xref: /openbmc/linux/drivers/opp/of.c (revision 95777591)
1 /*
2  * Generic OPP OF helpers
3  *
4  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
5  *	Nishanth Menon
6  *	Romit Dasgupta
7  *	Kevin Hilman
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/cpu.h>
17 #include <linux/errno.h>
18 #include <linux/device.h>
19 #include <linux/of_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 #include <linux/energy_model.h>
24 
25 #include "opp.h"
26 
27 /*
28  * Returns opp descriptor node for a device node, caller must
29  * do of_node_put().
30  */
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 						     int index)
33 {
34 	/* "operating-points-v2" can be an array for power domain providers */
35 	return of_parse_phandle(np, "operating-points-v2", index);
36 }
37 
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40 {
41 	return _opp_of_get_opp_desc_node(dev->of_node, 0);
42 }
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44 
45 struct opp_table *_managed_opp(struct device *dev, int index)
46 {
47 	struct opp_table *opp_table, *managed_table = NULL;
48 	struct device_node *np;
49 
50 	np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 	if (!np)
52 		return NULL;
53 
54 	list_for_each_entry(opp_table, &opp_tables, node) {
55 		if (opp_table->np == np) {
56 			/*
57 			 * Multiple devices can point to the same OPP table and
58 			 * so will have same node-pointer, np.
59 			 *
60 			 * But the OPPs will be considered as shared only if the
61 			 * OPP table contains a "opp-shared" property.
62 			 */
63 			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 				_get_opp_table_kref(opp_table);
65 				managed_table = opp_table;
66 			}
67 
68 			break;
69 		}
70 	}
71 
72 	of_node_put(np);
73 
74 	return managed_table;
75 }
76 
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 					  struct device_node *opp_np)
80 {
81 	struct dev_pm_opp *opp;
82 
83 	lockdep_assert_held(&opp_table_lock);
84 
85 	mutex_lock(&opp_table->lock);
86 
87 	list_for_each_entry(opp, &opp_table->opp_list, node) {
88 		if (opp->np == opp_np) {
89 			dev_pm_opp_get(opp);
90 			mutex_unlock(&opp_table->lock);
91 			return opp;
92 		}
93 	}
94 
95 	mutex_unlock(&opp_table->lock);
96 
97 	return NULL;
98 }
99 
100 static struct device_node *of_parse_required_opp(struct device_node *np,
101 						 int index)
102 {
103 	struct device_node *required_np;
104 
105 	required_np = of_parse_phandle(np, "required-opps", index);
106 	if (unlikely(!required_np)) {
107 		pr_err("%s: Unable to parse required-opps: %pOF, index: %d\n",
108 		       __func__, np, index);
109 	}
110 
111 	return required_np;
112 }
113 
114 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
115 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
116 {
117 	struct opp_table *opp_table;
118 	struct device_node *opp_table_np;
119 
120 	lockdep_assert_held(&opp_table_lock);
121 
122 	opp_table_np = of_get_parent(opp_np);
123 	if (!opp_table_np)
124 		goto err;
125 
126 	/* It is safe to put the node now as all we need now is its address */
127 	of_node_put(opp_table_np);
128 
129 	list_for_each_entry(opp_table, &opp_tables, node) {
130 		if (opp_table_np == opp_table->np) {
131 			_get_opp_table_kref(opp_table);
132 			return opp_table;
133 		}
134 	}
135 
136 err:
137 	return ERR_PTR(-ENODEV);
138 }
139 
140 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
141 static void _opp_table_free_required_tables(struct opp_table *opp_table)
142 {
143 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
144 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
145 	int i;
146 
147 	if (!required_opp_tables)
148 		return;
149 
150 	for (i = 0; i < opp_table->required_opp_count; i++) {
151 		if (IS_ERR_OR_NULL(required_opp_tables[i]))
152 			break;
153 
154 		dev_pm_opp_put_opp_table(required_opp_tables[i]);
155 	}
156 
157 	kfree(required_opp_tables);
158 	kfree(genpd_virt_devs);
159 
160 	opp_table->required_opp_count = 0;
161 	opp_table->genpd_virt_devs = NULL;
162 	opp_table->required_opp_tables = NULL;
163 }
164 
165 /*
166  * Populate all devices and opp tables which are part of "required-opps" list.
167  * Checking only the first OPP node should be enough.
