1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP OF helpers 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/cpu.h> 14 #include <linux/errno.h> 15 #include <linux/device.h> 16 #include <linux/of.h> 17 #include <linux/pm_domain.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <linux/energy_model.h> 21 22 #include "opp.h" 23 24 /* 25 * Returns opp descriptor node for a device node, caller must 26 * do of_node_put(). 27 */ 28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, 29 int index) 30 { 31 /* "operating-points-v2" can be an array for power domain providers */ 32 return of_parse_phandle(np, "operating-points-v2", index); 33 } 34 35 /* Returns opp descriptor node for a device, caller must do of_node_put() */ 36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) 37 { 38 return _opp_of_get_opp_desc_node(dev->of_node, 0); 39 } 40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); 41 42 struct opp_table *_managed_opp(struct device *dev, int index) 43 { 44 struct opp_table *opp_table, *managed_table = NULL; 45 struct device_node *np; 46 47 np = _opp_of_get_opp_desc_node(dev->of_node, index); 48 if (!np) 49 return NULL; 50 51 list_for_each_entry(opp_table, &opp_tables, node) { 52 if (opp_table->np == np) { 53 /* 54 * Multiple devices can point to the same OPP table and 55 * so will have same node-pointer, np. 56 * 57 * But the OPPs will be considered as shared only if the 58 * OPP table contains a "opp-shared" property. 59 */ 60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { 61 _get_opp_table_kref(opp_table); 62 managed_table = opp_table; 63 } 64 65 break; 66 } 67 } 68 69 of_node_put(np); 70 71 return managed_table; 72 } 73 74 /* The caller must call dev_pm_opp_put() after the OPP is used */ 75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, 76 struct device_node *opp_np) 77 { 78 struct dev_pm_opp *opp; 79 80 mutex_lock(&opp_table->lock); 81 82 list_for_each_entry(opp, &opp_table->opp_list, node) { 83 if (opp->np == opp_np) { 84 dev_pm_opp_get(opp); 85 mutex_unlock(&opp_table->lock); 86 return opp; 87 } 88 } 89 90 mutex_unlock(&opp_table->lock); 91 92 return NULL; 93 } 94 95 static struct device_node *of_parse_required_opp(struct device_node *np, 96 int index) 97 { 98 return of_parse_phandle(np, "required-opps", index); 99 } 100 101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ 102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) 103 { 104 struct opp_table *opp_table; 105 struct device_node *opp_table_np; 106 107 opp_table_np = of_get_parent(opp_np); 108 if (!opp_table_np) 109 goto err; 110 111 /* It is safe to put the node now as all we need now is its address */ 112 of_node_put(opp_table_np); 113 114 mutex_lock(&opp_table_lock); 115 list_for_each_entry(opp_table, &opp_tables, node) { 116 if (opp_table_np == opp_table->np) { 117 _get_opp_table_kref(opp_table); 118 mutex_unlock(&opp_table_lock); 119 return opp_table; 120 } 121 } 122 mutex_unlock(&opp_table_lock); 123 124 err: 125 return ERR_PTR(-ENODEV); 126 } 127 128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */ 129 static void _opp_table_free_required_tables(struct opp_table *opp_table) 130 { 131 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 132 int i; 133 134 if (!required_opp_tables) 135 return; 136 137 for (i = 0; i < opp_table->required_opp_count; i++) { 138 if (IS_ERR_OR_NULL(required_opp_tables[i])) 139 continue; 140 141 dev_pm_opp_put_opp_table(required_opp_tables[i]); 142 } 143 144 kfree(required_opp_tables); 145 146 opp_table->required_opp_count = 0; 147 opp_table->required_opp_tables = NULL; 148 list_del(&opp_table->lazy); 149 } 150 151 /* 152 * Populate all devices and opp tables which are part of "required-opps" list. 153 * Checking only the first OPP node should be enough. 154 */ 155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table, 156 struct device *dev, 157 struct device_node *opp_np) 158 { 159 struct opp_table **required_opp_tables; 160 struct device_node *required_np, *np; 161 bool lazy = false; 162 int count, i; 163 164 /* Traversing the first OPP node is all we need */ 165 np = of_get_next_available_child(opp_np, NULL); 166 if (!np) { 167 dev_warn(dev, "Empty OPP table\n"); 168 169 return; 170 } 171 172 count = of_count_phandle_with_args(np, "required-opps", NULL); 173 if (count <= 0) 174 goto put_np; 175 176 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables), 177 GFP_KERNEL); 178 if (!required_opp_tables) 179 goto put_np; 180 181 opp_table->required_opp_tables = required_opp_tables; 182 opp_table->required_opp_count = count; 183 184 for (i = 0; i < count; i++) { 185 required_np = of_parse_required_opp(np, i); 186 if (!required_np) 187 goto free_required_tables; 188 189 required_opp_tables[i] = _find_table_of_opp_np(required_np); 190 of_node_put(required_np); 191 192 if (IS_ERR(required_opp_tables[i])) 193 lazy = true; 194 } 195 196 /* Let's do the linking later on */ 197 if (lazy) 198 list_add(&opp_table->lazy, &lazy_opp_tables); 199 else 200 _update_set_required_opps(opp_table); 201 202 goto put_np; 203 204 free_required_tables: 205 _opp_table_free_required_tables(opp_table); 206 put_np: 207 of_node_put(np); 208 } 209 210 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, 211 int index) 212 { 213 struct device_node *np, *opp_np; 214 u32 val; 215 216 /* 217 * Only required for backward compatibility with v1 bindings, but isn't 218 * harmful for other cases. And so we do it unconditionally. 