xref: /openbmc/linux/drivers/parisc/ccio-dma.c (revision 22246614)
1 /*
2 ** ccio-dma.c:
3 **	DMA management routines for first generation cache-coherent machines.
4 **	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 **	(c) Copyright 2000 Grant Grundler
7 **	(c) Copyright 2000 Ryan Bradetich
8 **	(c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
14 **
15 **
16 **  "Real Mode" operation refers to U2/Uturn chip operation.
17 **  U2/Uturn were designed to perform coherency checks w/o using
18 **  the I/O MMU - basically what x86 does.
19 **
20 **  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 **      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 **      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23 **
24 **  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25 **
26 **  Drawbacks of using Real Mode are:
27 **	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 **      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 **	o Ability to do scatter/gather in HW is lost.
30 **	o Doesn't work under PCX-U/U+ machines since they didn't follow
31 **        the coherency design originally worked out. Only PCX-W does.
32 */
33 
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 #include <linux/iommu-helper.h>
47 
48 #include <asm/byteorder.h>
49 #include <asm/cache.h>		/* for L1_CACHE_BYTES */
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 #include <asm/dma.h>
53 #include <asm/io.h>
54 #include <asm/hardware.h>       /* for register_module() */
55 #include <asm/parisc-device.h>
56 
57 /*
58 ** Choose "ccio" since that's what HP-UX calls it.
59 ** Make it easier for folks to migrate from one to the other :^)
60 */
61 #define MODULE_NAME "ccio"
62 
63 #undef DEBUG_CCIO_RES
64 #undef DEBUG_CCIO_RUN
65 #undef DEBUG_CCIO_INIT
66 #undef DEBUG_CCIO_RUN_SG
67 
68 #ifdef CONFIG_PROC_FS
69 /*
70  * CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
71  * impacts performance though - ditch it if you don't use it.
72  */
73 #define CCIO_SEARCH_TIME
74 #undef CCIO_MAP_STATS
75 #else
76 #undef CCIO_SEARCH_TIME
77 #undef CCIO_MAP_STATS
78 #endif
79 
80 #include <linux/proc_fs.h>
81 #include <asm/runway.h>		/* for proc_runway_root */
82 
83 #ifdef DEBUG_CCIO_INIT
84 #define DBG_INIT(x...)  printk(x)
85 #else
86 #define DBG_INIT(x...)
87 #endif
88 
89 #ifdef DEBUG_CCIO_RUN
90 #define DBG_RUN(x...)   printk(x)
91 #else
92 #define DBG_RUN(x...)
93 #endif
94 
95 #ifdef DEBUG_CCIO_RES
96 #define DBG_RES(x...)   printk(x)
97 #else
98 #define DBG_RES(x...)
99 #endif
100 
101 #ifdef DEBUG_CCIO_RUN_SG
102 #define DBG_RUN_SG(x...) printk(x)
103 #else
104 #define DBG_RUN_SG(x...)
105 #endif
106 
107 #define CCIO_INLINE	inline
108 #define WRITE_U32(value, addr) __raw_writel(value, addr)
109 #define READ_U32(addr) __raw_readl(addr)
110 
111 #define U2_IOA_RUNWAY 0x580
112 #define U2_BC_GSC     0x501
113 #define UTURN_IOA_RUNWAY 0x581
114 #define UTURN_BC_GSC     0x502
115 
116 #define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
117 #define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
118 #define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
119 
120 struct ioa_registers {
121         /* Runway Supervisory Set */
122         int32_t    unused1[12];
123         uint32_t   io_command;             /* Offset 12 */
124         uint32_t   io_status;              /* Offset 13 */
125         uint32_t   io_control;             /* Offset 14 */
126         int32_t    unused2[1];
127 
128         /* Runway Auxiliary Register Set */
129         uint32_t   io_err_resp;            /* Offset  0 */
130         uint32_t   io_err_info;            /* Offset  1 */
131         uint32_t   io_err_req;             /* Offset  2 */
132         uint32_t   io_err_resp_hi;         /* Offset  3 */
133         uint32_t   io_tlb_entry_m;         /* Offset  4 */
134         uint32_t   io_tlb_entry_l;         /* Offset  5 */
135         uint32_t   unused3[1];
136         uint32_t   io_pdir_base;           /* Offset  7 */
137         uint32_t   io_io_low_hv;           /* Offset  8 */
138         uint32_t   io_io_high_hv;          /* Offset  9 */
139         uint32_t   unused4[1];
140         uint32_t   io_chain_id_mask;       /* Offset 11 */
141         uint32_t   unused5[2];
142         uint32_t   io_io_low;              /* Offset 14 */
143         uint32_t   io_io_high;             /* Offset 15 */
144 };
145 
146 /*
147 ** IOA Registers
148 ** -------------
149 **
150 ** Runway IO_CONTROL Register (+0x38)
151 **
152 ** The Runway IO_CONTROL register controls the forwarding of transactions.
153 **
154 ** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
155 ** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
156 **
157 ** o mode field indicates the address translation of transactions
158 **   forwarded from Runway to GSC+:
159 **       Mode Name     Value        Definition
160 **       Off (default)   0          Opaque to matching addresses.
161 **       Include         1          Transparent for matching addresses.
162 **       Peek            3          Map matching addresses.
163 **
164 **       + "Off" mode: Runway transactions which match the I/O range
165 **         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
166 **       + "Include" mode: all addresses within the I/O range specified
167 **         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
168 **         forwarded. This is the I/O Adapter's normal operating mode.
169 **       + "Peek" mode: used during system configuration to initialize the
170 **         GSC+ bus. Runway Write_Shorts in the address range specified by
171 **         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
172 **         *AND* the GSC+ address is remapped to the Broadcast Physical
173 **         Address space by setting the 14 high order address bits of the
174 **         32 bit GSC+ address to ones.
175 **
176 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
177 **   "Real" mode is the poweron default.
178 **
179 **   TLB Mode  Value  Description
180 **   Real        0    No TLB translation. Address is directly mapped and the
181 **                    virtual address is composed of selected physical bits.
182 **   Error       1    Software fills the TLB manually.
183 **   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
184 **
185 **
186 ** IO_IO_LOW_HV	  +0x60 (HV dependent)
187 ** IO_IO_HIGH_HV  +0x64 (HV dependent)
188 ** IO_IO_LOW      +0x78	(Architected register)
189 ** IO_IO_HIGH     +0x7c	(Architected register)
190 **
191 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
192 ** I/O Adapter address space, respectively.
