len);
976 
977 	return filled;
978 }
979 
980 /**
981  * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
982  * @dev: The PCI device.
983  * @sglist: The scatter/gather list to be unmapped from the IOMMU.
984  * @nents: The number of entries in the scatter/gather list.
985  * @direction: The direction of the DMA transaction (to/from device).
986  *
987  * This function implements the pci_unmap_sg function.
988  */
989 static void
990 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
991 	      enum dma_data_direction direction, unsigned long attrs)
992 {
993 	struct ioc *ioc;
994 
995 	BUG_ON(!dev);
996 	ioc = GET_IOC(dev);
997 	if (!ioc) {
998 		WARN_ON(!ioc);
999 		return;
1000 	}
1001 
1002 	DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1003 		__func__, nents, sg_virt(sglist), sglist->length);
1004 
1005 #ifdef CCIO_COLLECT_STATS
1006 	ioc->usg_calls++;
1007 #endif
1008 
1009 	while(sg_dma_len(sglist) && nents--) {
1010 
1011 #ifdef CCIO_COLLECT_STATS
1012 		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1013 #endif
1014 		ccio_unmap_page(dev, sg_dma_address(sglist),
1015 				  sg_dma_len(sglist), direction, 0);
1016 		++sglist;
1017 	}
1018 
1019 	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1020 }
1021 
1022 static const struct dma_map_ops ccio_ops = {
1023 	.dma_supported =	ccio_dma_supported,
1024 	.alloc =		ccio_alloc,
1025 	.free =			ccio_free,
1026 	.map_page =		ccio_map_page,
1027 	.unmap_page =		ccio_unmap_page,
1028 	.map_sg = 		ccio_map_sg,
1029 	.unmap_sg = 		ccio_unmap_sg,
1030 };
1031 
1032 #ifdef CONFIG_PROC_FS
1033 static int ccio_proc_info(struct seq_file *m, void *p)
1034 {
1035 	struct ioc *ioc = ioc_list;
1036 
1037 	while (ioc != NULL) {
1038 		unsigned int total_pages = ioc->res_size << 3;
1039 #ifdef CCIO_COLLECT_STATS
1040 		unsigned long avg = 0, min, max;
1041 		int j;
1042 #endif
1043 
1044 		seq_printf(m, "%s\n", ioc->name);
1045 
1046 		seq_printf(m, "Cujo 2.0 bug    : %s\n",
1047 			   (ioc->cujo20_bug ? "yes" : "no"));
1048 
1049 		seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1050 			   total_pages * 8, total_pages);
1051 
1052 #ifdef CCIO_COLLECT_STATS
1053 		seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1054 			   total_pages - ioc->used_pages, ioc->used_pages,
1055 			   (int)(ioc->used_pages * 100 / total_pages));
1056 #endif
1057 
1058 		seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1059 			   ioc->res_size, total_pages);
1060 
1061 #ifdef CCIO_COLLECT_STATS
1062 		min = max = ioc->avg_search[0];
1063 		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1064 			avg += ioc->avg_search[j];
1065 			if(ioc->avg_search[j] > max)
1066 				max = ioc->avg_search[j];
1067 			if(ioc->avg_search[j] < min)
1068 				min = ioc->avg_search[j];
1069 		}
1070 		avg /= CCIO_SEARCH_SAMPLE;
1071 		seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1072 			   min, avg, max);
1073 
1074 		seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1075 			   ioc->msingle_calls, ioc->msingle_pages,
1076 			   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1077 
1078 		/* KLUGE - unmap_sg calls unmap_page for each mapped page */
1079 		min = ioc->usingle_calls - ioc->usg_calls;
1080 		max = ioc->usingle_pages - ioc->usg_pages;
1081 		seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1082 			   min, max, (int)((max * 1000)/min));
1083 
1084 		seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1085 			   ioc->msg_calls, ioc->msg_pages,
1086 			   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1087 
1088 		seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1089 			   ioc->usg_calls, ioc->usg_pages,
1090 			   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1091 #endif	/* CCIO_COLLECT_STATS */
1092 
1093 		ioc = ioc->next;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1100 {
1101 	struct ioc *ioc = ioc_list;
1102 
1103 	while (ioc != NULL) {
1104 		seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1105 			     ioc->res_size, false);
1106 		seq_putc(m, '\n');
1107 		ioc = ioc->next;
1108 		break; /* XXX - remove me */
1109 	}
1110 
1111 	return 0;
1112 }
1113 #endif /* CONFIG_PROC_FS */
1114 
1115 /**
1116  * ccio_find_ioc - Find the ioc in the ioc_list
1117  * @hw_path: The hardware path of the ioc.
