1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP OF helpers 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/cpu.h> 14 #include <linux/errno.h> 15 #include <linux/device.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_domain.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <linux/energy_model.h> 21 22 #include "opp.h" 23 24 /* 25 * Returns opp descriptor node for a device node, caller must 26 * do of_node_put(). 27 */ 28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, 29 int index) 30 { 31 /* "operating-points-v2" can be an array for power domain providers */ 32 return of_parse_phandle(np, "operating-points-v2", index); 33 } 34 35 /* Returns opp descriptor node for a device, caller must do of_node_put() */ 36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) 37 { 38 return _opp_of_get_opp_desc_node(dev->of_node, 0); 39 } 40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); 41 42 struct opp_table *_managed_opp(struct device *dev, int index) 43 { 44 struct opp_table *opp_table, *managed_table = NULL; 45 struct device_node *np; 46 47 np = _opp_of_get_opp_desc_node(dev->of_node, index); 48 if (!np) 49 return NULL; 50 51 list_for_each_entry(opp_table, &opp_tables, node) { 52 if (opp_table->np == np) { 53 /* 54 * Multiple devices can point to the same OPP table and 55 * so will have same node-pointer, np. 56 * 57 * But the OPPs will be considered as shared only if the 58 * OPP table contains a "opp-shared" property. 59 */ 60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { 61 _get_opp_table_kref(opp_table); 62 managed_table = opp_table; 63 } 64 65 break; 66 } 67 } 68 69 of_node_put(np); 70 71 return managed_table; 72 } 73 74 /* The caller must call dev_pm_opp_put() after the OPP is used */ 75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, 76 struct device_node *opp_np) 77 { 78 struct dev_pm_opp *opp; 79 80 mutex_lock(&opp_table->lock); 81 82 list_for_each_entry(opp, &opp_table->opp_list, node) { 83 if (opp->np == opp_np) { 84 dev_pm_opp_get(opp); 85 mutex_unlock(&opp_table->lock); 86 return opp; 87 } 88 } 89 90 mutex_unlock(&opp_table->lock); 91 92 return NULL; 93 } 94 95 static struct device_node *of_parse_required_opp(struct device_node *np, 96 int index) 97 { 98 return of_parse_phandle(np, "required-opps", index); 99 } 100 101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ 102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) 103 { 104 struct opp_table *opp_table; 105 struct device_node *opp_table_np; 106 107 opp_table_np = of_get_parent(opp_np); 108 if (!opp_table_np) 109 goto err; 110 111 /* It is safe to put the node now as all we need now is its address */ 112 of_node_put(opp_table_np); 113 114 mutex_lock(&opp_table_lock); 115 list_for_each_entry(opp_table, &opp_tables, node) { 116 if (opp_table_np == opp_table->np) { 117 _get_opp_table_kref(opp_table); 118 mutex_unlock(&opp_table_lock); 119 return opp_table; 120 } 121 } 122 mutex_unlock(&opp_table_lock); 123 124 err: 125 return ERR_PTR(-ENODEV); 126 } 127 128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */ 129 static void _opp_table_free_required_tables(struct opp_table *opp_table) 130 { 131 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 132 int i; 133 134 if (!required_opp_tables) 135 return; 136 137 for (i = 0; i < opp_table->required_opp_count; i++) { 138 if (IS_ERR_OR_NULL(required_opp_tables[i])) 139 continue; 140 141 dev_pm_opp_put_opp_table(required_opp_tables[i]); 142 } 143 144 kfree(required_opp_tables); 145 146 opp_table->required_opp_count = 0; 147 opp_table->required_opp_tables = NULL; 148 list_del(&opp_table->lazy); 149 } 150 151 /* 152 * Populate all devices and opp tables which are part of "required-opps" list. 153 * Checking only the first OPP node should be enough. 