193 **
194 ** 0  ... 7 | 8 ... 15 |  16   ...   31 |
195 ** 11111111 | 11111111 |      address   |
196 **
197 ** Each LOW/HIGH pair describes a disjoint address space region.
198 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
199 ** with both sets of LOW/HIGH registers. If the address is in the range
200 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
201 ** for forwarded to the respective GSC+ bus.
202 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
203 ** an address space region.
204 **
205 ** In order for a Runway address to reside within GSC+ extended address space:
206 **	Runway Address [0:7]    must identically compare to 8'b11111111
207 **	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
208 ** 	Runway Address [12:23]  must be greater than or equal to
209 **	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
210 **	Runway Address [24:39]  is not used in the comparison.
211 **
212 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
213 ** as follows:
214 **	GSC+ Address[0:3]	4'b1111
215 **	GSC+ Address[4:29]	Runway Address[12:37]
216 **	GSC+ Address[30:31]	2'b00
217 **
218 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
219 ** is interrogated and address space is defined. The operating system will
220 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
221 ** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
222 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
223 **
224 ** Writes to both sets of registers will take effect immediately, bypassing
225 ** the queues, which ensures that subsequent Runway transactions are checked
226 ** against the updated bounds values. However reads are queued, introducing
227 ** the possibility of a read being bypassed by a subsequent write to the same
228 ** register. This sequence can be avoided by having software wait for read
229 ** returns before issuing subsequent writes.
230 */
231 
232 struct ioc {
233 	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
234 	u8  *res_map;	                /* resource map, bit == pdir entry */
235 	u64 *pdir_base;	                /* physical base address */
236 	u32 pdir_size; 			/* bytes, function of IOV Space size */
237 	u32 res_hint;	                /* next available IOVP -
238 					   circular search */
239 	u32 res_size;		    	/* size of resource map in bytes */
240 	spinlock_t res_lock;
241 
242 #ifdef CCIO_SEARCH_TIME
243 #define CCIO_SEARCH_SAMPLE 0x100
244 	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
245 	unsigned long avg_idx;		  /* current index into avg_search */
246 #endif
247 #ifdef CCIO_MAP_STATS
248 	unsigned long used_pages;
249 	unsigned long msingle_calls;
250 	unsigned long msingle_pages;
251 	unsigned long msg_calls;
252 	unsigned long msg_pages;
253 	unsigned long usingle_calls;
254 	unsigned long usingle_pages;
255 	unsigned long usg_calls;
256 	unsigned long usg_pages;
257 #endif
258 	unsigned short cujo20_bug;
259 
260 	/* STUFF We don't need in performance path */
261 	u32 chainid_shift; 		/* specify bit location of chain_id */
262 	struct ioc *next;		/* Linked list of discovered iocs */
263 	const char *name;		/* device name from firmware */
264 	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
265 	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
266 	struct resource mmio_region[2]; /* The "routed" MMIO regions */
267 };
268 
269 static struct ioc *ioc_list;
270 static int ioc_count;
271 
272 /**************************************************************
273 *
274 *   I/O Pdir Resource Management
275 *
276 *   Bits set in the resource map are in use.
277 *   Each bit can represent a number of pages.
278 *   LSbs represent lower addresses (IOVA's).
279 *
280 *   This was was copied from sba_iommu.c. Don't try to unify
281 *   the two resource managers unless a way to have different
282 *   allocation policies is also adjusted. We'd like to avoid
283 *   I/O TLB thrashing by having resource allocation policy
284 *   match the I/O TLB replacement policy.
285 *
286 ***************************************************************/
287 #define IOVP_SIZE PAGE_SIZE
288 #define IOVP_SHIFT PAGE_SHIFT
289 #define IOVP_MASK PAGE_MASK
290 
291 /* Convert from IOVP to IOVA and vice versa. */
292 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
293 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
294 
295 #define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
296 #define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
297 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
298 
299 /*
300 ** Don't worry about the 150% average search length on a miss.
301 ** If the search wraps around, and passes the res_hint, it will
302 ** cause the kernel to panic anyhow.
303 */
304 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
305        for(; res_ptr < res_end; ++res_ptr) { \
306 		int ret;\
307 		unsigned int idx;\
308 		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
309 		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
310 		if ((0 == (*res_ptr & mask)) && !ret) { \
311 			*res_ptr |= mask; \
312 			res_idx = idx;\
313 			ioc->res_hint = res_idx + (size >> 3); \
314 			goto resource_found; \
315 		} \
316 	}
317 
318 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
319        u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
320        u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
321        CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
322        res_ptr = (u##size *)&(ioc)->res_map[0]; \
323        CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
324 
325 /*
326 ** Find available bit in this ioa's resource map.
327 ** Use a "circular" search:
328 **   o Most IOVA's are "temporary" - avg search time should be small.
329 ** o keep a history of what happened for debugging
330 ** o KISS.
331 **
332 ** Perf optimizations:
333 ** o search for log2(size) bits at a time.
334 ** o search for available resource bits using byte/word/whatever.
335 ** o use different search for "large" (eg > 4 pages) or "very large"
336 **   (eg > 16 pages) mappings.
337 */
338 
339 /**
340  * ccio_alloc_range - Allocate pages in the ioc's resource map.
341  * @ioc: The I/O Controller.
342  * @pages_needed: The requested number of pages to be mapped into the
343  * I/O Pdir...
344  *
345  * This function searches the resource map of the ioc to locate a range
346  * of available pages for the requested size.
347  */
348 static int
349 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
350 {
351 	unsigned int pages_needed = size >> IOVP_SHIFT;
352 	unsigned int res_idx;
353 	unsigned long boundary_size;
354 #ifdef CCIO_SEARCH_TIME
355 	unsigned long cr_start = mfctl(16);
356 #endif
357 
358 	BUG_ON(pages_needed == 0);
359 	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
360 
361 	DBG_RES("%s() size: %d pages_needed %d\n",
362 		__FUNCTION__, size, pages_needed);
363 
364 	/*
365 	** "seek and ye shall find"...praying never hurts either...
366 	** ggg sacrifices another 710 to the computer gods.
367 	*/
368 
369 	boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
370 			      1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
371 
372 	if (pages_needed <= 8) {
373 		/*
374 		 * LAN traffic will not thrash the TLB IFF the same NIC
375 		 * uses 8 adjacent pages to map separate payload data.
376 		 * ie the same byte in the resource bit map.
