1 /* 2 ** ccio-dma.c: 3 ** DMA management routines for first generation cache-coherent machines. 4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU. 5 ** 6 ** (c) Copyright 2000 Grant Grundler 7 ** (c) Copyright 2000 Ryan Bradetich 8 ** (c) Copyright 2000 Hewlett-Packard Company 9 ** 10 ** This program is free software; you can redistribute it and/or modify 11 ** it under the terms of the GNU General Public License as published by 12 ** the Free Software Foundation; either version 2 of the License, or 13 ** (at your option) any later version. 14 ** 15 ** 16 ** "Real Mode" operation refers to U2/Uturn chip operation. 17 ** U2/Uturn were designed to perform coherency checks w/o using 18 ** the I/O MMU - basically what x86 does. 19 ** 20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at: 21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc 22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c 23 ** 24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c. 25 ** 26 ** Drawbacks of using Real Mode are: 27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal). 28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute. 29 ** o Ability to do scatter/gather in HW is lost. 30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow 31 ** the coherency design originally worked out. Only PCX-W does. 32 */ 33 34 #include <linux/types.h> 35 #include <linux/kernel.h> 36 #include <linux/init.h> 37 #include <linux/mm.h> 38 #include <linux/spinlock.h> 39 #include <linux/slab.h> 40 #include <linux/string.h> 41 #include <linux/pci.h> 42 #include <linux/reboot.h> 43 #include <linux/proc_fs.h> 44 #include <linux/seq_file.h> 45 #include <linux/scatterlist.h> 46 #include <linux/iommu-helper.h> 47 #include <linux/export.h> 48 49 #include <asm/byteorder.h> 50 #include <asm/cache.h> /* for L1_CACHE_BYTES */ 51 #include <linux/uaccess.h> 52 #include <asm/page.h> 53 #include <asm/dma.h> 54 #include <asm/io.h> 55 #include <asm/hardware.h> /* for register_module() */ 56 #include <asm/parisc-device.h> 57 58 /* 59 ** Choose "ccio" since that's what HP-UX calls it. 60 ** Make it easier for folks to migrate from one to the other :^) 61 */ 62 #define MODULE_NAME "ccio" 63 64 #undef DEBUG_CCIO_RES 65 #undef DEBUG_CCIO_RUN 66 #undef DEBUG_CCIO_INIT 67 #undef DEBUG_CCIO_RUN_SG 68 69 #ifdef CONFIG_PROC_FS 70 /* depends on proc fs support. But costs CPU performance. */ 71 #undef CCIO_COLLECT_STATS 72 #endif 73 74 #include <asm/runway.h> /* for proc_runway_root */ 75 76 #ifdef DEBUG_CCIO_INIT 77 #define DBG_INIT(x...) printk(x) 78 #else 79 #define DBG_INIT(x...) 80 #endif 81 82 #ifdef DEBUG_CCIO_RUN 83 #define DBG_RUN(x...) printk(x) 84 #else 85 #define DBG_RUN(x...) 86 #endif 87 88 #ifdef DEBUG_CCIO_RES 89 #define DBG_RES(x...) printk(x) 90 #else 91 #define DBG_RES(x...) 92 #endif 93 94 #ifdef DEBUG_CCIO_RUN_SG 95 #define DBG_RUN_SG(x...) printk(x) 96 #else 97 #define DBG_RUN_SG(x...) 98 #endif 99 100 #define CCIO_INLINE inline 101 #define WRITE_U32(value, addr) __raw_writel(value, addr) 102 #define READ_U32(addr) __raw_readl(addr) 103 104 #define U2_IOA_RUNWAY 0x580 105 #define U2_BC_GSC 0x501 106 #define UTURN_IOA_RUNWAY 0x581 107 #define UTURN_BC_GSC 0x502 108 109 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */ 110 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */ 111 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */ 112 113 #define CCIO_MAPPING_ERROR (~(dma_addr_t)0) 114 115 struct ioa_registers { 116 /* Runway Supervisory Set */ 117 int32_t unused1[12]; 118 uint32_t io_command; /* Offset 12 */ 119 uint32_t io_status; /* Offset 13 */ 120 uint32_t io_control; /* Offset 14 */ 121 int32_t unused2[1]; 122 123 /* Runway Auxiliary Register Set */ 124 uint32_t io_err_resp; /* Offset 0 */ 125 uint32_t io_err_info; /* Offset 1 */ 126 uint32_t io_err_req; /* Offset 2 */ 127 uint32_t io_err_resp_hi; /* Offset 3 */ 128 uint32_t io_tlb_entry_m; /* Offset 4 */ 129 uint32_t io_tlb_entry_l; /* Offset 5 */ 130 uint32_t unused3[1]; 131 uint32_t io_pdir_base; /* Offset 7 */ 132 uint32_t io_io_low_hv; /* Offset 8 */ 133 uint32_t io_io_high_hv; /* Offset 9 */ 134 uint32_t unused4[1]; 135 uint32_t io_chain_id_mask; /* Offset 11 */ 136 uint32_t unused5[2]; 137 uint32_t io_io_low; /* Offset 14 */ 138 uint32_t io_io_high; /* Offset 15 */ 139 }; 140 141 /* 142 ** IOA Registers 143 ** ------------- 144 ** 145 ** Runway IO_CONTROL Register (+0x38) 146 ** 147 ** The Runway IO_CONTROL register controls the forwarding of transactions. 148 ** 149 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 | 150 ** | HV | TLB | reserved | HV | mode | reserved | 151 ** 152 ** o mode field indicates the address translation of transactions 153 ** forwarded from Runway to GSC+: 154 ** Mode Name Value Definition 155 ** Off (default) 0 Opaque to matching addresses. 156 ** Include 1 Transparent for matching addresses. 157 ** Peek 3 Map matching addresses. 158 ** 159 ** + "Off" mode: Runway transactions which match the I/O range 160 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored. 161 ** + "Include" mode: all addresses within the I/O range specified 162 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently 163 ** forwarded. This is the I/O Adapter's normal operating mode. 164 ** + "Peek" mode: used during system configuration to initialize the 165 ** GSC+ bus. Runway Write_Shorts in the address range specified by 166 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter 167 ** *AND* the GSC+ address is remapped to the Broadcast Physical 168 ** Address space by setting the 14 high order address bits of the 169 ** 32 bit GSC+ address to ones. 170 ** 171 ** o TLB field affects transactions which are forwarded from GSC+ to Runway. 172 ** "Real" mode is the poweron default. 173 ** 174 ** TLB Mode Value Description 175 ** Real 0 No TLB translation. Address is directly mapped and the 176 ** virtual address is composed of selected physical bits. 177 ** Error 1 Software fills the TLB manually. 178 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory). 179 ** 180 ** 181 ** IO_IO_LOW_HV +0x60 (HV dependent) 182 ** IO_IO_HIGH_HV +0x64 (HV dependent) 183 ** IO_IO_LOW +0x78 (Architected register) 184 ** IO_IO_HIGH +0x7c (Architected register) 185 ** 186 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the 187 ** I/O Adapter address space, respectively. 188 ** 189 ** 0 ... 7 | 8 ... 15 | 16 ... 31 | 190 ** 11111111 | 11111111 | address | 191 ** 192 ** Each LOW/HIGH pair describes a disjoint address space region. 