xref: /openbmc/linux/drivers/parisc/ccio-dma.c (revision 64c70b1c)
1 /*
2 ** ccio-dma.c:
3 **	DMA management routines for first generation cache-coherent machines.
4 **	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 **	(c) Copyright 2000 Grant Grundler
7 **	(c) Copyright 2000 Ryan Bradetich
8 **	(c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
14 **
15 **
16 **  "Real Mode" operation refers to U2/Uturn chip operation.
17 **  U2/Uturn were designed to perform coherency checks w/o using
18 **  the I/O MMU - basically what x86 does.
19 **
20 **  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 **      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 **      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23 **
24 **  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25 **
26 **  Drawbacks of using Real Mode are:
27 **	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 **      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 **	o Ability to do scatter/gather in HW is lost.
30 **	o Doesn't work under PCX-U/U+ machines since they didn't follow
31 **        the coherency design originally worked out. Only PCX-W does.
32 */
33 
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 
46 #include <asm/byteorder.h>
47 #include <asm/cache.h>		/* for L1_CACHE_BYTES */
48 #include <asm/uaccess.h>
49 #include <asm/page.h>
50 #include <asm/dma.h>
51 #include <asm/io.h>
52 #include <asm/hardware.h>       /* for register_module() */
53 #include <asm/parisc-device.h>
54 
55 /*
56 ** Choose "ccio" since that's what HP-UX calls it.
57 ** Make it easier for folks to migrate from one to the other :^)
58 */
59 #define MODULE_NAME "ccio"
60 
61 #undef DEBUG_CCIO_RES
62 #undef DEBUG_CCIO_RUN
63 #undef DEBUG_CCIO_INIT
64 #undef DEBUG_CCIO_RUN_SG
65 
66 #ifdef CONFIG_PROC_FS
67 /*
68  * CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
69  * impacts performance though - ditch it if you don't use it.
70  */
71 #define CCIO_SEARCH_TIME
72 #undef CCIO_MAP_STATS
73 #else
74 #undef CCIO_SEARCH_TIME
75 #undef CCIO_MAP_STATS
76 #endif
77 
78 #include <linux/proc_fs.h>
79 #include <asm/runway.h>		/* for proc_runway_root */
80 
81 #ifdef DEBUG_CCIO_INIT
82 #define DBG_INIT(x...)  printk(x)
83 #else
84 #define DBG_INIT(x...)
85 #endif
86 
87 #ifdef DEBUG_CCIO_RUN
88 #define DBG_RUN(x...)   printk(x)
89 #else
90 #define DBG_RUN(x...)
91 #endif
92 
93 #ifdef DEBUG_CCIO_RES
94 #define DBG_RES(x...)   printk(x)
95 #else
96 #define DBG_RES(x...)
97 #endif
98 
99 #ifdef DEBUG_CCIO_RUN_SG
100 #define DBG_RUN_SG(x...) printk(x)
101 #else
102 #define DBG_RUN_SG(x...)
103 #endif
104 
105 #define CCIO_INLINE	inline
106 #define WRITE_U32(value, addr) __raw_writel(value, addr)
107 #define READ_U32(addr) __raw_readl(addr)
108 
109 #define U2_IOA_RUNWAY 0x580
110 #define U2_BC_GSC     0x501
111 #define UTURN_IOA_RUNWAY 0x581
112 #define UTURN_BC_GSC     0x502
113 
114 #define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
115 #define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
116 #define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
117 
118 struct ioa_registers {
119         /* Runway Supervisory Set */
120         int32_t    unused1[12];
121         uint32_t   io_command;             /* Offset 12 */
122         uint32_t   io_status;              /* Offset 13 */
123         uint32_t   io_control;             /* Offset 14 */
124         int32_t    unused2[1];
125 
126         /* Runway Auxiliary Register Set */
127         uint32_t   io_err_resp;            /* Offset  0 */
128         uint32_t   io_err_info;            /* Offset  1 */
129         uint32_t   io_err_req;             /* Offset  2 */
130         uint32_t   io_err_resp_hi;         /* Offset  3 */
131         uint32_t   io_tlb_entry_m;         /* Offset  4 */
132         uint32_t   io_tlb_entry_l;         /* Offset  5 */
133         uint32_t   unused3[1];
134         uint32_t   io_pdir_base;           /* Offset  7 */
135         uint32_t   io_io_low_hv;           /* Offset  8 */
136         uint32_t   io_io_high_hv;          /* Offset  9 */
137         uint32_t   unused4[1];
138         uint32_t   io_chain_id_mask;       /* Offset 11 */
139         uint32_t   unused5[2];
140         uint32_t   io_io_low;              /* Offset 14 */
141         uint32_t   io_io_high;             /* Offset 15 */
142 };
143 
144 /*
145 ** IOA Registers
146 ** -------------
147 **
148 ** Runway IO_CONTROL Register (+0x38)
149 **
150 ** The Runway IO_CONTROL register controls the forwarding of transactions.
151 **
152 ** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
153 ** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
154 **
155 ** o mode field indicates the address translation of transactions
156 **   forwarded from Runway to GSC+:
157 **       Mode Name     Value        Definition
158 **       Off (default)   0          Opaque to matching addresses.
159 **       Include         1          Transparent for matching addresses.
160 **       Peek            3          Map matching addresses.
161 **
162 **       + "Off" mode: Runway transactions which match the I/O range
163 **         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
164 **       + "Include" mode: all addresses within the I/O range specified
165 **         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
166 **         forwarded. This is the I/O Adapter's normal operating mode.
167 **       + "Peek" mode: used during system configuration to initialize the
168 **         GSC+ bus. Runway Write_Shorts in the address range specified by
169 **         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
170 **         *AND* the GSC+ address is remapped to the Broadcast Physical
171 **         Address space by setting the 14 high order address bits of the
172 **         32 bit GSC+ address to ones.
173 **
174 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
175 **   "Real" mode is the poweron default.
176 **
177 **   TLB Mode  Value  Description
178 **   Real        0    No TLB translation. Address is directly mapped and the
179 **                    virtual address is composed of selected physical bits.
180 **   Error       1    Software fills the TLB manually.
181 **   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
182 **
183 **
184 ** IO_IO_LOW_HV	  +0x60 (HV dependent)
185 ** IO_IO_HIGH_HV  +0x64 (HV dependent)
186 ** IO_IO_LOW      +0x78	(Architected register)
187 ** IO_IO_HIGH     +0x7c	(Architected register)
188 **
189 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
190 ** I/O Adapter address space, respectively.
