xref: /openbmc/linux/drivers/opp/of.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21 
22 #include "opp.h"
23 
24 /*
25  * Returns opp descriptor node for a device node, caller must
26  * do of_node_put().
27  */
28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29 						     int index)
30 {
31 	/* "operating-points-v2" can be an array for power domain providers */
32 	return of_parse_phandle(np, "operating-points-v2", index);
33 }
34 
35 /* Returns opp descriptor node for a device, caller must do of_node_put() */
36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37 {
38 	return _opp_of_get_opp_desc_node(dev->of_node, 0);
39 }
40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41 
42 struct opp_table *_managed_opp(struct device *dev, int index)
43 {
44 	struct opp_table *opp_table, *managed_table = NULL;
45 	struct device_node *np;
46 
47 	np = _opp_of_get_opp_desc_node(dev->of_node, index);
48 	if (!np)
49 		return NULL;
50 
51 	list_for_each_entry(opp_table, &opp_tables, node) {
52 		if (opp_table->np == np) {
53 			/*
54 			 * Multiple devices can point to the same OPP table and
55 			 * so will have same node-pointer, np.
56 			 *
57 			 * But the OPPs will be considered as shared only if the
58 			 * OPP table contains a "opp-shared" property.
59 			 */
60 			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61 				_get_opp_table_kref(opp_table);
62 				managed_table = opp_table;
63 			}
64 
65 			break;
66 		}
67 	}
68 
69 	of_node_put(np);
70 
71 	return managed_table;
72 }
73 
74 /* The caller must call dev_pm_opp_put() after the OPP is used */
75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76 					  struct device_node *opp_np)
77 {
78 	struct dev_pm_opp *opp;
79 
80 	mutex_lock(&opp_table->lock);
81 
82 	list_for_each_entry(opp, &opp_table->opp_list, node) {
83 		if (opp->np == opp_np) {
84 			dev_pm_opp_get(opp);
85 			mutex_unlock(&opp_table->lock);
86 			return opp;
87 		}
88 	}
89 
90 	mutex_unlock(&opp_table->lock);
91 
92 	return NULL;
93 }
94 
95 static struct device_node *of_parse_required_opp(struct device_node *np,
96 						 int index)
97 {
98 	return of_parse_phandle(np, "required-opps", index);
99 }
100 
101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103 {
104 	struct opp_table *opp_table;
105 	struct device_node *opp_table_np;
106 
107 	opp_table_np = of_get_parent(opp_np);
108 	if (!opp_table_np)
109 		goto err;
110 
111 	/* It is safe to put the node now as all we need now is its address */
112 	of_node_put(opp_table_np);
113 
114 	mutex_lock(&opp_table_lock);
115 	list_for_each_entry(opp_table, &opp_tables, node) {
116 		if (opp_table_np == opp_table->np) {
117 			_get_opp_table_kref(opp_table);
118 			mutex_unlock(&opp_table_lock);
119 			return opp_table;
120 		}
121 	}
122 	mutex_unlock(&opp_table_lock);
123 
124 err:
125 	return ERR_PTR(-ENODEV);
126 }
127 
128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
129 static void _opp_table_free_required_tables(struct opp_table *opp_table)
130 {
131 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132 	int i;
133 
134 	if (!required_opp_tables)
135 		return;
136 
137 	for (i = 0; i < opp_table->required_opp_count; i++) {
138 		if (IS_ERR_OR_NULL(required_opp_tables[i]))
139 			continue;
140 
141 		dev_pm_opp_put_opp_table(required_opp_tables[i]);
142 	}
143 
144 	kfree(required_opp_tables);
145 
146 	opp_table->required_opp_count = 0;
147 	opp_table->required_opp_tables = NULL;
148 	list_del(&opp_table->lazy);
149 }
150 
151 /*
152  * Populate all devices and opp tables which are part of "required-opps" list.
153  * Checking only the first OPP node should be enough.
154  */
155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156 					     struct device *dev,
157 					     struct device_node *opp_np)
158 {
159 	struct opp_table **required_opp_tables;
160 	struct device_node *required_np, *np;
161 	bool lazy = false;
162 	int count, i;
163 
164 	/* Traversing the first OPP node is all we need */
165 	np = of_get_next_available_child(opp_np, NULL);
166 	if (!np) {
167 		dev_warn(dev, "Empty OPP table\n");
168 
169 		return;
170 	}
171 
172 	count = of_count_phandle_with_args(np, "required-opps", NULL);
173 	if (count <= 0)
174 		goto put_np;
175 
176 	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177 				      GFP_KERNEL);
178 	if (!required_opp_tables)
179 		goto put_np;
180 
181 	opp_table->required_opp_tables = required_opp_tables;
182 	opp_table->required_opp_count = count;
183 
184 	for (i = 0; i < count; i++) {
185 		required_np = of_parse_required_opp(np, i);
186 		if (!required_np)
187 			goto free_required_tables;
188 
189 		required_opp_tables[i] = _find_table_of_opp_np(required_np);
190 		of_node_put(required_np);
191 
192 		if (IS_ERR(required_opp_tables[i]))
193 			lazy = true;
194 	}
195 
196 	/* Let's do the linking later on */
197 	if (lazy)
198 		list_add(&opp_table->lazy, &lazy_opp_tables);
199 
200 	goto put_np;
201 
202 free_required_tables:
203 	_opp_table_free_required_tables(opp_table);
204 put_np:
205 	of_node_put(np);
206 }
207 
208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
209 			int index)
210 {
211 	struct device_node *np, *opp_np;
212 	u32 val;
213 
214 	/*
215 	 * Only required for backward compatibility with v1 bindings, but isn't
216 	 * harmful for other cases. And so we do it unconditionally.
