xref: /openbmc/linux/drivers/opp/of.c (revision 384e338a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP OF helpers
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
21 
22 #include "opp.h"
23 
24 /*
25  * Returns opp descriptor node for a device node, caller must
26  * do of_node_put().
27  */
28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29 						     int index)
30 {
31 	/* "operating-points-v2" can be an array for power domain providers */
32 	return of_parse_phandle(np, "operating-points-v2", index);
33 }
34 
35 /* Returns opp descriptor node for a device, caller must do of_node_put() */
36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37 {
38 	return _opp_of_get_opp_desc_node(dev->of_node, 0);
39 }
40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41 
42 struct opp_table *_managed_opp(struct device *dev, int index)
43 {
44 	struct opp_table *opp_table, *managed_table = NULL;
45 	struct device_node *np;
46 
47 	np = _opp_of_get_opp_desc_node(dev->of_node, index);
48 	if (!np)
49 		return NULL;
50 
51 	list_for_each_entry(opp_table, &opp_tables, node) {
52 		if (opp_table->np == np) {
53 			/*
54 			 * Multiple devices can point to the same OPP table and
55 			 * so will have same node-pointer, np.
56 			 *
57 			 * But the OPPs will be considered as shared only if the
58 			 * OPP table contains a "opp-shared" property.
59 			 */
60 			if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61 				_get_opp_table_kref(opp_table);
62 				managed_table = opp_table;
63 			}
64 
65 			break;
66 		}
67 	}
68 
69 	of_node_put(np);
70 
71 	return managed_table;
72 }
73 
74 /* The caller must call dev_pm_opp_put() after the OPP is used */
75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76 					  struct device_node *opp_np)
77 {
78 	struct dev_pm_opp *opp;
79 
80 	mutex_lock(&opp_table->lock);
81 
82 	list_for_each_entry(opp, &opp_table->opp_list, node) {
83 		if (opp->np == opp_np) {
84 			dev_pm_opp_get(opp);
85 			mutex_unlock(&opp_table->lock);
86 			return opp;
87 		}
88 	}
89 
90 	mutex_unlock(&opp_table->lock);
91 
92 	return NULL;
93 }
94 
95 static struct device_node *of_parse_required_opp(struct device_node *np,
96 						 int index)
97 {
98 	return of_parse_phandle(np, "required-opps", index);
99 }
100 
101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103 {
104 	struct opp_table *opp_table;
105 	struct device_node *opp_table_np;
106 
107 	opp_table_np = of_get_parent(opp_np);
108 	if (!opp_table_np)
109 		goto err;
110 
111 	/* It is safe to put the node now as all we need now is its address */
112 	of_node_put(opp_table_np);
113 
114 	mutex_lock(&opp_table_lock);
115 	list_for_each_entry(opp_table, &opp_tables, node) {
116 		if (opp_table_np == opp_table->np) {
117 			_get_opp_table_kref(opp_table);
118 			mutex_unlock(&opp_table_lock);
119 			return opp_table;
120 		}
121 	}
122 	mutex_unlock(&opp_table_lock);
123 
124 err:
125 	return ERR_PTR(-ENODEV);
126 }
127 
128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
129 static void _opp_table_free_required_tables(struct opp_table *opp_table)
130 {
131 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132 	int i;
133 
134 	if (!required_opp_tables)
135 		return;
136 
137 	for (i = 0; i < opp_table->required_opp_count; i++) {
138 		if (IS_ERR_OR_NULL(required_opp_tables[i]))
139 			continue;
140 
141 		dev_pm_opp_put_opp_table(required_opp_tables[i]);
142 	}
143 
144 	kfree(required_opp_tables);
145 
146 	opp_table->required_opp_count = 0;
147 	opp_table->required_opp_tables = NULL;
148 	list_del(&opp_table->lazy);
149 }
150 
151 /*
152  * Populate all devices and opp tables which are part of "required-opps" list.
153  * Checking only the first OPP node should be enough.
154  */
155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156 					     struct device *dev,
157 					     struct device_node *opp_np)
158 {
159 	struct opp_table **required_opp_tables;
160 	struct device_node *required_np, *np;
161 	bool lazy = false;
162 	int count, i;
163 
164 	/* Traversing the first OPP node is all we need */
165 	np = of_get_next_available_child(opp_np, NULL);
166 	if (!np) {
167 		dev_warn(dev, "Empty OPP table\n");
168 
169 		return;
170 	}
171 
172 	count = of_count_phandle_with_args(np, "required-opps", NULL);
173 	if (count <= 0)
174 		goto put_np;
175 
176 	required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177 				      GFP_KERNEL);
178 	if (!required_opp_tables)
179 		goto put_np;
180 
181 	opp_table->required_opp_tables = required_opp_tables;
182 	opp_table->required_opp_count = count;
183 
184 	for (i = 0; i < count; i++) {
185 		required_np = of_parse_required_opp(np, i);
186 		if (!required_np)
187 			goto free_required_tables;
188 
189 		required_opp_tables[i] = _find_table_of_opp_np(required_np);
190 		of_node_put(required_np);
191 
192 		if (IS_ERR(required_opp_tables[i]))
193 			lazy = true;
194 	}
195 
196 	/* Let's do the linking later on */
197 	if (lazy)
198 		list_add(&opp_table->lazy, &lazy_opp_tables);
199 	else
200 		_update_set_required_opps(opp_table);
201 
202 	goto put_np;
203 
204 free_required_tables:
205 	_opp_table_free_required_tables(opp_table);
206 put_np:
207 	of_node_put(np);
208 }
209 
210 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
211 			int index)
212 {
213 	struct device_node *np, *opp_np;
214 	u32 val;
215 
216 	/*
217 	 * Only required for backward compatibility with v1 bindings, but isn't
218 	 * harmful for other cases. And so we do it unconditionally.