219 */ 220 np = of_node_get(dev->of_node); 221 if (!np) 222 return; 223 224 if (!of_property_read_u32(np, "clock-latency", &val)) 225 opp_table->clock_latency_ns_max = val; 226 of_property_read_u32(np, "voltage-tolerance", 227 &opp_table->voltage_tolerance_v1); 228 229 if (of_property_present(np, "#power-domain-cells")) 230 opp_table->is_genpd = true; 231 232 /* Get OPP table node */ 233 opp_np = _opp_of_get_opp_desc_node(np, index); 234 of_node_put(np); 235 236 if (!opp_np) 237 return; 238 239 if (of_property_read_bool(opp_np, "opp-shared")) 240 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; 241 else 242 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; 243 244 opp_table->np = opp_np; 245 246 _opp_table_alloc_required_tables(opp_table, dev, opp_np); 247 } 248 249 void _of_clear_opp_table(struct opp_table *opp_table) 250 { 251 _opp_table_free_required_tables(opp_table); 252 of_node_put(opp_table->np); 253 } 254 255 /* 256 * Release all resources previously acquired with a call to 257 * _of_opp_alloc_required_opps(). 258 */ 259 static void _of_opp_free_required_opps(struct opp_table *opp_table, 260 struct dev_pm_opp *opp) 261 { 262 struct dev_pm_opp **required_opps = opp->required_opps; 263 int i; 264 265 if (!required_opps) 266 return; 267 268 for (i = 0; i < opp_table->required_opp_count; i++) { 269 if (!required_opps[i]) 270 continue; 271 272 /* Put the reference back */ 273 dev_pm_opp_put(required_opps[i]); 274 } 275 276 opp->required_opps = NULL; 277 kfree(required_opps); 278 } 279 280 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp) 281 { 282 _of_opp_free_required_opps(opp_table, opp); 283 of_node_put(opp->np); 284 } 285 286 /* Populate all required OPPs which are part of "required-opps" list */ 287 static int _of_opp_alloc_required_opps(struct opp_table *opp_table, 288 struct dev_pm_opp *opp) 289 { 290 struct dev_pm_opp **required_opps; 291 struct opp_table *required_table; 292 struct device_node *np; 293 int i, ret, count = opp_table->required_opp_count; 294 295 if (!count) 296 return 0; 297 298 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL); 299 if (!required_opps) 300 return -ENOMEM; 301 302 opp->required_opps = required_opps; 303 304 for (i = 0; i < count; i++) { 305 required_table = opp_table->required_opp_tables[i]; 306 307 /* Required table not added yet, we will link later */ 308 if (IS_ERR_OR_NULL(required_table)) 309 continue; 310 311 np = of_parse_required_opp(opp->np, i); 312 if (unlikely(!np)) { 313 ret = -ENODEV; 314 goto free_required_opps; 315 } 316 317 required_opps[i] = _find_opp_of_np(required_table, np); 318 of_node_put(np); 319 320 if (!required_opps[i]) { 321 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 322 __func__, opp->np, i); 323 ret = -ENODEV; 324 goto free_required_opps; 325 } 326 } 327 328 return 0; 329 330 free_required_opps: 331 _of_opp_free_required_opps(opp_table, opp); 332 333 return ret; 334 } 335 336 /* Link required OPPs for an individual OPP */ 337 static int lazy_link_required_opps(struct opp_table *opp_table, 338 struct opp_table *new_table, int index) 339 { 340 struct device_node *required_np; 341 struct dev_pm_opp *opp; 342 343 list_for_each_entry(opp, &opp_table->opp_list, node) { 344 required_np = of_parse_required_opp(opp->np, index); 345 if (unlikely(!required_np)) 346 return -ENODEV; 347 348 opp->required_opps[index] = _find_opp_of_np(new_table, required_np); 349 of_node_put(required_np); 350 351 if (!opp->required_opps[index]) { 352 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 353 __func__, opp->np, index); 354 return -ENODEV; 355 } 356 } 357 358 return 0; 359 } 360 361 /* Link required OPPs for all OPPs of the newly added OPP table */ 362 static void lazy_link_required_opp_table(struct opp_table *new_table) 363 { 364 struct opp_table *opp_table, *temp, **required_opp_tables; 365 struct device_node *required_np, *opp_np, *required_table_np; 366 struct dev_pm_opp *opp; 367 int i, ret; 368 369 mutex_lock(&opp_table_lock); 370 371 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { 372 bool lazy = false; 373 374 /* opp_np can't be invalid here */ 375 opp_np = of_get_next_available_child(opp_table->np, NULL); 376 377 for (i = 0; i < opp_table->required_opp_count; i++) { 378 required_opp_tables = opp_table->required_opp_tables; 379 380 /* Required opp-table is already parsed */ 381 if (!IS_ERR(required_opp_tables[i])) 382 continue; 383 384 /* required_np can't be invalid here */ 385 required_np = of_parse_required_opp(opp_np, i); 386 required_table_np = of_get_parent(required_np); 387 388 of_node_put(required_table_np); 389 of_node_put(required_np); 390 391 /* 392 * Newly added table isn't the required opp-table for 393 * opp_table. 