168  */
169 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
170 					     struct device *dev,
171 					     struct device_node *opp_np)
172 {
173 	struct opp_table **required_opp_tables;
174 	struct device **genpd_virt_devs = NULL;
175 	struct device_node *required_np, *np;
176 	int count, i;
177 
178 	/* Traversing the first OPP node is all we need */
179 	np = of_get_next_available_child(opp_np, NULL);
180 	if (!np) {
181 		dev_err(dev, "Empty OPP table\n");
182 		return;
183 	}
184 
185 	count = of_count_phandle_with_args(np, "required-opps", NULL);
186 	if (!count)
187 		goto put_np;
188 
189 	if (count > 1) {
190 		genpd_virt_devs = kcalloc(count, sizeof(*genpd_virt_devs),
191 					GFP_KERNEL);
192 		if (!genpd_virt_devs)
193 			goto put_np;
194 	}
195 
196 	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
197 				      GFP_KERNEL);
198 	if (!required_opp_tables) {
199 		kfree(genpd_virt_devs);
200 		goto put_np;
201 	}
202 
203 	opp_table->genpd_virt_devs = genpd_virt_devs;
204 	opp_table->required_opp_tables = required_opp_tables;
205 	opp_table->required_opp_count = count;
206 
207 	for (i = 0; i < count; i++) {
208 		required_np = of_parse_required_opp(np, i);
209 		if (!required_np)
210 			goto free_required_tables;
211 
212 		required_opp_tables[i] = _find_table_of_opp_np(required_np);
213 		of_node_put(required_np);
214 
215 		if (IS_ERR(required_opp_tables[i]))
216 			goto free_required_tables;
217 
218 		/*
219 		 * We only support genpd's OPPs in the "required-opps" for now,
220 		 * as we don't know how much about other cases. Error out if the
221 		 * required OPP doesn't belong to a genpd.
222 		 */
223 		if (!required_opp_tables[i]->is_genpd) {
224 			dev_err(dev, "required-opp doesn't belong to genpd: %pOF\n",
225 				required_np);
226 			goto free_required_tables;
227 		}
228 	}
229 
230 	goto put_np;
231 
232 free_required_tables:
233 	_opp_table_free_required_tables(opp_table);
234 put_np:
235 	of_node_put(np);
236 }
237 
238 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
239 			int index)
240 {
241 	struct device_node *np, *opp_np;
242 	u32 val;
243 
244 	/*
245 	 * Only required for backward compatibility with v1 bindings, but isn't
246 	 * harmful for other cases. And so we do it unconditionally.
247 	 */
248 	np = of_node_get(dev->of_node);
249 	if (!np)
250 		return;
251 
252 	if (!of_property_read_u32(np, "clock-latency", &val))
253 		opp_table->clock_latency_ns_max = val;
254 	of_property_read_u32(np, "voltage-tolerance",
255 			     &opp_table->voltage_tolerance_v1);
256 
257 	if (of_find_property(np, "#power-domain-cells", NULL))
258 		opp_table->is_genpd = true;
259 
260 	/* Get OPP table node */
261 	opp_np = _opp_of_get_opp_desc_node(np, index);
262 	of_node_put(np);
263 
264 	if (!opp_np)
265 		return;
266 
267 	if (of_property_read_bool(opp_np, "opp-shared"))
268 		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
269 	else
270 		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
271 
272 	opp_table->np = opp_np;
273 
274 	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
275 	of_node_put(opp_np);
276 }
277 
278 void _of_clear_opp_table(struct opp_table *opp_table)
279 {
280 	_opp_table_free_required_tables(opp_table);
281 }
282 
283 /*
284  * Release all resources previously acquired with a call to
285  * _of_opp_alloc_required_opps().