191 **
192 ** 0  ... 7 | 8 ... 15 |  16   ...   31 |
193 ** 11111111 | 11111111 |      address   |
194 **
195 ** Each LOW/HIGH pair describes a disjoint address space region.
196 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
197 ** with both sets of LOW/HIGH registers. If the address is in the range
198 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
199 ** for forwarded to the respective GSC+ bus.
200 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
201 ** an address space region.
202 **
203 ** In order for a Runway address to reside within GSC+ extended address space:
204 **	Runway Address [0:7]    must identically compare to 8'b11111111
205 **	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
206 ** 	Runway Address [12:23]  must be greater than or equal to
207 **	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
208 **	Runway Address [24:39]  is not used in the comparison.
209 **
210 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
211 ** as follows:
212 **	GSC+ Address[0:3]	4'b1111
213 **	GSC+ Address[4:29]	Runway Address[12:37]
214 **	GSC+ Address[30:31]	2'b00
215 **
216 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
217 ** is interrogated and address space is defined. The operating system will
218 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
219 ** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
220 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
221 **
222 ** Writes to both sets of registers will take effect immediately, bypassing
223 ** the queues, which ensures that subsequent Runway transactions are checked
224 ** against the updated bounds values. However reads are queued, introducing
225 ** the possibility of a read being bypassed by a subsequent write to the same
226 ** register. This sequence can be avoided by having software wait for read
227 ** returns before issuing subsequent writes.
228 */
229 
230 struct ioc {
231 	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
232 	u8  *res_map;	                /* resource map, bit == pdir entry */
233 	u64 *pdir_base;	                /* physical base address */
234 	u32 pdir_size; 			/* bytes, function of IOV Space size */
235 	u32 res_hint;	                /* next available IOVP -
236 					   circular search */
237 	u32 res_size;		    	/* size of resource map in bytes */
238 	spinlock_t res_lock;
239 
240 #ifdef CCIO_SEARCH_TIME
241 #define CCIO_SEARCH_SAMPLE 0x100
242 	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
243 	unsigned long avg_idx;		  /* current index into avg_search */
244 #endif
245 #ifdef CCIO_MAP_STATS
246 	unsigned long used_pages;
247 	unsigned long msingle_calls;
248 	unsigned long msingle_pages;
249 	unsigned long msg_calls;
250 	unsigned long msg_pages;
251 	unsigned long usingle_calls;
252 	unsigned long usingle_pages;
253 	unsigned long usg_calls;
254 	unsigned long usg_pages;
255 #endif
256 	unsigned short cujo20_bug;
257 
258 	/* STUFF We don't need in performance path */
259 	u32 chainid_shift; 		/* specify bit location of chain_id */
260 	struct ioc *next;		/* Linked list of discovered iocs */
261 	const char *name;		/* device name from firmware */
262 	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
263 	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
264 	struct resource mmio_region[2]; /* The "routed" MMIO regions */
265 };
266 
267 static struct ioc *ioc_list;
268 static int ioc_count;
269 
270 /**************************************************************
271 *
272 *   I/O Pdir Resource Management
273 *
274 *   Bits set in the resource map are in use.
275 *   Each bit can represent a number of pages.
276 *   LSbs represent lower addresses (IOVA's).
277 *
278 *   This was was copied from sba_iommu.c. Don't try to unify
279 *   the two resource managers unless a way to have different
280 *   allocation policies is also adjusted. We'd like to avoid
281 *   I/O TLB thrashing by having resource allocation policy
282 *   match the I/O TLB replacement policy.
283 *
284 ***************************************************************/
285 #define IOVP_SIZE PAGE_SIZE
286 #define IOVP_SHIFT PAGE_SHIFT
287 #define IOVP_MASK PAGE_MASK
288 
289 /* Convert from IOVP to IOVA and vice versa. */
290 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
291 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
292 
293 #define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
294 #define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
295 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
296 
297 /*
298 ** Don't worry about the 150% average search length on a miss.
299 ** If the search wraps around, and passes the res_hint, it will
300 ** cause the kernel to panic anyhow.
301 */
302 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
303        for(; res_ptr < res_end; ++res_ptr) { \
304                if(0 == (*res_ptr & mask)) { \
305                        *res_ptr |= mask; \
306                        res_idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
307                        ioc->res_hint = res_idx + (size >> 3); \
308                        goto resource_found; \
309                } \
310        }
311 
312 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
313        u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
314        u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
315        CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
316        res_ptr = (u##size *)&(ioc)->res_map[0]; \
317        CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
318 
319 /*
320 ** Find available bit in this ioa's resource map.
321 ** Use a "circular" search:
322 **   o Most IOVA's are "temporary" - avg search time should be small.
323 ** o keep a history of what happened for debugging
324 ** o KISS.
325 **
326 ** Perf optimizations:
327 ** o search for log2(size) bits at a time.
328 ** o search for available resource bits using byte/word/whatever.
329 ** o use different search for "large" (eg > 4 pages) or "very large"
330 **   (eg > 16 pages) mappings.
331 */
332 
333 /**
334  * ccio_alloc_range - Allocate pages in the ioc's resource map.
335  * @ioc: The I/O Controller.
336  * @pages_needed: The requested number of pages to be mapped into the
337  * I/O Pdir...
338  *
339  * This function searches the resource map of the ioc to locate a range
340  * of available pages for the requested size.
341  */
342 static int
343 ccio_alloc_range(struct ioc *ioc, size_t size)
344 {
345 	unsigned int pages_needed = size >> IOVP_SHIFT;
346 	unsigned int res_idx;
347 #ifdef CCIO_SEARCH_TIME
348 	unsigned long cr_start = mfctl(16);
349 #endif
350 
351 	BUG_ON(pages_needed == 0);
352 	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
353 
354 	DBG_RES("%s() size: %d pages_needed %d\n",
355 		__FUNCTION__, size, pages_needed);
356 
357 	/*
358 	** "seek and ye shall find"...praying never hurts either...
359 	** ggg sacrifices another 710 to the computer gods.
360 	*/
361 
362 	if (pages_needed <= 8) {
363 		/*
364 		 * LAN traffic will not thrash the TLB IFF the same NIC
365 		 * uses 8 adjacent pages to map seperate payload data.
366 		 * ie the same byte in the resource bit map.
367 		 */
368 #if 0
369 		/* FIXME: bit search should shift it's way through
370 		 * an unsigned long - not byte at a time. As it is now,
371 		 * we effectively allocate this byte to this mapping.