377 		 */
378 #if 0
379 		/* FIXME: bit search should shift it's way through
380 		 * an unsigned long - not byte at a time. As it is now,
381 		 * we effectively allocate this byte to this mapping.
382 		 */
383 		unsigned long mask = ~(~0UL >> pages_needed);
384 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
385 #else
386 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
387 #endif
388 	} else if (pages_needed <= 16) {
389 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
390 	} else if (pages_needed <= 32) {
391 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
392 #ifdef __LP64__
393 	} else if (pages_needed <= 64) {
394 		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
395 #endif
396 	} else {
397 		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
398 		       __FILE__,  __FUNCTION__, pages_needed);
399 	}
400 
401 	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
402 	      __FUNCTION__);
403 
404 resource_found:
405 
406 	DBG_RES("%s() res_idx %d res_hint: %d\n",
407 		__FUNCTION__, res_idx, ioc->res_hint);
408 
409 #ifdef CCIO_SEARCH_TIME
410 	{
411 		unsigned long cr_end = mfctl(16);
412 		unsigned long tmp = cr_end - cr_start;
413 		/* check for roll over */
414 		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
415 	}
416 	ioc->avg_search[ioc->avg_idx++] = cr_start;
417 	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
418 #endif
419 #ifdef CCIO_MAP_STATS
420 	ioc->used_pages += pages_needed;
421 #endif
422 	/*
423 	** return the bit address.
424 	*/
425 	return res_idx << 3;
426 }
427 
428 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
429         u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
430         BUG_ON((*res_ptr & mask) != mask); \
431         *res_ptr &= ~(mask);
432 
433 /**
434  * ccio_free_range - Free pages from the ioc's resource map.
435  * @ioc: The I/O Controller.
436  * @iova: The I/O Virtual Address.
437  * @pages_mapped: The requested number of pages to be freed from the
438  * I/O Pdir.
439  *
440  * This function frees the resouces allocated for the iova.
441  */
442 static void
443 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
444 {
445 	unsigned long iovp = CCIO_IOVP(iova);
446 	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
447 
448 	BUG_ON(pages_mapped == 0);
449 	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
450 	BUG_ON(pages_mapped > BITS_PER_LONG);
451 
452 	DBG_RES("%s():  res_idx: %d pages_mapped %d\n",
453 		__FUNCTION__, res_idx, pages_mapped);
454 
455 #ifdef CCIO_MAP_STATS
456 	ioc->used_pages -= pages_mapped;
457 #endif
458 
459 	if(pages_mapped <= 8) {
460 #if 0
461 		/* see matching comments in alloc_range */
462 		unsigned long mask = ~(~0UL >> pages_mapped);
463 		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
464 #else
465 		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8);
466 #endif
467 	} else if(pages_mapped <= 16) {
468 		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16);
469 	} else if(pages_mapped <= 32) {
470 		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
471 #ifdef __LP64__
472 	} else if(pages_mapped <= 64) {
473 		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
474 #endif
475 	} else {
476 		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
477 		      __FUNCTION__);
478 	}
479 }
480 
481 /****************************************************************
482 **
483 **          CCIO dma_ops support routines
484 **
485 *****************************************************************/
486 
487 typedef unsigned long space_t;
488 #define KERNEL_SPACE 0
489 
490 /*
491 ** DMA "Page Type" and Hints
492 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
493 **   set for subcacheline DMA transfers since we don't want to damage the
494 **   other part of a cacheline.
495 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
496 **   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
497 **   data can avoid this if the mapping covers full cache lines.
498 ** o STOP_MOST is needed for atomicity across cachelines.
499 **   Apparently only "some EISA devices" need this.
500 **   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
501 **   to use this hint iff the EISA devices needs this feature.
502 **   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
503 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
504 **   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
505 **   device can be fetched and multiply DMA streams will thrash the
506 **   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
507 **   and Invalidation of Prefetch Entries".
508 **
509 ** FIXME: the default hints need to be per GSC device - not global.
510 **
511 ** HP-UX dorks: linux device driver programming model is totally different
512 **    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
513 **    do special things to work on non-coherent platforms...linux has to
514 **    be much more careful with this.
515 */
516 #define IOPDIR_VALID    0x01UL
517 #define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
518 #ifdef CONFIG_EISA
519 #define HINT_STOP_MOST  0x04UL	/* LSL support */
520 #else
521 #define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
522 #endif
523 #define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
524 #define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
525 
526 
527 /*
528 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
529 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
530 ** when it passes in BIDIRECTIONAL flag.
531 */
532 static u32 hint_lookup[] = {
533 	[PCI_DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
534 	[PCI_DMA_TODEVICE]	= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
535 	[PCI_DMA_FROMDEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
536 };
537 
538 /**
539  * ccio_io_pdir_entry - Initialize an I/O Pdir.
540  * @pdir_ptr: A pointer into I/O Pdir.
541  * @sid: The Space Identifier.
542  * @vba: The virtual address.
543  * @hints: The DMA Hint.
544  *
545  * Given a virtual address (vba, arg2) and space id, (sid, arg1),
546  * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
547  * entry consists of 8 bytes as shown below (MSB == bit 0):
548  *
549  *
550  * WORD 0:
551  * +------+----------------+-----------------------------------------------+
552  * | Phys | Virtual Index  |               Phys                            |
553  * | 0:3  |     0:11       |               4:19                            |
554  * |4 bits|   12 bits      |              16 bits                          |
555  * +------+----------------+-----------------------------------------------+
556  * WORD 1:
557  * +-----------------------+-----------------------------------------------+
558  * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
559  * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
560  * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
561  * +-----------------------+-----------------------------------------------+
562  *
563  * The virtual index field is filled with the results of the LCI
564  * (Load Coherence Index) instruction.  The 8 bits used for the virtual
565  * index are bits 12:19 of the value returned by LCI.
566  */
567 void CCIO_INLINE
568 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
569 		   unsigned long hints)
570 {
571 	register unsigned long pa;
572 	register unsigned long ci; /* coherent index */
573 
574 	/* We currently only support kernel addresses */
575 	BUG_ON(sid != KERNEL_SPACE);
576 
577 	mtsp(sid,1);
578 
579 	/*
580 	** WORD 1 - low order word
581 	** "hints" parm includes the VALID bit!
582 	** "dep" clobbers the physical address offset bits as well.