394 */ 395 if (required_table_np != new_table->np) { 396 lazy = true; 397 continue; 398 } 399 400 required_opp_tables[i] = new_table; 401 _get_opp_table_kref(new_table); 402 403 /* Link OPPs now */ 404 ret = lazy_link_required_opps(opp_table, new_table, i); 405 if (ret) { 406 /* The OPPs will be marked unusable */ 407 lazy = false; 408 break; 409 } 410 } 411 412 of_node_put(opp_np); 413 414 /* All required opp-tables found, remove from lazy list */ 415 if (!lazy) { 416 _update_set_required_opps(opp_table); 417 list_del_init(&opp_table->lazy); 418 419 list_for_each_entry(opp, &opp_table->opp_list, node) 420 _required_opps_available(opp, opp_table->required_opp_count); 421 } 422 } 423 424 mutex_unlock(&opp_table_lock); 425 } 426 427 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) 428 { 429 struct device_node *np, *opp_np; 430 struct property *prop; 431 432 if (!opp_table) { 433 np = of_node_get(dev->of_node); 434 if (!np) 435 return -ENODEV; 436 437 opp_np = _opp_of_get_opp_desc_node(np, 0); 438 of_node_put(np); 439 } else { 440 opp_np = of_node_get(opp_table->np); 441 } 442 443 /* Lets not fail in case we are parsing opp-v1 bindings */ 444 if (!opp_np) 445 return 0; 446 447 /* Checking only first OPP is sufficient */ 448 np = of_get_next_available_child(opp_np, NULL); 449 of_node_put(opp_np); 450 if (!np) { 451 dev_err(dev, "OPP table empty\n"); 452 return -EINVAL; 453 } 454 455 prop = of_find_property(np, "opp-peak-kBps", NULL); 456 of_node_put(np); 457 458 if (!prop || !prop->length) 459 return 0; 460 461 return 1; 462 } 463 464 int dev_pm_opp_of_find_icc_paths(struct device *dev, 465 struct opp_table *opp_table) 466 { 467 struct device_node *np; 468 int ret, i, count, num_paths; 469 struct icc_path **paths; 470 471 ret = _bandwidth_supported(dev, opp_table); 472 if (ret == -EINVAL) 473 return 0; /* Empty OPP table is a valid corner-case, let's not fail */ 474 else if (ret <= 0) 475 return ret; 476 477 ret = 0; 478 479 np = of_node_get(dev->of_node); 480 if (!np) 481 return 0; 482 483 count = of_count_phandle_with_args(np, "interconnects", 484 "#interconnect-cells"); 485 of_node_put(np); 486 if (count < 0) 487 return 0; 488 489 /* two phandles when #interconnect-cells = <1> */ 490 if (count % 2) { 491 dev_err(dev, "%s: Invalid interconnects values\n", __func__); 492 return -EINVAL; 493 } 494 495 num_paths = count / 2; 496 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); 497 if (!paths) 498 return -ENOMEM; 499 500 for (i = 0; i < num_paths; i++) { 501 paths[i] = of_icc_get_by_index(dev, i); 502 if (IS_ERR(paths[i])) { 503 ret = PTR_ERR(paths[i]); 504 if (ret != -EPROBE_DEFER) { 505 dev_err(dev, "%s: Unable to get path%d: %d\n", 506 __func__, i, ret); 507 } 508 goto err; 509 } 510 } 511 512 if (opp_table) { 513 opp_table->paths = paths; 514 opp_table->path_count = num_paths; 515 return 0; 516 } 517 518 err: 519 while (i--) 520 icc_put(paths[i]); 521 522 kfree(paths); 523 524 return ret; 525 } 526 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); 527 528 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, 529 struct device_node *np) 530 { 531 unsigned int levels = opp_table->supported_hw_count; 532 int count, versions, ret, i, j; 533 u32 val; 534 535 if (!opp_table->supported_hw) { 536 /* 537 * In the case that no supported_hw has been set by the 538 * platform but there is an opp-supported-hw value set for 539 * an OPP then the OPP should not be enabled as there is 540 * no way to see if the hardware supports it. 541 */ 542 if (of_property_present(np, "opp-supported-hw")) 543 return false; 544 else 545 return true; 546 } 547 548 count = of_property_count_u32_elems(np, "opp-supported-hw"); 549 if (count <= 0 || count % levels) { 550 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", 551 __func__, count); 552 return false; 553 } 554 555 versions = count / levels; 556 557 /* All levels in at least one of the versions should match */ 558 for (i = 0; i < versions; i++) { 559 bool supported = true; 560 561 for (j = 0; j < levels; j++) { 562 ret = of_property_read_u32_index(np, "opp-supported-hw", 563 i * levels + j, &val); 564 if (ret) { 565 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", 566 __func__, i * levels + j, ret); 567 return false; 568 } 569 570 /* Check if the level is supported */ 571 if (!(val & opp_table->supported_hw[j])) { 572 supported = false; 573 break; 574 } 575 } 576 577 if (supported) 578 return true; 579 } 580 581 return false; 582 } 583 584 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev, 585 struct opp_table *opp_table, 586 const char *prop_type, bool *triplet) 587 { 588 struct property *prop = NULL; 589 char name[NAME_MAX]; 590 int count, ret; 591 u32 *out; 592 593 /* Search for "opp-<prop_type>-<name>" */ 594 if (opp_table->prop_name) { 595 snprintf(name, sizeof(name), "opp-%s-%s", prop_type, 596 opp_table->prop_name); 597 prop = of_find_property(opp->np, name, NULL); 598 } 599 600 if (!prop) { 601 /* Search for "opp-<prop_type>" */ 602 snprintf(name, sizeof(name), "opp-%s", prop_type); 603 prop = of_find_property(opp->np, name, NULL); 604 if (!prop) 605 return NULL; 606 } 607 608 count = of_property_count_u32_elems(opp->np, name); 609 if (count < 0) { 610 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name, 611 count); 612 return ERR_PTR(count); 613 } 614 615 /* 616 * Initialize regulator_count, if regulator information isn't provided 617 * by the platform. Now that one of the properties is available, fix the 618 * regulator_count to 1. 