286  */
287 void _of_opp_free_required_opps(struct opp_table *opp_table,
288 				struct dev_pm_opp *opp)
289 {
290 	struct dev_pm_opp **required_opps = opp->required_opps;
291 	int i;
292 
293 	if (!required_opps)
294 		return;
295 
296 	for (i = 0; i < opp_table->required_opp_count; i++) {
297 		if (!required_opps[i])
298 			break;
299 
300 		/* Put the reference back */
301 		dev_pm_opp_put(required_opps[i]);
302 	}
303 
304 	kfree(required_opps);
305 	opp->required_opps = NULL;
306 }
307 
308 /* Populate all required OPPs which are part of "required-opps" list */
309 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
310 				       struct dev_pm_opp *opp)
311 {
312 	struct dev_pm_opp **required_opps;
313 	struct opp_table *required_table;
314 	struct device_node *np;
315 	int i, ret, count = opp_table->required_opp_count;
316 
317 	if (!count)
318 		return 0;
319 
320 	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
321 	if (!required_opps)
322 		return -ENOMEM;
323 
324 	opp->required_opps = required_opps;
325 
326 	for (i = 0; i < count; i++) {
327 		required_table = opp_table->required_opp_tables[i];
328 
329 		np = of_parse_required_opp(opp->np, i);
330 		if (unlikely(!np)) {
331 			ret = -ENODEV;
332 			goto free_required_opps;
333 		}
334 
335 		required_opps[i] = _find_opp_of_np(required_table, np);
336 		of_node_put(np);
337 
338 		if (!required_opps[i]) {
339 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
340 			       __func__, opp->np, i);
341 			ret = -ENODEV;
342 			goto free_required_opps;
343 		}
344 	}
345 
346 	return 0;
347 
348 free_required_opps:
349 	_of_opp_free_required_opps(opp_table, opp);
350 
351 	return ret;
352 }
353 
354 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
355 			      struct device_node *np)
356 {
357 	unsigned int count = opp_table->supported_hw_count;
358 	u32 version;
359 	int ret;
360 
361 	if (!opp_table->supported_hw) {
362 		/*
363 		 * In the case that no supported_hw has been set by the
364 		 * platform but there is an opp-supported-hw value set for
365 		 * an OPP then the OPP should not be enabled as there is
366 		 * no way to see if the hardware supports it.
367 		 */
368 		if (of_find_property(np, "opp-supported-hw", NULL))
369 			return false;
370 		else
371 			return true;
372 	}
373 
374 	while (count--) {
375 		ret = of_property_read_u32_index(np, "opp-supported-hw", count,
376 						 &version);
377 		if (ret) {
378 			dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
379 				 __func__, count, ret);
380 			return false;
381 		}
382 
383 		/* Both of these are bitwise masks of the versions */
384 		if (!(version & opp_table->supported_hw[count]))
385 			return false;
386 	}
387 
388 	return true;
389 }
390 
391 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
392 			      struct opp_table *opp_table)
393 {
394 	u32 *microvolt, *microamp = NULL;
395 	int supplies = opp_table->regulator_count, vcount, icount, ret, i, j;
396 	struct property *prop = NULL;
397 	char name[NAME_MAX];
398 
399 	/* Search for "opp-microvolt-<name>" */
400 	if (opp_table->prop_name) {
401 		snprintf(name, sizeof(name), "opp-microvolt-%s",
402 			 opp_table->prop_name);
403 		prop = of_find_property(opp->np, name, NULL);
404 	}
405 
406 	if (!prop) {
407 		/* Search for "opp-microvolt" */
408 		sprintf(name, "opp-microvolt");
409 		prop = of_find_property(opp->np, name, NULL);
410 
411 		/* Missing property isn't a problem, but an invalid entry is */
412 		if (!prop) {
413 			if (unlikely(supplies == -1)) {
414 				/* Initialize regulator_count */
415 				opp_table->regulator_count = 0;
416 				return 0;
417 			}
418 
419 			if (!supplies)
420 				return 0;
421 
422 			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
423 				__func__);
424 			return -EINVAL;
425 		}
426 	}
427 
428 	if (unlikely(supplies == -1)) {
429 		/* Initialize regulator_count */
430 		supplies = opp_table->regulator_count = 1;
431 	} else if (unlikely(!supplies)) {
432 		dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
433 		return -EINVAL;
434 	}
435 
436 	vcount = of_property_count_u32_elems(opp->np, name);
437 	if (vcount < 0) {
438 		dev_err(dev, "%s: Invalid %s property (%d)\n",
439 			__func__, name, vcount);
440 		return vcount;
441 	}
442 
443 	/* There can be one or three elements per supply */