219 	 */
220 	np = of_node_get(dev->of_node);
221 	if (!np)
222 		return;
223 
224 	if (!of_property_read_u32(np, "clock-latency", &val))
225 		opp_table->clock_latency_ns_max = val;
226 	of_property_read_u32(np, "voltage-tolerance",
227 			     &opp_table->voltage_tolerance_v1);
228 
229 	if (of_property_present(np, "#power-domain-cells"))
230 		opp_table->is_genpd = true;
231 
232 	/* Get OPP table node */
233 	opp_np = _opp_of_get_opp_desc_node(np, index);
234 	of_node_put(np);
235 
236 	if (!opp_np)
237 		return;
238 
239 	if (of_property_read_bool(opp_np, "opp-shared"))
240 		opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
241 	else
242 		opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
243 
244 	opp_table->np = opp_np;
245 
246 	_opp_table_alloc_required_tables(opp_table, dev, opp_np);
247 }
248 
249 void _of_clear_opp_table(struct opp_table *opp_table)
250 {
251 	_opp_table_free_required_tables(opp_table);
252 	of_node_put(opp_table->np);
253 }
254 
255 /*
256  * Release all resources previously acquired with a call to
257  * _of_opp_alloc_required_opps().
258  */
259 static void _of_opp_free_required_opps(struct opp_table *opp_table,
260 				       struct dev_pm_opp *opp)
261 {
262 	struct dev_pm_opp **required_opps = opp->required_opps;
263 	int i;
264 
265 	if (!required_opps)
266 		return;
267 
268 	for (i = 0; i < opp_table->required_opp_count; i++) {
269 		if (!required_opps[i])
270 			continue;
271 
272 		/* Put the reference back */
273 		dev_pm_opp_put(required_opps[i]);
274 	}
275 
276 	opp->required_opps = NULL;
277 	kfree(required_opps);
278 }
279 
280 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
281 {
282 	_of_opp_free_required_opps(opp_table, opp);
283 	of_node_put(opp->np);
284 }
285 
286 /* Populate all required OPPs which are part of "required-opps" list */
287 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
288 				       struct dev_pm_opp *opp)
289 {
290 	struct dev_pm_opp **required_opps;
291 	struct opp_table *required_table;
292 	struct device_node *np;
293 	int i, ret, count = opp_table->required_opp_count;
294 
295 	if (!count)
296 		return 0;
297 
298 	required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
299 	if (!required_opps)
300 		return -ENOMEM;
301 
302 	opp->required_opps = required_opps;
303 
304 	for (i = 0; i < count; i++) {
305 		required_table = opp_table->required_opp_tables[i];
306 
307 		/* Required table not added yet, we will link later */
308 		if (IS_ERR_OR_NULL(required_table))
309 			continue;
310 
311 		np = of_parse_required_opp(opp->np, i);
312 		if (unlikely(!np)) {
313 			ret = -ENODEV;
314 			goto free_required_opps;
315 		}
316 
317 		required_opps[i] = _find_opp_of_np(required_table, np);
318 		of_node_put(np);
319 
320 		if (!required_opps[i]) {
321 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
322 			       __func__, opp->np, i);
323 			ret = -ENODEV;
324 			goto free_required_opps;
325 		}
326 	}
327 
328 	return 0;
329 
330 free_required_opps:
331 	_of_opp_free_required_opps(opp_table, opp);
332 
333 	return ret;
334 }
335 
336 /* Link required OPPs for an individual OPP */
337 static int lazy_link_required_opps(struct opp_table *opp_table,
338 				   struct opp_table *new_table, int index)
339 {
340 	struct device_node *required_np;
341 	struct dev_pm_opp *opp;
342 
343 	list_for_each_entry(opp, &opp_table->opp_list, node) {
344 		required_np = of_parse_required_opp(opp->np, index);
345 		if (unlikely(!required_np))
346 			return -ENODEV;
347 
348 		opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
349 		of_node_put(required_np);
350 
351 		if (!opp->required_opps[index]) {
352 			pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
353 			       __func__, opp->np, index);
354 			return -ENODEV;
355 		}
356 	}
357 
358 	return 0;
359 }
360 
361 /* Link required OPPs for all OPPs of the newly added OPP table */
362 static void lazy_link_required_opp_table(struct opp_table *new_table)
363 {
364 	struct opp_table *opp_table, *temp, **required_opp_tables;
365 	struct device_node *required_np, *opp_np, *required_table_np;
366 	struct dev_pm_opp *opp;
367 	int i, ret;
368 
369 	mutex_lock(&opp_table_lock);
370 
371 	list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
372 		bool lazy = false;
373 
374 		/* opp_np can't be invalid here */
375 		opp_np = of_get_next_available_child(opp_table->np, NULL);
376 
377 		for (i = 0; i < opp_table->required_opp_count; i++) {
378 			required_opp_tables = opp_table->required_opp_tables;
379 
380 			/* Required opp-table is already parsed */
381 			if (!IS_ERR(required_opp_tables[i]))
382 				continue;
383 
384 			/* required_np can't be invalid here */
385 			required_np = of_parse_required_opp(opp_np, i);
386 			required_table_np = of_get_parent(required_np);
387 
388 			of_node_put(required_table_np);
389 			of_node_put(required_np);
390 
391 			/*
392 			 * Newly added table isn't the required opp-table for
393 			 * opp_table.