193 ** (2 per GSC+ port). Each incoming Runway transaction address is compared 194 ** with both sets of LOW/HIGH registers. If the address is in the range 195 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction 196 ** for forwarded to the respective GSC+ bus. 197 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying 198 ** an address space region. 199 ** 200 ** In order for a Runway address to reside within GSC+ extended address space: 201 ** Runway Address [0:7] must identically compare to 8'b11111111 202 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19] 203 ** Runway Address [12:23] must be greater than or equal to 204 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31]. 205 ** Runway Address [24:39] is not used in the comparison. 206 ** 207 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is 208 ** as follows: 209 ** GSC+ Address[0:3] 4'b1111 210 ** GSC+ Address[4:29] Runway Address[12:37] 211 ** GSC+ Address[30:31] 2'b00 212 ** 213 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus 214 ** is interrogated and address space is defined. The operating system will 215 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following 216 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW 217 ** and IO_IO_HIGH registers should not be subsequently altered by the OS. 218 ** 219 ** Writes to both sets of registers will take effect immediately, bypassing 220 ** the queues, which ensures that subsequent Runway transactions are checked 221 ** against the updated bounds values. However reads are queued, introducing 222 ** the possibility of a read being bypassed by a subsequent write to the same 223 ** register. This sequence can be avoided by having software wait for read 224 ** returns before issuing subsequent writes. 225 */ 226 227 struct ioc { 228 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */ 229 u8 *res_map; /* resource map, bit == pdir entry */ 230 u64 *pdir_base; /* physical base address */ 231 u32 pdir_size; /* bytes, function of IOV Space size */ 232 u32 res_hint; /* next available IOVP - 233 circular search */ 234 u32 res_size; /* size of resource map in bytes */ 235 spinlock_t res_lock; 236 237 #ifdef CCIO_COLLECT_STATS 238 #define CCIO_SEARCH_SAMPLE 0x100 239 unsigned long avg_search[CCIO_SEARCH_SAMPLE]; 240 unsigned long avg_idx; /* current index into avg_search */ 241 unsigned long used_pages; 242 unsigned long msingle_calls; 243 unsigned long msingle_pages; 244 unsigned long msg_calls; 245 unsigned long msg_pages; 246 unsigned long usingle_calls; 247 unsigned long usingle_pages; 248 unsigned long usg_calls; 249 unsigned long usg_pages; 250 #endif 251 unsigned short cujo20_bug; 252 253 /* STUFF We don't need in performance path */ 254 u32 chainid_shift; /* specify bit location of chain_id */ 255 struct ioc *next; /* Linked list of discovered iocs */ 256 const char *name; /* device name from firmware */ 257 unsigned int hw_path; /* the hardware path this ioc is associatd with */ 258 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */ 259 struct resource mmio_region[2]; /* The "routed" MMIO regions */ 260 }; 261 262 static struct ioc *ioc_list; 263 static int ioc_count; 264 265 /************************************************************** 266 * 267 * I/O Pdir Resource Management 268 * 269 * Bits set in the resource map are in use. 270 * Each bit can represent a number of pages. 271 * LSbs represent lower addresses (IOVA's). 272 * 273 * This was was copied from sba_iommu.c. Don't try to unify 274 * the two resource managers unless a way to have different 275 * allocation policies is also adjusted. We'd like to avoid 276 * I/O TLB thrashing by having resource allocation policy 277 * match the I/O TLB replacement policy. 278 * 279 ***************************************************************/ 280 #define IOVP_SIZE PAGE_SIZE 281 #define IOVP_SHIFT PAGE_SHIFT 282 #define IOVP_MASK PAGE_MASK 283 284 /* Convert from IOVP to IOVA and vice versa. */ 285 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset)) 286 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK) 287 288 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT) 289 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT) 290 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset) 291 292 /* 293 ** Don't worry about the 150% average search length on a miss. 294 ** If the search wraps around, and passes the res_hint, it will 295 ** cause the kernel to panic anyhow. 296 */ 297 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \ 298 for(; res_ptr < res_end; ++res_ptr) { \ 299 int ret;\ 300 unsigned int idx;\ 301 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \ 302 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\ 303 if ((0 == (*res_ptr & mask)) && !ret) { \ 304 *res_ptr |= mask; \ 305 res_idx = idx;\ 306 ioc->res_hint = res_idx + (size >> 3); \ 307 goto resource_found; \ 308 } \ 309 } 310 311 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \ 312 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \ 313 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \ 314 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \ 315 res_ptr = (u##size *)&(ioc)->res_map[0]; \ 316 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size); 317 318 /* 319 ** Find available bit in this ioa's resource map. 320 ** Use a "circular" search: 321 ** o Most IOVA's are "temporary" - avg search time should be small. 322 ** o keep a history of what happened for debugging 323 ** o KISS. 324 ** 325 ** Perf optimizations: 326 ** o search for log2(size) bits at a time. 327 ** o search for available resource bits using byte/word/whatever. 328 ** o use different search for "large" (eg > 4 pages) or "very large" 329 ** (eg > 16 pages) mappings. 330 */ 331 332 /** 333 * ccio_alloc_range - Allocate pages in the ioc's resource map. 334 * @ioc: The I/O Controller. 335 * @pages_needed: The requested number of pages to be mapped into the 336 * I/O Pdir... 337 * 338 * This function searches the resource map of the ioc to locate a range 339 * of available pages for the requested size. 340 */ 341 static int 342 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size) 343 { 344 unsigned int pages_needed = size >> IOVP_SHIFT; 345 unsigned int res_idx; 346 unsigned long boundary_size; 347 #ifdef CCIO_COLLECT_STATS 348 unsigned long cr_start = mfctl(16); 349 #endif 350 351 BUG_ON(pages_needed == 0); 352 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE); 353 354 DBG_RES("%s() size: %d pages_needed %d\n", 355 __func__, size, pages_needed); 356 357 /* 358 ** "seek and ye shall find"...praying never hurts either... 