619 */ 620 if (unlikely(opp_table->regulator_count == -1)) 621 opp_table->regulator_count = 1; 622 623 if (count != opp_table->regulator_count && 624 (!triplet || count != opp_table->regulator_count * 3)) { 625 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n", 626 __func__, prop_type, count, opp_table->regulator_count); 627 return ERR_PTR(-EINVAL); 628 } 629 630 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL); 631 if (!out) 632 return ERR_PTR(-EINVAL); 633 634 ret = of_property_read_u32_array(opp->np, name, out, count); 635 if (ret) { 636 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); 637 kfree(out); 638 return ERR_PTR(-EINVAL); 639 } 640 641 if (triplet) 642 *triplet = count != opp_table->regulator_count; 643 644 return out; 645 } 646 647 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev, 648 struct opp_table *opp_table, bool *triplet) 649 { 650 u32 *microvolt; 651 652 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet); 653 if (IS_ERR(microvolt)) 654 return microvolt; 655 656 if (!microvolt) { 657 /* 658 * Missing property isn't a problem, but an invalid 659 * entry is. This property isn't optional if regulator 660 * information is provided. Check only for the first OPP, as 661 * regulator_count may get initialized after that to a valid 662 * value. 663 */ 664 if (list_empty(&opp_table->opp_list) && 665 opp_table->regulator_count > 0) { 666 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", 667 __func__); 668 return ERR_PTR(-EINVAL); 669 } 670 } 671 672 return microvolt; 673 } 674 675 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, 676 struct opp_table *opp_table) 677 { 678 u32 *microvolt, *microamp, *microwatt; 679 int ret = 0, i, j; 680 bool triplet; 681 682 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet); 683 if (IS_ERR(microvolt)) 684 return PTR_ERR(microvolt); 685 686 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL); 687 if (IS_ERR(microamp)) { 688 ret = PTR_ERR(microamp); 689 goto free_microvolt; 690 } 691 692 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL); 693 if (IS_ERR(microwatt)) { 694 ret = PTR_ERR(microwatt); 695 goto free_microamp; 696 } 697 698 /* 699 * Initialize regulator_count if it is uninitialized and no properties 700 * are found. 701 */ 702 if (unlikely(opp_table->regulator_count == -1)) { 703 opp_table->regulator_count = 0; 704 return 0; 705 } 706 707 for (i = 0, j = 0; i < opp_table->regulator_count; i++) { 708 if (microvolt) { 709 opp->supplies[i].u_volt = microvolt[j++]; 710 711 if (triplet) { 712 opp->supplies[i].u_volt_min = microvolt[j++]; 713 opp->supplies[i].u_volt_max = microvolt[j++]; 714 } else { 715 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; 716 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; 717 } 718 } 719 720 if (microamp) 721 opp->supplies[i].u_amp = microamp[i]; 722 723 if (microwatt) 724 opp->supplies[i].u_watt = microwatt[i]; 725 } 726 727 kfree(microwatt); 728 free_microamp: 729 kfree(microamp); 730 free_microvolt: 731 kfree(microvolt); 732 733 return ret; 734 } 735 736 /** 737 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT 738 * entries 739 * @dev: device pointer used to lookup OPP table. 740 * 741 * Free OPPs created using static entries present in DT. 742 */ 743 void dev_pm_opp_of_remove_table(struct device *dev) 744 { 745 dev_pm_opp_remove_table(dev); 746 } 747 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); 748 749 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 750 struct device_node *np) 751 { 752 struct property *prop; 753 int i, count, ret; 754 u64 *rates; 755 756 prop = of_find_property(np, "opp-hz", NULL); 757 if (!prop) 758 return -ENODEV; 759 760 count = prop->length / sizeof(u64); 761 if (opp_table->clk_count != count) { 762 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n", 763 __func__, count, opp_table->clk_count); 764 return -EINVAL; 765 } 766 767 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL); 768 if (!rates) 769 return -ENOMEM; 770 771 ret = of_property_read_u64_array(np, "opp-hz", rates, count); 772 if (ret) { 773 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret); 774 } else { 775 /* 776 * Rate is defined as an unsigned long in clk API, and so 777 * casting explicitly to its type. Must be fixed once rate is 64 778 * bit guaranteed in clk API. 779 */ 780 for (i = 0; i < count; i++) { 781 new_opp->rates[i] = (unsigned long)rates[i]; 782 783 /* This will happen for frequencies > 4.29 GHz */ 784 WARN_ON(new_opp->rates[i] != rates[i]); 785 } 786 } 787 788 kfree(rates); 789 790 return ret; 791 } 792 793 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 794 struct device_node *np, bool peak) 795 { 796 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; 797 struct property *prop; 798 int i, count, ret; 799 u32 *bw; 800 801 prop = of_find_property(np, name, NULL); 802 if (!prop) 803 return -ENODEV; 804 805 count = prop->length / sizeof(u32); 806 if (opp_table->path_count != count) { 807 pr_err("%s: Mismatch between %s and paths (%d %d)\n", 808 __func__, name, count, opp_table->path_count); 809 return -EINVAL; 810 } 811 812 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); 813 if (!bw) 814 return -ENOMEM; 815 816 ret = of_property_read_u32_array(np, name, bw, count); 817 if (ret) { 818 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); 819 goto out; 820 } 821 822 for (i = 0; i < count; i++) { 823 if (peak) 824 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); 825 else 826 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); 827 } 828 829 out: 830 kfree(bw); 831 return ret; 832 } 833 834 static int _read_opp_key(struct dev_pm_opp *new_opp, 835 struct opp_table *opp_table, struct device_node *np) 836 { 837 bool found = false; 838 int ret; 839 840 ret = _read_rate(new_opp, opp_table, np); 841 if (!ret) 842 found = true; 843 else if (ret != -ENODEV) 844 return ret; 845 846 /* 847 * Bandwidth consists of peak and average (optional) values: 848 * opp-peak-kBps = <path1_value path2_value>; 849 * opp-avg-kBps = <path1_value path2_value>; 850 */ 851 ret = _read_bw(new_opp, opp_table, np, true); 852 if (!ret) { 853 found = true; 854 ret = _read_bw(new_opp, opp_table, np, false); 855 } 856 857 /* The properties were found but we failed to parse them */ 858 if (ret && ret != -ENODEV) 859 return ret; 860 861 if (!of_property_read_u32(np, "opp-level", &new_opp->level)) 862 found = true; 863 864 if (found) 865 return 0; 866 867 return ret; 868 } 869 870 /** 871 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) 872 * @opp_table: OPP table 873 * @dev: device for which we do this operation 874 * @np: device node 875 * 876 * This function adds an opp definition to the opp table and returns status. The 877 * opp can be controlled using dev_pm_opp_enable/disable functions and may be 878 * removed by dev_pm_opp_remove. 879 * 880 * Return: 881 * Valid OPP pointer: 882 * On success 883 * NULL: 884 * Duplicate OPPs (both freq and volt are same) and opp->available 885 * OR if the OPP is not supported by hardware. 886 * ERR_PTR(-EEXIST): 887 * Freq are same and volt are different OR 888 * Duplicate OPPs (both freq and volt are same) and !opp->available 889 * ERR_PTR(-ENOMEM): 890 * Memory allocation failure 891 * ERR_PTR(-EINVAL): 892 * Failed parsing the OPP node 893 */ 894 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, 895 struct device *dev, struct device_node *np) 896 { 897 struct dev_pm_opp *new_opp; 898 u32 val; 899 int ret; 900 901 new_opp = _opp_allocate(opp_table); 902 if (!new_opp) 903 return ERR_PTR(-ENOMEM); 904 905 ret = _read_opp_key(new_opp, opp_table, np); 906 if (ret < 0) { 907 dev_err(dev, "%s: opp key field not found\n", __func__); 908 goto free_opp; 909 } 910 911 /* Check if the OPP supports hardware's hierarchy of versions or not */ 912 if (!_opp_is_supported(dev, opp_table, np)) { 913 dev_dbg(dev, "OPP not supported by hardware: %s\n", 914 of_node_full_name(np)); 915 goto free_opp; 916 } 917 918 new_opp->turbo = of_property_read_bool(np, "turbo-mode"); 919 920 new_opp->np = of_node_get(np); 921 new_opp->dynamic = false; 922 new_opp->available = true; 923 924 ret = _of_opp_alloc_required_opps(opp_table, new_opp); 925 if (ret) 926 goto free_opp; 927 928 if (!of_property_read_u32(np, "clock-latency-ns", &val)) 929 new_opp->clock_latency_ns = val; 930 931 ret = opp_parse_supplies(new_opp, dev, opp_table); 932 if (ret) 933 goto free_required_opps; 934 935 if (opp_table->is_genpd) 936 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp); 937 938 ret = _opp_add(dev, new_opp, opp_table); 939 if (ret) { 940 /* Don't return error for duplicate OPPs */ 941 if (ret == -EBUSY) 942 ret = 0; 943 goto free_required_opps; 944 } 945 946 /* OPP to select on device suspend */ 947 if (of_property_read_bool(np, "opp-suspend")) { 948 if (opp_table->suspend_opp) { 949 /* Pick the OPP with higher rate/bw/level as suspend OPP */ 950 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) { 951 opp_table->suspend_opp->suspend = false; 952 new_opp->suspend = true; 953 opp_table->suspend_opp = new_opp; 954 } 955 } else { 956 new_opp->suspend = true; 957 opp_table->suspend_opp = new_opp; 958 } 959 } 960 961 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) 962 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; 963 964 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", 965 __func__, new_opp->turbo, new_opp->rates[0], 966 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, 967 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, 968 new_opp->level); 969 970 /* 971 * Notify the changes in the availability of the operable 972 * frequency/voltage list. 973 */ 974 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 975 return new_opp; 976 977 free_required_opps: 978 _of_opp_free_required_opps(opp_table, new_opp); 979 free_opp: 980 _opp_free(new_opp); 981 982 return ret ? ERR_PTR(ret) : NULL; 983 } 984 985 /* Initializes OPP tables based on new bindings */ 986 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) 987 { 988 struct device_node *np; 989 int ret, count = 0; 990 struct dev_pm_opp *opp; 991 992 /* OPP table is already initialized for the device */ 993 mutex_lock(&opp_table->lock); 994 if (opp_table->parsed_static_opps) { 995 opp_table->parsed_static_opps++; 996 mutex_unlock(&opp_table->lock); 997 return 0; 998 } 999 1000 opp_table->parsed_static_opps = 1; 1001 mutex_unlock(&opp_table->lock); 1002 1003 /* We have opp-table node now, iterate over it and add OPPs */ 1004 for_each_available_child_of_node(opp_table->np, np) { 1005 opp = _opp_add_static_v2(opp_table, dev, np); 1006 if (IS_ERR(opp)) { 1007 ret = PTR_ERR(opp); 1008 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, 1009 ret); 1010 of_node_put(np); 1011 goto remove_static_opp; 1012 } else if (opp) { 1013 count++; 1014 } 1015 } 1016 1017 /* There should be one or more OPPs defined */ 1018 if (!count) { 1019 dev_err(dev, "%s: no supported OPPs", __func__); 1020 ret = -ENOENT; 1021 goto remove_static_opp; 1022 } 1023 1024 list_for_each_entry(opp, &opp_table->opp_list, node) { 1025 /* Any non-zero performance state would enable the feature */ 1026 if (opp->pstate) { 1027 opp_table->genpd_performance_state = true; 1028 break; 1029 } 1030 } 1031 1032 lazy_link_required_opp_table(opp_table); 1033 1034 return 0; 1035 1036 remove_static_opp: 1037 _opp_remove_all_static(opp_table); 