154 */ 155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table, 156 struct device *dev, 157 struct device_node *opp_np) 158 { 159 struct opp_table **required_opp_tables; 160 struct device_node *required_np, *np; 161 bool lazy = false; 162 int count, i; 163 164 /* Traversing the first OPP node is all we need */ 165 np = of_get_next_available_child(opp_np, NULL); 166 if (!np) { 167 dev_warn(dev, "Empty OPP table\n"); 168 169 return; 170 } 171 172 count = of_count_phandle_with_args(np, "required-opps", NULL); 173 if (count <= 0) 174 goto put_np; 175 176 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables), 177 GFP_KERNEL); 178 if (!required_opp_tables) 179 goto put_np; 180 181 opp_table->required_opp_tables = required_opp_tables; 182 opp_table->required_opp_count = count; 183 184 for (i = 0; i < count; i++) { 185 required_np = of_parse_required_opp(np, i); 186 if (!required_np) 187 goto free_required_tables; 188 189 required_opp_tables[i] = _find_table_of_opp_np(required_np); 190 of_node_put(required_np); 191 192 if (IS_ERR(required_opp_tables[i])) 193 lazy = true; 194 } 195 196 /* Let's do the linking later on */ 197 if (lazy) 198 list_add(&opp_table->lazy, &lazy_opp_tables); 199 200 goto put_np; 201 202 free_required_tables: 203 _opp_table_free_required_tables(opp_table); 204 put_np: 205 of_node_put(np); 206 } 207 208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, 209 int index) 210 { 211 struct device_node *np, *opp_np; 212 u32 val; 213 214 /* 215 * Only required for backward compatibility with v1 bindings, but isn't 216 * harmful for other cases. And so we do it unconditionally. 217 */ 218 np = of_node_get(dev->of_node); 219 if (!np) 220 return; 221 222 if (!of_property_read_u32(np, "clock-latency", &val)) 223 opp_table->clock_latency_ns_max = val; 224 of_property_read_u32(np, "voltage-tolerance", 225 &opp_table->voltage_tolerance_v1); 226 227 if (of_find_property(np, "#power-domain-cells", NULL)) 228 opp_table->is_genpd = true; 229 230 /* Get OPP table node */ 231 opp_np = _opp_of_get_opp_desc_node(np, index); 232 of_node_put(np); 233 234 if (!opp_np) 235 return; 236 237 if (of_property_read_bool(opp_np, "opp-shared")) 238 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; 239 else 240 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; 241 242 opp_table->np = opp_np; 243 244 _opp_table_alloc_required_tables(opp_table, dev, opp_np); 245 of_node_put(opp_np); 246 } 247 248 void _of_clear_opp_table(struct opp_table *opp_table) 249 { 250 _opp_table_free_required_tables(opp_table); 251 } 252 253 /* 254 * Release all resources previously acquired with a call to 255 * _of_opp_alloc_required_opps(). 256 */ 257 void _of_opp_free_required_opps(struct opp_table *opp_table, 258 struct dev_pm_opp *opp) 259 { 260 struct dev_pm_opp **required_opps = opp->required_opps; 261 int i; 262 263 if (!required_opps) 264 return; 265 266 for (i = 0; i < opp_table->required_opp_count; i++) { 267 if (!required_opps[i]) 268 continue; 269 270 /* Put the reference back */ 271 dev_pm_opp_put(required_opps[i]); 272 } 273 274 opp->required_opps = NULL; 275 kfree(required_opps); 276 } 277 278 /* Populate all required OPPs which are part of "required-opps" list */ 279 static int _of_opp_alloc_required_opps(struct opp_table *opp_table, 280 struct dev_pm_opp *opp) 281 { 282 struct dev_pm_opp **required_opps; 283 struct opp_table *required_table; 284 struct device_node *np; 285 int i, ret, count = opp_table->required_opp_count; 286 287 if (!count) 288 return 0; 289 290 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL); 291 if (!required_opps) 292 return -ENOMEM; 293 294 opp->required_opps = required_opps; 295 296 for (i = 0; i < count; i++) { 297 required_table = opp_table->required_opp_tables[i]; 298 299 /* Required table not added yet, we will link later */ 300 if (IS_ERR_OR_NULL(required_table)) 301 continue; 302 303 np = of_parse_required_opp(opp->np, i); 304 if (unlikely(!np)) { 305 ret = -ENODEV; 306 goto free_required_opps; 307 } 308 309 required_opps[i] = _find_opp_of_np(required_table, np); 310 of_node_put(np); 311 312 if (!required_opps[i]) { 313 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 314 __func__, opp->np, i); 315 ret = -ENODEV; 316 