359 ** ggg sacrifices another 710 to the computer gods. 360 */ 361 362 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1, 363 1ULL << IOVP_SHIFT) >> IOVP_SHIFT; 364 365 if (pages_needed <= 8) { 366 /* 367 * LAN traffic will not thrash the TLB IFF the same NIC 368 * uses 8 adjacent pages to map separate payload data. 369 * ie the same byte in the resource bit map. 370 */ 371 #if 0 372 /* FIXME: bit search should shift it's way through 373 * an unsigned long - not byte at a time. As it is now, 374 * we effectively allocate this byte to this mapping. 375 */ 376 unsigned long mask = ~(~0UL >> pages_needed); 377 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8); 378 #else 379 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8); 380 #endif 381 } else if (pages_needed <= 16) { 382 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16); 383 } else if (pages_needed <= 32) { 384 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32); 385 #ifdef __LP64__ 386 } else if (pages_needed <= 64) { 387 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64); 388 #endif 389 } else { 390 panic("%s: %s() Too many pages to map. pages_needed: %u\n", 391 __FILE__, __func__, pages_needed); 392 } 393 394 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__, 395 __func__); 396 397 resource_found: 398 399 DBG_RES("%s() res_idx %d res_hint: %d\n", 400 __func__, res_idx, ioc->res_hint); 401 402 #ifdef CCIO_COLLECT_STATS 403 { 404 unsigned long cr_end = mfctl(16); 405 unsigned long tmp = cr_end - cr_start; 406 /* check for roll over */ 407 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp); 408 } 409 ioc->avg_search[ioc->avg_idx++] = cr_start; 410 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1; 411 ioc->used_pages += pages_needed; 412 #endif 413 /* 414 ** return the bit address. 415 */ 416 return res_idx << 3; 417 } 418 419 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \ 420 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \ 421 BUG_ON((*res_ptr & mask) != mask); \ 422 *res_ptr &= ~(mask); 423 424 /** 425 * ccio_free_range - Free pages from the ioc's resource map. 426 * @ioc: The I/O Controller. 427 * @iova: The I/O Virtual Address. 428 * @pages_mapped: The requested number of pages to be freed from the 429 * I/O Pdir. 430 * 431 * This function frees the resouces allocated for the iova. 432 */ 433 static void 434 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped) 435 { 436 unsigned long iovp = CCIO_IOVP(iova); 437 unsigned int res_idx = PDIR_INDEX(iovp) >> 3; 438 439 BUG_ON(pages_mapped == 0); 440 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE); 441 BUG_ON(pages_mapped > BITS_PER_LONG); 442 443 DBG_RES("%s(): res_idx: %d pages_mapped %d\n", 444 __func__, res_idx, pages_mapped); 445 446 #ifdef CCIO_COLLECT_STATS 447 ioc->used_pages -= pages_mapped; 448 #endif 449 450 if(pages_mapped <= 8) { 451 #if 0 452 /* see matching comments in alloc_range */ 453 unsigned long mask = ~(~0UL >> pages_mapped); 454 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8); 455 #else 456 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8); 457 #endif 458 } else if(pages_mapped <= 16) { 459 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16); 460 } else if(pages_mapped <= 32) { 461 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32); 462 #ifdef __LP64__ 463 } else if(pages_mapped <= 64) { 464 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64); 465 #endif 466 } else { 467 panic("%s:%s() Too many pages to unmap.\n", __FILE__, 468 __func__); 469 } 470 } 471 472 /**************************************************************** 473 ** 474 ** CCIO dma_ops support routines 475 ** 476 *****************************************************************/ 477 478 typedef unsigned long space_t; 479 #define KERNEL_SPACE 0 480 481 /* 482 ** DMA "Page Type" and Hints 483 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be 484 ** set for subcacheline DMA transfers since we don't want to damage the 485 ** other part of a cacheline. 486 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent(). 487 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming" 488 ** data can avoid this if the mapping covers full cache lines. 489 ** o STOP_MOST is needed for atomicity across cachelines. 490 ** Apparently only "some EISA devices" need this. 491 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs 492 ** to use this hint iff the EISA devices needs this feature. 493 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance. 494 ** o PREFETCH should *not* be set for cases like Multiple PCI devices 495 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC 496 ** device can be fetched and multiply DMA streams will thrash the 497 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules 498 ** and Invalidation of Prefetch Entries". 499 ** 500 ** FIXME: the default hints need to be per GSC device - not global. 501 ** 502 ** HP-UX dorks: linux device driver programming model is totally different 503 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers 504 ** do special things to work on non-coherent platforms...linux has to 505 ** be much more careful with this. 506 */ 507 #define IOPDIR_VALID 0x01UL 508 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */ 509 #ifdef CONFIG_EISA 510 #define HINT_STOP_MOST 0x04UL /* LSL support */ 511 #else 512 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */ 513 #endif 514 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */ 515 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */ 516 517 518 /* 519 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint. 520 ** ccio_alloc_consistent() depends on this to get SAFE_DMA 521 ** when it passes in BIDIRECTIONAL flag. 522 */ 523 static u32 hint_lookup[] = { 524 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID, 525 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID, 526 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID, 527 }; 528 529 /** 530 * ccio_io_pdir_entry - Initialize an I/O Pdir. 531 * @pdir_ptr: A pointer into I/O Pdir. 532 * @sid: The Space Identifier. 533 * @vba: The virtual address. 