217 	 */
218 	np = of_node_get(dev->of_node);
219 	if (!np)
220 		return;
221 
222 	if (!of_property_read_u32(np, "clock-latency", &val))
223 		opp_table->clock_latency_ns_max = val;
224 	of_property_read_u32(np, "voltage-tolerance",
225 			     &opp_table->voltage_tolerance_v1);
226 
227 	if (of_find_property(np, "#power-domain-cells", NULL))
228 		opp_table->is_genpd = true;
229 
230 	/* Get OPP table node */
231 	opp_np = _opp_of_get_opp_desc_node(np, index);
232 	of_node_put(np);
233 
234 	if (!opp_np)
235 		return;
236 
237 	if (of_property_read_bool(opp_np, "opp-shared"))
238 		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
239 	else
240 		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
241 
242 	opp_table->np = opp_np;
243 
244 	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
245 }
246 
247 void _of_clear_opp_table(struct opp_table *opp_table)
248 {
249 	_opp_table_free_required_tables(opp_table);
250 	of_node_put(opp_table->np);
251 }
252 
253 /*
254  * Release all resources previously acquired with a call to
255  * _of_opp_alloc_required_opps().
256  */
257 static void _of_opp_free_required_opps(struct opp_table *opp_table,
258 				       struct dev_pm_opp *opp)
259 {
260 	struct dev_pm_opp **required_opps = opp->required_opps;
261 	int i;
262 
263 	if (!required_opps)
264 		return;
265 
266 	for (i = 0; i < opp_table->required_opp_count; i++) {
267 		if (!required_opps[i])
268 			continue;
269 
270 		/* Put the reference back */
271 		dev_pm_opp_put(required_opps[i]);
272 	}
273 
274 	opp->required_opps = NULL;
275 	kfree(required_opps);
276 }
277 
278 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
279 {
280 	_of_opp_free_required_opps(opp_table, opp);
281 	of_node_put(opp->np);
282 }
283 
284 /* Populate all required OPPs which are part of "required-opps" list */
285 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
286 				       struct dev_pm_opp *opp)
287 {
288 	struct dev_pm_opp **required_opps;
289 	struct opp_table *required_table;
290 	struct device_node *np;
291 	int i, ret, count = opp_table->required_opp_count;
292 
293 	if (!count)
294 		return 0;
295 
296 	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
297 	if (!required_opps)
298 		return -ENOMEM;
299 
300 	opp->required_opps = required_opps;
301 
302 	for (i = 0; i < count; i++) {
303 		required_table = opp_table->required_opp_tables[i];
304 
305 		/* Required table not added yet, we will link later */
306 		if (IS_ERR_OR_NULL(required_table))
307 			continue;
308 
309 		np = of_parse_required_opp(opp->np, i);
310 		if (unlikely(!np)) {
311 			ret = -ENODEV;
312 			goto free_required_opps;
313 		}
314 
315 		required_opps[i] = _find_opp_of_np(required_table, np);
316 		of_node_put(np);
317 
318 		if (!required_opps[i]) {
319 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
320 			       __func__, opp->np, i);
321 			ret = -ENODEV;
322 			goto free_required_opps;
323 		}
324 	}
325 
326 	return 0;
327 
328 free_required_opps:
329 	_of_opp_free_required_opps(opp_table, opp);
330 
331 	return ret;
332 }
333 
334 /* Link required OPPs for an individual OPP */
335 static int lazy_link_required_opps(struct opp_table *opp_table,
336 				   struct opp_table *new_table, int index)
337 {
338 	struct device_node *required_np;
339 	struct dev_pm_opp *opp;
340 
341 	list_for_each_entry(opp, &opp_table->opp_list, node) {
342 		required_np = of_parse_required_opp(opp->np, index);
343 		if (unlikely(!required_np))
344 			return -ENODEV;
345 
346 		opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
347 		of_node_put(required_np);
348 
349 		if (!opp->required_opps[index]) {
350 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
351 			       __func__, opp->np, index);
352 			return -ENODEV;
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 /* Link required OPPs for all OPPs of the newly added OPP table */
360 static void lazy_link_required_opp_table(struct opp_table *new_table)
361 {
362 	struct opp_table *opp_table, *temp, **required_opp_tables;
363 	struct device_node *required_np, *opp_np, *required_table_np;
364 	struct dev_pm_opp *opp;
365 	int i, ret;
366 
367 	mutex_lock(&opp_table_lock);
368 
369 	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
370 		bool lazy = false;
371 
372 		/* opp_np can't be invalid here */
373 		opp_np = of_get_next_available_child(opp_table->np, NULL);
374 
375 		for (i = 0; i < opp_table->required_opp_count; i++) {
376 			required_opp_tables = opp_table->required_opp_tables;
377 
378 			/* Required opp-table is already parsed */
379 			if (!IS_ERR(required_opp_tables[i]))
380 				continue;
381 
382 			/* required_np can't be invalid here */
383 			required_np = of_parse_required_opp(opp_np, i);
384 			required_table_np = of_get_parent(required_np);
385 
386 			of_node_put(required_table_np);
387 			of_node_put(required_np);
388 
389 			/*
390 			 * Newly added table isn't the required opp-table for
391 			 * opp_table.