372 		 */
373 		unsigned long mask = ~(~0UL >> pages_needed);
374 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
375 #else
376 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
377 #endif
378 	} else if (pages_needed <= 16) {
379 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
380 	} else if (pages_needed <= 32) {
381 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
382 #ifdef __LP64__
383 	} else if (pages_needed <= 64) {
384 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
385 #endif
386 	} else {
387 		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
388 		       __FILE__,  __FUNCTION__, pages_needed);
389 	}
390 
391 	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
392 	      __FUNCTION__);
393 
394 resource_found:
395 
396 	DBG_RES("%s() res_idx %d res_hint: %d\n",
397 		__FUNCTION__, res_idx, ioc->res_hint);
398 
399 #ifdef CCIO_SEARCH_TIME
400 	{
401 		unsigned long cr_end = mfctl(16);
402 		unsigned long tmp = cr_end - cr_start;
403 		/* check for roll over */
404 		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
405 	}
406 	ioc->avg_search[ioc->avg_idx++] = cr_start;
407 	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
408 #endif
409 #ifdef CCIO_MAP_STATS
410 	ioc->used_pages += pages_needed;
411 #endif
412 	/*
413 	** return the bit address.
414 	*/
415 	return res_idx << 3;
416 }
417 
418 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
419         u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
420         BUG_ON((*res_ptr & mask) != mask); \
421         *res_ptr &= ~(mask);
422 
423 /**
424  * ccio_free_range - Free pages from the ioc's resource map.
425  * @ioc: The I/O Controller.
426  * @iova: The I/O Virtual Address.
427  * @pages_mapped: The requested number of pages to be freed from the
428  * I/O Pdir.
429  *
430  * This function frees the resouces allocated for the iova.
431  */
432 static void
433 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
434 {
435 	unsigned long iovp = CCIO_IOVP(iova);
436 	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
437 
438 	BUG_ON(pages_mapped == 0);
439 	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
440 	BUG_ON(pages_mapped > BITS_PER_LONG);
441 
442 	DBG_RES("%s():  res_idx: %d pages_mapped %d\n",
443 		__FUNCTION__, res_idx, pages_mapped);
444 
445 #ifdef CCIO_MAP_STATS
446 	ioc->used_pages -= pages_mapped;
447 #endif
448 
449 	if(pages_mapped <= 8) {
450 #if 0
451 		/* see matching comments in alloc_range */
452 		unsigned long mask = ~(~0UL >> pages_mapped);
453 		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
454 #else
455 		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8);
456 #endif
457 	} else if(pages_mapped <= 16) {
458 		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16);
459 	} else if(pages_mapped <= 32) {
460 		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
461 #ifdef __LP64__
462 	} else if(pages_mapped <= 64) {
463 		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
464 #endif
465 	} else {
466 		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
467 		      __FUNCTION__);
468 	}
469 }
470 
471 /****************************************************************
472 **
473 **          CCIO dma_ops support routines
474 **
475 *****************************************************************/
476 
477 typedef unsigned long space_t;
478 #define KERNEL_SPACE 0
479 
480 /*
481 ** DMA "Page Type" and Hints
482 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
483 **   set for subcacheline DMA transfers since we don't want to damage the
484 **   other part of a cacheline.
485 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
486 **   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
487 **   data can avoid this if the mapping covers full cache lines.
488 ** o STOP_MOST is needed for atomicity across cachelines.
489 **   Apparently only "some EISA devices" need this.
490 **   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
491 **   to use this hint iff the EISA devices needs this feature.
492 **   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
493 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
494 **   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
495 **   device can be fetched and multiply DMA streams will thrash the
496 **   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
497 **   and Invalidation of Prefetch Entries".
498 **
499 ** FIXME: the default hints need to be per GSC device - not global.
500 **
501 ** HP-UX dorks: linux device driver programming model is totally different
502 **    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
503 **    do special things to work on non-coherent platforms...linux has to
504 **    be much more careful with this.
505 */
506 #define IOPDIR_VALID    0x01UL
507 #define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
508 #ifdef CONFIG_EISA
509 #define HINT_STOP_MOST  0x04UL	/* LSL support */
510 #else
511 #define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
512 #endif
513 #define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
514 #define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
515 
516 
517 /*
518 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
519 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
520 ** when it passes in BIDIRECTIONAL flag.
521 */
522 static u32 hint_lookup[] = {
523 	[PCI_DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
524 	[PCI_DMA_TODEVICE]	= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
525 	[PCI_DMA_FROMDEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
526 };
527 
528 /**
529  * ccio_io_pdir_entry - Initialize an I/O Pdir.
530  * @pdir_ptr: A pointer into I/O Pdir.
531  * @sid: The Space Identifier.
532  * @vba: The virtual address.
533  * @hints: The DMA Hint.
534  *
535  * Given a virtual address (vba, arg2) and space id, (sid, arg1),
536  * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
537  * entry consists of 8 bytes as shown below (MSB == bit 0):
538  *
539  *
540  * WORD 0:
541  * +------+----------------+-----------------------------------------------+
542  * | Phys | Virtual Index  |               Phys                            |
543  * | 0:3  |     0:11       |               4:19                            |
544  * |4 bits|   12 bits      |              16 bits                          |
545  * +------+----------------+-----------------------------------------------+
546  * WORD 1:
547  * +-----------------------+-----------------------------------------------+
548  * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
549  * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
550  * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
551  * +-----------------------+-----------------------------------------------+
552  *
553  * The virtual index field is filled with the results of the LCI
554  * (Load Coherence Index) instruction.  The 8 bits used for the virtual
555  * index are bits 12:19 of the value returned by LCI.
556  */
557 void CCIO_INLINE
558 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
559 		   unsigned long hints)
560 {
561 	register unsigned long pa;
562 	register unsigned long ci; /* coherent index */
563 
564 	/* We currently only support kernel addresses */
565 	BUG_ON(sid != KERNEL_SPACE);
566 
567 	mtsp(sid,1);
568 
569 	/*
570 	** WORD 1 - low order word
571 	** "hints" parm includes the VALID bit!
572 	** "dep" clobbers the physical address offset bits as well.