534 * @hints: The DMA Hint. 535 * 536 * Given a virtual address (vba, arg2) and space id, (sid, arg1), 537 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir 538 * entry consists of 8 bytes as shown below (MSB == bit 0): 539 * 540 * 541 * WORD 0: 542 * +------+----------------+-----------------------------------------------+ 543 * | Phys | Virtual Index | Phys | 544 * | 0:3 | 0:11 | 4:19 | 545 * |4 bits| 12 bits | 16 bits | 546 * +------+----------------+-----------------------------------------------+ 547 * WORD 1: 548 * +-----------------------+-----------------------------------------------+ 549 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid | 550 * | 20:39 | | Enable |Enable | |Enable|DMA | | 551 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit | 552 * +-----------------------+-----------------------------------------------+ 553 * 554 * The virtual index field is filled with the results of the LCI 555 * (Load Coherence Index) instruction. The 8 bits used for the virtual 556 * index are bits 12:19 of the value returned by LCI. 557 */ 558 static void CCIO_INLINE 559 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba, 560 unsigned long hints) 561 { 562 register unsigned long pa; 563 register unsigned long ci; /* coherent index */ 564 565 /* We currently only support kernel addresses */ 566 BUG_ON(sid != KERNEL_SPACE); 567 568 mtsp(sid,1); 569 570 /* 571 ** WORD 1 - low order word 572 ** "hints" parm includes the VALID bit! 573 ** "dep" clobbers the physical address offset bits as well. 574 */ 575 pa = virt_to_phys(vba); 576 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints)); 577 ((u32 *)pdir_ptr)[1] = (u32) pa; 578 579 /* 580 ** WORD 0 - high order word 581 */ 582 583 #ifdef __LP64__ 584 /* 585 ** get bits 12:15 of physical address 586 ** shift bits 16:31 of physical address 587 ** and deposit them 588 */ 589 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa)); 590 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa)); 591 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci)); 592 #else 593 pa = 0; 594 #endif 595 /* 596 ** get CPU coherency index bits 597 ** Grab virtual index [0:11] 598 ** Deposit virt_idx bits into I/O PDIR word 599 */ 600 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba)); 601 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci)); 602 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci)); 603 604 ((u32 *)pdir_ptr)[0] = (u32) pa; 605 606 607 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) 608 ** PCX-U/U+ do. (eg C200/C240) 609 ** PCX-T'? Don't know. (eg C110 or similar K-class) 610 ** 611 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit". 612 ** Hopefully we can patch (NOP) these out at boot time somehow. 613 ** 614 ** "Since PCX-U employs an offset hash that is incompatible with 615 ** the real mode coherence index generation of U2, the PDIR entry 616 ** must be flushed to memory to retain coherence." 617 */ 618 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); 619 asm volatile("sync"); 620 } 621 622 /** 623 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB. 624 * @ioc: The I/O Controller. 625 * @iovp: The I/O Virtual Page. 626 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. 627 * 628 * Purge invalid I/O PDIR entries from the I/O TLB. 629 * 630 * FIXME: Can we change the byte_cnt to pages_mapped? 631 */ 632 static CCIO_INLINE void 633 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt) 634 { 635 u32 chain_size = 1 << ioc->chainid_shift; 636 637 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */ 638 byte_cnt += chain_size; 639 640 while(byte_cnt > chain_size) { 641 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command); 642 iovp += chain_size; 643 byte_cnt -= chain_size; 644 } 645 } 646 647 /** 648 * ccio_mark_invalid - Mark the I/O Pdir entries invalid. 649 * @ioc: The I/O Controller. 650 * @iova: The I/O Virtual Address. 651 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. 652 * 653 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O 654 * TLB entries. 655 * 656 * FIXME: at some threshold it might be "cheaper" to just blow 657 * away the entire I/O TLB instead of individual entries. 658 * 659 * FIXME: Uturn has 256 TLB entries. We don't need to purge every 660 * PDIR entry - just once for each possible TLB entry. 661 * (We do need to maker I/O PDIR entries invalid regardless). 662 * 663 * FIXME: Can we change byte_cnt to pages_mapped? 664 */ 665 static CCIO_INLINE void 666 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) 667 { 668 u32 iovp = (u32)CCIO_IOVP(iova); 669 size_t saved_byte_cnt; 670 671 /* round up to nearest page size */ 672 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE); 673 674 while(byte_cnt > 0) { 675 /* invalidate one page at a time */ 676 unsigned int idx = PDIR_INDEX(iovp); 677 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]); 678 679 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64))); 680 pdir_ptr[7] = 0; /* clear only VALID bit */ 681 /* 682 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) 683 ** PCX-U/U+ do. (eg C200/C240) 684 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit". 685 ** 686 ** Hopefully someone figures out how to patch (NOP) the 687 ** FDC/SYNC out at boot time. 688 */ 689 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7])); 690 691 iovp += IOVP_SIZE; 692 byte_cnt -= IOVP_SIZE; 693 } 694 695 asm volatile("sync"); 696 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt); 697 } 698 699 /**************************************************************** 700 ** 701 ** CCIO dma_ops 702 ** 703 *****************************************************************/ 704 705 /** 706 * ccio_dma_supported - Verify the IOMMU supports the DMA address range. 707 * @dev: The PCI device. 708 * @mask: A bit mask describing the DMA address range of the device. 709 */ 710 static int 711 ccio_dma_supported(struct device *dev, u64 mask) 712 { 713 if(dev == NULL) { 714 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n"); 715 BUG(); 716 return 0; 717 } 718 719 /* only support 32-bit devices (ie PCI/GSC) */ 720 return (int)(mask == 0xffffffffUL); 721 } 722 723 /** 724 * ccio_map_single - Map an address range into the IOMMU. 725 * @dev: The PCI device. 726 * @addr: The start address of the DMA region. 727 * @size: The length of the DMA region. 728 * @direction: The direction of the DMA transaction (to/from device). 729 * 730 * This function implements the pci_map_single function. 