392 			 */
393 			if (required_table_np != new_table->np) {
394 				lazy = true;
395 				continue;
396 			}
397 
398 			required_opp_tables[i] = new_table;
399 			_get_opp_table_kref(new_table);
400 
401 			/* Link OPPs now */
402 			ret = lazy_link_required_opps(opp_table, new_table, i);
403 			if (ret) {
404 				/* The OPPs will be marked unusable */
405 				lazy = false;
406 				break;
407 			}
408 		}
409 
410 		of_node_put(opp_np);
411 
412 		/* All required opp-tables found, remove from lazy list */
413 		if (!lazy) {
414 			list_del_init(&opp_table->lazy);
415 
416 			list_for_each_entry(opp, &opp_table->opp_list, node)
417 				_required_opps_available(opp, opp_table->required_opp_count);
418 		}
419 	}
420 
421 	mutex_unlock(&opp_table_lock);
422 }
423 
424 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
425 {
426 	struct device_node *np, *opp_np;
427 	struct property *prop;
428 
429 	if (!opp_table) {
430 		np = of_node_get(dev->of_node);
431 		if (!np)
432 			return -ENODEV;
433 
434 		opp_np = _opp_of_get_opp_desc_node(np, 0);
435 		of_node_put(np);
436 	} else {
437 		opp_np = of_node_get(opp_table->np);
438 	}
439 
440 	/* Lets not fail in case we are parsing opp-v1 bindings */
441 	if (!opp_np)
442 		return 0;
443 
444 	/* Checking only first OPP is sufficient */
445 	np = of_get_next_available_child(opp_np, NULL);
446 	of_node_put(opp_np);
447 	if (!np) {
448 		dev_err(dev, "OPP table empty\n");
449 		return -EINVAL;
450 	}
451 
452 	prop = of_find_property(np, "opp-peak-kBps", NULL);
453 	of_node_put(np);
454 
455 	if (!prop || !prop->length)
456 		return 0;
457 
458 	return 1;
459 }
460 
461 int dev_pm_opp_of_find_icc_paths(struct device *dev,
462 				 struct opp_table *opp_table)
463 {
464 	struct device_node *np;
465 	int ret, i, count, num_paths;
466 	struct icc_path **paths;
467 
468 	ret = _bandwidth_supported(dev, opp_table);
469 	if (ret == -EINVAL)
470 		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
471 	else if (ret <= 0)
472 		return ret;
473 
474 	ret = 0;
475 
476 	np = of_node_get(dev->of_node);
477 	if (!np)
478 		return 0;
479 
480 	count = of_count_phandle_with_args(np, "interconnects",
481 					   "#interconnect-cells");
482 	of_node_put(np);
483 	if (count < 0)
484 		return 0;
485 
486 	/* two phandles when #interconnect-cells = <1> */
487 	if (count % 2) {
488 		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
489 		return -EINVAL;
490 	}
491 
492 	num_paths = count / 2;
493 	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
494 	if (!paths)
495 		return -ENOMEM;
496 
497 	for (i = 0; i < num_paths; i++) {
498 		paths[i] = of_icc_get_by_index(dev, i);
499 		if (IS_ERR(paths[i])) {
500 			ret = PTR_ERR(paths[i]);
501 			if (ret != -EPROBE_DEFER) {
502 				dev_err(dev, "%s: Unable to get path%d: %d\n",
503 					__func__, i, ret);
504 			}
505 			goto err;
506 		}
507 	}
508 
509 	if (opp_table) {
510 		opp_table->paths = paths;
511 		opp_table->path_count = num_paths;
512 		return 0;
513 	}
514 
515 err:
516 	while (i--)
517 		icc_put(paths[i]);
518 
519 	kfree(paths);
520 
521 	return ret;
522 }
523 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
524 
525 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
526 			      struct device_node *np)
527 {
528 	unsigned int levels = opp_table->supported_hw_count;
529 	int count, versions, ret, i, j;
530 	u32 val;
531 
532 	if (!opp_table->supported_hw) {
533 		/*
534 		 * In the case that no supported_hw has been set by the
535 		 * platform but there is an opp-supported-hw value set for
536 		 * an OPP then the OPP should not be enabled as there is
537 		 * no way to see if the hardware supports it.
538 		 */
539 		if (of_find_property(np, "opp-supported-hw", NULL))
540 			return false;
541 		else
542 			return true;
543 	}
544 
545 	count = of_property_count_u32_elems(np, "opp-supported-hw");
546 	if (count <= 0 || count % levels) {
547 		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
548 			__func__, count);
549 		return false;
550 	}
551 
552 	versions = count / levels;
553 
554 	/* All levels in at least one of the versions should match */
555 	for (i = 0; i < versions; i++) {
556 		bool supported = true;
557 
558 		for (j = 0; j < levels; j++) {
559 			ret = of_property_read_u32_index(np, "opp-supported-hw",
560 							 i * levels + j, &val);
561 			if (ret) {
562 				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
563 					 __func__, i * levels + j, ret);
564 				return false;
565 			}
566 
567 			/* Check if the level is supported */
568 			if (!(val & opp_table->supported_hw[j])) {
569 				supported = false;
570 				break;
571 			}
572 		}
573 
574 		if (supported)
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
581 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
582 			      struct opp_table *opp_table,
583 			      const char *prop_type, bool *triplet)
584 {
585 	struct property *prop = NULL;
586 	char name[NAME_MAX];
587 	int count, ret;
588 	u32 *out;
589 
590 	/* Search for "opp-<prop_type>-<name>" */
591 	if (opp_table->prop_name) {
592 		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
593 			 opp_table->prop_name);
594 		prop = of_find_property(opp->np, name, NULL);
595 	}
596 
597 	if (!prop) {
598 		/* Search for "opp-<prop_type>" */
599 		snprintf(name, sizeof(name), "opp-%s", prop_type);
600 		prop = of_find_property(opp->np, name, NULL);
601 		if (!prop)
602 			return NULL;
603 	}
604 
605 	count = of_property_count_u32_elems(opp->np, name);
606 	if (count < 0) {
607 		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
608 			count);
609 		return ERR_PTR(count);
610 	}
611 
612 	/*
613 	 * Initialize regulator_count, if regulator information isn't provided
614 	 * by the platform. Now that one of the properties is available, fix the
615 	 * regulator_count to 1.