394 			 */
395 			if (required_table_np != new_table->np) {
396 				lazy = true;
397 				continue;
398 			}
399 
400 			required_opp_tables[i] = new_table;
401 			_get_opp_table_kref(new_table);
402 
403 			/* Link OPPs now */
404 			ret = lazy_link_required_opps(opp_table, new_table, i);
405 			if (ret) {
406 				/* The OPPs will be marked unusable */
407 				lazy = false;
408 				break;
409 			}
410 		}
411 
412 		of_node_put(opp_np);
413 
414 		/* All required opp-tables found, remove from lazy list */
415 		if (!lazy) {
416 			_update_set_required_opps(opp_table);
417 			list_del_init(&opp_table->lazy);
418 
419 			list_for_each_entry(opp, &opp_table->opp_list, node)
420 				_required_opps_available(opp, opp_table->required_opp_count);
421 		}
422 	}
423 
424 	mutex_unlock(&opp_table_lock);
425 }
426 
427 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
428 {
429 	struct device_node *np, *opp_np;
430 	struct property *prop;
431 
432 	if (!opp_table) {
433 		np = of_node_get(dev->of_node);
434 		if (!np)
435 			return -ENODEV;
436 
437 		opp_np = _opp_of_get_opp_desc_node(np, 0);
438 		of_node_put(np);
439 	} else {
440 		opp_np = of_node_get(opp_table->np);
441 	}
442 
443 	/* Lets not fail in case we are parsing opp-v1 bindings */
444 	if (!opp_np)
445 		return 0;
446 
447 	/* Checking only first OPP is sufficient */
448 	np = of_get_next_available_child(opp_np, NULL);
449 	of_node_put(opp_np);
450 	if (!np) {
451 		dev_err(dev, "OPP table empty\n");
452 		return -EINVAL;
453 	}
454 
455 	prop = of_find_property(np, "opp-peak-kBps", NULL);
456 	of_node_put(np);
457 
458 	if (!prop || !prop->length)
459 		return 0;
460 
461 	return 1;
462 }
463 
464 int dev_pm_opp_of_find_icc_paths(struct device *dev,
465 				 struct opp_table *opp_table)
466 {
467 	struct device_node *np;
468 	int ret, i, count, num_paths;
469 	struct icc_path **paths;
470 
471 	ret = _bandwidth_supported(dev, opp_table);
472 	if (ret == -EINVAL)
473 		return 0; /* Empty OPP table is a valid corner-case, let's not fail */
474 	else if (ret <= 0)
475 		return ret;
476 
477 	ret = 0;
478 
479 	np = of_node_get(dev->of_node);
480 	if (!np)
481 		return 0;
482 
483 	count = of_count_phandle_with_args(np, "interconnects",
484 					   "#interconnect-cells");
485 	of_node_put(np);
486 	if (count < 0)
487 		return 0;
488 
489 	/* two phandles when #interconnect-cells = <1> */
490 	if (count % 2) {
491 		dev_err(dev, "%s: Invalid interconnects values\n", __func__);
492 		return -EINVAL;
493 	}
494 
495 	num_paths = count / 2;
496 	paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
497 	if (!paths)
498 		return -ENOMEM;
499 
500 	for (i = 0; i < num_paths; i++) {
501 		paths[i] = of_icc_get_by_index(dev, i);
502 		if (IS_ERR(paths[i])) {
503 			ret = PTR_ERR(paths[i]);
504 			if (ret != -EPROBE_DEFER) {
505 				dev_err(dev, "%s: Unable to get path%d: %d\n",
506 					__func__, i, ret);
507 			}
508 			goto err;
509 		}
510 	}
511 
512 	if (opp_table) {
513 		opp_table->paths = paths;
514 		opp_table->path_count = num_paths;
515 		return 0;
516 	}
517 
518 err:
519 	while (i--)
520 		icc_put(paths[i]);
521 
522 	kfree(paths);
523 
524 	return ret;
525 }
526 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
527 
528 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
529 			      struct device_node *np)
530 {
531 	unsigned int levels = opp_table->supported_hw_count;
532 	int count, versions, ret, i, j;
533 	u32 val;
534 
535 	if (!opp_table->supported_hw) {
536 		/*
537 		 * In the case that no supported_hw has been set by the
538 		 * platform but there is an opp-supported-hw value set for
539 		 * an OPP then the OPP should not be enabled as there is
540 		 * no way to see if the hardware supports it.
541 		 */
542 		if (of_property_present(np, "opp-supported-hw"))
543 			return false;
544 		else
545 			return true;
546 	}
547 
548 	count = of_property_count_u32_elems(np, "opp-supported-hw");
549 	if (count <= 0 || count % levels) {
550 		dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
551 			__func__, count);
552 		return false;
553 	}
554 
555 	versions = count / levels;
556 
557 	/* All levels in at least one of the versions should match */
558 	for (i = 0; i < versions; i++) {
559 		bool supported = true;
560 
561 		for (j = 0; j < levels; j++) {
562 			ret = of_property_read_u32_index(np, "opp-supported-hw",
563 							 i * levels + j, &val);
564 			if (ret) {
565 				dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
566 					 __func__, i * levels + j, ret);
567 				return false;
568 			}
569 
570 			/* Check if the level is supported */
571 			if (!(val & opp_table->supported_hw[j])) {
572 				supported = false;
573 				break;
574 			}
575 		}
576 
577 		if (supported)
578 			return true;
579 	}
580 
581 	return false;
582 }
583 
584 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
585 			      struct opp_table *opp_table,
586 			      const char *prop_type, bool *triplet)
587 {
588 	struct property *prop = NULL;
589 	char name[NAME_MAX];
590 	int count, ret;
591 	u32 *out;
592 
593 	/* Search for "opp-<prop_type>-<name>" */
594 	if (opp_table->prop_name) {
595 		snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
596 			 opp_table->prop_name);
597 		prop = of_find_property(opp->np, name, NULL);
598 	}
599 
600 	if (!prop) {
601 		/* Search for "opp-<prop_type>" */
602 		snprintf(name, sizeof(name), "opp-%s", prop_type);
603 		prop = of_find_property(opp->np, name, NULL);
604 		if (!prop)
605 			return NULL;
606 	}
607 
608 	count = of_property_count_u32_elems(opp->np, name);
609 	if (count < 0) {
610 		dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
611 			count);
612 		return ERR_PTR(count);
613 	}
614 
615 	/*
616 	 * Initialize regulator_count, if regulator information isn't provided
617 	 * by the platform. Now that one of the properties is available, fix the
618 	 * regulator_count to 1.