731 */ 732 static dma_addr_t 733 ccio_map_single(struct device *dev, void *addr, size_t size, 734 enum dma_data_direction direction) 735 { 736 int idx; 737 struct ioc *ioc; 738 unsigned long flags; 739 dma_addr_t iovp; 740 dma_addr_t offset; 741 u64 *pdir_start; 742 unsigned long hint = hint_lookup[(int)direction]; 743 744 BUG_ON(!dev); 745 ioc = GET_IOC(dev); 746 if (!ioc) 747 return CCIO_MAPPING_ERROR; 748 749 BUG_ON(size <= 0); 750 751 /* save offset bits */ 752 offset = ((unsigned long) addr) & ~IOVP_MASK; 753 754 /* round up to nearest IOVP_SIZE */ 755 size = ALIGN(size + offset, IOVP_SIZE); 756 spin_lock_irqsave(&ioc->res_lock, flags); 757 758 #ifdef CCIO_COLLECT_STATS 759 ioc->msingle_calls++; 760 ioc->msingle_pages += size >> IOVP_SHIFT; 761 #endif 762 763 idx = ccio_alloc_range(ioc, dev, size); 764 iovp = (dma_addr_t)MKIOVP(idx); 765 766 pdir_start = &(ioc->pdir_base[idx]); 767 768 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n", 769 __func__, addr, (long)iovp | offset, size); 770 771 /* If not cacheline aligned, force SAFE_DMA on the whole mess */ 772 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES)) 773 hint |= HINT_SAFE_DMA; 774 775 while(size > 0) { 776 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint); 777 778 DBG_RUN(" pdir %p %08x%08x\n", 779 pdir_start, 780 (u32) (((u32 *) pdir_start)[0]), 781 (u32) (((u32 *) pdir_start)[1])); 782 ++pdir_start; 783 addr += IOVP_SIZE; 784 size -= IOVP_SIZE; 785 } 786 787 spin_unlock_irqrestore(&ioc->res_lock, flags); 788 789 /* form complete address */ 790 return CCIO_IOVA(iovp, offset); 791 } 792 793 794 static dma_addr_t 795 ccio_map_page(struct device *dev, struct page *page, unsigned long offset, 796 size_t size, enum dma_data_direction direction, 797 unsigned long attrs) 798 { 799 return ccio_map_single(dev, page_address(page) + offset, size, 800 direction); 801 } 802 803 804 /** 805 * ccio_unmap_page - Unmap an address range from the IOMMU. 806 * @dev: The PCI device. 807 * @addr: The start address of the DMA region. 808 * @size: The length of the DMA region. 809 * @direction: The direction of the DMA transaction (to/from device). 810 */ 811 static void 812 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size, 813 enum dma_data_direction direction, unsigned long attrs) 814 { 815 struct ioc *ioc; 816 unsigned long flags; 817 dma_addr_t offset = iova & ~IOVP_MASK; 818 819 BUG_ON(!dev); 820 ioc = GET_IOC(dev); 821 if (!ioc) { 822 WARN_ON(!ioc); 823 return; 824 } 825 826 DBG_RUN("%s() iovp 0x%lx/%x\n", 827 __func__, (long)iova, size); 828 829 iova ^= offset; /* clear offset bits */ 830 size += offset; 831 size = ALIGN(size, IOVP_SIZE); 832 833 spin_lock_irqsave(&ioc->res_lock, flags); 834 835 #ifdef CCIO_COLLECT_STATS 836 ioc->usingle_calls++; 837 ioc->usingle_pages += size >> IOVP_SHIFT; 838 #endif 839 840 ccio_mark_invalid(ioc, iova, size); 841 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT)); 842 spin_unlock_irqrestore(&ioc->res_lock, flags); 843 } 844 845 /** 846 * ccio_alloc - Allocate a consistent DMA mapping. 847 * @dev: The PCI device. 848 * @size: The length of the DMA region. 849 * @dma_handle: The DMA address handed back to the device (not the cpu). 850 * 851 * This function implements the pci_alloc_consistent function. 852 */ 853 static void * 854 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, 855 unsigned long attrs) 856 { 857 void *ret; 858 #if 0 859 /* GRANT Need to establish hierarchy for non-PCI devs as well 860 ** and then provide matching gsc_map_xxx() functions for them as well. 861 */ 862 if(!hwdev) { 863 /* only support PCI */ 864 *dma_handle = 0; 865 return 0; 866 } 867 #endif 868 ret = (void *) __get_free_pages(flag, get_order(size)); 869 870 if (ret) { 871 memset(ret, 0, size); 872 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL); 873 } 874 875 return ret; 876 } 877 878 /** 879 * ccio_free - Free a consistent DMA mapping. 880 * @dev: The PCI device. 881 * @size: The length of the DMA region. 882 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent. 883 * @dma_handle: The device address returned from the ccio_alloc_consistent. 884 * 885 * This function implements the pci_free_consistent function. 886 */ 887 static void 888 ccio_free(struct device *dev, size_t size, void *cpu_addr, 889 dma_addr_t dma_handle, unsigned long attrs) 890 { 891 ccio_unmap_page(dev, dma_handle, size, 0, 0); 892 free_pages((unsigned long)cpu_addr, get_order(size)); 893 } 894 895 /* 896 ** Since 0 is a valid pdir_base index value, can't use that 897 ** to determine if a value is valid or not. Use a flag to indicate 898 ** the SG list entry contains a valid pdir index. 899 */ 900 #define PIDE_FLAG 0x80000000UL 901 902 #ifdef CCIO_COLLECT_STATS 903 #define IOMMU_MAP_STATS 904 #endif 905 #include "iommu-helpers.h" 906 907 /** 908 * ccio_map_sg - Map the scatter/gather list into the IOMMU. 909 * @dev: The PCI device. 910 * @sglist: The scatter/gather list to be mapped in the IOMMU. 911 * @nents: The number of entries in the scatter/gather list. 912 * @direction: The direction of the DMA transaction (to/from device). 913 * 914 * This function implements the pci_map_sg function. 915 */ 916 static int 917 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 918 enum dma_data_direction direction, unsigned long attrs) 919 { 920 struct ioc *ioc; 921 int coalesced, filled = 0; 922 unsigned long flags; 923 unsigned long hint = hint_lookup[(int)direction]; 924 unsigned long prev_len = 0, current_len = 0; 925 int i; 926 927 BUG_ON(!dev); 928 ioc = GET_IOC(dev); 929 if (!ioc) 930 return 0; 931 932 DBG_RUN_SG("%s() START %d entries\n", __func__, nents); 933 934 /* Fast path single entry scatterlists. */ 935 if (nents == 1) { 936 sg_dma_address(sglist) = ccio_map_single(dev, 937 sg_virt(sglist), sglist->length, 938 direction); 939 sg_dma_len(sglist) = sglist->length; 940 return 1; 941 } 942 943 for(i = 0; i < nents; i++) 944 prev_len += sglist[i].length; 945 946 spin_lock_irqsave(&ioc->res_lock, flags); 947 948 #ifdef CCIO_COLLECT_STATS 949 ioc->msg_calls++; 950 #endif 951 952 /* 953 ** First coalesce the chunks and allocate I/O pdir space 954 ** 955 ** If this is one DMA stream, we can properly map using the 956 ** correct virtual address associated with each DMA page. 957 ** w/o this association, we wouldn't have coherent DMA! 958 ** Access to the virtual address is what forces a two pass algorithm. 959 */ 960 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range); 961 962 /* 963 ** Program the I/O Pdir 964 ** 965 ** map the virtual addresses to the I/O Pdir 966 ** o dma_address will contain the pdir index 967 ** o dma_len will contain the number of bytes to map 968 ** o page/offset contain the virtual address. 