1118  *
1119  * This function searches the ioc_list for an ioc that matches
1120  * the provide hardware path.
1121  */
1122 static struct ioc * ccio_find_ioc(int hw_path)
1123 {
1124 	int i;
1125 	struct ioc *ioc;
1126 
1127 	ioc = ioc_list;
1128 	for (i = 0; i < ioc_count; i++) {
1129 		if (ioc->hw_path == hw_path)
1130 			return ioc;
1131 
1132 		ioc = ioc->next;
1133 	}
1134 
1135 	return NULL;
1136 }
1137 
1138 /**
1139  * ccio_get_iommu - Find the iommu which controls this device
1140  * @dev: The parisc device.
1141  *
1142  * This function searches through the registered IOMMU's and returns
1143  * the appropriate IOMMU for the device based on its hardware path.
1144  */
1145 void * ccio_get_iommu(const struct parisc_device *dev)
1146 {
1147 	dev = find_pa_parent_type(dev, HPHW_IOA);
1148 	if (!dev)
1149 		return NULL;
1150 
1151 	return ccio_find_ioc(dev->hw_path);
1152 }
1153 
1154 #define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1155 
1156 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1157  * to/from certain pages.  To avoid this happening, we mark these pages
1158  * as `used', and ensure that nothing will try to allocate from them.
1159  */
1160 void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1161 {
1162 	unsigned int idx;
1163 	struct parisc_device *dev = parisc_parent(cujo);
1164 	struct ioc *ioc = ccio_get_iommu(dev);
1165 	u8 *res_ptr;
1166 
1167 	ioc->cujo20_bug = 1;
1168 	res_ptr = ioc->res_map;
1169 	idx = PDIR_INDEX(iovp) >> 3;
1170 
1171 	while (idx < ioc->res_size) {
1172  		res_ptr[idx] |= 0xff;
1173 		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1174 	}
1175 }
1176 
1177 #if 0
1178 /* GRANT -  is this needed for U2 or not? */
1179 
1180 /*
1181 ** Get the size of the I/O TLB for this I/O MMU.
1182 **
1183 ** If spa_shift is non-zero (ie probably U2),
1184 ** then calculate the I/O TLB size using spa_shift.
1185 **
1186 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1187 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1188 ** I think only Java (K/D/R-class too?) systems don't do this.
1189 */
1190 static int
1191 ccio_get_iotlb_size(struct parisc_device *dev)
1192 {
1193 	if (dev->spa_shift == 0) {
1194 		panic("%s() : Can't determine I/O TLB size.\n", __func__);
1195 	}
1196 	return (1 << dev->spa_shift);
1197 }
1198 #else
1199 
1200 /* Uturn supports 256 TLB entries */
1201 #define CCIO_CHAINID_SHIFT	8
1202 #define CCIO_CHAINID_MASK	0xff
1203 #endif /* 0 */
1204 
1205 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1206 static const struct parisc_device_id ccio_tbl[] __initconst = {
1207 	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1208 	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1209 	{ 0, }
1210 };
1211 
1212 static int ccio_probe(struct parisc_device *dev);
1213 
1214 static struct parisc_driver ccio_driver __refdata = {
1215 	.name =		"ccio",
1216 	.id_table =	ccio_tbl,
1217 	.probe =	ccio_probe,
1218 };
1219 
1220 /**
1221  * ccio_ioc_init - Initialize the I/O Controller
1222  * @ioc: The I/O Controller.