619 	 */
620 	if (unlikely(opp_table->regulator_count == -1))
621 		opp_table->regulator_count = 1;
622 
623 	if (count != opp_table->regulator_count &&
624 	    (!triplet || count != opp_table->regulator_count * 3)) {
625 		dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
626 			__func__, prop_type, count, opp_table->regulator_count);
627 		return ERR_PTR(-EINVAL);
628 	}
629 
630 	out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
631 	if (!out)
632 		return ERR_PTR(-EINVAL);
633 
634 	ret = of_property_read_u32_array(opp->np, name, out, count);
635 	if (ret) {
636 		dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
637 		kfree(out);
638 		return ERR_PTR(-EINVAL);
639 	}
640 
641 	if (triplet)
642 		*triplet = count != opp_table->regulator_count;
643 
644 	return out;
645 }
646 
647 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
648 				struct opp_table *opp_table, bool *triplet)
649 {
650 	u32 *microvolt;
651 
652 	microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
653 	if (IS_ERR(microvolt))
654 		return microvolt;
655 
656 	if (!microvolt) {
657 		/*
658 		 * Missing property isn't a problem, but an invalid
659 		 * entry is. This property isn't optional if regulator
660 		 * information is provided. Check only for the first OPP, as
661 		 * regulator_count may get initialized after that to a valid
662 		 * value.
663 		 */
664 		if (list_empty(&opp_table->opp_list) &&
665 		    opp_table->regulator_count > 0) {
666 			dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
667 				__func__);
668 			return ERR_PTR(-EINVAL);
669 		}
670 	}
671 
672 	return microvolt;
673 }
674 
675 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
676 			      struct opp_table *opp_table)
677 {
678 	u32 *microvolt, *microamp, *microwatt;
679 	int ret = 0, i, j;
680 	bool triplet;
681 
682 	microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
683 	if (IS_ERR(microvolt))
684 		return PTR_ERR(microvolt);
685 
686 	microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
687 	if (IS_ERR(microamp)) {
688 		ret = PTR_ERR(microamp);
689 		goto free_microvolt;
690 	}
691 
692 	microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
693 	if (IS_ERR(microwatt)) {
694 		ret = PTR_ERR(microwatt);
695 		goto free_microamp;
696 	}
697 
698 	/*
699 	 * Initialize regulator_count if it is uninitialized and no properties
700 	 * are found.
701 	 */
702 	if (unlikely(opp_table->regulator_count == -1)) {
703 		opp_table->regulator_count = 0;
704 		return 0;
705 	}
706 
707 	for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
708 		if (microvolt) {
709 			opp->supplies[i].u_volt = microvolt[j++];
710 
711 			if (triplet) {
712 				opp->supplies[i].u_volt_min = microvolt[j++];
713 				opp->supplies[i].u_volt_max = microvolt[j++];
714 			} else {
715 				opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
716 				opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
717 			}
718 		}
719 
720 		if (microamp)
721 			opp->supplies[i].u_amp = microamp[i];
722 
723 		if (microwatt)
724 			opp->supplies[i].u_watt = microwatt[i];
725 	}
726 
727 	kfree(microwatt);
728 free_microamp:
729 	kfree(microamp);
730 free_microvolt:
731 	kfree(microvolt);
732 
733 	return ret;
734 }
735 
736 /**
737  * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
738  *				  entries
739  * @dev:	device pointer used to lookup OPP table.
740  *
741  * Free OPPs created using static entries present in DT.
742  */
743 void dev_pm_opp_of_remove_table(struct device *dev)
744 {
745 	dev_pm_opp_remove_table(dev);
746 }
747 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
748 
749 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
750 		      struct device_node *np)
751 {
752 	struct property *prop;
753 	int i, count, ret;
754 	u64 *rates;
755 
756 	prop = of_find_property(np, "opp-hz", NULL);
757 	if (!prop)
758 		return -ENODEV;
759 
760 	count = prop->length / sizeof(u64);
761 	if (opp_table->clk_count != count) {
762 		pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
763 		       __func__, count, opp_table->clk_count);
764 		return -EINVAL;
765 	}
766 
767 	rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
768 	if (!rates)
769 		return -ENOMEM;
770 
771 	ret = of_property_read_u64_array(np, "opp-hz", rates, count);
772 	if (ret) {
773 		pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
774 	} else {
775 		/*
776 		 * Rate is defined as an unsigned long in clk API, and so
777 		 * casting explicitly to its type. Must be fixed once rate is 64
778 		 * bit guaranteed in clk API.
779 		 */
780 		for (i = 0; i < count; i++) {
781 			new_opp->rates[i] = (unsigned long)rates[i];
782 
783 			/* This will happen for frequencies > 4.29 GHz */
784 			WARN_ON(new_opp->rates[i] != rates[i]);
785 		}
786 	}
787 
788 	kfree(rates);
789 
790 	return ret;
791 }
792 
793 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
794 		    struct device_node *np, bool peak)
795 {
796 	const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
797 	struct property *prop;
798 	int i, count, ret;
799 	u32 *bw;
800 
801 	prop = of_find_property(np, name, NULL);
802 	if (!prop)
803 		return -ENODEV;
804 
805 	count = prop->length / sizeof(u32);
806 	if (opp_table->path_count != count) {
807 		pr_err("%s: Mismatch between %s and paths (%d %d)\n",
808 				__func__, name, count, opp_table->path_count);
809 		return -EINVAL;
810 	}
811 
812 	bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
813 	if (!bw)
814 		return -ENOMEM;
815 
816 	ret = of_property_read_u32_array(np, name, bw, count);
817 	if (ret) {
818 		pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
819 		goto out;
820 	}
821 
822 	for (i = 0; i < count; i++) {
823 		if (peak)
824 			new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
825 		else
826 			new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
827 	}
828 
829 out:
830 	kfree(bw);
831 	return ret;
832 }
833 
834 static int _read_opp_key(struct dev_pm_opp *new_opp,
835 			 struct opp_table *opp_table, struct device_node *np)
836 {
837 	bool found = false;
838 	int ret;
839 
840 	ret = _read_rate(new_opp, opp_table, np);
841 	if (!ret)
842 		found = true;
843 	else if (ret != -ENODEV)
844 		return ret;
845 
846 	/*
847 	 * Bandwidth consists of peak and average (optional) values:
848 	 * opp-peak-kBps = <path1_value path2_value>;
849 	 * opp-avg-kBps = <path1_value path2_value>;
850 	 */
851 	ret = _read_bw(new_opp, opp_table, np, true);
852 	if (!ret) {
853 		found = true;
854 		ret = _read_bw(new_opp, opp_table, np, false);
855 	}
856 
857 	/* The properties were found but we failed to parse them */
858 	if (ret && ret != -ENODEV)
859 		return ret;
860 
861 	if (!of_property_read_u32(np, "opp-level", &new_opp->level))
862 		found = true;
863 
864 	if (found)
865 		return 0;
866 
867 	return ret;
868 }
869 
870 /**
871  * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
872  * @opp_table:	OPP table
873  * @dev:	device for which we do this operation
874  * @np:		device node
875  *
876  * This function adds an opp definition to the opp table and returns status. The
877  * opp can be controlled using dev_pm_opp_enable/disable functions and may be
878  * removed by dev_pm_opp_remove.