616 	 */
617 	if (unlikely(opp_table->regulator_count == -1))
618 		opp_table->regulator_count = 1;
619 
620 	if (count != opp_table->regulator_count &&
621 	    (!triplet || count != opp_table->regulator_count * 3)) {
622 		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
623 			__func__, prop_type, count, opp_table->regulator_count);
624 		return ERR_PTR(-EINVAL);
625 	}
626 
627 	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
628 	if (!out)
629 		return ERR_PTR(-EINVAL);
630 
631 	ret = of_property_read_u32_array(opp->np, name, out, count);
632 	if (ret) {
633 		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
634 		kfree(out);
635 		return ERR_PTR(-EINVAL);
636 	}
637 
638 	if (triplet)
639 		*triplet = count != opp_table->regulator_count;
640 
641 	return out;
642 }
643 
644 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
645 				struct opp_table *opp_table, bool *triplet)
646 {
647 	u32 *microvolt;
648 
649 	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
650 	if (IS_ERR(microvolt))
651 		return microvolt;
652 
653 	if (!microvolt) {
654 		/*
655 		 * Missing property isn't a problem, but an invalid
656 		 * entry is. This property isn't optional if regulator
657 		 * information is provided. Check only for the first OPP, as
658 		 * regulator_count may get initialized after that to a valid
659 		 * value.
660 		 */
661 		if (list_empty(&opp_table->opp_list) &&
662 		    opp_table->regulator_count > 0) {
663 			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
664 				__func__);
665 			return ERR_PTR(-EINVAL);
666 		}
667 	}
668 
669 	return microvolt;
670 }
671 
672 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
673 			      struct opp_table *opp_table)
674 {
675 	u32 *microvolt, *microamp, *microwatt;
676 	int ret = 0, i, j;
677 	bool triplet;
678 
679 	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
680 	if (IS_ERR(microvolt))
681 		return PTR_ERR(microvolt);
682 
683 	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
684 	if (IS_ERR(microamp)) {
685 		ret = PTR_ERR(microamp);
686 		goto free_microvolt;
687 	}
688 
689 	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
690 	if (IS_ERR(microwatt)) {
691 		ret = PTR_ERR(microwatt);
692 		goto free_microamp;
693 	}
694 
695 	/*
696 	 * Initialize regulator_count if it is uninitialized and no properties
697 	 * are found.
698 	 */
699 	if (unlikely(opp_table->regulator_count == -1)) {
700 		opp_table->regulator_count = 0;
701 		return 0;
702 	}
703 
704 	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
705 		if (microvolt) {
706 			opp->supplies[i].u_volt = microvolt[j++];
707 
708 			if (triplet) {
709 				opp->supplies[i].u_volt_min = microvolt[j++];
710 				opp->supplies[i].u_volt_max = microvolt[j++];
711 			} else {
712 				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
713 				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
714 			}
715 		}
716 
717 		if (microamp)
718 			opp->supplies[i].u_amp = microamp[i];
719 
720 		if (microwatt)
721 			opp->supplies[i].u_watt = microwatt[i];
722 	}
723 
724 	kfree(microwatt);
725 free_microamp:
726 	kfree(microamp);
727 free_microvolt:
728 	kfree(microvolt);
729 
730 	return ret;
731 }
732 
733 /**
734  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
735  *				  entries
736  * @dev:	device pointer used to lookup OPP table.
737  *
738  * Free OPPs created using static entries present in DT.
739  */
740 void dev_pm_opp_of_remove_table(struct device *dev)
741 {
742 	dev_pm_opp_remove_table(dev);
743 }
744 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
745 
746 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
747 		      struct device_node *np)
748 {
749 	struct property *prop;
750 	int i, count, ret;
751 	u64 *rates;
752 
753 	prop = of_find_property(np, "opp-hz", NULL);
754 	if (!prop)
755 		return -ENODEV;
756 
757 	count = prop->length / sizeof(u64);
758 	if (opp_table->clk_count != count) {
759 		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
760 		       __func__, count, opp_table->clk_count);
761 		return -EINVAL;
762 	}
763 
764 	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
765 	if (!rates)
766 		return -ENOMEM;
767 
768 	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
769 	if (ret) {
770 		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
771 	} else {
772 		/*
773 		 * Rate is defined as an unsigned long in clk API, and so
774 		 * casting explicitly to its type. Must be fixed once rate is 64
775 		 * bit guaranteed in clk API.
776 		 */
777 		for (i = 0; i < count; i++) {
778 			new_opp->rates[i] = (unsigned long)rates[i];
779 
780 			/* This will happen for frequencies > 4.29 GHz */
781 			WARN_ON(new_opp->rates[i] != rates[i]);
782 		}
783 	}
784 
785 	kfree(rates);
786 
787 	return ret;
788 }
789 
790 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
791 		    struct device_node *np, bool peak)
792 {
793 	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
794 	struct property *prop;
795 	int i, count, ret;
796 	u32 *bw;
797 
798 	prop = of_find_property(np, name, NULL);
799 	if (!prop)
800 		return -ENODEV;
801 
802 	count = prop->length / sizeof(u32);
803 	if (opp_table->path_count != count) {
804 		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
805 				__func__, name, count, opp_table->path_count);
806 		return -EINVAL;
807 	}
808 
809 	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
810 	if (!bw)
811 		return -ENOMEM;
812 
813 	ret = of_property_read_u32_array(np, name, bw, count);
814 	if (ret) {
815 		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
816 		goto out;
817 	}
818 
819 	for (i = 0; i < count; i++) {
820 		if (peak)
821 			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
822 		else
823 			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
824 	}
825 
826 out:
827 	kfree(bw);
828 	return ret;
829 }
830 
831 static int _read_opp_key(struct dev_pm_opp *new_opp,
832 			 struct opp_table *opp_table, struct device_node *np)
833 {
834 	bool found = false;
835 	int ret;
836 
837 	ret = _read_rate(new_opp, opp_table, np);
838 	if (!ret)
839 		found = true;
840 	else if (ret != -ENODEV)
841 		return ret;
842 
843 	/*
844 	 * Bandwidth consists of peak and average (optional) values:
845 	 * opp-peak-kBps = <path1_value path2_value>;
846 	 * opp-avg-kBps = <path1_value path2_value>;
847 	 */
848 	ret = _read_bw(new_opp, opp_table, np, true);
849 	if (!ret) {
850 		found = true;
851 		ret = _read_bw(new_opp, opp_table, np, false);
852 	}
853 
854 	/* The properties were found but we failed to parse them */
855 	if (ret && ret != -ENODEV)
856 		return ret;
857 
858 	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
859 		found = true;
860 
861 	if (found)
862 		return 0;
863 
864 	return ret;
865 }
866 
867 /**
868  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
869  * @opp_table:	OPP table
870  * @dev:	device for which we do this operation
871  * @np:		device node
872  *
873  * This function adds an opp definition to the opp table and returns status. The
874  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
875  * removed by dev_pm_opp_remove.