573 	*/
574 	pa = virt_to_phys(vba);
575 	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
576 	((u32 *)pdir_ptr)[1] = (u32) pa;
577 
578 	/*
579 	** WORD 0 - high order word
580 	*/
581 
582 #ifdef __LP64__
583 	/*
584 	** get bits 12:15 of physical address
585 	** shift bits 16:31 of physical address
586 	** and deposit them
587 	*/
588 	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
589 	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
590 	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
591 #else
592 	pa = 0;
593 #endif
594 	/*
595 	** get CPU coherency index bits
596 	** Grab virtual index [0:11]
597 	** Deposit virt_idx bits into I/O PDIR word
598 	*/
599 	asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
600 	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
601 	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
602 
603 	((u32 *)pdir_ptr)[0] = (u32) pa;
604 
605 
606 	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
607 	**        PCX-U/U+ do. (eg C200/C240)
608 	**        PCX-T'? Don't know. (eg C110 or similar K-class)
609 	**
610 	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
611 	** Hopefully we can patch (NOP) these out at boot time somehow.
612 	**
613 	** "Since PCX-U employs an offset hash that is incompatible with
614 	** the real mode coherence index generation of U2, the PDIR entry
615 	** must be flushed to memory to retain coherence."
616 	*/
617 	asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
618 	asm volatile("sync");
619 }
620 
621 /**
622  * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
623  * @ioc: The I/O Controller.
624  * @iovp: The I/O Virtual Page.
625  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
626  *
627  * Purge invalid I/O PDIR entries from the I/O TLB.
628  *
629  * FIXME: Can we change the byte_cnt to pages_mapped?
630  */
631 static CCIO_INLINE void
632 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
633 {
634 	u32 chain_size = 1 << ioc->chainid_shift;
635 
636 	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
637 	byte_cnt += chain_size;
638 
639 	while(byte_cnt > chain_size) {
640 		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
641 		iovp += chain_size;
642 		byte_cnt -= chain_size;
643 	}
644 }
645 
646 /**
647  * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
648  * @ioc: The I/O Controller.
649  * @iova: The I/O Virtual Address.
650  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
651  *
652  * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
653  * TLB entries.
654  *
655  * FIXME: at some threshhold it might be "cheaper" to just blow
656  *        away the entire I/O TLB instead of individual entries.
657  *
658  * FIXME: Uturn has 256 TLB entries. We don't need to purge every
659  *        PDIR entry - just once for each possible TLB entry.
660  *        (We do need to maker I/O PDIR entries invalid regardless).
661  *
662  * FIXME: Can we change byte_cnt to pages_mapped?
663  */
664 static CCIO_INLINE void
665 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
666 {
667 	u32 iovp = (u32)CCIO_IOVP(iova);
668 	size_t saved_byte_cnt;
669 
670 	/* round up to nearest page size */
671 	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
672 
673 	while(byte_cnt > 0) {
674 		/* invalidate one page at a time */
675 		unsigned int idx = PDIR_INDEX(iovp);
676 		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
677 
678 		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
679 		pdir_ptr[7] = 0;	/* clear only VALID bit */
680 		/*
681 		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
682 		**   PCX-U/U+ do. (eg C200/C240)
683 		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
684 		**
685 		** Hopefully someone figures out how to patch (NOP) the
686 		** FDC/SYNC out at boot time.
687 		*/
688 		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
689 
690 		iovp     += IOVP_SIZE;
691 		byte_cnt -= IOVP_SIZE;
692 	}
693 
694 	asm volatile("sync");
695 	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
696 }
697 
698 /****************************************************************
699 **
700 **          CCIO dma_ops
701 **
702 *****************************************************************/
703 
704 /**
705  * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
706  * @dev: The PCI device.
707  * @mask: A bit mask describing the DMA address range of the device.
708  *
709  * This function implements the pci_dma_supported function.
710  */
711 static int
712 ccio_dma_supported(struct device *dev, u64 mask)
713 {
714 	if(dev == NULL) {
715 		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
716 		BUG();
717 		return 0;
718 	}
719 
720 	/* only support 32-bit devices (ie PCI/GSC) */
721 	return (int)(mask == 0xffffffffUL);
722 }
723 
724 /**
725  * ccio_map_single - Map an address range into the IOMMU.
726  * @dev: The PCI device.
727  * @addr: The start address of the DMA region.
728  * @size: The length of the DMA region.
729  * @direction: The direction of the DMA transaction (to/from device).
730  *
731  * This function implements the pci_map_single function.
732  */
733 static dma_addr_t
734 ccio_map_single(struct device *dev, void *addr, size_t size,
735 		enum dma_data_direction direction)
736 {
737 	int idx;
738 	struct ioc *ioc;
739 	unsigned long flags;
740 	dma_addr_t iovp;
741 	dma_addr_t offset;
742 	u64 *pdir_start;
743 	unsigned long hint = hint_lookup[(int)direction];
744 
745 	BUG_ON(!dev);
746 	ioc = GET_IOC(dev);
747 
748 	BUG_ON(size <= 0);
749 
750 	/* save offset bits */
751 	offset = ((unsigned long) addr) & ~IOVP_MASK;
752 
753 	/* round up to nearest IOVP_SIZE */
754 	size = ALIGN(size + offset, IOVP_SIZE);
755 	spin_lock_irqsave(&ioc->res_lock, flags);
756 
757 #ifdef CCIO_MAP_STATS
758 	ioc->msingle_calls++;
759 	ioc->msingle_pages += size >> IOVP_SHIFT;
760 #endif
761 
762 	idx = ccio_alloc_range(ioc, size);
763 	iovp = (dma_addr_t)MKIOVP(idx);
764 
765 	pdir_start = &(ioc->pdir_base[idx]);
766 
767 	DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
768 		__FUNCTION__, addr, (long)iovp | offset, size);
769 
770 	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
771 	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
772 		hint |= HINT_SAFE_DMA;
773 
774 	while(size > 0) {
775 		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
776 
777 		DBG_RUN(" pdir %p %08x%08x\n",
778 			pdir_start,
779 			(u32) (((u32 *) pdir_start)[0]),
780 			(u32) (((u32 *) pdir_start)[1]));
781 		++pdir_start;
782 		addr += IOVP_SIZE;
783 		size -= IOVP_SIZE;
784 	}
785 
786 	spin_unlock_irqrestore(&ioc->res_lock, flags);
787 
788 	/* form complete address */
789 	return CCIO_IOVA(iovp, offset);
790 }
791 
792 /**
793  * ccio_unmap_single - Unmap an address range from the IOMMU.
794  * @dev: The PCI device.
795  * @addr: The start address of the DMA region.
796  * @size: The length of the DMA region.
797  * @direction: The direction of the DMA transaction (to/from device).
798  *
799  * This function implements the pci_unmap_single function.