goto free_required_opps; 317 } 318 } 319 320 return 0; 321 322 free_required_opps: 323 _of_opp_free_required_opps(opp_table, opp); 324 325 return ret; 326 } 327 328 /* Link required OPPs for an individual OPP */ 329 static int lazy_link_required_opps(struct opp_table *opp_table, 330 struct opp_table *new_table, int index) 331 { 332 struct device_node *required_np; 333 struct dev_pm_opp *opp; 334 335 list_for_each_entry(opp, &opp_table->opp_list, node) { 336 required_np = of_parse_required_opp(opp->np, index); 337 if (unlikely(!required_np)) 338 return -ENODEV; 339 340 opp->required_opps[index] = _find_opp_of_np(new_table, required_np); 341 of_node_put(required_np); 342 343 if (!opp->required_opps[index]) { 344 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 345 __func__, opp->np, index); 346 return -ENODEV; 347 } 348 } 349 350 return 0; 351 } 352 353 /* Link required OPPs for all OPPs of the newly added OPP table */ 354 static void lazy_link_required_opp_table(struct opp_table *new_table) 355 { 356 struct opp_table *opp_table, *temp, **required_opp_tables; 357 struct device_node *required_np, *opp_np, *required_table_np; 358 struct dev_pm_opp *opp; 359 int i, ret; 360 361 mutex_lock(&opp_table_lock); 362 363 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { 364 bool lazy = false; 365 366 /* opp_np can't be invalid here */ 367 opp_np = of_get_next_available_child(opp_table->np, NULL); 368 369 for (i = 0; i < opp_table->required_opp_count; i++) { 370 required_opp_tables = opp_table->required_opp_tables; 371 372 /* Required opp-table is already parsed */ 373 if (!IS_ERR(required_opp_tables[i])) 374 continue; 375 376 /* required_np can't be invalid here */ 377 required_np = of_parse_required_opp(opp_np, i); 378 required_table_np = of_get_parent(required_np); 379 380 of_node_put(required_table_np); 381 of_node_put(required_np); 382 383 /* 384 * Newly added table isn't the required opp-table for 385 * opp_table. 386 */ 387 if (required_table_np != new_table->np) { 388 lazy = true; 389 continue; 390 } 391 392 required_opp_tables[i] = new_table; 393 _get_opp_table_kref(new_table); 394 395 /* Link OPPs now */ 396 ret = lazy_link_required_opps(opp_table, new_table, i); 397 if (ret) { 398 /* The OPPs will be marked unusable */ 399 lazy = false; 400 break; 401 } 402 } 403 404 of_node_put(opp_np); 405 406 /* All required opp-tables found, remove from lazy list */ 407 if (!lazy) { 408 list_del_init(&opp_table->lazy); 409 410 list_for_each_entry(opp, &opp_table->opp_list, node) 411 _required_opps_available(opp, opp_table->required_opp_count); 412 } 413 } 414 415 mutex_unlock(&opp_table_lock); 416 } 417 418 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) 419 { 420 struct device_node *np, *opp_np; 421 struct property *prop; 422 423 if (!opp_table) { 424 np = of_node_get(dev->of_node); 425 if (!np) 426 return -ENODEV; 427 428 opp_np = _opp_of_get_opp_desc_node(np, 0); 429 of_node_put(np); 430 } else { 431 opp_np = of_node_get(opp_table->np); 432 } 433 434 /* Lets not fail in case we are parsing opp-v1 bindings */ 435 if (!opp_np) 436 return 0; 437 438 /* Checking only first OPP is sufficient */ 439 np = of_get_next_available_child(opp_np, NULL); 440 if (!np) { 441 dev_err(dev, "OPP table empty\n"); 442 return -EINVAL; 443 } 444 of_node_put(opp_np); 445 446 prop = of_find_property(np, "opp-peak-kBps", NULL); 447 of_node_put(np); 448 449 if (!prop || !prop->length) 450 return 0; 451 452 return 1; 453 } 454 455 int dev_pm_opp_of_find_icc_paths(struct device *dev, 456 struct opp_table *opp_table) 457 { 458 struct device_node *np; 459 int ret, i, count, num_paths; 460 struct icc_path **paths; 461 462 ret = _bandwidth_supported(dev, opp_table); 463 if (ret == -EINVAL) 464 return 0; /* Empty OPP table is a valid corner-case, let's not fail */ 465 else if (ret <= 0) 466 return ret; 467 468 ret = 0; 469 470 np = of_node_get(dev->of_node); 471 if (!np) 472 return 0; 473 474 count = of_count_phandle_with_args(np, "interconnects", 475 "#interconnect-cells"); 476 of_node_put(np); 477 if (count < 0) 478 return 0; 479 480 /* two phandles when #interconnect-cells = <1> */ 481 if (count % 2) { 482 dev_err(dev, "%s: Invalid interconnects values\n", __func__); 483 return -EINVAL; 484 } 485 486 num_paths = count / 2; 487 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); 488 if (!paths) 489 return -ENOMEM; 490 491 for (i = 0; i < num_paths; i++) { 492 paths[i] = of_icc_get_by_index(dev, i); 493 if (IS_ERR(paths[i])) { 494 ret = PTR_ERR(paths[i]); 495 if (ret != -EPROBE_DEFER) { 496 dev_err(dev, "%s: Unable to get path%d: %d\n", 497 __func__, i, ret); 498 } 499 goto err; 500 } 501 } 502 503 if (opp_table) { 504 opp_table->paths = paths; 505 opp_table->path_count = num_paths; 506 return 0; 507 } 508 509 err: 510 while (i--) 511 icc_put(paths[i]); 512 513 kfree(paths); 514 515 return ret; 516 } 517 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); 518 519 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, 520 struct device_node *np) 521 { 522 unsigned int levels = opp_table->supported_hw_count; 523 int count, versions, ret, i, j; 524 u32 val; 525 526 if (!opp_table->supported_hw) { 527 /* 528 * In the case that no supported_hw has been set by the 529 * platform but there is an opp-supported-hw value set for 530 * an OPP then the OPP should not be enabled as there is 531 * no way to see if the hardware supports it. 532 */ 533 if (of_find_property(np, "opp-supported-hw", NULL)) 534 return false; 535 else 536 return true; 537 } 538 539 count = of_property_count_u32_elems(np, "opp-supported-hw"); 540 if (count <= 0 || count % levels) { 541 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", 542 __func__, count); 543 return false; 544 } 545 546 versions = count / levels; 547 548 /* All levels in at least one of the versions should match */ 549 for (i = 0; i < versions; i++) { 550 bool supported = true; 551 552 for (j = 0; j < levels; j++) { 553 ret = of_property_read_u32_index(np, "opp-supported-hw", 554 i * levels + j, &val); 555 if (ret) { 556 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", 557 __func__, i * levels + j, ret); 558 return false; 559 } 560 561 /* Check if the level is supported */ 562 if (!(val & opp_table->supported_hw[j])) { 563 supported = false; 564 break; 565 } 566 } 567 568 if (supported) 569 return true; 570 } 571 572 return false; 573 } 574 575 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, 576 struct opp_table *opp_table) 577 { 578 u32 *microvolt, *microamp = NULL, *microwatt = NULL; 579 int supplies = opp_table->regulator_count; 580 int vcount, icount, pcount, ret, i, j; 581 struct property *prop = NULL; 582 char name[NAME_MAX]; 583 584 /* Search for "opp-microvolt-<name>" */ 585 if (opp_table->prop_name) { 586 snprintf(name, sizeof(name), "opp-microvolt-%s", 587 opp_table->prop_name); 588 prop = of_find_property(opp->np, name, NULL); 589 } 590 591 if (!prop) { 592 /* Search for "opp-microvolt" */ 593 sprintf(name, "opp-microvolt"); 594 prop = of_find_property(opp->np, name, NULL); 595 596 /* Missing property isn't a problem, but an invalid entry is */ 597 if (!prop) { 598 if (unlikely(supplies == -1)) { 599 /* Initialize regulator_count */ 600 opp_table->regulator_count = 0; 601 return 0; 602 } 603 604 if (!supplies) 605 return 0; 606 607 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", 608 __func__); 609 return -EINVAL; 610 } 611 } 612 613 if (unlikely(supplies == -1)) { 614 /* Initialize regulator_count */ 615 supplies = opp_table->regulator_count = 1; 616 } else if (unlikely(!supplies)) { 617 dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__); 618 return -EINVAL; 619 } 620 621 vcount = of_property_count_u32_elems(opp->np, name); 622 if (vcount < 0) { 623 dev_err(dev, "%s: Invalid %s property (%d)\n", 624 __func__, name, vcount); 625 return vcount; 626 } 627 628 /* There can be one or three elements per supply */ 629 if (vcount != supplies && vcount != supplies * 3) { 630 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n", 