1223  *
1224  * Initialize the I/O Controller which includes setting up the
1225  * I/O Page Directory, the resource map, and initalizing the
1226  * U2/Uturn chip into virtual mode.
1227  */
1228 static void __init
1229 ccio_ioc_init(struct ioc *ioc)
1230 {
1231 	int i;
1232 	unsigned int iov_order;
1233 	u32 iova_space_size;
1234 
1235 	/*
1236 	** Determine IOVA Space size from memory size.
1237 	**
1238 	** Ideally, PCI drivers would register the maximum number
1239 	** of DMA they can have outstanding for each device they
1240 	** own.  Next best thing would be to guess how much DMA
1241 	** can be outstanding based on PCI Class/sub-class. Both
1242 	** methods still require some "extra" to support PCI
1243 	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1244 	*/
1245 
1246 	iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1247 
1248 	/* limit IOVA space size to 1MB-1GB */
1249 
1250 	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1251 		iova_space_size =  1 << (20 - PAGE_SHIFT);
1252 #ifdef __LP64__
1253 	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1254 		iova_space_size =  1 << (30 - PAGE_SHIFT);
1255 #endif
1256 	}
1257 
1258 	/*
1259 	** iova space must be log2() in size.
1260 	** thus, pdir/res_map will also be log2().
1261 	*/
1262 
1263 	/* We could use larger page sizes in order to *decrease* the number
1264 	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1265 	**
1266 	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1267 	**   since the pages must also be physically contiguous - typically
1268 	**   this is the case under linux."
1269 	*/
1270 
1271 	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1272 
1273 	/* iova_space_size is now bytes, not pages */
1274 	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1275 
1276 	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1277 
1278 	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1279 
1280 	/* Verify it's a power of two */
1281 	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1282 
1283 	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1284 			__func__, ioc->ioc_regs,
1285 			(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1286 			iova_space_size>>20,
1287 			iov_order + PAGE_SHIFT);
1288 
1289 	ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1290 						 get_order(ioc->pdir_size));
1291 	if(NULL == ioc->pdir_base) {
1292 		panic("%s() could not allocate I/O Page Table\n", __func__);
1293 	}
1294 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1295 
1296 	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1297 	DBG_INIT(" base %p\n", ioc->pdir_base);
1298 
1299 	/* resource map size dictated by pdir_size */
1300  	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1301 	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1302 
1303 	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1304 					      get_order(ioc->res_size));
1305 	if(NULL == ioc->res_map) {
1306 		panic("%s() could not allocate resource map\n", __func__);
1307 	}
1308 	memset(ioc->res_map, 0, ioc->res_size);
1309 
1310 	/* Initialize the res_hint to 16 */
1311 	ioc->res_hint = 16;
1312 
1313 	/* Initialize the spinlock */
1314 	spin_lock_init(&ioc->res_lock);
1315 
1316 	/*
1317 	** Chainid is the upper most bits of an IOVP used to determine
1318 	** which TLB entry an IOVP will use.
1319 	*/
1320 	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1321 	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1322 
1323 	/*
1324 	** Initialize IOA hardware
1325 	*/
1326 	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1327 		  &ioc->ioc_regs->io_chain_id_mask);
1328 
1329 	WRITE_U32(virt_to_phys(ioc->pdir_base),
1330 		  &ioc->ioc_regs->io_pdir_base);
1331 
1332 	/*
1333 	** Go to "Virtual Mode"
1334 	*/
1335 	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1336 
1337 	/*
1338 	** Initialize all I/O TLB entries to 0 (Valid bit off).