1038 1039 return ret; 1040 } 1041 1042 /* Initializes OPP tables based on old-deprecated bindings */ 1043 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) 1044 { 1045 const struct property *prop; 1046 const __be32 *val; 1047 int nr, ret = 0; 1048 1049 mutex_lock(&opp_table->lock); 1050 if (opp_table->parsed_static_opps) { 1051 opp_table->parsed_static_opps++; 1052 mutex_unlock(&opp_table->lock); 1053 return 0; 1054 } 1055 1056 opp_table->parsed_static_opps = 1; 1057 mutex_unlock(&opp_table->lock); 1058 1059 prop = of_find_property(dev->of_node, "operating-points", NULL); 1060 if (!prop) { 1061 ret = -ENODEV; 1062 goto remove_static_opp; 1063 } 1064 if (!prop->value) { 1065 ret = -ENODATA; 1066 goto remove_static_opp; 1067 } 1068 1069 /* 1070 * Each OPP is a set of tuples consisting of frequency and 1071 * voltage like <freq-kHz vol-uV>. 1072 */ 1073 nr = prop->length / sizeof(u32); 1074 if (nr % 2) { 1075 dev_err(dev, "%s: Invalid OPP table\n", __func__); 1076 ret = -EINVAL; 1077 goto remove_static_opp; 1078 } 1079 1080 val = prop->value; 1081 while (nr) { 1082 unsigned long freq = be32_to_cpup(val++) * 1000; 1083 unsigned long volt = be32_to_cpup(val++); 1084 1085 ret = _opp_add_v1(opp_table, dev, freq, volt, false); 1086 if (ret) { 1087 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", 1088 __func__, freq, ret); 1089 goto remove_static_opp; 1090 } 1091 nr -= 2; 1092 } 1093 1094 return 0; 1095 1096 remove_static_opp: 1097 _opp_remove_all_static(opp_table); 1098 1099 return ret; 1100 } 1101 1102 static int _of_add_table_indexed(struct device *dev, int index) 1103 { 1104 struct opp_table *opp_table; 1105 int ret, count; 1106 1107 if (index) { 1108 /* 1109 * If only one phandle is present, then the same OPP table 1110 * applies for all index requests. 1111 */ 1112 count = of_count_phandle_with_args(dev->of_node, 1113 "operating-points-v2", NULL); 1114 if (count == 1) 1115 index = 0; 1116 } 1117 1118 opp_table = _add_opp_table_indexed(dev, index, true); 1119 if (IS_ERR(opp_table)) 1120 return PTR_ERR(opp_table); 1121 1122 /* 1123 * OPPs have two version of bindings now. Also try the old (v1) 1124 * bindings for backward compatibility with older dtbs. 1125 */ 1126 if (opp_table->np) 1127 ret = _of_add_opp_table_v2(dev, opp_table); 1128 else 1129 ret = _of_add_opp_table_v1(dev, opp_table); 1130 1131 if (ret) 1132 dev_pm_opp_put_opp_table(opp_table); 1133 1134 return ret; 1135 } 1136 1137 static void devm_pm_opp_of_table_release(void *data) 1138 { 1139 dev_pm_opp_of_remove_table(data); 1140 } 1141 1142 static int _devm_of_add_table_indexed(struct device *dev, int index) 1143 { 1144 int ret; 1145 1146 ret = _of_add_table_indexed(dev, index); 1147 if (ret) 1148 return ret; 1149 1150 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); 1151 } 1152 1153 /** 1154 * devm_pm_opp_of_add_table() - Initialize opp table from device tree 1155 * @dev: device pointer used to lookup OPP table. 1156 * 1157 * Register the initial OPP table with the OPP library for given device. 1158 * 1159 * The opp_table structure will be freed after the device is destroyed. 1160 * 1161 * Return: 1162 * 0 On success OR 1163 * Duplicate OPPs (both freq and volt are same) and opp->available 1164 * -EEXIST Freq are same and volt are different OR 1165 * Duplicate OPPs (both freq and volt are same) and !opp->available 1166 * -ENOMEM Memory allocation failure 1167 * -ENODEV when 'operating-points' property is not found or is invalid data 1168 * in device node. 1169 * -ENODATA when empty 'operating-points' property is found 1170 * -EINVAL when invalid entries are found in opp-v2 table 1171 */ 1172 int devm_pm_opp_of_add_table(struct device *dev) 1173 { 1174 return _devm_of_add_table_indexed(dev, 0); 1175 } 1176 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); 1177 1178 /** 1179 * dev_pm_opp_of_add_table() - Initialize opp table from device tree 1180 * @dev: device pointer used to lookup OPP table. 1181 * 1182 * Register the initial OPP table with the OPP library for given device. 1183 * 1184 * Return: 1185 * 0 On success OR 1186 * Duplicate OPPs (both freq and volt are same) and opp->available 1187 * -EEXIST Freq are same and volt are different OR 1188 * Duplicate OPPs (both freq and volt are same) and !opp->available 1189 * -ENOMEM Memory allocation failure 1190 * -ENODEV when 'operating-points' property is not found or is invalid data 1191 * in device node. 1192 * -ENODATA when empty 'operating-points' property is found 1193 * -EINVAL when invalid entries are found in opp-v2 table 1194 */ 1195 int dev_pm_opp_of_add_table(struct device *dev) 1196 { 1197 return _of_add_table_indexed(dev, 0); 1198 } 1199 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); 1200 1201 /** 1202 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1203 * @dev: device pointer used to lookup OPP table. 1204 * @index: Index number. 1205 * 1206 * Register the initial OPP table with the OPP library for given device only 1207 * using the "operating-points-v2" property. 1208 * 1209 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1210 */ 1211 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) 1212 { 1213 return _of_add_table_indexed(dev, index); 1214 } 1215 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); 1216 1217 /** 1218 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1219 * @dev: device pointer used to lookup OPP table. 