583 	*/
584 	pa = virt_to_phys(vba);
585 	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
586 	((u32 *)pdir_ptr)[1] = (u32) pa;
587 
588 	/*
589 	** WORD 0 - high order word
590 	*/
591 
592 #ifdef __LP64__
593 	/*
594 	** get bits 12:15 of physical address
595 	** shift bits 16:31 of physical address
596 	** and deposit them
597 	*/
598 	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
599 	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
600 	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
601 #else
602 	pa = 0;
603 #endif
604 	/*
605 	** get CPU coherency index bits
606 	** Grab virtual index [0:11]
607 	** Deposit virt_idx bits into I/O PDIR word
608 	*/
609 	asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
610 	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
611 	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
612 
613 	((u32 *)pdir_ptr)[0] = (u32) pa;
614 
615 
616 	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
617 	**        PCX-U/U+ do. (eg C200/C240)
618 	**        PCX-T'? Don't know. (eg C110 or similar K-class)
619 	**
620 	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
621 	** Hopefully we can patch (NOP) these out at boot time somehow.
622 	**
623 	** "Since PCX-U employs an offset hash that is incompatible with
624 	** the real mode coherence index generation of U2, the PDIR entry
625 	** must be flushed to memory to retain coherence."
626 	*/
627 	asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
628 	asm volatile("sync");
629 }
630 
631 /**
632  * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
633  * @ioc: The I/O Controller.
634  * @iovp: The I/O Virtual Page.
635  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
636  *
637  * Purge invalid I/O PDIR entries from the I/O TLB.
638  *
639  * FIXME: Can we change the byte_cnt to pages_mapped?
640  */
641 static CCIO_INLINE void
642 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
643 {
644 	u32 chain_size = 1 << ioc->chainid_shift;
645 
646 	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
647 	byte_cnt += chain_size;
648 
649 	while(byte_cnt > chain_size) {
650 		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
651 		iovp += chain_size;
652 		byte_cnt -= chain_size;
653 	}
654 }
655 
656 /**
657  * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
658  * @ioc: The I/O Controller.
659  * @iova: The I/O Virtual Address.
660  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
661  *
662  * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
663  * TLB entries.
664  *
665  * FIXME: at some threshhold it might be "cheaper" to just blow
666  *        away the entire I/O TLB instead of individual entries.
667  *
668  * FIXME: Uturn has 256 TLB entries. We don't need to purge every
669  *        PDIR entry - just once for each possible TLB entry.
670  *        (We do need to maker I/O PDIR entries invalid regardless).
671  *
672  * FIXME: Can we change byte_cnt to pages_mapped?
673  */
674 static CCIO_INLINE void
675 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
676 {
677 	u32 iovp = (u32)CCIO_IOVP(iova);
678 	size_t saved_byte_cnt;
679 
680 	/* round up to nearest page size */
681 	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
682 
683 	while(byte_cnt > 0) {
684 		/* invalidate one page at a time */
685 		unsigned int idx = PDIR_INDEX(iovp);
686 		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
687 
688 		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
689 		pdir_ptr[7] = 0;	/* clear only VALID bit */
690 		/*
691 		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
692 		**   PCX-U/U+ do. (eg C200/C240)
693 		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
694 		**
695 		** Hopefully someone figures out how to patch (NOP) the
696 		** FDC/SYNC out at boot time.
697 		*/
698 		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
699 
700 		iovp     += IOVP_SIZE;
701 		byte_cnt -= IOVP_SIZE;
702 	}
703 
704 	asm volatile("sync");
705 	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
706 }
707 
708 /****************************************************************
709 **
710 **          CCIO dma_ops
711 **
712 *****************************************************************/
713 
714 /**
715  * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
716  * @dev: The PCI device.
717  * @mask: A bit mask describing the DMA address range of the device.
718  *
719  * This function implements the pci_dma_supported function.
720  */
721 static int
722 ccio_dma_supported(struct device *dev, u64 mask)
723 {
724 	if(dev == NULL) {
725 		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
726 		BUG();
727 		return 0;
728 	}
729 
730 	/* only support 32-bit devices (ie PCI/GSC) */
731 	return (int)(mask == 0xffffffffUL);
732 }
733 
734 /**
735  * ccio_map_single - Map an address range into the IOMMU.
736  * @dev: The PCI device.
737  * @addr: The start address of the DMA region.
738  * @size: The length of the DMA region.
739  * @direction: The direction of the DMA transaction (to/from device).
740  *
741  * This function implements the pci_map_single function.
742  */
743 static dma_addr_t
744 ccio_map_single(struct device *dev, void *addr, size_t size,
745 		enum dma_data_direction direction)
746 {
747 	int idx;
748 	struct ioc *ioc;
749 	unsigned long flags;
750 	dma_addr_t iovp;
751 	dma_addr_t offset;
752 	u64 *pdir_start;
753 	unsigned long hint = hint_lookup[(int)direction];
754 
755 	BUG_ON(!dev);
756 	ioc = GET_IOC(dev);
757 
758 	BUG_ON(size <= 0);
759 
760 	/* save offset bits */
761 	offset = ((unsigned long) addr) & ~IOVP_MASK;
762 
763 	/* round up to nearest IOVP_SIZE */
764 	size = ALIGN(size + offset, IOVP_SIZE);
765 	spin_lock_irqsave(&ioc->res_lock, flags);
766 
767 #ifdef CCIO_MAP_STATS
768 	ioc->msingle_calls++;
769 	ioc->msingle_pages += size >> IOVP_SHIFT;
770 #endif
771 
772 	idx = ccio_alloc_range(ioc, dev, size);
773 	iovp = (dma_addr_t)MKIOVP(idx);
774 
775 	pdir_start = &(ioc->pdir_base[idx]);
776 
777 	DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
778 		__FUNCTION__, addr, (long)iovp | offset, size);
779 
780 	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
781 	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
782 		hint |= HINT_SAFE_DMA;
783 
784 	while(size > 0) {
785 		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
786 
787 		DBG_RUN(" pdir %p %08x%08x\n",
788 			pdir_start,
789 			(u32) (((u32 *) pdir_start)[0]),
790 			(u32) (((u32 *) pdir_start)[1]));
791 		++pdir_start;
792 		addr += IOVP_SIZE;
793 		size -= IOVP_SIZE;
794 	}
795 
796 	spin_unlock_irqrestore(&ioc->res_lock, flags);
797 
798 	/* form complete address */
799 	return CCIO_IOVA(iovp, offset);
800 }
801 
802 /**
803  * ccio_unmap_single - Unmap an address range from the IOMMU.
804  * @dev: The PCI device.
805  * @addr: The start address of the DMA region.
806  * @size: The length of the DMA region.