444 	if (vcount != supplies && vcount != supplies * 3) {
445 		dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
446 			__func__, name, vcount, supplies);
447 		return -EINVAL;
448 	}
449 
450 	microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
451 	if (!microvolt)
452 		return -ENOMEM;
453 
454 	ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
455 	if (ret) {
456 		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
457 		ret = -EINVAL;
458 		goto free_microvolt;
459 	}
460 
461 	/* Search for "opp-microamp-<name>" */
462 	prop = NULL;
463 	if (opp_table->prop_name) {
464 		snprintf(name, sizeof(name), "opp-microamp-%s",
465 			 opp_table->prop_name);
466 		prop = of_find_property(opp->np, name, NULL);
467 	}
468 
469 	if (!prop) {
470 		/* Search for "opp-microamp" */
471 		sprintf(name, "opp-microamp");
472 		prop = of_find_property(opp->np, name, NULL);
473 	}
474 
475 	if (prop) {
476 		icount = of_property_count_u32_elems(opp->np, name);
477 		if (icount < 0) {
478 			dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
479 				name, icount);
480 			ret = icount;
481 			goto free_microvolt;
482 		}
483 
484 		if (icount != supplies) {
485 			dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
486 				__func__, name, icount, supplies);
487 			ret = -EINVAL;
488 			goto free_microvolt;
489 		}
490 
491 		microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
492 		if (!microamp) {
493 			ret = -EINVAL;
494 			goto free_microvolt;
495 		}
496 
497 		ret = of_property_read_u32_array(opp->np, name, microamp,
498 						 icount);
499 		if (ret) {
500 			dev_err(dev, "%s: error parsing %s: %d\n", __func__,
501 				name, ret);
502 			ret = -EINVAL;
503 			goto free_microamp;
504 		}
505 	}
506 
507 	for (i = 0, j = 0; i < supplies; i++) {
508 		opp->supplies[i].u_volt = microvolt[j++];
509 
510 		if (vcount == supplies) {
511 			opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
512 			opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
513 		} else {
514 			opp->supplies[i].u_volt_min = microvolt[j++];
515 			opp->supplies[i].u_volt_max = microvolt[j++];
516 		}
517 
518 		if (microamp)
519 			opp->supplies[i].u_amp = microamp[i];
520 	}
521 
522 free_microamp:
523 	kfree(microamp);
524 free_microvolt:
525 	kfree(microvolt);
526 
527 	return ret;
528 }
529 
530 /**
531  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
532  *				  entries
533  * @dev:	device pointer used to lookup OPP table.
534  *
535  * Free OPPs created using static entries present in DT.
536  */
537 void dev_pm_opp_of_remove_table(struct device *dev)
538 {
539 	_dev_pm_opp_find_and_remove_table(dev);
540 }
541 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
542 
543 /**
544  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
545  * @opp_table:	OPP table
546  * @dev:	device for which we do this operation
547  * @np:		device node
548  *
549  * This function adds an opp definition to the opp table and returns status. The
550  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
551  * removed by dev_pm_opp_remove.
552  *
553  * Return:
554  * Valid OPP pointer:
555  *		On success
556  * NULL:
557  *		Duplicate OPPs (both freq and volt are same) and opp->available
558  *		OR if the OPP is not supported by hardware.
559  * ERR_PTR(-EEXIST):
560  *		Freq are same and volt are different OR
561  *		Duplicate OPPs (both freq and volt are same) and !opp->available
562  * ERR_PTR(-ENOMEM):
563  *		Memory allocation failure
564  * ERR_PTR(-EINVAL):
565  *		Failed parsing the OPP node
566  */
567 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
568 		struct device *dev, struct device_node *np)
569 {
570 	struct dev_pm_opp *new_opp;
571 	u64 rate = 0;
572 	u32 val;
573 	int ret;
574 	bool rate_not_available = false;
575 
576 	new_opp = _opp_allocate(opp_table);
577 	if (!new_opp)
578 		return ERR_PTR(-ENOMEM);
579 
580 	ret = of_property_read_u64(np, "opp-hz", &rate);
581 	if (ret < 0) {
582 		/* "opp-hz" is optional for devices like power domains. */
583 		if (!opp_table->is_genpd) {
584 			dev_err(dev, "%s: opp-hz not found\n", __func__);
585 			goto free_opp;
586 		}
587 
588 		rate_not_available = true;
589 	} else {
590 		/*
591 		 * Rate is defined as an unsigned long in clk API, and so
592 		 * casting explicitly to its type. Must be fixed once rate is 64
593 		 * bit guaranteed in clk API.