1220 * @index: Index number. 1221 * 1222 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). 1223 */ 1224 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) 1225 { 1226 return _devm_of_add_table_indexed(dev, index); 1227 } 1228 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); 1229 1230 /* CPU device specific helpers */ 1231 1232 /** 1233 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask 1234 * @cpumask: cpumask for which OPP table needs to be removed 1235 * 1236 * This removes the OPP tables for CPUs present in the @cpumask. 1237 * This should be used only to remove static entries created from DT. 1238 */ 1239 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) 1240 { 1241 _dev_pm_opp_cpumask_remove_table(cpumask, -1); 1242 } 1243 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); 1244 1245 /** 1246 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask 1247 * @cpumask: cpumask for which OPP table needs to be added. 1248 * 1249 * This adds the OPP tables for CPUs present in the @cpumask. 1250 */ 1251 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) 1252 { 1253 struct device *cpu_dev; 1254 int cpu, ret; 1255 1256 if (WARN_ON(cpumask_empty(cpumask))) 1257 return -ENODEV; 1258 1259 for_each_cpu(cpu, cpumask) { 1260 cpu_dev = get_cpu_device(cpu); 1261 if (!cpu_dev) { 1262 pr_err("%s: failed to get cpu%d device\n", __func__, 1263 cpu); 1264 ret = -ENODEV; 1265 goto remove_table; 1266 } 1267 1268 ret = dev_pm_opp_of_add_table(cpu_dev); 1269 if (ret) { 1270 /* 1271 * OPP may get registered dynamically, don't print error 1272 * message here. 1273 */ 1274 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", 1275 __func__, cpu, ret); 1276 1277 goto remove_table; 1278 } 1279 } 1280 1281 return 0; 1282 1283 remove_table: 1284 /* Free all other OPPs */ 1285 _dev_pm_opp_cpumask_remove_table(cpumask, cpu); 1286 1287 return ret; 1288 } 1289 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); 1290 1291 /* 1292 * Works only for OPP v2 bindings. 1293 * 1294 * Returns -ENOENT if operating-points-v2 bindings aren't supported. 1295 */ 1296 /** 1297 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with 1298 * @cpu_dev using operating-points-v2 1299 * bindings. 1300 * 1301 * @cpu_dev: CPU device for which we do this operation 1302 * @cpumask: cpumask to update with information of sharing CPUs 1303 * 1304 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. 1305 * 1306 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. 1307 */ 1308 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, 1309 struct cpumask *cpumask) 1310 { 1311 struct device_node *np, *tmp_np, *cpu_np; 1312 int cpu, ret = 0; 1313 1314 /* Get OPP descriptor node */ 1315 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1316 if (!np) { 1317 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); 1318 return -ENOENT; 1319 } 1320 1321 cpumask_set_cpu(cpu_dev->id, cpumask); 1322 1323 /* OPPs are shared ? */ 1324 if (!of_property_read_bool(np, "opp-shared")) 1325 goto put_cpu_node; 1326 1327 for_each_possible_cpu(cpu) { 1328 if (cpu == cpu_dev->id) 1329 continue; 1330 1331 cpu_np = of_cpu_device_node_get(cpu); 1332 if (!cpu_np) { 1333 dev_err(cpu_dev, "%s: failed to get cpu%d node\n", 1334 __func__, cpu); 1335 ret = -ENOENT; 1336 goto put_cpu_node; 1337 } 1338 1339 /* Get OPP descriptor node */ 1340 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); 1341 of_node_put(cpu_np); 1342 if (!tmp_np) { 1343 pr_err("%pOF: Couldn't find opp node\n", cpu_np); 1344 ret = -ENOENT; 1345 goto put_cpu_node; 1346 } 1347 1348 /* CPUs are sharing opp node */ 1349 if (np == tmp_np) 1350 cpumask_set_cpu(cpu, cpumask); 1351 1352 of_node_put(tmp_np); 1353 } 1354 1355 put_cpu_node: 1356 of_node_put(np); 1357 return ret; 1358 } 1359 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); 1360 1361 /** 1362 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. 1363 * @np: Node that contains the "required-opps" property. 1364 * @index: Index of the phandle to parse. 1365 * 1366 * Returns the performance state of the OPP pointed out by the "required-opps" 1367 * property at @index in @np. 1368 * 1369 * Return: Zero or positive performance state on success, otherwise negative 1370 * value on errors. 1371 */ 1372 int of_get_required_opp_performance_state(struct device_node *np, int index) 1373 { 1374 struct dev_pm_opp *opp; 1375 struct device_node *required_np; 1376 struct opp_table *opp_table; 1377 int pstate = -EINVAL; 1378 1379 required_np = of_parse_required_opp(np, index); 1380 if (!required_np) 1381 return -ENODEV; 1382 1383 opp_table = _find_table_of_opp_np(required_np); 1384 if (IS_ERR(opp_table)) { 1385 pr_err("%s: Failed to find required OPP table %pOF: %ld\n", 1386 __func__, np, PTR_ERR(opp_table)); 1387 goto put_required_np; 1388 } 1389 1390 opp = _find_opp_of_np(opp_table, required_np); 1391 if (opp) { 1392 pstate = opp->pstate; 1393 dev_pm_opp_put(opp); 1394 } 1395 1396 dev_pm_opp_put_opp_table(opp_table); 1397 1398 put_required_np: 1399 of_node_put(required_np); 1400 1401 return pstate; 1402 } 1403 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); 1404 1405 /** 1406 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp 1407 * @opp: opp for which DT node has to be returned for 1408 * 1409 * Return: DT node corresponding to the opp, else 0 on success. 