1339 	*/
1340 	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1341 	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1342 
1343 	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1344 		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1345 			  &ioc->ioc_regs->io_command);
1346 	}
1347 }
1348 
1349 static void __init
1350 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1351 {
1352 	int result;
1353 
1354 	res->parent = NULL;
1355 	res->flags = IORESOURCE_MEM;
1356 	/*
1357 	 * bracing ((signed) ...) are required for 64bit kernel because
1358 	 * we only want to sign extend the lower 16 bits of the register.
1359 	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1360 	 */
1361 	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1362 	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1363 	res->name = name;
1364 	/*
1365 	 * Check if this MMIO range is disable
1366 	 */
1367 	if (res->end + 1 == res->start)
1368 		return;
1369 
1370 	/* On some platforms (e.g. K-Class), we have already registered
1371 	 * resources for devices reported by firmware. Some are children
1372 	 * of ccio.
1373 	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1374 	 */
1375 	result = insert_resource(&iomem_resource, res);
1376 	if (result < 0) {
1377 		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1378 			__func__, (unsigned long)res->start, (unsigned long)res->end);
1379 	}
1380 }
1381 
1382 static void __init ccio_init_resources(struct ioc *ioc)
1383 {
1384 	struct resource *res = ioc->mmio_region;
1385 	char *name = kmalloc(14, GFP_KERNEL);
1386 
1387 	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1388 
1389 	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1390 	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1391 }
1392 
1393 static int new_ioc_area(struct resource *res, unsigned long size,
1394 		unsigned long min, unsigned long max, unsigned long align)
1395 {
1396 	if (max <= min)
1397 		return -EBUSY;
1398 
1399 	res->start = (max - size + 1) &~ (align - 1);
1400 	res->end = res->start + size;
1401 
1402 	/* We might be trying to expand the MMIO range to include
1403 	 * a child device that has already registered it's MMIO space.
1404 	 * Use "insert" instead of request_resource().
1405 	 */
1406 	if (!insert_resource(&iomem_resource, res))
1407 		return 0;
1408 
1409 	return new_ioc_area(res, size, min, max - size, align);
1410 }
1411 
1412 static int expand_ioc_area(struct resource *res, unsigned long size,
1413 		unsigned long min, unsigned long max, unsigned long align)
1414 {
1415 	unsigned long start, len;
1416 
1417 	if (!res->parent)
1418 		return new_ioc_area(res, size, min, max, align);
1419 
1420 	start = (res->start - size) &~ (align - 1);
1421 	len = res->end - start + 1;
1422 	if (start >= min) {
1423 		if (!adjust_resource(res, start, len))
1424 			return 0;
1425 	}
1426 
1427 	start = res->start;
1428 	len = ((size + res->end + align) &~ (align - 1)) - start;
1429 	if (start + len <= max) {
1430 		if (!adjust_resource(res, start, len))
1431 			return 0;
1432 	}
1433 
1434 	return -EBUSY;
1435 }
1436 
1437 /*
1438  * Dino calls this function.  Beware that we may get called on systems
1439  * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1440  * So it's legal to find no parent IOC.
1441  *
1442  * Some other issues: one of the resources in the ioc may be unassigned.