631 __func__, name, vcount, supplies); 632 return -EINVAL; 633 } 634 635 microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL); 636 if (!microvolt) 637 return -ENOMEM; 638 639 ret = of_property_read_u32_array(opp->np, name, microvolt, vcount); 640 if (ret) { 641 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); 642 ret = -EINVAL; 643 goto free_microvolt; 644 } 645 646 /* Search for "opp-microamp-<name>" */ 647 prop = NULL; 648 if (opp_table->prop_name) { 649 snprintf(name, sizeof(name), "opp-microamp-%s", 650 opp_table->prop_name); 651 prop = of_find_property(opp->np, name, NULL); 652 } 653 654 if (!prop) { 655 /* Search for "opp-microamp" */ 656 sprintf(name, "opp-microamp"); 657 prop = of_find_property(opp->np, name, NULL); 658 } 659 660 if (prop) { 661 icount = of_property_count_u32_elems(opp->np, name); 662 if (icount < 0) { 663 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, 664 name, icount); 665 ret = icount; 666 goto free_microvolt; 667 } 668 669 if (icount != supplies) { 670 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n", 671 __func__, name, icount, supplies); 672 ret = -EINVAL; 673 goto free_microvolt; 674 } 675 676 microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL); 677 if (!microamp) { 678 ret = -EINVAL; 679 goto free_microvolt; 680 } 681 682 ret = of_property_read_u32_array(opp->np, name, microamp, 683 icount); 684 if (ret) { 685 dev_err(dev, "%s: error parsing %s: %d\n", __func__, 686 name, ret); 687 ret = -EINVAL; 688 goto free_microamp; 689 } 690 } 691 692 /* Search for "opp-microwatt" */ 693 sprintf(name, "opp-microwatt"); 694 prop = of_find_property(opp->np, name, NULL); 695 696 if (prop) { 697 pcount = of_property_count_u32_elems(opp->np, name); 698 if (pcount < 0) { 699 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, 700 name, pcount); 701 ret = pcount; 702 goto free_microamp; 703 } 704 705 if (pcount != supplies) { 706 dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n", 707 __func__, name, pcount, supplies); 708 ret = -EINVAL; 709 goto free_microamp; 710 } 711 712 microwatt = kmalloc_array(pcount, sizeof(*microwatt), 713 GFP_KERNEL); 714 if (!microwatt) { 715 ret = -EINVAL; 716 goto free_microamp; 717 } 718 719 ret = of_property_read_u32_array(opp->np, name, microwatt, 720 pcount); 721 if (ret) { 722 dev_err(dev, "%s: error parsing %s: %d\n", __func__, 723 name, ret); 724 ret = -EINVAL; 725 goto free_microwatt; 726 } 727 } 728 729 for (i = 0, j = 0; i < supplies; i++) { 730 opp->supplies[i].u_volt = microvolt[j++]; 731 732 if (vcount == supplies) { 733 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; 734 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; 735 } else { 736 opp->supplies[i].u_volt_min = microvolt[j++]; 737 opp->supplies[i].u_volt_max = microvolt[j++]; 738 } 739 740 if (microamp) 741 opp->supplies[i].u_amp = microamp[i]; 742 743 if (microwatt) 744 opp->supplies[i].u_watt = microwatt[i]; 745 } 746 747 free_microwatt: 748 kfree(microwatt); 749 free_microamp: 750 kfree(microamp); 751 free_microvolt: 752 kfree(microvolt); 753 754 return ret; 755 } 756 757 /** 758 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT 759 * entries 760 * @dev: device pointer used to lookup OPP table. 761 * 762 * Free OPPs created using static entries present in DT. 763 */ 764 void dev_pm_opp_of_remove_table(struct device *dev) 765 { 766 dev_pm_opp_remove_table(dev); 767 } 768 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); 769 770 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *table, 771 struct device_node *np, bool peak) 772 { 773 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; 774 struct property *prop; 775 int i, count, ret; 776 u32 *bw; 777 778 prop = of_find_property(np, name, NULL); 779 if (!prop) 780 return -ENODEV; 781 782 count = prop->length / sizeof(u32); 783 if (table->path_count != count) { 784 pr_err("%s: Mismatch between %s and paths (%d %d)\n", 785 __func__, name, count, table->path_count); 786 