1410 * 1411 * The caller needs to put the node with of_node_put() after using it. 1412 */ 1413 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) 1414 { 1415 if (IS_ERR_OR_NULL(opp)) { 1416 pr_err("%s: Invalid parameters\n", __func__); 1417 return NULL; 1418 } 1419 1420 return of_node_get(opp->np); 1421 } 1422 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); 1423 1424 /* 1425 * Callback function provided to the Energy Model framework upon registration. 1426 * It provides the power used by @dev at @kHz if it is the frequency of an 1427 * existing OPP, or at the frequency of the first OPP above @kHz otherwise 1428 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1429 * frequency and @uW to the associated power. 1430 * 1431 * Returns 0 on success or a proper -EINVAL value in case of error. 1432 */ 1433 static int __maybe_unused 1434 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz) 1435 { 1436 struct dev_pm_opp *opp; 1437 unsigned long opp_freq, opp_power; 1438 1439 /* Find the right frequency and related OPP */ 1440 opp_freq = *kHz * 1000; 1441 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq); 1442 if (IS_ERR(opp)) 1443 return -EINVAL; 1444 1445 opp_power = dev_pm_opp_get_power(opp); 1446 dev_pm_opp_put(opp); 1447 if (!opp_power) 1448 return -EINVAL; 1449 1450 *kHz = opp_freq / 1000; 1451 *uW = opp_power; 1452 1453 return 0; 1454 } 1455 1456 /* 1457 * Callback function provided to the Energy Model framework upon registration. 1458 * This computes the power estimated by @dev at @kHz if it is the frequency 1459 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise 1460 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1461 * frequency and @uW to the associated power. The power is estimated as 1462 * P = C * V^2 * f with C being the device's capacitance and V and f 1463 * respectively the voltage and frequency of the OPP. 1464 * 1465 * Returns -EINVAL if the power calculation failed because of missing 1466 * parameters, 0 otherwise. 1467 */ 1468 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW, 1469 unsigned long *kHz) 1470 { 1471 struct dev_pm_opp *opp; 1472 struct device_node *np; 1473 unsigned long mV, Hz; 1474 u32 cap; 1475 u64 tmp; 1476 int ret; 1477 1478 np = of_node_get(dev->of_node); 1479 if (!np) 1480 return -EINVAL; 1481 1482 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1483 of_node_put(np); 1484 if (ret) 1485 return -EINVAL; 1486 1487 Hz = *kHz * 1000; 1488 opp = dev_pm_opp_find_freq_ceil(dev, &Hz); 1489 if (IS_ERR(opp)) 1490 return -EINVAL; 1491 1492 mV = dev_pm_opp_get_voltage(opp) / 1000; 1493 dev_pm_opp_put(opp); 1494 if (!mV) 1495 return -EINVAL; 1496 1497 tmp = (u64)cap * mV * mV * (Hz / 1000000); 1498 /* Provide power in micro-Watts */ 1499 do_div(tmp, 1000000); 1500 1501 *uW = (unsigned long)tmp; 1502 *kHz = Hz / 1000; 1503 1504 return 0; 1505 } 1506 1507 static bool _of_has_opp_microwatt_property(struct device *dev) 1508 { 1509 unsigned long power, freq = 0; 1510 struct dev_pm_opp *opp; 1511 1512 /* Check if at least one OPP has needed property */ 1513 opp = dev_pm_opp_find_freq_ceil(dev, &freq); 1514 if (IS_ERR(opp)) 1515 return false; 1516 1517 power = dev_pm_opp_get_power(opp); 1518 dev_pm_opp_put(opp); 1519 if (!power) 1520 return false; 1521 1522 return true; 1523 } 1524 1525 /** 1526 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model 1527 * @dev : Device for which an Energy Model has to be registered 1528 * @cpus : CPUs for which an Energy Model has to be registered. For 1529 * other type of devices it should be set to NULL. 1530 * 1531 * This checks whether the "dynamic-power-coefficient" devicetree property has 1532 * been specified, and tries to register an Energy Model with it if it has. 1533 * Having this property means the voltages are known for OPPs and the EM 1534 * might be calculated. 1535 */ 1536 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) 1537 { 1538 struct em_data_callback em_cb; 1539 struct device_node *np; 1540 int ret, nr_opp; 1541 u32 cap; 1542 1543 if (IS_ERR_OR_NULL(dev)) { 1544 ret = -EINVAL; 1545 goto failed; 1546 } 1547 1548 nr_opp = dev_pm_opp_get_opp_count(dev); 1549 if (nr_opp <= 0) { 1550 ret = -EINVAL; 1551 goto failed; 1552 } 1553 1554 /* First, try to find more precised Energy Model in DT */ 1555 if (_of_has_opp_microwatt_property(dev)) { 1556 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power); 1557 goto register_em; 1558 } 1559 1560 np = of_node_get(dev->of_node); 1561 if (!np) { 1562 ret = -EINVAL; 1563 goto failed; 1564 } 1565 1566 /* 1567 * Register an EM only if the 'dynamic-power-coefficient' property is 1568 * set in devicetree. It is assumed the voltage values are known if that 1569 * property is set since it is useless otherwise. If voltages are not 1570 * known, just let the EM registration fail with an error to alert the 1571 * user about the inconsistent configuration. 1572 */ 1573 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1574 of_node_put(np); 1575 if (ret || !cap) { 1576 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); 1577 ret = -EINVAL; 1578 goto failed; 1579 } 1580 1581 EM_SET_ACTIVE_POWER_CB(em_cb, _get_power); 1582 1583 register_em: 1584 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); 1585 if (ret) 1586 goto failed; 1587 1588 return 0; 1589 1590 failed: 1591 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); 1592 return ret; 1593 } 1594 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); 1595