594 		 */
595 		new_opp->rate = (unsigned long)rate;
596 	}
597 
598 	of_property_read_u32(np, "opp-level", &new_opp->level);
599 
600 	/* Check if the OPP supports hardware's hierarchy of versions or not */
601 	if (!_opp_is_supported(dev, opp_table, np)) {
602 		dev_dbg(dev, "OPP not supported by hardware: %llu\n", rate);
603 		goto free_opp;
604 	}
605 
606 	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
607 
608 	new_opp->np = np;
609 	new_opp->dynamic = false;
610 	new_opp->available = true;
611 
612 	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
613 	if (ret)
614 		goto free_opp;
615 
616 	if (!of_property_read_u32(np, "clock-latency-ns", &val))
617 		new_opp->clock_latency_ns = val;
618 
619 	ret = opp_parse_supplies(new_opp, dev, opp_table);
620 	if (ret)
621 		goto free_required_opps;
622 
623 	if (opp_table->is_genpd)
624 		new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
625 
626 	ret = _opp_add(dev, new_opp, opp_table, rate_not_available);
627 	if (ret) {
628 		/* Don't return error for duplicate OPPs */
629 		if (ret == -EBUSY)
630 			ret = 0;
631 		goto free_required_opps;
632 	}
633 
634 	/* OPP to select on device suspend */
635 	if (of_property_read_bool(np, "opp-suspend")) {
636 		if (opp_table->suspend_opp) {
637 			dev_warn(dev, "%s: Multiple suspend OPPs found (%lu %lu)\n",
638 				 __func__, opp_table->suspend_opp->rate,
639 				 new_opp->rate);
640 		} else {
641 			new_opp->suspend = true;
642 			opp_table->suspend_opp = new_opp;
643 		}
644 	}
645 
646 	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
647 		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
648 
649 	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu\n",
650 		 __func__, new_opp->turbo, new_opp->rate,
651 		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
652 		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns);
653 
654 	/*
655 	 * Notify the changes in the availability of the operable
656 	 * frequency/voltage list.
657 	 */
658 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
659 	return new_opp;
660 
661 free_required_opps:
662 	_of_opp_free_required_opps(opp_table, new_opp);
663 free_opp:
664 	_opp_free(new_opp);
665 
666 	return ERR_PTR(ret);
667 }
668 
669 /* Initializes OPP tables based on new bindings */
670 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
671 {
672 	struct device_node *np;
673 	int ret, count = 0, pstate_count = 0;
674 	struct dev_pm_opp *opp;
675 
676 	/* OPP table is already initialized for the device */
677 	if (opp_table->parsed_static_opps) {
678 		kref_get(&opp_table->list_kref);
679 		return 0;
680 	}
681 
682 	kref_init(&opp_table->list_kref);
683 
684 	/* We have opp-table node now, iterate over it and add OPPs */
685 	for_each_available_child_of_node(opp_table->np, np) {
686 		opp = _opp_add_static_v2(opp_table, dev, np);
687 		if (IS_ERR(opp)) {
688 			ret = PTR_ERR(opp);
689 			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
690 				ret);
691 			of_node_put(np);
692 			goto put_list_kref;
693 		} else if (opp) {
694 			count++;
695 		}
696 	}
697 
698 	/* There should be one of more OPP defined */
699 	if (WARN_ON(!count)) {
700 		ret = -ENOENT;
701 		goto put_list_kref;
702 	}
703 
704 	list_for_each_entry(opp, &opp_table->opp_list, node)
705 		pstate_count += !!opp->pstate;
706 
707 	/* Either all or none of the nodes shall have performance state set */
708 	if (pstate_count && pstate_count != count) {
709 		dev_err(dev, "Not all nodes have performance state set (%d: %d)\n",
710 			count, pstate_count);
711 		ret = -ENOENT;
712 		goto put_list_kref;
713 	}
714 
715 	if (pstate_count)
716 		opp_table->genpd_performance_state = true;
717 
718 	opp_table->parsed_static_opps = true;
719 
720 	return 0;
721 
722 put_list_kref:
723 	_put_opp_list_kref(opp_table);
724 
725 	return ret;
726 }
727 
728 /* Initializes OPP tables based on old-deprecated bindings */
729 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
730 {
731 	const struct property *prop;
732 	const __be32 *val;
733 	int nr, ret = 0;
734 
735 	prop = of_find_property(dev->of_node, "operating-points", NULL);
736 	if (!prop)
737 		return -ENODEV;
738 	if (!prop->value)
739 		return -ENODATA;
740 
741 	/*
742 	 * Each OPP is a set of tuples consisting of frequency and
743 	 * voltage like <freq-kHz vol-uV>.