800  */
801 static void
802 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
803 		  enum dma_data_direction direction)
804 {
805 	struct ioc *ioc;
806 	unsigned long flags;
807 	dma_addr_t offset = iova & ~IOVP_MASK;
808 
809 	BUG_ON(!dev);
810 	ioc = GET_IOC(dev);
811 
812 	DBG_RUN("%s() iovp 0x%lx/%x\n",
813 		__FUNCTION__, (long)iova, size);
814 
815 	iova ^= offset;        /* clear offset bits */
816 	size += offset;
817 	size = ALIGN(size, IOVP_SIZE);
818 
819 	spin_lock_irqsave(&ioc->res_lock, flags);
820 
821 #ifdef CCIO_MAP_STATS
822 	ioc->usingle_calls++;
823 	ioc->usingle_pages += size >> IOVP_SHIFT;
824 #endif
825 
826 	ccio_mark_invalid(ioc, iova, size);
827 	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
828 	spin_unlock_irqrestore(&ioc->res_lock, flags);
829 }
830 
831 /**
832  * ccio_alloc_consistent - Allocate a consistent DMA mapping.
833  * @dev: The PCI device.
834  * @size: The length of the DMA region.
835  * @dma_handle: The DMA address handed back to the device (not the cpu).
836  *
837  * This function implements the pci_alloc_consistent function.
838  */
839 static void *
840 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
841 {
842       void *ret;
843 #if 0
844 /* GRANT Need to establish hierarchy for non-PCI devs as well
845 ** and then provide matching gsc_map_xxx() functions for them as well.
846 */
847 	if(!hwdev) {
848 		/* only support PCI */
849 		*dma_handle = 0;
850 		return 0;
851 	}
852 #endif
853         ret = (void *) __get_free_pages(flag, get_order(size));
854 
855 	if (ret) {
856 		memset(ret, 0, size);
857 		*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
858 	}
859 
860 	return ret;
861 }
862 
863 /**
864  * ccio_free_consistent - Free a consistent DMA mapping.
865  * @dev: The PCI device.
866  * @size: The length of the DMA region.
867  * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
868  * @dma_handle: The device address returned from the ccio_alloc_consistent.
869  *
870  * This function implements the pci_free_consistent function.
871  */
872 static void
873 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
874 		     dma_addr_t dma_handle)
875 {
876 	ccio_unmap_single(dev, dma_handle, size, 0);
877 	free_pages((unsigned long)cpu_addr, get_order(size));
878 }
879 
880 /*
881 ** Since 0 is a valid pdir_base index value, can't use that
882 ** to determine if a value is valid or not. Use a flag to indicate
883 ** the SG list entry contains a valid pdir index.
884 */
885 #define PIDE_FLAG 0x80000000UL
886 
887 #ifdef CCIO_MAP_STATS
888 #define IOMMU_MAP_STATS
889 #endif
890 #include "iommu-helpers.h"
891 
892 /**
893  * ccio_map_sg - Map the scatter/gather list into the IOMMU.
894  * @dev: The PCI device.
895  * @sglist: The scatter/gather list to be mapped in the IOMMU.
896  * @nents: The number of entries in the scatter/gather list.
897  * @direction: The direction of the DMA transaction (to/from device).
898  *
899  * This function implements the pci_map_sg function.
900  */
901 static int
902 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
903 	    enum dma_data_direction direction)
904 {
905 	struct ioc *ioc;
906 	int coalesced, filled = 0;
907 	unsigned long flags;
908 	unsigned long hint = hint_lookup[(int)direction];
909 	unsigned long prev_len = 0, current_len = 0;
910 	int i;
911 
912 	BUG_ON(!dev);
913 	ioc = GET_IOC(dev);
914 
915 	DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
916 
917 	/* Fast path single entry scatterlists. */
918 	if (nents == 1) {
919 		sg_dma_address(sglist) = ccio_map_single(dev,
920 				(void *)sg_virt_addr(sglist), sglist->length,
921 				direction);
922 		sg_dma_len(sglist) = sglist->length;
923 		return 1;
924 	}
925 
926 	for(i = 0; i < nents; i++)
927 		prev_len += sglist[i].length;
928 
929 	spin_lock_irqsave(&ioc->res_lock, flags);
930 
931 #ifdef CCIO_MAP_STATS
932 	ioc->msg_calls++;
933 #endif
934 
935 	/*
936 	** First coalesce the chunks and allocate I/O pdir space
937 	**
938 	** If this is one DMA stream, we can properly map using the
939 	** correct virtual address associated with each DMA page.
940 	** w/o this association, we wouldn't have coherent DMA!
941 	** Access to the virtual address is what forces a two pass algorithm.
942 	*/
943 	coalesced = iommu_coalesce_chunks(ioc, sglist, nents, ccio_alloc_range);
944 
945 	/*
946 	** Program the I/O Pdir
947 	**
948 	** map the virtual addresses to the I/O Pdir
949 	** o dma_address will contain the pdir index
950 	** o dma_len will contain the number of bytes to map
951 	** o page/offset contain the virtual address.
952 	*/
953 	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
954 
955 	spin_unlock_irqrestore(&ioc->res_lock, flags);
956 
957 	BUG_ON(coalesced != filled);
958 
959 	DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
960 
961 	for (i = 0; i < filled; i++)
962 		current_len += sg_dma_len(sglist + i);
963 
964 	BUG_ON(current_len != prev_len);
965 
966 	return filled;
967 }
968 
969 /**
970  * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
971  * @dev: The PCI device.
972  * @sglist: The scatter/gather list to be unmapped from the IOMMU.
973  * @nents: The number of entries in the scatter/gather list.
974  * @direction: The direction of the DMA transaction (to/from device).
975  *
976  * This function implements the pci_unmap_sg function.