876  *
877  * Return:
878  * Valid OPP pointer:
879  *		On success
880  * NULL:
881  *		Duplicate OPPs (both freq and volt are same) and opp->available
882  *		OR if the OPP is not supported by hardware.
883  * ERR_PTR(-EEXIST):
884  *		Freq are same and volt are different OR
885  *		Duplicate OPPs (both freq and volt are same) and !opp->available
886  * ERR_PTR(-ENOMEM):
887  *		Memory allocation failure
888  * ERR_PTR(-EINVAL):
889  *		Failed parsing the OPP node
890  */
891 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
892 		struct device *dev, struct device_node *np)
893 {
894 	struct dev_pm_opp *new_opp;
895 	u32 val;
896 	int ret;
897 
898 	new_opp = _opp_allocate(opp_table);
899 	if (!new_opp)
900 		return ERR_PTR(-ENOMEM);
901 
902 	ret = _read_opp_key(new_opp, opp_table, np);
903 	if (ret < 0) {
904 		dev_err(dev, "%s: opp key field not found\n", __func__);
905 		goto free_opp;
906 	}
907 
908 	/* Check if the OPP supports hardware's hierarchy of versions or not */
909 	if (!_opp_is_supported(dev, opp_table, np)) {
910 		dev_dbg(dev, "OPP not supported by hardware: %s\n",
911 			of_node_full_name(np));
912 		goto free_opp;
913 	}
914 
915 	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
916 
917 	new_opp->np = of_node_get(np);
918 	new_opp->dynamic = false;
919 	new_opp->available = true;
920 
921 	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
922 	if (ret)
923 		goto free_opp;
924 
925 	if (!of_property_read_u32(np, "clock-latency-ns", &val))
926 		new_opp->clock_latency_ns = val;
927 
928 	ret = opp_parse_supplies(new_opp, dev, opp_table);
929 	if (ret)
930 		goto free_required_opps;
931 
932 	if (opp_table->is_genpd)
933 		new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
934 
935 	ret = _opp_add(dev, new_opp, opp_table);
936 	if (ret) {
937 		/* Don't return error for duplicate OPPs */
938 		if (ret == -EBUSY)
939 			ret = 0;
940 		goto free_required_opps;
941 	}
942 
943 	/* OPP to select on device suspend */
944 	if (of_property_read_bool(np, "opp-suspend")) {
945 		if (opp_table->suspend_opp) {
946 			/* Pick the OPP with higher rate/bw/level as suspend OPP */
947 			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
948 				opp_table->suspend_opp->suspend = false;
949 				new_opp->suspend = true;
950 				opp_table->suspend_opp = new_opp;
951 			}
952 		} else {
953 			new_opp->suspend = true;
954 			opp_table->suspend_opp = new_opp;
955 		}
956 	}
957 
958 	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
959 		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
960 
961 	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
962 		 __func__, new_opp->turbo, new_opp->rates[0],
963 		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
964 		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
965 		 new_opp->level);
966 
967 	/*
968 	 * Notify the changes in the availability of the operable
969 	 * frequency/voltage list.