744 	 */
745 	nr = prop->length / sizeof(u32);
746 	if (nr % 2) {
747 		dev_err(dev, "%s: Invalid OPP table\n", __func__);
748 		return -EINVAL;
749 	}
750 
751 	kref_init(&opp_table->list_kref);
752 
753 	val = prop->value;
754 	while (nr) {
755 		unsigned long freq = be32_to_cpup(val++) * 1000;
756 		unsigned long volt = be32_to_cpup(val++);
757 
758 		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
759 		if (ret) {
760 			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
761 				__func__, freq, ret);
762 			_put_opp_list_kref(opp_table);
763 			return ret;
764 		}
765 		nr -= 2;
766 	}
767 
768 	return ret;
769 }
770 
771 /**
772  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
773  * @dev:	device pointer used to lookup OPP table.
774  *
775  * Register the initial OPP table with the OPP library for given device.
776  *
777  * Return:
778  * 0		On success OR
779  *		Duplicate OPPs (both freq and volt are same) and opp->available
780  * -EEXIST	Freq are same and volt are different OR
781  *		Duplicate OPPs (both freq and volt are same) and !opp->available
782  * -ENOMEM	Memory allocation failure
783  * -ENODEV	when 'operating-points' property is not found or is invalid data
784  *		in device node.
785  * -ENODATA	when empty 'operating-points' property is found
786  * -EINVAL	when invalid entries are found in opp-v2 table
787  */
788 int dev_pm_opp_of_add_table(struct device *dev)
789 {
790 	struct opp_table *opp_table;
791 	int ret;
792 
793 	opp_table = dev_pm_opp_get_opp_table_indexed(dev, 0);
794 	if (!opp_table)
795 		return -ENOMEM;
796 
797 	/*
798 	 * OPPs have two version of bindings now. Also try the old (v1)
799 	 * bindings for backward compatibility with older dtbs.
800 	 */
801 	if (opp_table->np)
802 		ret = _of_add_opp_table_v2(dev, opp_table);
803 	else
804 		ret = _of_add_opp_table_v1(dev, opp_table);
805 
806 	if (ret)
807 		dev_pm_opp_put_opp_table(opp_table);
808 
809 	return ret;
810 }
811 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
812 
813 /**
814  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
815  * @dev:	device pointer used to lookup OPP table.
816  * @index:	Index number.
817  *
818  * Register the initial OPP table with the OPP library for given device only
819  * using the "operating-points-v2" property.
820  *
821  * Return:
822  * 0		On success OR
823  *		Duplicate OPPs (both freq and volt are same) and opp->available
824  * -EEXIST	Freq are same and volt are different OR
825  *		Duplicate OPPs (both freq and volt are same) and !opp->available
826  * -ENOMEM	Memory allocation failure
827  * -ENODEV	when 'operating-points' property is not found or is invalid data
828  *		in device node.
829  * -ENODATA	when empty 'operating-points' property is found
830  * -EINVAL	when invalid entries are found in opp-v2 table
831  */
832 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
833 {
834 	struct opp_table *opp_table;
835 	int ret, count;
836 
837 	if (index) {
838 		/*
839 		 * If only one phandle is present, then the same OPP table
840 		 * applies for all index requests.
841 		 */
842 		count = of_count_phandle_with_args(dev->of_node,
843 						   "operating-points-v2", NULL);
844 		if (count == 1)
845 			index = 0;
846 	}
847 
848 	opp_table = dev_pm_opp_get_opp_table_indexed(dev, index);
849 	if (!opp_table)
850 		return -ENOMEM;
851 
852 	ret = _of_add_opp_table_v2(dev, opp_table);
853 	if (ret)
854 		dev_pm_opp_put_opp_table(opp_table);
855 
856 	return ret;
857 }
858 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
859 
860 /* CPU device specific helpers */
861 
862 /**
863  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
864  * @cpumask:	cpumask for which OPP table needs to be removed
865  *
866  * This removes the OPP tables for CPUs present in the @cpumask.