969 */ 970 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry); 971 972 spin_unlock_irqrestore(&ioc->res_lock, flags); 973 974 BUG_ON(coalesced != filled); 975 976 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); 977 978 for (i = 0; i < filled; i++) 979 current_len += sg_dma_len(sglist + i); 980 981 BUG_ON(current_len != prev_len); 982 983 return filled; 984 } 985 986 /** 987 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU. 988 * @dev: The PCI device. 989 * @sglist: The scatter/gather list to be unmapped from the IOMMU. 990 * @nents: The number of entries in the scatter/gather list. 991 * @direction: The direction of the DMA transaction (to/from device). 992 * 993 * This function implements the pci_unmap_sg function. 994 */ 995 static void 996 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 997 enum dma_data_direction direction, unsigned long attrs) 998 { 999 struct ioc *ioc; 1000 1001 BUG_ON(!dev); 1002 ioc = GET_IOC(dev); 1003 if (!ioc) { 1004 WARN_ON(!ioc); 1005 return; 1006 } 1007 1008 DBG_RUN_SG("%s() START %d entries, %p,%x\n", 1009 __func__, nents, sg_virt(sglist), sglist->length); 1010 1011 #ifdef CCIO_COLLECT_STATS 1012 ioc->usg_calls++; 1013 #endif 1014 1015 while(sg_dma_len(sglist) && nents--) { 1016 1017 #ifdef CCIO_COLLECT_STATS 1018 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT; 1019 #endif 1020 ccio_unmap_page(dev, sg_dma_address(sglist), 1021 sg_dma_len(sglist), direction, 0); 1022 ++sglist; 1023 } 1024 1025 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); 1026 } 1027 1028 static int ccio_mapping_error(struct device *dev, dma_addr_t dma_addr) 1029 { 1030 return dma_addr == CCIO_MAPPING_ERROR; 1031 } 1032 1033 static const struct dma_map_ops ccio_ops = { 1034 .dma_supported = ccio_dma_supported, 1035 .alloc = ccio_alloc, 1036 .free = ccio_free, 1037 .map_page = ccio_map_page, 1038 .unmap_page = ccio_unmap_page, 1039 .map_sg = ccio_map_sg, 1040 .unmap_sg = ccio_unmap_sg, 1041 .mapping_error = ccio_mapping_error, 1042 }; 1043 1044 #ifdef CONFIG_PROC_FS 1045 static int ccio_proc_info(struct seq_file *m, void *p) 1046 { 1047 struct ioc *ioc = ioc_list; 1048 1049 while (ioc != NULL) { 1050 unsigned int total_pages = ioc->res_size << 3; 1051 #ifdef CCIO_COLLECT_STATS 1052 unsigned long avg = 0, min, max; 1053 int j; 1054 #endif 1055 1056 seq_printf(m, "%s\n", ioc->name); 1057 1058 seq_printf(m, "Cujo 2.0 bug : %s\n", 1059 (ioc->cujo20_bug ? "yes" : "no")); 1060 1061 seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n", 1062 total_pages * 8, total_pages); 1063 1064 #ifdef CCIO_COLLECT_STATS 1065 seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n", 1066 total_pages - ioc->used_pages, ioc->used_pages, 1067 (int)(ioc->used_pages * 100 / total_pages)); 1068 #endif 1069 1070 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", 1071 ioc->res_size, total_pages); 1072 1073 #ifdef CCIO_COLLECT_STATS 1074 min = max = ioc->avg_search[0]; 1075 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) { 1076 avg += ioc->avg_search[j]; 1077 if(ioc->avg_search[j] > max) 1078 max = ioc->avg_search[j]; 1079 if(ioc->avg_search[j] < min) 1080 min = ioc->avg_search[j]; 1081 } 1082 avg /= CCIO_SEARCH_SAMPLE; 1083 seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n", 1084 min, avg, max); 1085 1086 seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n", 1087 ioc->msingle_calls, ioc->msingle_pages, 1088 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls)); 1089 1090 /* KLUGE - unmap_sg calls unmap_page for each mapped page */ 1091 min = ioc->usingle_calls - ioc->usg_calls; 1092 max = ioc->usingle_pages - ioc->usg_pages; 1093 seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n", 1094 min, max, (int)((max * 1000)/min)); 1095 1096 seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n", 1097 ioc->msg_calls, ioc->msg_pages, 1098 (int)((ioc->msg_pages * 1000)/ioc->msg_calls)); 1099 1100 seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n", 1101 ioc->usg_calls, ioc->usg_pages, 1102 (int)((ioc->usg_pages * 1000)/ioc->usg_calls)); 1103 #endif /* CCIO_COLLECT_STATS */ 1104 1105 ioc = ioc->next; 1106 } 1107 1108 return 0; 1109 } 1110 1111 static int ccio_proc_info_open(struct inode *inode, struct file *file) 1112 { 1113 return single_open(file, &ccio_proc_info, NULL); 1114 } 1115 1116 static const struct file_operations ccio_proc_info_fops = { 1117 .owner = THIS_MODULE, 1118 .open = ccio_proc_info_open, 1119 .read = seq_read, 1120 .llseek = seq_lseek, 1121 .release = single_release, 1122 }; 1123 1124 static int ccio_proc_bitmap_info(struct seq_file *m, void *p) 1125 { 1126 struct ioc *ioc = ioc_list; 1127 1128 while (ioc != NULL) { 1129 seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map, 1130 ioc->res_size, false); 1131 seq_putc(m, '\n'); 1132 ioc = ioc->next; 1133 break; /* XXX - remove me */ 1134 } 1135 1136 return 0; 1137 } 1138 1139 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file) 1140 { 1141 return single_open(file, &ccio_proc_bitmap_info, NULL); 1142 } 1143 1144 static const struct file_operations ccio_proc_bitmap_fops = { 1145 .owner = THIS_MODULE, 1146 .open = ccio_proc_bitmap_open, 1147 .read = seq_read, 1148 .llseek = seq_lseek, 1149 .release = single_release, 1150 }; 1151 #endif /* CONFIG_PROC_FS */ 1152 1153 /** 1154 * ccio_find_ioc - Find the ioc in the ioc_list 1155 * @hw_path: The hardware path of the ioc. 1156 * 1157 * This function searches the ioc_list for an ioc that matches 1158 * the provide hardware path. 1159 */ 1160 static struct ioc * ccio_find_ioc(int hw_path) 1161 { 1162 int i; 1163 struct ioc *ioc; 1164 1165 ioc = ioc_list; 1166 for (i = 0; i < ioc_count; i++) { 1167 if (ioc->hw_path == hw_path) 1168 return ioc; 1169 1170 ioc = ioc->next; 1171 } 1172 1173 return NULL; 1174 } 1175 1176 /** 1177 * ccio_get_iommu - Find the iommu which controls this device 1178 * @dev: The parisc device. 1179 * 1180 * This function searches through the registered IOMMU's and returns 1181 * the appropriate IOMMU for the device based on its hardware path. 1182 */ 1183 void * ccio_get_iommu(const struct parisc_device *dev) 1184 { 1185 dev = find_pa_parent_type(dev, HPHW_IOA); 1186 if (!dev) 1187 return NULL; 1188 1189 return ccio_find_ioc(dev->hw_path); 1190 } 1191 1192 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */ 1193 1194 /* Cujo 2.0 has a bug which will silently corrupt data being transferred 1195 * to/from certain pages. To avoid this happening, we mark these pages 1196 * as `used', and ensure that nothing will try to allocate from them. 1197 */ 1198 void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp) 1199 { 1200 unsigned int idx; 1201 struct parisc_device *dev = parisc_parent(cujo); 1202 struct ioc *ioc = ccio_get_iommu(dev); 1203 u8 *res_ptr; 1204 1205 ioc->cujo20_bug = 1; 1206 res_ptr = ioc->res_map; 1207 idx = PDIR_INDEX(iovp) >> 3; 1208 1209 while (idx < ioc->res_size) { 1210 res_ptr[idx] |= 0xff; 1211 idx += PDIR_INDEX(CUJO_20_STEP) >> 3; 1212 } 1213 } 1214 1215 #if 0 1216 /* GRANT - is this needed for U2 or not? */ 1217 1218 /* 1219 ** Get the size of the I/O TLB for this I/O MMU. 1220 ** 1221 ** If spa_shift is non-zero (ie probably U2), 1222 ** then calculate the I/O TLB size using spa_shift. 