970 	 */
971 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
972 	return new_opp;
973 
974 free_required_opps:
975 	_of_opp_free_required_opps(opp_table, new_opp);
976 free_opp:
977 	_opp_free(new_opp);
978 
979 	return ret ? ERR_PTR(ret) : NULL;
980 }
981 
982 /* Initializes OPP tables based on new bindings */
983 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
984 {
985 	struct device_node *np;
986 	int ret, count = 0;
987 	struct dev_pm_opp *opp;
988 
989 	/* OPP table is already initialized for the device */
990 	mutex_lock(&opp_table->lock);
991 	if (opp_table->parsed_static_opps) {
992 		opp_table->parsed_static_opps++;
993 		mutex_unlock(&opp_table->lock);
994 		return 0;
995 	}
996 
997 	opp_table->parsed_static_opps = 1;
998 	mutex_unlock(&opp_table->lock);
999 
1000 	/* We have opp-table node now, iterate over it and add OPPs */
1001 	for_each_available_child_of_node(opp_table->np, np) {
1002 		opp = _opp_add_static_v2(opp_table, dev, np);
1003 		if (IS_ERR(opp)) {
1004 			ret = PTR_ERR(opp);
1005 			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1006 				ret);
1007 			of_node_put(np);
1008 			goto remove_static_opp;
1009 		} else if (opp) {
1010 			count++;
1011 		}
1012 	}
1013 
1014 	/* There should be one or more OPPs defined */
1015 	if (!count) {
1016 		dev_err(dev, "%s: no supported OPPs", __func__);
1017 		ret = -ENOENT;
1018 		goto remove_static_opp;
1019 	}
1020 
1021 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1022 		/* Any non-zero performance state would enable the feature */
1023 		if (opp->pstate) {
1024 			opp_table->genpd_performance_state = true;
1025 			break;
1026 		}
1027 	}
1028 
1029 	lazy_link_required_opp_table(opp_table);
1030 
1031 	return 0;
1032 
1033 remove_static_opp:
1034 	_opp_remove_all_static(opp_table);
1035 
1036 	return ret;
1037 }
1038 
1039 /* Initializes OPP tables based on old-deprecated bindings */
1040 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1041 {
1042 	const struct property *prop;
1043 	const __be32 *val;
1044 	int nr, ret = 0;
1045 
1046 	mutex_lock(&opp_table->lock);
1047 	if (opp_table->parsed_static_opps) {
1048 		opp_table->parsed_static_opps++;
1049 		mutex_unlock(&opp_table->lock);
1050 		return 0;
1051 	}
1052 
1053 	opp_table->parsed_static_opps = 1;
1054 	mutex_unlock(&opp_table->lock);
1055 
1056 	prop = of_find_property(dev->of_node, "operating-points", NULL);
1057 	if (!prop) {
1058 		ret = -ENODEV;
1059 		goto remove_static_opp;
1060 	}
1061 	if (!prop->value) {
1062 		ret = -ENODATA;
1063 		goto remove_static_opp;
1064 	}
1065 
1066 	/*
1067 	 * Each OPP is a set of tuples consisting of frequency and
1068 	 * voltage like <freq-kHz vol-uV>.
1069 	 */
1070 	nr = prop->length / sizeof(u32);
1071 	if (nr % 2) {
1072 		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1073 		ret = -EINVAL;
1074 		goto remove_static_opp;
1075 	}
1076 
1077 	val = prop->value;
1078 	while (nr) {
1079 		unsigned long freq = be32_to_cpup(val++) * 1000;
1080 		unsigned long volt = be32_to_cpup(val++);
1081 
1082 		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1083 		if (ret) {
1084 			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1085 				__func__, freq, ret);
1086 			goto remove_static_opp;
1087 		}
1088 		nr -= 2;
1089 	}
1090 
1091 	return 0;
1092 
1093 remove_static_opp:
1094 	_opp_remove_all_static(opp_table);
1095 
1096 	return ret;
1097 }
1098 
1099 static int _of_add_table_indexed(struct device *dev, int index)
1100 {
1101 	struct opp_table *opp_table;
1102 	int ret, count;
1103 
1104 	if (index) {
1105 		/*
1106 		 * If only one phandle is present, then the same OPP table
1107 		 * applies for all index requests.
1108 		 */
1109 		count = of_count_phandle_with_args(dev->of_node,
1110 						   "operating-points-v2", NULL);
1111 		if (count == 1)
1112 			index = 0;
1113 	}
1114 
1115 	opp_table = _add_opp_table_indexed(dev, index, true);
1116 	if (IS_ERR(opp_table))
1117 		return PTR_ERR(opp_table);
1118 
1119 	/*
1120 	 * OPPs have two version of bindings now. Also try the old (v1)
1121 	 * bindings for backward compatibility with older dtbs.
1122 	 */
1123 	if (opp_table->np)
1124 		ret = _of_add_opp_table_v2(dev, opp_table);
1125 	else
1126 		ret = _of_add_opp_table_v1(dev, opp_table);
1127 
1128 	if (ret)
1129 		dev_pm_opp_put_opp_table(opp_table);
1130 
1131 	return ret;
1132 }
1133 
1134 static void devm_pm_opp_of_table_release(void *data)
1135 {
1136 	dev_pm_opp_of_remove_table(data);
1137 }
1138 
1139 static int _devm_of_add_table_indexed(struct device *dev, int index)
1140 {
1141 	int ret;
1142 
1143 	ret = _of_add_table_indexed(dev, index);
1144 	if (ret)
1145 		return ret;
1146 
1147 	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1148 }
1149 
1150 /**
1151  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1152  * @dev:	device pointer used to lookup OPP table.
1153  *
1154  * Register the initial OPP table with the OPP library for given device.
1155  *
1156  * The opp_table structure will be freed after the device is destroyed.
1157  *
1158  * Return:
1159  * 0		On success OR
1160  *		Duplicate OPPs (both freq and volt are same) and opp->available
1161  * -EEXIST	Freq are same and volt are different OR
1162  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1163  * -ENOMEM	Memory allocation failure
1164  * -ENODEV	when 'operating-points' property is not found or is invalid data
1165  *		in device node.
1166  * -ENODATA	when empty 'operating-points' property is found
1167  * -EINVAL	when invalid entries are found in opp-v2 table
1168  */
1169 int devm_pm_opp_of_add_table(struct device *dev)
1170 {
1171 	return _devm_of_add_table_indexed(dev, 0);
1172 }
1173 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1174 
1175 /**
1176  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1177  * @dev:	device pointer used to lookup OPP table.
1178  *
1179  * Register the initial OPP table with the OPP library for given device.
1180  *
1181  * Return:
1182  * 0		On success OR
1183  *		Duplicate OPPs (both freq and volt are same) and opp->available
1184  * -EEXIST	Freq are same and volt are different OR
1185  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1186  * -ENOMEM	Memory allocation failure
1187  * -ENODEV	when 'operating-points' property is not found or is invalid data
1188  *		in device node.
1189  * -ENODATA	when empty 'operating-points' property is found
1190  * -EINVAL	when invalid entries are found in opp-v2 table
1191  */
1192 int dev_pm_opp_of_add_table(struct device *dev)
1193 {
1194 	return _of_add_table_indexed(dev, 0);
1195 }
1196 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1197 
1198 /**
1199  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1200  * @dev:	device pointer used to lookup OPP table.