977  */
978 static void
979 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
980 	      enum dma_data_direction direction)
981 {
982 	struct ioc *ioc;
983 
984 	BUG_ON(!dev);
985 	ioc = GET_IOC(dev);
986 
987 	DBG_RUN_SG("%s() START %d entries,  %08lx,%x\n",
988 		__FUNCTION__, nents, sg_virt_addr(sglist), sglist->length);
989 
990 #ifdef CCIO_MAP_STATS
991 	ioc->usg_calls++;
992 #endif
993 
994 	while(sg_dma_len(sglist) && nents--) {
995 
996 #ifdef CCIO_MAP_STATS
997 		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
998 #endif
999 		ccio_unmap_single(dev, sg_dma_address(sglist),
1000 				  sg_dma_len(sglist), direction);
1001 		++sglist;
1002 	}
1003 
1004 	DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
1005 }
1006 
1007 static struct hppa_dma_ops ccio_ops = {
1008 	.dma_supported =	ccio_dma_supported,
1009 	.alloc_consistent =	ccio_alloc_consistent,
1010 	.alloc_noncoherent =	ccio_alloc_consistent,
1011 	.free_consistent =	ccio_free_consistent,
1012 	.map_single =		ccio_map_single,
1013 	.unmap_single =		ccio_unmap_single,
1014 	.map_sg = 		ccio_map_sg,
1015 	.unmap_sg = 		ccio_unmap_sg,
1016 	.dma_sync_single_for_cpu =	NULL,	/* NOP for U2/Uturn */
1017 	.dma_sync_single_for_device =	NULL,	/* NOP for U2/Uturn */
1018 	.dma_sync_sg_for_cpu =		NULL,	/* ditto */
1019 	.dma_sync_sg_for_device =		NULL,	/* ditto */
1020 };
1021 
1022 #ifdef CONFIG_PROC_FS
1023 static int ccio_proc_info(struct seq_file *m, void *p)
1024 {
1025 	int len = 0;
1026 	struct ioc *ioc = ioc_list;
1027 
1028 	while (ioc != NULL) {
1029 		unsigned int total_pages = ioc->res_size << 3;
1030 		unsigned long avg = 0, min, max;
1031 		int j;
1032 
1033 		len += seq_printf(m, "%s\n", ioc->name);
1034 
1035 		len += seq_printf(m, "Cujo 2.0 bug    : %s\n",
1036 				  (ioc->cujo20_bug ? "yes" : "no"));
1037 
1038 		len += seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1039 			       total_pages * 8, total_pages);
1040 
1041 #ifdef CCIO_MAP_STATS
1042 		len += seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1043 				  total_pages - ioc->used_pages, ioc->used_pages,
1044 				  (int)(ioc->used_pages * 100 / total_pages));
1045 #endif
1046 
1047 		len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1048 				  ioc->res_size, total_pages);
1049 
1050 #ifdef CCIO_SEARCH_TIME
1051 		min = max = ioc->avg_search[0];
1052 		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1053 			avg += ioc->avg_search[j];
1054 			if(ioc->avg_search[j] > max)
1055 				max = ioc->avg_search[j];
1056 			if(ioc->avg_search[j] < min)
1057 				min = ioc->avg_search[j];
1058 		}
1059 		avg /= CCIO_SEARCH_SAMPLE;
1060 		len += seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1061 				  min, avg, max);
1062 #endif
1063 #ifdef CCIO_MAP_STATS
1064 		len += seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1065 				  ioc->msingle_calls, ioc->msingle_pages,
1066 				  (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1067 
1068 		/* KLUGE - unmap_sg calls unmap_single for each mapped page */
1069 		min = ioc->usingle_calls - ioc->usg_calls;
1070 		max = ioc->usingle_pages - ioc->usg_pages;
1071 		len += seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1072 				  min, max, (int)((max * 1000)/min));
1073 
1074 		len += seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1075 				  ioc->msg_calls, ioc->msg_pages,
1076 				  (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1077 
1078 		len += seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1079 				  ioc->usg_calls, ioc->usg_pages,
1080 				  (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1081 #endif	/* CCIO_MAP_STATS */
1082 
1083 		ioc = ioc->next;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1090 {
1091 	return single_open(file, &ccio_proc_info, NULL);
1092 }
1093 
1094 static const struct file_operations ccio_proc_info_fops = {
1095 	.owner = THIS_MODULE,
1096 	.open = ccio_proc_info_open,
1097 	.read = seq_read,
1098 	.llseek = seq_lseek,
1099 	.release = single_release,
1100 };
1101 
1102 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1103 {
1104 	int len = 0;
1105 	struct ioc *ioc = ioc_list;
1106 
1107 	while (ioc != NULL) {
1108 		u32 *res_ptr = (u32 *)ioc->res_map;
1109 		int j;
1110 
1111 		for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1112 			if ((j & 7) == 0)
1113 				len += seq_puts(m, "\n   ");
1114 			len += seq_printf(m, "%08x", *res_ptr);
1115 			res_ptr++;
1116 		}
1117 		len += seq_puts(m, "\n\n");
1118 		ioc = ioc->next;
1119 		break; /* XXX - remove me */
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1126 {
1127 	return single_open(file, &ccio_proc_bitmap_info, NULL);
1128 }
1129 
1130 static const struct file_operations ccio_proc_bitmap_fops = {
1131 	.owner = THIS_MODULE,
1132 	.open = ccio_proc_bitmap_open,
1133 	.read = seq_read,
1134 	.llseek = seq_lseek,
1135 	.release = single_release,
1136 };
1137 #endif
1138 
1139 /**
1140  * ccio_find_ioc - Find the ioc in the ioc_list
1141  * @hw_path: The hardware path of the ioc.
1142  *
1143  * This function searches the ioc_list for an ioc that matches
1144  * the provide hardware path.
1145  */
1146 static struct ioc * ccio_find_ioc(int hw_path)
1147 {
1148 	int i;
1149 	struct ioc *ioc;
1150 
1151 	ioc = ioc_list;
1152 	for (i = 0; i < ioc_count; i++) {
1153 		if (ioc->hw_path == hw_path)
1154 			return ioc;
1155 
1156 		ioc = ioc->next;
1157 	}
1158 
1159 	return NULL;
1160 }
1161 
1162 /**
1163  * ccio_get_iommu - Find the iommu which controls this device
1164  * @dev: The parisc device.
1165  *
1166  * This function searches through the registered IOMMU's and returns
1167  * the appropriate IOMMU for the device based on its hardware path.
1168  */
1169 void * ccio_get_iommu(const struct parisc_device *dev)
1170 {
1171 	dev = find_pa_parent_type(dev, HPHW_IOA);
1172 	if (!dev)
1173 		return NULL;
1174 
1175 	return ccio_find_ioc(dev->hw_path);
1176 }
1177 
1178 #define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1179 
1180 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1181  * to/from certain pages.  To avoid this happening, we mark these pages
1182  * as `used', and ensure that nothing will try to allocate from them.
1183  */
1184 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1185 {
1186 	unsigned int idx;
1187 	struct parisc_device *dev = parisc_parent(cujo);
1188 	struct ioc *ioc = ccio_get_iommu(dev);
1189 	u8 *res_ptr;
1190 
1191 	ioc->cujo20_bug = 1;
1192 	res_ptr = ioc->res_map;
1193 	idx = PDIR_INDEX(iovp) >> 3;
1194 
1195 	while (idx < ioc->res_size) {
1196  		res_ptr[idx] |= 0xff;
1197 		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1198 	}
1199 }
1200 
1201 #if 0
1202 /* GRANT -  is this needed for U2 or not? */
1203 
1204 /*
1205 ** Get the size of the I/O TLB for this I/O MMU.