867  * This should be used only to remove static entries created from DT.
868  */
869 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
870 {
871 	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
872 }
873 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
874 
875 /**
876  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
877  * @cpumask:	cpumask for which OPP table needs to be added.
878  *
879  * This adds the OPP tables for CPUs present in the @cpumask.
880  */
881 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
882 {
883 	struct device *cpu_dev;
884 	int cpu, ret;
885 
886 	if (WARN_ON(cpumask_empty(cpumask)))
887 		return -ENODEV;
888 
889 	for_each_cpu(cpu, cpumask) {
890 		cpu_dev = get_cpu_device(cpu);
891 		if (!cpu_dev) {
892 			pr_err("%s: failed to get cpu%d device\n", __func__,
893 			       cpu);
894 			ret = -ENODEV;
895 			goto remove_table;
896 		}
897 
898 		ret = dev_pm_opp_of_add_table(cpu_dev);
899 		if (ret) {
900 			/*
901 			 * OPP may get registered dynamically, don't print error
902 			 * message here.
903 			 */
904 			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
905 				 __func__, cpu, ret);
906 
907 			goto remove_table;
908 		}
909 	}
910 
911 	return 0;
912 
913 remove_table:
914 	/* Free all other OPPs */
915 	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
916 
917 	return ret;
918 }
919 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
920 
921 /*
922  * Works only for OPP v2 bindings.
923  *
924  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
925  */
926 /**
927  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
928  *				      @cpu_dev using operating-points-v2
929  *				      bindings.
930  *
931  * @cpu_dev:	CPU device for which we do this operation
932  * @cpumask:	cpumask to update with information of sharing CPUs
933  *
934  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
935  *
936  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
937  */
938 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
939 				   struct cpumask *cpumask)
940 {
941 	struct device_node *np, *tmp_np, *cpu_np;
942 	int cpu, ret = 0;
943 
944 	/* Get OPP descriptor node */
945 	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
946 	if (!np) {
947 		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
948 		return -ENOENT;
949 	}
950 
951 	cpumask_set_cpu(cpu_dev->id, cpumask);
952 
953 	/* OPPs are shared ? */
954 	if (!of_property_read_bool(np, "opp-shared"))
955 		goto put_cpu_node;
956 
957 	for_each_possible_cpu(cpu) {
958 		if (cpu == cpu_dev->id)
959 			continue;
960 
961 		cpu_np = of_cpu_device_node_get(cpu);
962 		if (!cpu_np) {
963 			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
964 				__func__, cpu);
965 			ret = -ENOENT;
966 			goto put_cpu_node;
967 		}
968 
969 		/* Get OPP descriptor node */
970 		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
971 		of_node_put(cpu_np);
972 		if (!tmp_np) {
973 			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
974 			ret = -ENOENT;
975 			goto put_cpu_node;
976 		}
977 
978 		/* CPUs are sharing opp node */
979 		if (np == tmp_np)
980 			cpumask_set_cpu(cpu, cpumask);
981 
982 		of_node_put(tmp_np);
983 	}
984 
985 put_cpu_node:
986 	of_node_put(np);
987 	return ret;
988 }
989 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
990 
991 /**
992  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
993  * @np: Node that contains the "required-opps" property.
994  * @index: Index of the phandle to parse.
995  *
996  * Returns the performance state of the OPP pointed out by the "required-opps"
997  * property at @index in @np.
998  *
999  * Return: Zero or positive performance state on success, otherwise negative
1000  * value on errors.
1001  */
1002 int of_get_required_opp_performance_state(struct device_node *np, int index)
1003 {
1004 	struct dev_pm_opp *opp;
1005 	struct device_node *required_np;
1006 	struct opp_table *opp_table;
1007 	int pstate = -EINVAL;
1008 
1009 	required_np = of_parse_required_opp(np, index);
1010 	if (!required_np)
1011 		return -EINVAL;
1012 
1013 	opp_table = _find_table_of_opp_np(required_np);
1014 	if (IS_ERR(opp_table)) {
1015 		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1016 		       __func__, np, PTR_ERR(opp_table));
1017 		goto put_required_np;
1018 	}
1019 
1020 	opp = _find_opp_of_np(opp_table, required_np);
1021 	if (opp) {
1022 		pstate = opp->pstate;
1023 		dev_pm_opp_put(opp);
1024 	}
1025 
1026 	dev_pm_opp_put_opp_table(opp_table);
1027 
1028 put_required_np:
1029 	of_node_put(required_np);
1030 
1031 	return pstate;
1032 }
1033 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1034 
1035 /**
1036  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1037  * @opp:	opp for which DT node has to be returned for
1038  *
1039  * Return: DT node corresponding to the opp, else 0 on success.