1201  * @index:	Index number.
1202  *
1203  * Register the initial OPP table with the OPP library for given device only
1204  * using the "operating-points-v2" property.
1205  *
1206  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1207  */
1208 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1209 {
1210 	return _of_add_table_indexed(dev, index);
1211 }
1212 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1213 
1214 /**
1215  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1216  * @dev:	device pointer used to lookup OPP table.
1217  * @index:	Index number.
1218  *
1219  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1220  */
1221 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1222 {
1223 	return _devm_of_add_table_indexed(dev, index);
1224 }
1225 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1226 
1227 /* CPU device specific helpers */
1228 
1229 /**
1230  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1231  * @cpumask:	cpumask for which OPP table needs to be removed
1232  *
1233  * This removes the OPP tables for CPUs present in the @cpumask.
1234  * This should be used only to remove static entries created from DT.
1235  */
1236 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1237 {
1238 	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1239 }
1240 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1241 
1242 /**
1243  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1244  * @cpumask:	cpumask for which OPP table needs to be added.
1245  *
1246  * This adds the OPP tables for CPUs present in the @cpumask.
1247  */
1248 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1249 {
1250 	struct device *cpu_dev;
1251 	int cpu, ret;
1252 
1253 	if (WARN_ON(cpumask_empty(cpumask)))
1254 		return -ENODEV;
1255 
1256 	for_each_cpu(cpu, cpumask) {
1257 		cpu_dev = get_cpu_device(cpu);
1258 		if (!cpu_dev) {
1259 			pr_err("%s: failed to get cpu%d device\n", __func__,
1260 			       cpu);
1261 			ret = -ENODEV;
1262 			goto remove_table;
1263 		}
1264 
1265 		ret = dev_pm_opp_of_add_table(cpu_dev);
1266 		if (ret) {
1267 			/*
1268 			 * OPP may get registered dynamically, don't print error
1269 			 * message here.
1270 			 */
1271 			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1272 				 __func__, cpu, ret);
1273 
1274 			goto remove_table;
1275 		}
1276 	}
1277 
1278 	return 0;
1279 
1280 remove_table:
1281 	/* Free all other OPPs */
1282 	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1283 
1284 	return ret;
1285 }
1286 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1287 
1288 /*
1289  * Works only for OPP v2 bindings.
1290  *
1291  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1292  */
1293 /**
1294  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1295  *				      @cpu_dev using operating-points-v2
1296  *				      bindings.
1297  *
1298  * @cpu_dev:	CPU device for which we do this operation
1299  * @cpumask:	cpumask to update with information of sharing CPUs
1300  *
1301  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1302  *
1303  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1304  */
1305 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1306 				   struct cpumask *cpumask)
1307 {
1308 	struct device_node *np, *tmp_np, *cpu_np;
1309 	int cpu, ret = 0;
1310 
1311 	/* Get OPP descriptor node */
1312 	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1313 	if (!np) {
1314 		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1315 		return -ENOENT;
1316 	}
1317 
1318 	cpumask_set_cpu(cpu_dev->id, cpumask);
1319 
1320 	/* OPPs are shared ? */
1321 	if (!of_property_read_bool(np, "opp-shared"))
1322 		goto put_cpu_node;
1323 
1324 	for_each_possible_cpu(cpu) {
1325 		if (cpu == cpu_dev->id)
1326 			continue;
1327 
1328 		cpu_np = of_cpu_device_node_get(cpu);
1329 		if (!cpu_np) {
1330 			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1331 				__func__, cpu);
1332 			ret = -ENOENT;
1333 			goto put_cpu_node;
1334 		}
1335 
1336 		/* Get OPP descriptor node */
1337 		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1338 		of_node_put(cpu_np);
1339 		if (!tmp_np) {
1340 			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1341 			ret = -ENOENT;
1342 			goto put_cpu_node;
1343 		}
1344 
1345 		/* CPUs are sharing opp node */
1346 		if (np == tmp_np)
1347 			cpumask_set_cpu(cpu, cpumask);
1348 
1349 		of_node_put(tmp_np);
1350 	}
1351 
1352 put_cpu_node:
1353 	of_node_put(np);
1354 	return ret;
1355 }
1356 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1357 
1358 /**
1359  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1360  * @np: Node that contains the "required-opps" property.
1361  * @index: Index of the phandle to parse.
1362  *
1363  * Returns the performance state of the OPP pointed out by the "required-opps"
1364  * property at @index in @np.
1365  *
1366  * Return: Zero or positive performance state on success, otherwise negative
1367  * value on errors.
1368  */
1369 int of_get_required_opp_performance_state(struct device_node *np, int index)
1370 {
1371 	struct dev_pm_opp *opp;
1372 	struct device_node *required_np;
1373 	struct opp_table *opp_table;
1374 	int pstate = -EINVAL;
1375 
1376 	required_np = of_parse_required_opp(np, index);
1377 	if (!required_np)
1378 		return -ENODEV;
1379 
1380 	opp_table = _find_table_of_opp_np(required_np);
1381 	if (IS_ERR(opp_table)) {
1382 		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1383 		       __func__, np, PTR_ERR(opp_table));
1384 		goto put_required_np;
1385 	}
1386 
1387 	opp = _find_opp_of_np(opp_table, required_np);
1388 	if (opp) {
1389 		pstate = opp->pstate;
1390 		dev_pm_opp_put(opp);
1391 	}
1392 
1393 	dev_pm_opp_put_opp_table(opp_table);
1394 
1395 put_required_np:
1396 	of_node_put(required_np);
1397 
1398 	return pstate;
1399 }
1400 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1401 
1402 /**
1403  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1404  * @opp:	opp for which DT node has to be returned for
1405  *
1406  * Return: DT node corresponding to the opp, else 0 on success.