807  * @direction: The direction of the DMA transaction (to/from device).
808  *
809  * This function implements the pci_unmap_single function.
810  */
811 static void
812 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
813 		  enum dma_data_direction direction)
814 {
815 	struct ioc *ioc;
816 	unsigned long flags;
817 	dma_addr_t offset = iova & ~IOVP_MASK;
818 
819 	BUG_ON(!dev);
820 	ioc = GET_IOC(dev);
821 
822 	DBG_RUN("%s() iovp 0x%lx/%x\n",
823 		__FUNCTION__, (long)iova, size);
824 
825 	iova ^= offset;        /* clear offset bits */
826 	size += offset;
827 	size = ALIGN(size, IOVP_SIZE);
828 
829 	spin_lock_irqsave(&ioc->res_lock, flags);
830 
831 #ifdef CCIO_MAP_STATS
832 	ioc->usingle_calls++;
833 	ioc->usingle_pages += size >> IOVP_SHIFT;
834 #endif
835 
836 	ccio_mark_invalid(ioc, iova, size);
837 	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
838 	spin_unlock_irqrestore(&ioc->res_lock, flags);
839 }
840 
841 /**
842  * ccio_alloc_consistent - Allocate a consistent DMA mapping.
843  * @dev: The PCI device.
844  * @size: The length of the DMA region.
845  * @dma_handle: The DMA address handed back to the device (not the cpu).
846  *
847  * This function implements the pci_alloc_consistent function.
848  */
849 static void *
850 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
851 {
852       void *ret;
853 #if 0
854 /* GRANT Need to establish hierarchy for non-PCI devs as well
855 ** and then provide matching gsc_map_xxx() functions for them as well.
856 */
857 	if(!hwdev) {
858 		/* only support PCI */
859 		*dma_handle = 0;
860 		return 0;
861 	}
862 #endif
863         ret = (void *) __get_free_pages(flag, get_order(size));
864 
865 	if (ret) {
866 		memset(ret, 0, size);
867 		*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
868 	}
869 
870 	return ret;
871 }
872 
873 /**
874  * ccio_free_consistent - Free a consistent DMA mapping.
875  * @dev: The PCI device.
876  * @size: The length of the DMA region.
877  * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
878  * @dma_handle: The device address returned from the ccio_alloc_consistent.
879  *
880  * This function implements the pci_free_consistent function.
881  */
882 static void
883 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
884 		     dma_addr_t dma_handle)
885 {
886 	ccio_unmap_single(dev, dma_handle, size, 0);
887 	free_pages((unsigned long)cpu_addr, get_order(size));
888 }
889 
890 /*
891 ** Since 0 is a valid pdir_base index value, can't use that
892 ** to determine if a value is valid or not. Use a flag to indicate
893 ** the SG list entry contains a valid pdir index.
894 */
895 #define PIDE_FLAG 0x80000000UL
896 
897 #ifdef CCIO_MAP_STATS
898 #define IOMMU_MAP_STATS
899 #endif
900 #include "iommu-helpers.h"
901 
902 /**
903  * ccio_map_sg - Map the scatter/gather list into the IOMMU.
904  * @dev: The PCI device.
905  * @sglist: The scatter/gather list to be mapped in the IOMMU.
906  * @nents: The number of entries in the scatter/gather list.
907  * @direction: The direction of the DMA transaction (to/from device).
908  *
909  * This function implements the pci_map_sg function.
910  */
911 static int
912 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
913 	    enum dma_data_direction direction)
914 {
915 	struct ioc *ioc;
916 	int coalesced, filled = 0;
917 	unsigned long flags;
918 	unsigned long hint = hint_lookup[(int)direction];
919 	unsigned long prev_len = 0, current_len = 0;
920 	int i;
921 
922 	BUG_ON(!dev);
923 	ioc = GET_IOC(dev);
924 
925 	DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
926 
927 	/* Fast path single entry scatterlists. */
928 	if (nents == 1) {
929 		sg_dma_address(sglist) = ccio_map_single(dev,
930 				(void *)sg_virt_addr(sglist), sglist->length,
931 				direction);
932 		sg_dma_len(sglist) = sglist->length;
933 		return 1;
934 	}
935 
936 	for(i = 0; i < nents; i++)
937 		prev_len += sglist[i].length;
938 
939 	spin_lock_irqsave(&ioc->res_lock, flags);
940 
941 #ifdef CCIO_MAP_STATS
942 	ioc->msg_calls++;
943 #endif
944 
945 	/*
946 	** First coalesce the chunks and allocate I/O pdir space
947 	**
948 	** If this is one DMA stream, we can properly map using the
949 	** correct virtual address associated with each DMA page.
950 	** w/o this association, we wouldn't have coherent DMA!
951 	** Access to the virtual address is what forces a two pass algorithm.
952 	*/
953 	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
954 
955 	/*
956 	** Program the I/O Pdir
957 	**
958 	** map the virtual addresses to the I/O Pdir
959 	** o dma_address will contain the pdir index
960 	** o dma_len will contain the number of bytes to map
961 	** o page/offset contain the virtual address.
962 	*/
963 	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
964 
965 	spin_unlock_irqrestore(&ioc->res_lock, flags);
966 
967 	BUG_ON(coalesced != filled);
968 
969 	DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
970 
971 	for (i = 0; i < filled; i++)
972 		current_len += sg_dma_len(sglist + i);
973 
974 	BUG_ON(current_len != prev_len);
975 
976 	return filled;
977 }
978 
979 /**
980  * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
981  * @dev: The PCI device.
982  * @sglist: The scatter/gather list to be unmapped from the IOMMU.
983  * @nents: The number of entries in the scatter/gather list.
984  * @direction: The direction of the DMA transaction (to/from device).
985  *
986  * This function implements the pci_unmap_sg function.