1223 ** 1224 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB 1225 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift. 1226 ** I think only Java (K/D/R-class too?) systems don't do this. 1227 */ 1228 static int 1229 ccio_get_iotlb_size(struct parisc_device *dev) 1230 { 1231 if (dev->spa_shift == 0) { 1232 panic("%s() : Can't determine I/O TLB size.\n", __func__); 1233 } 1234 return (1 << dev->spa_shift); 1235 } 1236 #else 1237 1238 /* Uturn supports 256 TLB entries */ 1239 #define CCIO_CHAINID_SHIFT 8 1240 #define CCIO_CHAINID_MASK 0xff 1241 #endif /* 0 */ 1242 1243 /* We *can't* support JAVA (T600). Venture there at your own risk. */ 1244 static const struct parisc_device_id ccio_tbl[] __initconst = { 1245 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */ 1246 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */ 1247 { 0, } 1248 }; 1249 1250 static int ccio_probe(struct parisc_device *dev); 1251 1252 static struct parisc_driver ccio_driver __refdata = { 1253 .name = "ccio", 1254 .id_table = ccio_tbl, 1255 .probe = ccio_probe, 1256 }; 1257 1258 /** 1259 * ccio_ioc_init - Initialize the I/O Controller 1260 * @ioc: The I/O Controller. 1261 * 1262 * Initialize the I/O Controller which includes setting up the 1263 * I/O Page Directory, the resource map, and initalizing the 1264 * U2/Uturn chip into virtual mode. 1265 */ 1266 static void __init 1267 ccio_ioc_init(struct ioc *ioc) 1268 { 1269 int i; 1270 unsigned int iov_order; 1271 u32 iova_space_size; 1272 1273 /* 1274 ** Determine IOVA Space size from memory size. 1275 ** 1276 ** Ideally, PCI drivers would register the maximum number 1277 ** of DMA they can have outstanding for each device they 1278 ** own. Next best thing would be to guess how much DMA 1279 ** can be outstanding based on PCI Class/sub-class. Both 1280 ** methods still require some "extra" to support PCI 1281 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD). 1282 */ 1283 1284 iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver)); 1285 1286 /* limit IOVA space size to 1MB-1GB */ 1287 1288 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) { 1289 iova_space_size = 1 << (20 - PAGE_SHIFT); 1290 #ifdef __LP64__ 1291 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) { 1292 iova_space_size = 1 << (30 - PAGE_SHIFT); 1293 #endif 1294 } 1295 1296 /* 1297 ** iova space must be log2() in size. 1298 ** thus, pdir/res_map will also be log2(). 1299 */ 1300 1301 /* We could use larger page sizes in order to *decrease* the number 1302 ** of mappings needed. (ie 8k pages means 1/2 the mappings). 1303 ** 1304 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either 1305 ** since the pages must also be physically contiguous - typically 1306 ** this is the case under linux." 1307 */ 1308 1309 iov_order = get_order(iova_space_size << PAGE_SHIFT); 1310 1311 /* iova_space_size is now bytes, not pages */ 1312 iova_space_size = 1 << (iov_order + PAGE_SHIFT); 1313 1314 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64); 1315 1316 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */ 1317 1318 /* Verify it's a power of two */ 1319 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT)); 1320 1321 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n", 1322 __func__, ioc->ioc_regs, 1323 (unsigned long) totalram_pages >> (20 - PAGE_SHIFT), 1324 iova_space_size>>20, 1325 iov_order + PAGE_SHIFT); 1326 1327 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 1328 get_order(ioc->pdir_size)); 1329 if(NULL == ioc->pdir_base) { 1330 panic("%s() could not allocate I/O Page Table\n", __func__); 1331 } 1332 memset(ioc->pdir_base, 0, ioc->pdir_size); 1333 1334 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base); 1335 DBG_INIT(" base %p\n", ioc->pdir_base); 1336 1337 /* resource map size dictated by pdir_size */ 1338 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3; 1339 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); 1340 1341 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 1342 get_order(ioc->res_size)); 1343 if(NULL == ioc->res_map) { 1344 panic("%s() could not allocate resource map\n", __func__); 1345 } 1346 memset(ioc->res_map, 0, ioc->res_size); 1347 1348 /* Initialize the res_hint to 16 */ 1349 ioc->res_hint = 16; 1350 1351 /* Initialize the spinlock */ 1352 spin_lock_init(&ioc->res_lock); 1353 1354 /* 1355 ** Chainid is the upper most bits of an IOVP used to determine 1356 ** which TLB entry an IOVP will use. 1357 */ 1358 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT; 1359 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift); 1360 1361 /* 1362 ** Initialize IOA hardware 1363 */ 1364 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 1365 &ioc->ioc_regs->io_chain_id_mask); 1366 1367 WRITE_U32(virt_to_phys(ioc->pdir_base), 1368 &ioc->ioc_regs->io_pdir_base); 1369 1370 /* 1371 ** Go to "Virtual Mode" 1372 */ 1373 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control); 1374 1375 /* 1376 ** Initialize all I/O TLB entries to 0 (Valid bit off). 1377 */ 1378 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m); 1379 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l); 1380 1381 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) { 1382 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)), 1383 &ioc->ioc_regs->io_command); 1384 } 1385 } 1386 1387 static void __init 1388 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr) 1389 { 1390 int result; 1391 1392 res->parent = NULL; 1393 res->flags = IORESOURCE_MEM; 1394 /* 1395 * bracing ((signed) ...) are required for 64bit kernel because 1396 * we only want to sign extend the lower 16 bits of the register. 1397 * The upper 16-bits of range registers are hardcoded to 0xffff. 