1040  *
1041  * The caller needs to put the node with of_node_put() after using it.
1042  */
1043 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1044 {
1045 	if (IS_ERR_OR_NULL(opp)) {
1046 		pr_err("%s: Invalid parameters\n", __func__);
1047 		return NULL;
1048 	}
1049 
1050 	return of_node_get(opp->np);
1051 }
1052 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1053 
1054 /*
1055  * Callback function provided to the Energy Model framework upon registration.
1056  * This computes the power estimated by @CPU at @kHz if it is the frequency
1057  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1058  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1059  * frequency and @mW to the associated power. The power is estimated as
1060  * P = C * V^2 * f with C being the CPU's capacitance and V and f respectively
1061  * the voltage and frequency of the OPP.
1062  *
1063  * Returns -ENODEV if the CPU device cannot be found, -EINVAL if the power
1064  * calculation failed because of missing parameters, 0 otherwise.
1065  */
1066 static int __maybe_unused _get_cpu_power(unsigned long *mW, unsigned long *kHz,
1067 					 int cpu)
1068 {
1069 	struct device *cpu_dev;
1070 	struct dev_pm_opp *opp;
1071 	struct device_node *np;
1072 	unsigned long mV, Hz;
1073 	u32 cap;
1074 	u64 tmp;
1075 	int ret;
1076 
1077 	cpu_dev = get_cpu_device(cpu);
1078 	if (!cpu_dev)
1079 		return -ENODEV;
1080 
1081 	np = of_node_get(cpu_dev->of_node);
1082 	if (!np)
1083 		return -EINVAL;
1084 
1085 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1086 	of_node_put(np);
1087 	if (ret)
1088 		return -EINVAL;
1089 
1090 	Hz = *kHz * 1000;
1091 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &Hz);
1092 	if (IS_ERR(opp))
1093 		return -EINVAL;
1094 
1095 	mV = dev_pm_opp_get_voltage(opp) / 1000;
1096 	dev_pm_opp_put(opp);
1097 	if (!mV)
1098 		return -EINVAL;
1099 
1100 	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1101 	do_div(tmp, 1000000000);
1102 
1103 	*mW = (unsigned long)tmp;
1104 	*kHz = Hz / 1000;
1105 
1106 	return 0;
1107 }
1108 
1109 /**
1110  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1111  * @cpus	: CPUs for which an Energy Model has to be registered
1112  *
1113  * This checks whether the "dynamic-power-coefficient" devicetree property has
1114  * been specified, and tries to register an Energy Model with it if it has.
1115  */
1116 void dev_pm_opp_of_register_em(struct cpumask *cpus)
1117 {
1118 	struct em_data_callback em_cb = EM_DATA_CB(_get_cpu_power);
1119 	int ret, nr_opp, cpu = cpumask_first(cpus);
1120 	struct device *cpu_dev;
1121 	struct device_node *np;
1122 	u32 cap;
1123 
1124 	cpu_dev = get_cpu_device(cpu);
1125 	if (!cpu_dev)
1126 		return;
1127 
1128 	nr_opp = dev_pm_opp_get_opp_count(cpu_dev);
1129 	if (nr_opp <= 0)
1130 		return;
1131 
1132 	np = of_node_get(cpu_dev->of_node);
1133 	if (!np)
1134 		return;
1135 
1136 	/*
1137 	 * Register an EM only if the 'dynamic-power-coefficient' property is
1138 	 * set in devicetree. It is assumed the voltage values are known if that
1139 	 * property is set since it is useless otherwise. If voltages are not
1140 	 * known, just let the EM registration fail with an error to alert the
1141 	 * user about the inconsistent configuration.
1142 	 */
1143 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1144 	of_node_put(np);
1145 	if (ret || !cap)
1146 		return;
1147 
1148 	em_register_perf_domain(cpus, nr_opp, &em_cb);
1149 }
1150 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1151