987  */
988 static void
989 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
990 	      enum dma_data_direction direction)
991 {
992 	struct ioc *ioc;
993 
994 	BUG_ON(!dev);
995 	ioc = GET_IOC(dev);
996 
997 	DBG_RUN_SG("%s() START %d entries,  %08lx,%x\n",
998 		__FUNCTION__, nents, sg_virt_addr(sglist), sglist->length);
999 
1000 #ifdef CCIO_MAP_STATS
1001 	ioc->usg_calls++;
1002 #endif
1003 
1004 	while(sg_dma_len(sglist) && nents--) {
1005 
1006 #ifdef CCIO_MAP_STATS
1007 		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1008 #endif
1009 		ccio_unmap_single(dev, sg_dma_address(sglist),
1010 				  sg_dma_len(sglist), direction);
1011 		++sglist;
1012 	}
1013 
1014 	DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
1015 }
1016 
1017 static struct hppa_dma_ops ccio_ops = {
1018 	.dma_supported =	ccio_dma_supported,
1019 	.alloc_consistent =	ccio_alloc_consistent,
1020 	.alloc_noncoherent =	ccio_alloc_consistent,
1021 	.free_consistent =	ccio_free_consistent,
1022 	.map_single =		ccio_map_single,
1023 	.unmap_single =		ccio_unmap_single,
1024 	.map_sg = 		ccio_map_sg,
1025 	.unmap_sg = 		ccio_unmap_sg,
1026 	.dma_sync_single_for_cpu =	NULL,	/* NOP for U2/Uturn */
1027 	.dma_sync_single_for_device =	NULL,	/* NOP for U2/Uturn */
1028 	.dma_sync_sg_for_cpu =		NULL,	/* ditto */
1029 	.dma_sync_sg_for_device =		NULL,	/* ditto */
1030 };
1031 
1032 #ifdef CONFIG_PROC_FS
1033 static int ccio_proc_info(struct seq_file *m, void *p)
1034 {
1035 	int len = 0;
1036 	struct ioc *ioc = ioc_list;
1037 
1038 	while (ioc != NULL) {
1039 		unsigned int total_pages = ioc->res_size << 3;
1040 		unsigned long avg = 0, min, max;
1041 		int j;
1042 
1043 		len += seq_printf(m, "%s\n", ioc->name);
1044 
1045 		len += seq_printf(m, "Cujo 2.0 bug    : %s\n",
1046 				  (ioc->cujo20_bug ? "yes" : "no"));
1047 
1048 		len += seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1049 			       total_pages * 8, total_pages);
1050 
1051 #ifdef CCIO_MAP_STATS
1052 		len += seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1053 				  total_pages - ioc->used_pages, ioc->used_pages,
1054 				  (int)(ioc->used_pages * 100 / total_pages));
1055 #endif
1056 
1057 		len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1058 				  ioc->res_size, total_pages);
1059 
1060 #ifdef CCIO_SEARCH_TIME
1061 		min = max = ioc->avg_search[0];
1062 		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1063 			avg += ioc->avg_search[j];
1064 			if(ioc->avg_search[j] > max)
1065 				max = ioc->avg_search[j];
1066 			if(ioc->avg_search[j] < min)
1067 				min = ioc->avg_search[j];
1068 		}
1069 		avg /= CCIO_SEARCH_SAMPLE;
1070 		len += seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1071 				  min, avg, max);
1072 #endif
1073 #ifdef CCIO_MAP_STATS
1074 		len += seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1075 				  ioc->msingle_calls, ioc->msingle_pages,
1076 				  (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1077 
1078 		/* KLUGE - unmap_sg calls unmap_single for each mapped page */
1079 		min = ioc->usingle_calls - ioc->usg_calls;
1080 		max = ioc->usingle_pages - ioc->usg_pages;
1081 		len += seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1082 				  min, max, (int)((max * 1000)/min));
1083 
1084 		len += seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1085 				  ioc->msg_calls, ioc->msg_pages,
1086 				  (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1087 
1088 		len += seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1089 				  ioc->usg_calls, ioc->usg_pages,
1090 				  (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1091 #endif	/* CCIO_MAP_STATS */
1092 
1093 		ioc = ioc->next;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1100 {
1101 	return single_open(file, &ccio_proc_info, NULL);
1102 }
1103 
1104 static const struct file_operations ccio_proc_info_fops = {
1105 	.owner = THIS_MODULE,
1106 	.open = ccio_proc_info_open,
1107 	.read = seq_read,
1108 	.llseek = seq_lseek,
1109 	.release = single_release,
1110 };
1111 
1112 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1113 {
1114 	int len = 0;
1115 	struct ioc *ioc = ioc_list;
1116 
1117 	while (ioc != NULL) {
1118 		u32 *res_ptr = (u32 *)ioc->res_map;
1119 		int j;
1120 
1121 		for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1122 			if ((j & 7) == 0)
1123 				len += seq_puts(m, "\n   ");
1124 			len += seq_printf(m, "%08x", *res_ptr);
1125 			res_ptr++;
1126 		}
1127 		len += seq_puts(m, "\n\n");
1128 		ioc = ioc->next;
1129 		break; /* XXX - remove me */
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1136 {
1137 	return single_open(file, &ccio_proc_bitmap_info, NULL);
1138 }
1139 
1140 static const struct file_operations ccio_proc_bitmap_fops = {
1141 	.owner = THIS_MODULE,
1142 	.open = ccio_proc_bitmap_open,
1143 	.read = seq_read,
1144 	.llseek = seq_lseek,
1145 	.release = single_release,
1146 };
1147 #endif
1148 
1149 /**
1150  * ccio_find_ioc - Find the ioc in the ioc_list
1151  * @hw_path: The hardware path of the ioc.
1152  *
1153  * This function searches the ioc_list for an ioc that matches
1154  * the provide hardware path.
1155  */
1156 static struct ioc * ccio_find_ioc(int hw_path)
1157 {
1158 	int i;
1159 	struct ioc *ioc;
1160 
1161 	ioc = ioc_list;
1162 	for (i = 0; i < ioc_count; i++) {
1163 		if (ioc->hw_path == hw_path)
1164 			return ioc;
1165 
1166 		ioc = ioc->next;
1167 	}
1168 
1169 	return NULL;
1170 }
1171 
1172 /**
1173  * ccio_get_iommu - Find the iommu which controls this device
1174  * @dev: The parisc device.
1175  *
1176  * This function searches through the registered IOMMU's and returns
1177  * the appropriate IOMMU for the device based on its hardware path.
1178  */
1179 void * ccio_get_iommu(const struct parisc_device *dev)
1180 {
1181 	dev = find_pa_parent_type(dev, HPHW_IOA);
1182 	if (!dev)
1183 		return NULL;
1184 
1185 	return ccio_find_ioc(dev->hw_path);
1186 }
1187 
1188 #define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1189 
1190 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1191  * to/from certain pages.  To avoid this happening, we mark these pages
1192  * as `used', and ensure that nothing will try to allocate from them.