879  *
880  * Return:
881  * Valid OPP pointer:
882  *		On success
883  * NULL:
884  *		Duplicate OPPs (both freq and volt are same) and opp->available
885  *		OR if the OPP is not supported by hardware.
886  * ERR_PTR(-EEXIST):
887  *		Freq are same and volt are different OR
888  *		Duplicate OPPs (both freq and volt are same) and !opp->available
889  * ERR_PTR(-ENOMEM):
890  *		Memory allocation failure
891  * ERR_PTR(-EINVAL):
892  *		Failed parsing the OPP node
893  */
894 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
895 		struct device *dev, struct device_node *np)
896 {
897 	struct dev_pm_opp *new_opp;
898 	u32 val;
899 	int ret;
900 
901 	new_opp = _opp_allocate(opp_table);
902 	if (!new_opp)
903 		return ERR_PTR(-ENOMEM);
904 
905 	ret = _read_opp_key(new_opp, opp_table, np);
906 	if (ret < 0) {
907 		dev_err(dev, "%s: opp key field not found\n", __func__);
908 		goto free_opp;
909 	}
910 
911 	/* Check if the OPP supports hardware's hierarchy of versions or not */
912 	if (!_opp_is_supported(dev, opp_table, np)) {
913 		dev_dbg(dev, "OPP not supported by hardware: %s\n",
914 			of_node_full_name(np));
915 		goto free_opp;
916 	}
917 
918 	new_opp->turbo = of_property_read_bool(np, "turbo-mode");
919 
920 	new_opp->np = of_node_get(np);
921 	new_opp->dynamic = false;
922 	new_opp->available = true;
923 
924 	ret = _of_opp_alloc_required_opps(opp_table, new_opp);
925 	if (ret)
926 		goto free_opp;
927 
928 	if (!of_property_read_u32(np, "clock-latency-ns", &val))
929 		new_opp->clock_latency_ns = val;
930 
931 	ret = opp_parse_supplies(new_opp, dev, opp_table);
932 	if (ret)
933 		goto free_required_opps;
934 
935 	if (opp_table->is_genpd)
936 		new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
937 
938 	ret = _opp_add(dev, new_opp, opp_table);
939 	if (ret) {
940 		/* Don't return error for duplicate OPPs */
941 		if (ret == -EBUSY)
942 			ret = 0;
943 		goto free_required_opps;
944 	}
945 
946 	/* OPP to select on device suspend */
947 	if (of_property_read_bool(np, "opp-suspend")) {
948 		if (opp_table->suspend_opp) {
949 			/* Pick the OPP with higher rate/bw/level as suspend OPP */
950 			if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
951 				opp_table->suspend_opp->suspend = false;
952 				new_opp->suspend = true;
953 				opp_table->suspend_opp = new_opp;
954 			}
955 		} else {
956 			new_opp->suspend = true;
957 			opp_table->suspend_opp = new_opp;
958 		}
959 	}
960 
961 	if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
962 		opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
963 
964 	pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
965 		 __func__, new_opp->turbo, new_opp->rates[0],
966 		 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
967 		 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
968 		 new_opp->level);
969 
970 	/*
971 	 * Notify the changes in the availability of the operable
972 	 * frequency/voltage list.