1206 **
1207 ** If spa_shift is non-zero (ie probably U2),
1208 ** then calculate the I/O TLB size using spa_shift.
1209 **
1210 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1211 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1212 ** I think only Java (K/D/R-class too?) systems don't do this.
1213 */
1214 static int
1215 ccio_get_iotlb_size(struct parisc_device *dev)
1216 {
1217 	if (dev->spa_shift == 0) {
1218 		panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
1219 	}
1220 	return (1 << dev->spa_shift);
1221 }
1222 #else
1223 
1224 /* Uturn supports 256 TLB entries */
1225 #define CCIO_CHAINID_SHIFT	8
1226 #define CCIO_CHAINID_MASK	0xff
1227 #endif /* 0 */
1228 
1229 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1230 static const struct parisc_device_id ccio_tbl[] = {
1231 	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1232 	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1233 	{ 0, }
1234 };
1235 
1236 static int ccio_probe(struct parisc_device *dev);
1237 
1238 static struct parisc_driver ccio_driver = {
1239 	.name =		"ccio",
1240 	.id_table =	ccio_tbl,
1241 	.probe =	ccio_probe,
1242 };
1243 
1244 /**
1245  * ccio_ioc_init - Initalize the I/O Controller
1246  * @ioc: The I/O Controller.
1247  *
1248  * Initalize the I/O Controller which includes setting up the
1249  * I/O Page Directory, the resource map, and initalizing the
1250  * U2/Uturn chip into virtual mode.
1251  */
1252 static void
1253 ccio_ioc_init(struct ioc *ioc)
1254 {
1255 	int i;
1256 	unsigned int iov_order;
1257 	u32 iova_space_size;
1258 
1259 	/*
1260 	** Determine IOVA Space size from memory size.
1261 	**
1262 	** Ideally, PCI drivers would register the maximum number
1263 	** of DMA they can have outstanding for each device they
1264 	** own.  Next best thing would be to guess how much DMA
1265 	** can be outstanding based on PCI Class/sub-class. Both
1266 	** methods still require some "extra" to support PCI
1267 	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1268 	*/
1269 
1270 	iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
1271 
1272 	/* limit IOVA space size to 1MB-1GB */
1273 
1274 	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1275 		iova_space_size =  1 << (20 - PAGE_SHIFT);
1276 #ifdef __LP64__
1277 	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1278 		iova_space_size =  1 << (30 - PAGE_SHIFT);
1279 #endif
1280 	}
1281 
1282 	/*
1283 	** iova space must be log2() in size.
1284 	** thus, pdir/res_map will also be log2().
1285 	*/
1286 
1287 	/* We could use larger page sizes in order to *decrease* the number
1288 	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1289 	**
1290 	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1291 	**   since the pages must also be physically contiguous - typically
1292 	**   this is the case under linux."
1293 	*/
1294 
1295 	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1296 
1297 	/* iova_space_size is now bytes, not pages */
1298 	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1299 
1300 	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1301 
1302 	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1303 
1304 	/* Verify it's a power of two */
1305 	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1306 
1307 	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1308 			__FUNCTION__, ioc->ioc_regs,
1309 			(unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1310 			iova_space_size>>20,
1311 			iov_order + PAGE_SHIFT);
1312 
1313 	ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1314 						 get_order(ioc->pdir_size));
1315 	if(NULL == ioc->pdir_base) {
1316 		panic("%s() could not allocate I/O Page Table\n", __FUNCTION__);
1317 	}
1318 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1319 
1320 	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1321 	DBG_INIT(" base %p\n", ioc->pdir_base);
1322 
1323 	/* resource map size dictated by pdir_size */
1324  	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1325 	DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
1326 
1327 	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1328 					      get_order(ioc->res_size));
1329 	if(NULL == ioc->res_map) {
1330 		panic("%s() could not allocate resource map\n", __FUNCTION__);
1331 	}
1332 	memset(ioc->res_map, 0, ioc->res_size);
1333 
1334 	/* Initialize the res_hint to 16 */
1335 	ioc->res_hint = 16;
1336 
1337 	/* Initialize the spinlock */
1338 	spin_lock_init(&ioc->res_lock);
1339 
1340 	/*
1341 	** Chainid is the upper most bits of an IOVP used to determine
1342 	** which TLB entry an IOVP will use.
1343 	*/
1344 	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1345 	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1346 
1347 	/*
1348 	** Initialize IOA hardware
1349 	*/
1350 	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1351 		  &ioc->ioc_regs->io_chain_id_mask);
1352 
1353 	WRITE_U32(virt_to_phys(ioc->pdir_base),
1354 		  &ioc->ioc_regs->io_pdir_base);
1355 
1356 	/*
1357 	** Go to "Virtual Mode"
1358 	*/
1359 	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1360 
1361 	/*
1362 	** Initialize all I/O TLB entries to 0 (Valid bit off).
1363 	*/
1364 	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1365 	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1366 
1367 	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1368 		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1369 			  &ioc->ioc_regs->io_command);
1370 	}
1371 }
1372 
1373 static void __init
1374 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1375 {
1376 	int result;
1377 
1378 	res->parent = NULL;
1379 	res->flags = IORESOURCE_MEM;
1380 	/*
1381 	 * bracing ((signed) ...) are required for 64bit kernel because
1382 	 * we only want to sign extend the lower 16 bits of the register.
1383 	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1384 	 */
1385 	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1386 	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1387 	res->name = name;
1388 	/*
1389 	 * Check if this MMIO range is disable
1390 	 */
1391 	if (res->end + 1 == res->start)
1392 		return;
1393 
1394 	/* On some platforms (e.g. K-Class), we have already registered
1395 	 * resources for devices reported by firmware. Some are children
1396 	 * of ccio.
1397 	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1398 	 */
1399 	result = insert_resource(&iomem_resource, res);
1400 	if (result < 0) {
1401 		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1402 	 		__FUNCTION__, res->start, res->end);
1403 	}
1404 }
1405 
1406 static void __init ccio_init_resources(struct ioc *ioc)
1407 {
1408 	struct resource *res = ioc->mmio_region;
1409 	char *name = kmalloc(14, GFP_KERNEL);
1410 
1411 	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1412 
1413 	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1414 	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1415 }
1416 
1417 static int new_ioc_area(struct resource *res, unsigned long size,
1418 		unsigned long min, unsigned long max, unsigned long align)
1419 {
1420 	if (max <= min)
1421 		return -EBUSY;
1422 
1423 	res->start = (max - size + 1) &~ (align - 1);
1424 	res->end = res->start + size;
1425 
1426 	/* We might be trying to expand the MMIO range to include
1427 	 * a child device that has already registered it's MMIO space.