1398 */ 1399 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16); 1400 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1); 1401 res->name = name; 1402 /* 1403 * Check if this MMIO range is disable 1404 */ 1405 if (res->end + 1 == res->start) 1406 return; 1407 1408 /* On some platforms (e.g. K-Class), we have already registered 1409 * resources for devices reported by firmware. Some are children 1410 * of ccio. 1411 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem). 1412 */ 1413 result = insert_resource(&iomem_resource, res); 1414 if (result < 0) { 1415 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 1416 __func__, (unsigned long)res->start, (unsigned long)res->end); 1417 } 1418 } 1419 1420 static void __init ccio_init_resources(struct ioc *ioc) 1421 { 1422 struct resource *res = ioc->mmio_region; 1423 char *name = kmalloc(14, GFP_KERNEL); 1424 1425 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path); 1426 1427 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low); 1428 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv); 1429 } 1430 1431 static int new_ioc_area(struct resource *res, unsigned long size, 1432 unsigned long min, unsigned long max, unsigned long align) 1433 { 1434 if (max <= min) 1435 return -EBUSY; 1436 1437 res->start = (max - size + 1) &~ (align - 1); 1438 res->end = res->start + size; 1439 1440 /* We might be trying to expand the MMIO range to include 1441 * a child device that has already registered it's MMIO space. 1442 * Use "insert" instead of request_resource(). 1443 */ 1444 if (!insert_resource(&iomem_resource, res)) 1445 return 0; 1446 1447 return new_ioc_area(res, size, min, max - size, align); 1448 } 1449 1450 static int expand_ioc_area(struct resource *res, unsigned long size, 1451 unsigned long min, unsigned long max, unsigned long align) 1452 { 1453 unsigned long start, len; 1454 1455 if (!res->parent) 1456 return new_ioc_area(res, size, min, max, align); 1457 1458 start = (res->start - size) &~ (align - 1); 1459 len = res->end - start + 1; 1460 if (start >= min) { 1461 if (!adjust_resource(res, start, len)) 1462 return 0; 1463 } 1464 1465 start = res->start; 1466 len = ((size + res->end + align) &~ (align - 1)) - start; 1467 if (start + len <= max) { 1468 if (!adjust_resource(res, start, len)) 1469 return 0; 1470 } 1471 1472 return -EBUSY; 1473 } 1474 1475 /* 1476 * Dino calls this function. Beware that we may get called on systems 1477 * which have no IOC (725, B180, C160L, etc) but do have a Dino. 1478 * So it's legal to find no parent IOC. 1479 * 1480 * Some other issues: one of the resources in the ioc may be unassigned. 1481 */ 1482 int ccio_allocate_resource(const struct parisc_device *dev, 1483 struct resource *res, unsigned long size, 1484 unsigned long min, unsigned long max, unsigned long align) 1485 { 1486 struct resource *parent = &iomem_resource; 1487 struct ioc *ioc = ccio_get_iommu(dev); 1488 if (!ioc) 1489 goto out; 1490 1491 parent = ioc->mmio_region; 1492 if (parent->parent && 1493 !allocate_resource(parent, res, size, min, max, align, NULL, NULL)) 1494 return 0; 1495 1496 if ((parent + 1)->parent && 1497 !allocate_resource(parent + 1, res, size, min, max, align, 1498 NULL, NULL)) 1499 return 0; 1500 1501 if (!expand_ioc_area(parent, size, min, max, align)) { 1502 __raw_writel(((parent->start)>>16) | 0xffff0000, 1503 &ioc->ioc_regs->io_io_low); 1504 __raw_writel(((parent->end)>>16) | 0xffff0000, 1505 &ioc->ioc_regs->io_io_high); 1506 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) { 1507 parent++; 1508 __raw_writel(((parent->start)>>16) | 0xffff0000, 1509 &ioc->ioc_regs->io_io_low_hv); 1510 __raw_writel(((parent->end)>>16) | 0xffff0000, 1511 &ioc->ioc_regs->io_io_high_hv); 1512 } else { 1513 return -EBUSY; 1514 } 1515 1516 out: 1517 return allocate_resource(parent, res, size, min, max, align, NULL,NULL); 1518 } 1519 1520 int ccio_request_resource(const struct parisc_device *dev, 1521 struct resource *res) 1522 { 1523 struct resource *parent; 1524 struct ioc *ioc = ccio_get_iommu(dev); 1525 1526 if (!ioc) { 1527 parent = &iomem_resource; 1528 } else if ((ioc->mmio_region->start <= res->start) && 1529 (res->end <= ioc->mmio_region->end)) { 1530 parent = ioc->mmio_region; 1531 } else if (((ioc->mmio_region + 1)->start <= res->start) && 1532 (res->end <= (ioc->mmio_region + 1)->end)) { 1533 parent = ioc->mmio_region + 1; 1534 } else { 1535 return -EBUSY; 1536 } 1537 1538 /* "transparent" bus bridges need to register MMIO resources 1539 * firmware assigned them. e.g. children of hppb.c (e.g. K-class) 1540 * registered their resources in the PDC "bus walk" (See 1541 * arch/parisc/kernel/inventory.c). 1542 */ 1543 return insert_resource(parent, res); 1544 } 1545 1546 /** 1547 * ccio_probe - Determine if ccio should claim this device. 1548 * @dev: The device which has been found 1549 * 1550 * Determine if ccio should claim this chip (return 0) or not (return 1). 1551 * If so, initialize the chip and tell other partners in crime they 1552 * have work to do. 1553 */ 1554 static int __init ccio_probe(struct parisc_device *dev) 1555 { 1556 int i; 1557 struct ioc *ioc, **ioc_p = &ioc_list; 1558 1559 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL); 1560 if (ioc == NULL) { 1561 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n"); 1562 return -ENOMEM; 1563 } 1564 1565 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn"; 1566 1567 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, 1568 (unsigned long)dev->hpa.start); 1569 1570 for (i = 0; i < ioc_count; i++) { 1571 ioc_p = &(*ioc_p)->next; 1572 } 1573 *ioc_p = ioc; 1574 1575 ioc->hw_path = dev->hw_path; 1576 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096); 1577 if (!ioc->ioc_regs) { 1578 kfree(ioc); 1579 return -ENOMEM; 1580 } 1581 ccio_ioc_init(ioc); 1582 ccio_init_resources(ioc); 1583 hppa_dma_ops = &ccio_ops; 1584 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL); 1585 1586 /* if this fails, no I/O cards will work, so may as well bug */ 1587 BUG_ON(dev->dev.platform_data == NULL); 1588 HBA_DATA(dev->dev.platform_data)->iommu = ioc; 1589 1590 #ifdef CONFIG_PROC_FS 1591 if (ioc_count == 0) { 1592 proc_create(MODULE_NAME, 0, proc_runway_root, 1593 &ccio_proc_info_fops); 1594 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root, 1595 &ccio_proc_bitmap_fops); 1596 } 1597 #endif 1598 ioc_count++; 1599 1600 parisc_has_iommu(); 1601 return 0; 1602 } 1603 1604 /** 1605 * ccio_init - ccio initialization procedure. 1606 * 1607 * Register this driver. 1608 */ 1609 void __init ccio_init(void) 1610 { 1611 register_parisc_driver(&ccio_driver); 1612 } 1613 1614