973 	 */
974 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
975 	return new_opp;
976 
977 free_required_opps:
978 	_of_opp_free_required_opps(opp_table, new_opp);
979 free_opp:
980 	_opp_free(new_opp);
981 
982 	return ret ? ERR_PTR(ret) : NULL;
983 }
984 
985 /* Initializes OPP tables based on new bindings */
986 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
987 {
988 	struct device_node *np;
989 	int ret, count = 0;
990 	struct dev_pm_opp *opp;
991 
992 	/* OPP table is already initialized for the device */
993 	mutex_lock(&opp_table->lock);
994 	if (opp_table->parsed_static_opps) {
995 		opp_table->parsed_static_opps++;
996 		mutex_unlock(&opp_table->lock);
997 		return 0;
998 	}
999 
1000 	opp_table->parsed_static_opps = 1;
1001 	mutex_unlock(&opp_table->lock);
1002 
1003 	/* We have opp-table node now, iterate over it and add OPPs */
1004 	for_each_available_child_of_node(opp_table->np, np) {
1005 		opp = _opp_add_static_v2(opp_table, dev, np);
1006 		if (IS_ERR(opp)) {
1007 			ret = PTR_ERR(opp);
1008 			dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1009 				ret);
1010 			of_node_put(np);
1011 			goto remove_static_opp;
1012 		} else if (opp) {
1013 			count++;
1014 		}
1015 	}
1016 
1017 	/* There should be one or more OPPs defined */
1018 	if (!count) {
1019 		dev_err(dev, "%s: no supported OPPs", __func__);
1020 		ret = -ENOENT;
1021 		goto remove_static_opp;
1022 	}
1023 
1024 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1025 		/* Any non-zero performance state would enable the feature */
1026 		if (opp->pstate) {
1027 			opp_table->genpd_performance_state = true;
1028 			break;
1029 		}
1030 	}
1031 
1032 	lazy_link_required_opp_table(opp_table);
1033 
1034 	return 0;
1035 
1036 remove_static_opp:
1037 	_opp_remove_all_static(opp_table);
1038 
1039 	return ret;
1040 }
1041 
1042 /* Initializes OPP tables based on old-deprecated bindings */
1043 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1044 {
1045 	const struct property *prop;
1046 	const __be32 *val;
1047 	int nr, ret = 0;
1048 
1049 	mutex_lock(&opp_table->lock);
1050 	if (opp_table->parsed_static_opps) {
1051 		opp_table->parsed_static_opps++;
1052 		mutex_unlock(&opp_table->lock);
1053 		return 0;
1054 	}
1055 
1056 	opp_table->parsed_static_opps = 1;
1057 	mutex_unlock(&opp_table->lock);
1058 
1059 	prop = of_find_property(dev->of_node, "operating-points", NULL);
1060 	if (!prop) {
1061 		ret = -ENODEV;
1062 		goto remove_static_opp;
1063 	}
1064 	if (!prop->value) {
1065 		ret = -ENODATA;
1066 		goto remove_static_opp;
1067 	}
1068 
1069 	/*
1070 	 * Each OPP is a set of tuples consisting of frequency and
1071 	 * voltage like <freq-kHz vol-uV>.
1072 	 */
1073 	nr = prop->length / sizeof(u32);
1074 	if (nr % 2) {
1075 		dev_err(dev, "%s: Invalid OPP table\n", __func__);
1076 		ret = -EINVAL;
1077 		goto remove_static_opp;
1078 	}
1079 
1080 	val = prop->value;
1081 	while (nr) {
1082 		unsigned long freq = be32_to_cpup(val++) * 1000;
1083 		unsigned long volt = be32_to_cpup(val++);
1084 
1085 		ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1086 		if (ret) {
1087 			dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1088 				__func__, freq, ret);
1089 			goto remove_static_opp;
1090 		}
1091 		nr -= 2;
1092 	}
1093 
1094 	return 0;
1095 
1096 remove_static_opp:
1097 	_opp_remove_all_static(opp_table);
1098 
1099 	return ret;
1100 }
1101 
1102 static int _of_add_table_indexed(struct device *dev, int index)
1103 {
1104 	struct opp_table *opp_table;
1105 	int ret, count;
1106 
1107 	if (index) {
1108 		/*
1109 		 * If only one phandle is present, then the same OPP table
1110 		 * applies for all index requests.
1111 		 */
1112 		count = of_count_phandle_with_args(dev->of_node,
1113 						   "operating-points-v2", NULL);
1114 		if (count == 1)
1115 			index = 0;
1116 	}
1117 
1118 	opp_table = _add_opp_table_indexed(dev, index, true);
1119 	if (IS_ERR(opp_table))
1120 		return PTR_ERR(opp_table);
1121 
1122 	/*
1123 	 * OPPs have two version of bindings now. Also try the old (v1)
1124 	 * bindings for backward compatibility with older dtbs.
1125 	 */
1126 	if (opp_table->np)
1127 		ret = _of_add_opp_table_v2(dev, opp_table);
1128 	else
1129 		ret = _of_add_opp_table_v1(dev, opp_table);
1130 
1131 	if (ret)
1132 		dev_pm_opp_put_opp_table(opp_table);
1133 
1134 	return ret;
1135 }
1136 
1137 static void devm_pm_opp_of_table_release(void *data)
1138 {
1139 	dev_pm_opp_of_remove_table(data);
1140 }
1141 
1142 static int _devm_of_add_table_indexed(struct device *dev, int index)
1143 {
1144 	int ret;
1145 
1146 	ret = _of_add_table_indexed(dev, index);
1147 	if (ret)
1148 		return ret;
1149 
1150 	return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1151 }
1152 
1153 /**
1154  * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1155  * @dev:	device pointer used to lookup OPP table.
1156  *
1157  * Register the initial OPP table with the OPP library for given device.
1158  *
1159  * The opp_table structure will be freed after the device is destroyed.
1160  *
1161  * Return:
1162  * 0		On success OR
1163  *		Duplicate OPPs (both freq and volt are same) and opp->available
1164  * -EEXIST	Freq are same and volt are different OR
1165  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1166  * -ENOMEM	Memory allocation failure
1167  * -ENODEV	when 'operating-points' property is not found or is invalid data
1168  *		in device node.
1169  * -ENODATA	when empty 'operating-points' property is found
1170  * -EINVAL	when invalid entries are found in opp-v2 table
1171  */
1172 int devm_pm_opp_of_add_table(struct device *dev)
1173 {
1174 	return _devm_of_add_table_indexed(dev, 0);
1175 }
1176 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1177 
1178 /**
1179  * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1180  * @dev:	device pointer used to lookup OPP table.
1181  *
1182  * Register the initial OPP table with the OPP library for given device.
1183  *
1184  * Return:
1185  * 0		On success OR
1186  *		Duplicate OPPs (both freq and volt are same) and opp->available
1187  * -EEXIST	Freq are same and volt are different OR
1188  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1189  * -ENOMEM	Memory allocation failure
1190  * -ENODEV	when 'operating-points' property is not found or is invalid data
1191  *		in device node.