1428 	 * Use "insert" instead of request_resource().
1429 	 */
1430 	if (!insert_resource(&iomem_resource, res))
1431 		return 0;
1432 
1433 	return new_ioc_area(res, size, min, max - size, align);
1434 }
1435 
1436 static int expand_ioc_area(struct resource *res, unsigned long size,
1437 		unsigned long min, unsigned long max, unsigned long align)
1438 {
1439 	unsigned long start, len;
1440 
1441 	if (!res->parent)
1442 		return new_ioc_area(res, size, min, max, align);
1443 
1444 	start = (res->start - size) &~ (align - 1);
1445 	len = res->end - start + 1;
1446 	if (start >= min) {
1447 		if (!adjust_resource(res, start, len))
1448 			return 0;
1449 	}
1450 
1451 	start = res->start;
1452 	len = ((size + res->end + align) &~ (align - 1)) - start;
1453 	if (start + len <= max) {
1454 		if (!adjust_resource(res, start, len))
1455 			return 0;
1456 	}
1457 
1458 	return -EBUSY;
1459 }
1460 
1461 /*
1462  * Dino calls this function.  Beware that we may get called on systems
1463  * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1464  * So it's legal to find no parent IOC.
1465  *
1466  * Some other issues: one of the resources in the ioc may be unassigned.
1467  */
1468 int ccio_allocate_resource(const struct parisc_device *dev,
1469 		struct resource *res, unsigned long size,
1470 		unsigned long min, unsigned long max, unsigned long align)
1471 {
1472 	struct resource *parent = &iomem_resource;
1473 	struct ioc *ioc = ccio_get_iommu(dev);
1474 	if (!ioc)
1475 		goto out;
1476 
1477 	parent = ioc->mmio_region;
1478 	if (parent->parent &&
1479 	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1480 		return 0;
1481 
1482 	if ((parent + 1)->parent &&
1483 	    !allocate_resource(parent + 1, res, size, min, max, align,
1484 				NULL, NULL))
1485 		return 0;
1486 
1487 	if (!expand_ioc_area(parent, size, min, max, align)) {
1488 		__raw_writel(((parent->start)>>16) | 0xffff0000,
1489 			     &ioc->ioc_regs->io_io_low);
1490 		__raw_writel(((parent->end)>>16) | 0xffff0000,
1491 			     &ioc->ioc_regs->io_io_high);
1492 	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1493 		parent++;
1494 		__raw_writel(((parent->start)>>16) | 0xffff0000,
1495 			     &ioc->ioc_regs->io_io_low_hv);
1496 		__raw_writel(((parent->end)>>16) | 0xffff0000,
1497 			     &ioc->ioc_regs->io_io_high_hv);
1498 	} else {
1499 		return -EBUSY;
1500 	}
1501 
1502  out:
1503 	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1504 }
1505 
1506 int ccio_request_resource(const struct parisc_device *dev,
1507 		struct resource *res)
1508 {
1509 	struct resource *parent;
1510 	struct ioc *ioc = ccio_get_iommu(dev);
1511 
1512 	if (!ioc) {
1513 		parent = &iomem_resource;
1514 	} else if ((ioc->mmio_region->start <= res->start) &&
1515 			(res->end <= ioc->mmio_region->end)) {
1516 		parent = ioc->mmio_region;
1517 	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1518 			(res->end <= (ioc->mmio_region + 1)->end)) {
1519 		parent = ioc->mmio_region + 1;
1520 	} else {
1521 		return -EBUSY;
1522 	}
1523 
1524 	/* "transparent" bus bridges need to register MMIO resources
1525 	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1526 	 * registered their resources in the PDC "bus walk" (See
1527 	 * arch/parisc/kernel/inventory.c).
1528 	 */
1529 	return insert_resource(parent, res);
1530 }
1531 
1532 /**
1533  * ccio_probe - Determine if ccio should claim this device.
1534  * @dev: The device which has been found
1535  *
1536  * Determine if ccio should claim this chip (return 0) or not (return 1).
1537  * If so, initialize the chip and tell other partners in crime they
1538  * have work to do.
1539  */
1540 static int __init ccio_probe(struct parisc_device *dev)
1541 {
1542 	int i;
1543 	struct ioc *ioc, **ioc_p = &ioc_list;
1544 	struct proc_dir_entry *info_entry, *bitmap_entry;
1545 
1546 	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1547 	if (ioc == NULL) {
1548 		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1549 		return 1;
1550 	}
1551 
1552 	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1553 
1554 	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start);
1555 
1556 	for (i = 0; i < ioc_count; i++) {
1557 		ioc_p = &(*ioc_p)->next;
1558 	}
1559 	*ioc_p = ioc;
1560 
1561 	ioc->hw_path = dev->hw_path;
1562 	ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1563 	ccio_ioc_init(ioc);
1564 	ccio_init_resources(ioc);
1565 	hppa_dma_ops = &ccio_ops;
1566 	dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1567 
1568 	/* if this fails, no I/O cards will work, so may as well bug */
1569 	BUG_ON(dev->dev.platform_data == NULL);
1570 	HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1571 
1572 	if (ioc_count == 0) {
1573 		info_entry = create_proc_entry(MODULE_NAME, 0, proc_runway_root);
1574 		if (info_entry)
1575 			info_entry->proc_fops = &ccio_proc_info_fops;
1576 
1577 		bitmap_entry = create_proc_entry(MODULE_NAME"-bitmap", 0, proc_runway_root);
1578 		if (bitmap_entry)
1579 			bitmap_entry->proc_fops = &ccio_proc_bitmap_fops;
1580 	}
1581 
1582 	ioc_count++;
1583 
1584 	parisc_vmerge_boundary = IOVP_SIZE;
1585 	parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE;
1586 	parisc_has_iommu();
1587 	return 0;
1588 }
1589 
1590 /**
1591  * ccio_init - ccio initalization procedure.
1592  *
1593  * Register this driver.
1594  */
1595 void __init ccio_init(void)
1596 {
1597 	register_parisc_driver(&ccio_driver);
1598 }
1599 
1600