1407  *
1408  * The caller needs to put the node with of_node_put() after using it.
1409  */
1410 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1411 {
1412 	if (IS_ERR_OR_NULL(opp)) {
1413 		pr_err("%s: Invalid parameters\n", __func__);
1414 		return NULL;
1415 	}
1416 
1417 	return of_node_get(opp->np);
1418 }
1419 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1420 
1421 /*
1422  * Callback function provided to the Energy Model framework upon registration.
1423  * It provides the power used by @dev at @kHz if it is the frequency of an
1424  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1425  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1426  * frequency and @uW to the associated power.
1427  *
1428  * Returns 0 on success or a proper -EINVAL value in case of error.
1429  */
1430 static int __maybe_unused
1431 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1432 {
1433 	struct dev_pm_opp *opp;
1434 	unsigned long opp_freq, opp_power;
1435 
1436 	/* Find the right frequency and related OPP */
1437 	opp_freq = *kHz * 1000;
1438 	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1439 	if (IS_ERR(opp))
1440 		return -EINVAL;
1441 
1442 	opp_power = dev_pm_opp_get_power(opp);
1443 	dev_pm_opp_put(opp);
1444 	if (!opp_power)
1445 		return -EINVAL;
1446 
1447 	*kHz = opp_freq / 1000;
1448 	*uW = opp_power;
1449 
1450 	return 0;
1451 }
1452 
1453 /*
1454  * Callback function provided to the Energy Model framework upon registration.
1455  * This computes the power estimated by @dev at @kHz if it is the frequency
1456  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1457  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1458  * frequency and @uW to the associated power. The power is estimated as
1459  * P = C * V^2 * f with C being the device's capacitance and V and f
1460  * respectively the voltage and frequency of the OPP.
1461  *
1462  * Returns -EINVAL if the power calculation failed because of missing
1463  * parameters, 0 otherwise.
1464  */
1465 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1466 				     unsigned long *kHz)
1467 {
1468 	struct dev_pm_opp *opp;
1469 	struct device_node *np;
1470 	unsigned long mV, Hz;
1471 	u32 cap;
1472 	u64 tmp;
1473 	int ret;
1474 
1475 	np = of_node_get(dev->of_node);
1476 	if (!np)
1477 		return -EINVAL;
1478 
1479 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1480 	of_node_put(np);
1481 	if (ret)
1482 		return -EINVAL;
1483 
1484 	Hz = *kHz * 1000;
1485 	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1486 	if (IS_ERR(opp))
1487 		return -EINVAL;
1488 
1489 	mV = dev_pm_opp_get_voltage(opp) / 1000;
1490 	dev_pm_opp_put(opp);
1491 	if (!mV)
1492 		return -EINVAL;
1493 
1494 	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1495 	/* Provide power in micro-Watts */
1496 	do_div(tmp, 1000000);
1497 
1498 	*uW = (unsigned long)tmp;
1499 	*kHz = Hz / 1000;
1500 
1501 	return 0;
1502 }
1503 
1504 static bool _of_has_opp_microwatt_property(struct device *dev)
1505 {
1506 	unsigned long power, freq = 0;
1507 	struct dev_pm_opp *opp;
1508 
1509 	/* Check if at least one OPP has needed property */
1510 	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1511 	if (IS_ERR(opp))
1512 		return false;
1513 
1514 	power = dev_pm_opp_get_power(opp);
1515 	dev_pm_opp_put(opp);
1516 	if (!power)
1517 		return false;
1518 
1519 	return true;
1520 }
1521 
1522 /**
1523  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1524  * @dev		: Device for which an Energy Model has to be registered
1525  * @cpus	: CPUs for which an Energy Model has to be registered. For
1526  *		other type of devices it should be set to NULL.
1527  *
1528  * This checks whether the "dynamic-power-coefficient" devicetree property has
1529  * been specified, and tries to register an Energy Model with it if it has.
1530  * Having this property means the voltages are known for OPPs and the EM
1531  * might be calculated.
1532  */
1533 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1534 {
1535 	struct em_data_callback em_cb;
1536 	struct device_node *np;
1537 	int ret, nr_opp;
1538 	u32 cap;
1539 
1540 	if (IS_ERR_OR_NULL(dev)) {
1541 		ret = -EINVAL;
1542 		goto failed;
1543 	}
1544 
1545 	nr_opp = dev_pm_opp_get_opp_count(dev);
1546 	if (nr_opp <= 0) {
1547 		ret = -EINVAL;
1548 		goto failed;
1549 	}
1550 
1551 	/* First, try to find more precised Energy Model in DT */
1552 	if (_of_has_opp_microwatt_property(dev)) {
1553 		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1554 		goto register_em;
1555 	}
1556 
1557 	np = of_node_get(dev->of_node);
1558 	if (!np) {
1559 		ret = -EINVAL;
1560 		goto failed;
1561 	}
1562 
1563 	/*
1564 	 * Register an EM only if the 'dynamic-power-coefficient' property is
1565 	 * set in devicetree. It is assumed the voltage values are known if that
1566 	 * property is set since it is useless otherwise. If voltages are not
1567 	 * known, just let the EM registration fail with an error to alert the
1568 	 * user about the inconsistent configuration.
1569 	 */
1570 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1571 	of_node_put(np);
1572 	if (ret || !cap) {
1573 		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1574 		ret = -EINVAL;
1575 		goto failed;
1576 	}
1577 
1578 	EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1579 
1580 register_em:
1581 	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1582 	if (ret)
1583 		goto failed;
1584 
1585 	return 0;
1586 
1587 failed:
1588 	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1589 	return ret;
1590 }
1591 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1592