1192  * -ENODATA	when empty 'operating-points' property is found
1193  * -EINVAL	when invalid entries are found in opp-v2 table
1194  */
1195 int dev_pm_opp_of_add_table(struct device *dev)
1196 {
1197 	return _of_add_table_indexed(dev, 0);
1198 }
1199 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1200 
1201 /**
1202  * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1203  * @dev:	device pointer used to lookup OPP table.
1204  * @index:	Index number.
1205  *
1206  * Register the initial OPP table with the OPP library for given device only
1207  * using the "operating-points-v2" property.
1208  *
1209  * Return: Refer to dev_pm_opp_of_add_table() for return values.
1210  */
1211 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1212 {
1213 	return _of_add_table_indexed(dev, index);
1214 }
1215 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1216 
1217 /**
1218  * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1219  * @dev:	device pointer used to lookup OPP table.
1220  * @index:	Index number.
1221  *
1222  * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1223  */
1224 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1225 {
1226 	return _devm_of_add_table_indexed(dev, index);
1227 }
1228 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1229 
1230 /* CPU device specific helpers */
1231 
1232 /**
1233  * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1234  * @cpumask:	cpumask for which OPP table needs to be removed
1235  *
1236  * This removes the OPP tables for CPUs present in the @cpumask.
1237  * This should be used only to remove static entries created from DT.
1238  */
1239 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1240 {
1241 	_dev_pm_opp_cpumask_remove_table(cpumask, -1);
1242 }
1243 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1244 
1245 /**
1246  * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1247  * @cpumask:	cpumask for which OPP table needs to be added.
1248  *
1249  * This adds the OPP tables for CPUs present in the @cpumask.
1250  */
1251 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1252 {
1253 	struct device *cpu_dev;
1254 	int cpu, ret;
1255 
1256 	if (WARN_ON(cpumask_empty(cpumask)))
1257 		return -ENODEV;
1258 
1259 	for_each_cpu(cpu, cpumask) {
1260 		cpu_dev = get_cpu_device(cpu);
1261 		if (!cpu_dev) {
1262 			pr_err("%s: failed to get cpu%d device\n", __func__,
1263 			       cpu);
1264 			ret = -ENODEV;
1265 			goto remove_table;
1266 		}
1267 
1268 		ret = dev_pm_opp_of_add_table(cpu_dev);
1269 		if (ret) {
1270 			/*
1271 			 * OPP may get registered dynamically, don't print error
1272 			 * message here.
1273 			 */
1274 			pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1275 				 __func__, cpu, ret);
1276 
1277 			goto remove_table;
1278 		}
1279 	}
1280 
1281 	return 0;
1282 
1283 remove_table:
1284 	/* Free all other OPPs */
1285 	_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1286 
1287 	return ret;
1288 }
1289 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1290 
1291 /*
1292  * Works only for OPP v2 bindings.
1293  *
1294  * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1295  */
1296 /**
1297  * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1298  *				      @cpu_dev using operating-points-v2
1299  *				      bindings.
1300  *
1301  * @cpu_dev:	CPU device for which we do this operation
1302  * @cpumask:	cpumask to update with information of sharing CPUs
1303  *
1304  * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1305  *
1306  * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1307  */
1308 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1309 				   struct cpumask *cpumask)
1310 {
1311 	struct device_node *np, *tmp_np, *cpu_np;
1312 	int cpu, ret = 0;
1313 
1314 	/* Get OPP descriptor node */
1315 	np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1316 	if (!np) {
1317 		dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1318 		return -ENOENT;
1319 	}
1320 
1321 	cpumask_set_cpu(cpu_dev->id, cpumask);
1322 
1323 	/* OPPs are shared ? */
1324 	if (!of_property_read_bool(np, "opp-shared"))
1325 		goto put_cpu_node;
1326 
1327 	for_each_possible_cpu(cpu) {
1328 		if (cpu == cpu_dev->id)
1329 			continue;
1330 
1331 		cpu_np = of_cpu_device_node_get(cpu);
1332 		if (!cpu_np) {
1333 			dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1334 				__func__, cpu);
1335 			ret = -ENOENT;
1336 			goto put_cpu_node;
1337 		}
1338 
1339 		/* Get OPP descriptor node */
1340 		tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1341 		of_node_put(cpu_np);
1342 		if (!tmp_np) {
1343 			pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1344 			ret = -ENOENT;
1345 			goto put_cpu_node;
1346 		}
1347 
1348 		/* CPUs are sharing opp node */
1349 		if (np == tmp_np)
1350 			cpumask_set_cpu(cpu, cpumask);
1351 
1352 		of_node_put(tmp_np);
1353 	}
1354 
1355 put_cpu_node:
1356 	of_node_put(np);
1357 	return ret;
1358 }
1359 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1360 
1361 /**
1362  * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1363  * @np: Node that contains the "required-opps" property.
1364  * @index: Index of the phandle to parse.
1365  *
1366  * Returns the performance state of the OPP pointed out by the "required-opps"
1367  * property at @index in @np.
1368  *
1369  * Return: Zero or positive performance state on success, otherwise negative
1370  * value on errors.
1371  */
1372 int of_get_required_opp_performance_state(struct device_node *np, int index)
1373 {
1374 	struct dev_pm_opp *opp;
1375 	struct device_node *required_np;
1376 	struct opp_table *opp_table;
1377 	int pstate = -EINVAL;
1378 
1379 	required_np = of_parse_required_opp(np, index);
1380 	if (!required_np)
1381 		return -ENODEV;
1382 
1383 	opp_table = _find_table_of_opp_np(required_np);
1384 	if (IS_ERR(opp_table)) {
1385 		pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1386 		       __func__, np, PTR_ERR(opp_table));
1387 		goto put_required_np;
1388 	}
1389 
1390 	opp = _find_opp_of_np(opp_table, required_np);
1391 	if (opp) {
1392 		pstate = opp->pstate;
1393 		dev_pm_opp_put(opp);
1394 	}
1395 
1396 	dev_pm_opp_put_opp_table(opp_table);
1397 
1398 put_required_np:
1399 	of_node_put(required_np);
1400 
1401 	return pstate;
1402 }
1403 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1404 
1405 /**
1406  * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1407  * @opp:	opp for which DT node has to be returned for
1408  *
1409  * Return: DT node corresponding to the opp, else 0 on success.