1443  */
1444 int ccio_allocate_resource(const struct parisc_device *dev,
1445 		struct resource *res, unsigned long size,
1446 		unsigned long min, unsigned long max, unsigned long align)
1447 {
1448 	struct resource *parent = &iomem_resource;
1449 	struct ioc *ioc = ccio_get_iommu(dev);
1450 	if (!ioc)
1451 		goto out;
1452 
1453 	parent = ioc->mmio_region;
1454 	if (parent->parent &&
1455 	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1456 		return 0;
1457 
1458 	if ((parent + 1)->parent &&
1459 	    !allocate_resource(parent + 1, res, size, min, max, align,
1460 				NULL, NULL))
1461 		return 0;
1462 
1463 	if (!expand_ioc_area(parent, size, min, max, align)) {
1464 		__raw_writel(((parent->start)>>16) | 0xffff0000,
1465 			     &ioc->ioc_regs->io_io_low);
1466 		__raw_writel(((parent->end)>>16) | 0xffff0000,
1467 			     &ioc->ioc_regs->io_io_high);
1468 	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1469 		parent++;
1470 		__raw_writel(((parent->start)>>16) | 0xffff0000,
1471 			     &ioc->ioc_regs->io_io_low_hv);
1472 		__raw_writel(((parent->end)>>16) | 0xffff0000,
1473 			     &ioc->ioc_regs->io_io_high_hv);
1474 	} else {
1475 		return -EBUSY;
1476 	}
1477 
1478  out:
1479 	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1480 }
1481 
1482 int ccio_request_resource(const struct parisc_device *dev,
1483 		struct resource *res)
1484 {
1485 	struct resource *parent;
1486 	struct ioc *ioc = ccio_get_iommu(dev);
1487 
1488 	if (!ioc) {
1489 		parent = &iomem_resource;
1490 	} else if ((ioc->mmio_region->start <= res->start) &&
1491 			(res->end <= ioc->mmio_region->end)) {
1492 		parent = ioc->mmio_region;
1493 	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1494 			(res->end <= (ioc->mmio_region + 1)->end)) {
1495 		parent = ioc->mmio_region + 1;
1496 	} else {
1497 		return -EBUSY;
1498 	}
1499 
1500 	/* "transparent" bus bridges need to register MMIO resources
1501 	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1502 	 * registered their resources in the PDC "bus walk" (See
1503 	 * arch/parisc/kernel/inventory.c).
1504 	 */
1505 	return insert_resource(parent, res);
1506 }
1507 
1508 /**
1509  * ccio_probe - Determine if ccio should claim this device.
1510  * @dev: The device which has been found
1511  *
1512  * Determine if ccio should claim this chip (return 0) or not (return 1).
1513  * If so, initialize the chip and tell other partners in crime they
1514  * have work to do.
1515  */
1516 static int __init ccio_probe(struct parisc_device *dev)
1517 {
1518 	int i;
1519 	struct ioc *ioc, **ioc_p = &ioc_list;
1520 
1521 	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1522 	if (ioc == NULL) {
1523 		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1524 		return -ENOMEM;
1525 	}
1526 
1527 	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1528 
1529 	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1530 		(unsigned long)dev->hpa.start);
1531 
1532 	for (i = 0; i < ioc_count; i++) {
1533 		ioc_p = &(*ioc_p)->next;
1534 	}
1535 	*ioc_p = ioc;
1536 
1537 	ioc->hw_path = dev->hw_path;
1538 	ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1539 	if (!ioc->ioc_regs) {
1540 		kfree(ioc);
1541 		return -ENOMEM;
1542 	}
1543 	ccio_ioc_init(ioc);
1544 	ccio_init_resources(ioc);
1545 	hppa_dma_ops = &ccio_ops;
1546 	dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1547 
1548 	/* if this fails, no I/O cards will work, so may as well bug */
1549 	BUG_ON(dev->dev.platform_data == NULL);
1550 	HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1551 
1552 #ifdef CONFIG_PROC_FS
1553 	if (ioc_count == 0) {
1554 		proc_create_single(MODULE_NAME, 0, proc_runway_root,
1555 				ccio_proc_info);
1556 		proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1557 				ccio_proc_bitmap_info);
1558 	}
1559 #endif
1560 	ioc_count++;
1561 	return 0;
1562 }
1563 
1564 /**
1565  * ccio_init - ccio initialization procedure.
1566  *
1567  * Register this driver.
1568  */
1569 void __init ccio_init(void)
1570 {
1571 	register_parisc_driver(&ccio_driver);
1572 }
1573 
1574