1193  */
1194 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1195 {
1196 	unsigned int idx;
1197 	struct parisc_device *dev = parisc_parent(cujo);
1198 	struct ioc *ioc = ccio_get_iommu(dev);
1199 	u8 *res_ptr;
1200 
1201 	ioc->cujo20_bug = 1;
1202 	res_ptr = ioc->res_map;
1203 	idx = PDIR_INDEX(iovp) >> 3;
1204 
1205 	while (idx < ioc->res_size) {
1206  		res_ptr[idx] |= 0xff;
1207 		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1208 	}
1209 }
1210 
1211 #if 0
1212 /* GRANT -  is this needed for U2 or not? */
1213 
1214 /*
1215 ** Get the size of the I/O TLB for this I/O MMU.
1216 **
1217 ** If spa_shift is non-zero (ie probably U2),
1218 ** then calculate the I/O TLB size using spa_shift.
1219 **
1220 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1221 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1222 ** I think only Java (K/D/R-class too?) systems don't do this.
1223 */
1224 static int
1225 ccio_get_iotlb_size(struct parisc_device *dev)
1226 {
1227 	if (dev->spa_shift == 0) {
1228 		panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
1229 	}
1230 	return (1 << dev->spa_shift);
1231 }
1232 #else
1233 
1234 /* Uturn supports 256 TLB entries */
1235 #define CCIO_CHAINID_SHIFT	8
1236 #define CCIO_CHAINID_MASK	0xff
1237 #endif /* 0 */
1238 
1239 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1240 static const struct parisc_device_id ccio_tbl[] = {
1241 	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1242 	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1243 	{ 0, }
1244 };
1245 
1246 static int ccio_probe(struct parisc_device *dev);
1247 
1248 static struct parisc_driver ccio_driver = {
1249 	.name =		"ccio",
1250 	.id_table =	ccio_tbl,
1251 	.probe =	ccio_probe,
1252 };
1253 
1254 /**
1255  * ccio_ioc_init - Initalize the I/O Controller
1256  * @ioc: The I/O Controller.
1257  *
1258  * Initalize the I/O Controller which includes setting up the
1259  * I/O Page Directory, the resource map, and initalizing the
1260  * U2/Uturn chip into virtual mode.
1261  */
1262 static void
1263 ccio_ioc_init(struct ioc *ioc)
1264 {
1265 	int i;
1266 	unsigned int iov_order;
1267 	u32 iova_space_size;
1268 
1269 	/*
1270 	** Determine IOVA Space size from memory size.
1271 	**
1272 	** Ideally, PCI drivers would register the maximum number
1273 	** of DMA they can have outstanding for each device they
1274 	** own.  Next best thing would be to guess how much DMA
1275 	** can be outstanding based on PCI Class/sub-class. Both
1276 	** methods still require some "extra" to support PCI
1277 	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1278 	*/
1279 
1280 	iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
1281 
1282 	/* limit IOVA space size to 1MB-1GB */
1283 
1284 	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1285 		iova_space_size =  1 << (20 - PAGE_SHIFT);
1286 #ifdef __LP64__
1287 	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1288 		iova_space_size =  1 << (30 - PAGE_SHIFT);
1289 #endif
1290 	}
1291 
1292 	/*
1293 	** iova space must be log2() in size.
1294 	** thus, pdir/res_map will also be log2().
1295 	*/
1296 
1297 	/* We could use larger page sizes in order to *decrease* the number
1298 	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1299 	**
1300 	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1301 	**   since the pages must also be physically contiguous - typically
1302 	**   this is the case under linux."
1303 	*/
1304 
1305 	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1306 
1307 	/* iova_space_size is now bytes, not pages */
1308 	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1309 
1310 	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1311 
1312 	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1313 
1314 	/* Verify it's a power of two */
1315 	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1316 
1317 	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1318 			__FUNCTION__, ioc->ioc_regs,
1319 			(unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1320 			iova_space_size>>20,
1321 			iov_order + PAGE_SHIFT);
1322 
1323 	ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1324 						 get_order(ioc->pdir_size));
1325 	if(NULL == ioc->pdir_base) {
1326 		panic("%s() could not allocate I/O Page Table\n", __FUNCTION__);
1327 	}
1328 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1329 
1330 	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1331 	DBG_INIT(" base %p\n", ioc->pdir_base);
1332 
1333 	/* resource map size dictated by pdir_size */
1334  	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1335 	DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
1336 
1337 	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1338 					      get_order(ioc->res_size));
1339 	if(NULL == ioc->res_map) {
1340 		panic("%s() could not allocate resource map\n", __FUNCTION__);
1341 	}
1342 	memset(ioc->res_map, 0, ioc->res_size);
1343 
1344 	/* Initialize the res_hint to 16 */
1345 	ioc->res_hint = 16;
1346 
1347 	/* Initialize the spinlock */
1348 	spin_lock_init(&ioc->res_lock);
1349 
1350 	/*
1351 	** Chainid is the upper most bits of an IOVP used to determine
1352 	** which TLB entry an IOVP will use.
1353 	*/
1354 	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1355 	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1356 
1357 	/*
1358 	** Initialize IOA hardware
1359 	*/
1360 	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1361 		  &ioc->ioc_regs->io_chain_id_mask);
1362 
1363 	WRITE_U32(virt_to_phys(ioc->pdir_base),
1364 		  &ioc->ioc_regs->io_pdir_base);
1365 
1366 	/*
1367 	** Go to "Virtual Mode"
1368 	*/
1369 	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1370 
1371 	/*
1372 	** Initialize all I/O TLB entries to 0 (Valid bit off).
1373 	*/
1374 	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1375 	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1376 
1377 	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1378 		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1379 			  &ioc->ioc_regs->io_command);
1380 	}
1381 }
1382 
1383 static void __init
1384 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1385 {
1386 	int result;
1387 
1388 	res->parent = NULL;
1389 	res->flags = IORESOURCE_MEM;
1390 	/*
1391 	 * bracing ((signed) ...) are required for 64bit kernel because
1392 	 * we only want to sign extend the lower 16 bits of the register.
1393 	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1394 	 */
1395 	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1396 	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1397 	res->name = name;
1398 	/*
1399 	 * Check if this MMIO range is disable
1400 	 */
1401 	if (res->end + 1 == res->start)
1402 		return;
1403 
1404 	/* On some platforms (e.g. K-Class), we have already registered
1405 	 * resources for devices reported by firmware. Some are children
1406 	 * of ccio.