1410  *
1411  * The caller needs to put the node with of_node_put() after using it.
1412  */
1413 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1414 {
1415 	if (IS_ERR_OR_NULL(opp)) {
1416 		pr_err("%s: Invalid parameters\n", __func__);
1417 		return NULL;
1418 	}
1419 
1420 	return of_node_get(opp->np);
1421 }
1422 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1423 
1424 /*
1425  * Callback function provided to the Energy Model framework upon registration.
1426  * It provides the power used by @dev at @kHz if it is the frequency of an
1427  * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1428  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1429  * frequency and @uW to the associated power.
1430  *
1431  * Returns 0 on success or a proper -EINVAL value in case of error.
1432  */
1433 static int __maybe_unused
1434 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1435 {
1436 	struct dev_pm_opp *opp;
1437 	unsigned long opp_freq, opp_power;
1438 
1439 	/* Find the right frequency and related OPP */
1440 	opp_freq = *kHz * 1000;
1441 	opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1442 	if (IS_ERR(opp))
1443 		return -EINVAL;
1444 
1445 	opp_power = dev_pm_opp_get_power(opp);
1446 	dev_pm_opp_put(opp);
1447 	if (!opp_power)
1448 		return -EINVAL;
1449 
1450 	*kHz = opp_freq / 1000;
1451 	*uW = opp_power;
1452 
1453 	return 0;
1454 }
1455 
1456 /*
1457  * Callback function provided to the Energy Model framework upon registration.
1458  * This computes the power estimated by @dev at @kHz if it is the frequency
1459  * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1460  * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1461  * frequency and @uW to the associated power. The power is estimated as
1462  * P = C * V^2 * f with C being the device's capacitance and V and f
1463  * respectively the voltage and frequency of the OPP.
1464  *
1465  * Returns -EINVAL if the power calculation failed because of missing
1466  * parameters, 0 otherwise.
1467  */
1468 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1469 				     unsigned long *kHz)
1470 {
1471 	struct dev_pm_opp *opp;
1472 	struct device_node *np;
1473 	unsigned long mV, Hz;
1474 	u32 cap;
1475 	u64 tmp;
1476 	int ret;
1477 
1478 	np = of_node_get(dev->of_node);
1479 	if (!np)
1480 		return -EINVAL;
1481 
1482 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1483 	of_node_put(np);
1484 	if (ret)
1485 		return -EINVAL;
1486 
1487 	Hz = *kHz * 1000;
1488 	opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1489 	if (IS_ERR(opp))
1490 		return -EINVAL;
1491 
1492 	mV = dev_pm_opp_get_voltage(opp) / 1000;
1493 	dev_pm_opp_put(opp);
1494 	if (!mV)
1495 		return -EINVAL;
1496 
1497 	tmp = (u64)cap * mV * mV * (Hz / 1000000);
1498 	/* Provide power in micro-Watts */
1499 	do_div(tmp, 1000000);
1500 
1501 	*uW = (unsigned long)tmp;
1502 	*kHz = Hz / 1000;
1503 
1504 	return 0;
1505 }
1506 
1507 static bool _of_has_opp_microwatt_property(struct device *dev)
1508 {
1509 	unsigned long power, freq = 0;
1510 	struct dev_pm_opp *opp;
1511 
1512 	/* Check if at least one OPP has needed property */
1513 	opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1514 	if (IS_ERR(opp))
1515 		return false;
1516 
1517 	power = dev_pm_opp_get_power(opp);
1518 	dev_pm_opp_put(opp);
1519 	if (!power)
1520 		return false;
1521 
1522 	return true;
1523 }
1524 
1525 /**
1526  * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1527  * @dev		: Device for which an Energy Model has to be registered
1528  * @cpus	: CPUs for which an Energy Model has to be registered. For
1529  *		other type of devices it should be set to NULL.
1530  *
1531  * This checks whether the "dynamic-power-coefficient" devicetree property has
1532  * been specified, and tries to register an Energy Model with it if it has.
1533  * Having this property means the voltages are known for OPPs and the EM
1534  * might be calculated.
1535  */
1536 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1537 {
1538 	struct em_data_callback em_cb;
1539 	struct device_node *np;
1540 	int ret, nr_opp;
1541 	u32 cap;
1542 
1543 	if (IS_ERR_OR_NULL(dev)) {
1544 		ret = -EINVAL;
1545 		goto failed;
1546 	}
1547 
1548 	nr_opp = dev_pm_opp_get_opp_count(dev);
1549 	if (nr_opp <= 0) {
1550 		ret = -EINVAL;
1551 		goto failed;
1552 	}
1553 
1554 	/* First, try to find more precised Energy Model in DT */
1555 	if (_of_has_opp_microwatt_property(dev)) {
1556 		EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1557 		goto register_em;
1558 	}
1559 
1560 	np = of_node_get(dev->of_node);
1561 	if (!np) {
1562 		ret = -EINVAL;
1563 		goto failed;
1564 	}
1565 
1566 	/*
1567 	 * Register an EM only if the 'dynamic-power-coefficient' property is
1568 	 * set in devicetree. It is assumed the voltage values are known if that
1569 	 * property is set since it is useless otherwise. If voltages are not
1570 	 * known, just let the EM registration fail with an error to alert the
1571 	 * user about the inconsistent configuration.
1572 	 */
1573 	ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1574 	of_node_put(np);
1575 	if (ret || !cap) {
1576 		dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1577 		ret = -EINVAL;
1578 		goto failed;
1579 	}
1580 
1581 	EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1582 
1583 register_em:
1584 	ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1585 	if (ret)
1586 		goto failed;
1587 
1588 	return 0;
1589 
1590 failed:
1591 	dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1592 	return ret;
1593 }
1594 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1595