1407 	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1408 	 */
1409 	result = insert_resource(&iomem_resource, res);
1410 	if (result < 0) {
1411 		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1412 	 		__FUNCTION__, res->start, res->end);
1413 	}
1414 }
1415 
1416 static void __init ccio_init_resources(struct ioc *ioc)
1417 {
1418 	struct resource *res = ioc->mmio_region;
1419 	char *name = kmalloc(14, GFP_KERNEL);
1420 
1421 	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1422 
1423 	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1424 	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1425 }
1426 
1427 static int new_ioc_area(struct resource *res, unsigned long size,
1428 		unsigned long min, unsigned long max, unsigned long align)
1429 {
1430 	if (max <= min)
1431 		return -EBUSY;
1432 
1433 	res->start = (max - size + 1) &~ (align - 1);
1434 	res->end = res->start + size;
1435 
1436 	/* We might be trying to expand the MMIO range to include
1437 	 * a child device that has already registered it's MMIO space.
1438 	 * Use "insert" instead of request_resource().
1439 	 */
1440 	if (!insert_resource(&iomem_resource, res))
1441 		return 0;
1442 
1443 	return new_ioc_area(res, size, min, max - size, align);
1444 }
1445 
1446 static int expand_ioc_area(struct resource *res, unsigned long size,
1447 		unsigned long min, unsigned long max, unsigned long align)
1448 {
1449 	unsigned long start, len;
1450 
1451 	if (!res->parent)
1452 		return new_ioc_area(res, size, min, max, align);
1453 
1454 	start = (res->start - size) &~ (align - 1);
1455 	len = res->end - start + 1;
1456 	if (start >= min) {
1457 		if (!adjust_resource(res, start, len))
1458 			return 0;
1459 	}
1460 
1461 	start = res->start;
1462 	len = ((size + res->end + align) &~ (align - 1)) - start;
1463 	if (start + len <= max) {
1464 		if (!adjust_resource(res, start, len))
1465 			return 0;
1466 	}
1467 
1468 	return -EBUSY;
1469 }
1470 
1471 /*
1472  * Dino calls this function.  Beware that we may get called on systems
1473  * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1474  * So it's legal to find no parent IOC.
1475  *
1476  * Some other issues: one of the resources in the ioc may be unassigned.
1477  */
1478 int ccio_allocate_resource(const struct parisc_device *dev,
1479 		struct resource *res, unsigned long size,
1480 		unsigned long min, unsigned long max, unsigned long align)
1481 {
1482 	struct resource *parent = &iomem_resource;
1483 	struct ioc *ioc = ccio_get_iommu(dev);
1484 	if (!ioc)
1485 		goto out;
1486 
1487 	parent = ioc->mmio_region;
1488 	if (parent->parent &&
1489 	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1490 		return 0;
1491 
1492 	if ((parent + 1)->parent &&
1493 	    !allocate_resource(parent + 1, res, size, min, max, align,
1494 				NULL, NULL))
1495 		return 0;
1496 
1497 	if (!expand_ioc_area(parent, size, min, max, align)) {
1498 		__raw_writel(((parent->start)>>16) | 0xffff0000,
1499 			     &ioc->ioc_regs->io_io_low);
1500 		__raw_writel(((parent->end)>>16) | 0xffff0000,
1501 			     &ioc->ioc_regs->io_io_high);
1502 	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1503 		parent++;
1504 		__raw_writel(((parent->start)>>16) | 0xffff0000,
1505 			     &ioc->ioc_regs->io_io_low_hv);
1506 		__raw_writel(((parent->end)>>16) | 0xffff0000,
1507 			     &ioc->ioc_regs->io_io_high_hv);
1508 	} else {
1509 		return -EBUSY;
1510 	}
1511 
1512  out:
1513 	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1514 }
1515 
1516 int ccio_request_resource(const struct parisc_device *dev,
1517 		struct resource *res)
1518 {
1519 	struct resource *parent;
1520 	struct ioc *ioc = ccio_get_iommu(dev);
1521 
1522 	if (!ioc) {
1523 		parent = &iomem_resource;
1524 	} else if ((ioc->mmio_region->start <= res->start) &&
1525 			(res->end <= ioc->mmio_region->end)) {
1526 		parent = ioc->mmio_region;
1527 	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1528 			(res->end <= (ioc->mmio_region + 1)->end)) {
1529 		parent = ioc->mmio_region + 1;
1530 	} else {
1531 		return -EBUSY;
1532 	}
1533 
1534 	/* "transparent" bus bridges need to register MMIO resources
1535 	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1536 	 * registered their resources in the PDC "bus walk" (See
1537 	 * arch/parisc/kernel/inventory.c).
1538 	 */
1539 	return insert_resource(parent, res);
1540 }
1541 
1542 /**
1543  * ccio_probe - Determine if ccio should claim this device.
1544  * @dev: The device which has been found
1545  *
1546  * Determine if ccio should claim this chip (return 0) or not (return 1).
1547  * If so, initialize the chip and tell other partners in crime they
1548  * have work to do.
1549  */
1550 static int __init ccio_probe(struct parisc_device *dev)
1551 {
1552 	int i;
1553 	struct ioc *ioc, **ioc_p = &ioc_list;
1554 
1555 	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1556 	if (ioc == NULL) {
1557 		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1558 		return 1;
1559 	}
1560 
1561 	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1562 
1563 	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start);
1564 
1565 	for (i = 0; i < ioc_count; i++) {
1566 		ioc_p = &(*ioc_p)->next;
1567 	}
1568 	*ioc_p = ioc;
1569 
1570 	ioc->hw_path = dev->hw_path;
1571 	ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1572 	ccio_ioc_init(ioc);
1573 	ccio_init_resources(ioc);
1574 	hppa_dma_ops = &ccio_ops;
1575 	dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1576 
1577 	/* if this fails, no I/O cards will work, so may as well bug */
1578 	BUG_ON(dev->dev.platform_data == NULL);
1579 	HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1580 
1581 	if (ioc_count == 0) {
1582 		proc_create(MODULE_NAME, 0, proc_runway_root,
1583 			    &ccio_proc_info_fops);
1584 		proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1585 			    &ccio_proc_bitmap_fops);
1586 	}
1587 
1588 	ioc_count++;
1589 
1590 	parisc_vmerge_boundary = IOVP_SIZE;
1591 	parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE;
1592 	parisc_has_iommu();
1593 	return 0;
1594 }
1595 
1596 /**
1597  * ccio_init - ccio initialization procedure.
1598  *
1599  * Register this driver.
1600  */
1601 void __init ccio_init(void)
1602 {
1603 	register_parisc_driver(&ccio_driver);
1604 }
1605 
1606