return -EINVAL; 787 } 788 789 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); 790 if (!bw) 791 return -ENOMEM; 792 793 ret = of_property_read_u32_array(np, name, bw, count); 794 if (ret) { 795 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); 796 goto out; 797 } 798 799 for (i = 0; i < count; i++) { 800 if (peak) 801 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); 802 else 803 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); 804 } 805 806 out: 807 kfree(bw); 808 return ret; 809 } 810 811 static int _read_opp_key(struct dev_pm_opp *new_opp, struct opp_table *table, 812 struct device_node *np, bool *rate_not_available) 813 { 814 bool found = false; 815 u64 rate; 816 int ret; 817 818 ret = of_property_read_u64(np, "opp-hz", &rate); 819 if (!ret) { 820 /* 821 * Rate is defined as an unsigned long in clk API, and so 822 * casting explicitly to its type. Must be fixed once rate is 64 823 * bit guaranteed in clk API. 824 */ 825 new_opp->rate = (unsigned long)rate; 826 found = true; 827 } 828 *rate_not_available = !!ret; 829 830 /* 831 * Bandwidth consists of peak and average (optional) values: 832 * opp-peak-kBps = <path1_value path2_value>; 833 * opp-avg-kBps = <path1_value path2_value>; 834 */ 835 ret = _read_bw(new_opp, table, np, true); 836 if (!ret) { 837 found = true; 838 ret = _read_bw(new_opp, table, np, false); 839 } 840 841 /* The properties were found but we failed to parse them */ 842 if (ret && ret != -ENODEV) 843 return ret; 844 845 if (!of_property_read_u32(np, "opp-level", &new_opp->level)) 846 found = true; 847 848 if (found) 849 return 0; 850 851 return ret; 852 } 853 854 /** 855 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) 856 * @opp_table: OPP table 857 * @dev: device for which we do this operation 858 * @np: device node 859 * 860 * This function adds an opp definition to the opp table and returns status. The 861 * opp can be controlled using dev_pm_opp_enable/disable functions and may be 862 * removed by dev_pm_opp_remove. 863 * 864 * Return: 865 * Valid OPP pointer: 866 * On success 867 * NULL: 868 * Duplicate OPPs (both freq and volt are same) and opp->available 869 * OR if the OPP is not supported by hardware. 870 * ERR_PTR(-EEXIST): 871 * Freq are same and volt are different OR 872 * Duplicate OPPs (both freq and volt are same) and !opp->available 873 * ERR_PTR(-ENOMEM): 874 * Memory allocation failure 875 * ERR_PTR(-EINVAL): 876 * Failed parsing the OPP node 877 */ 878 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, 879 struct device *dev, struct device_node *np) 880 { 881 struct dev_pm_opp *new_opp; 882 u32 val; 883 int ret; 884 bool rate_not_available = false; 885 886 new_opp = _opp_allocate(opp_table); 887 if (!new_opp) 888 return ERR_PTR(-ENOMEM); 889 890 ret = _read_opp_key(new_opp, opp_table, np, &rate_not_available); 891 if (ret < 0) { 892 dev_err(dev, "%s: opp key field not found\n", __func__); 893 goto free_opp; 894 } 895 896 /* Check if the OPP supports hardware's hierarchy of versions or not */ 897 if (!_opp_is_supported(dev, opp_table, np)) { 898 dev_dbg(dev, "OPP not supported by hardware: %lu\n", 899 new_opp->rate); 900 goto free_opp; 901 } 902 903 new_opp->turbo = of_property_read_bool(np, "turbo-mode"); 904 905 new_opp->np = np; 906 new_opp->dynamic = false; 907 new_opp->available = true; 908 909 ret = _of_opp_alloc_required_opps(opp_table, new_opp); 910 if (ret) 911 goto free_opp; 912 913 if (!of_property_read_u32(np, "clock-latency-ns", &val)) 914 new_opp->clock_latency_ns = val; 915 916 ret = opp_parse_supplies(new_opp, dev, opp_table); 917 if (ret) 918 goto free_required_opps; 919 920 if (opp_table->is_genpd) 921 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp); 922 923 ret = _opp_add(dev, new_opp, opp_table, rate_not_available); 924 if (ret) { 925 /* Don't return error for duplicate OPPs */ 926 if (ret == -EBUSY) 927 ret = 0; 928 goto free_required_opps; 929 } 930 931 /* OPP to select on device suspend */ 932 if (of_property_read_bool(np, "opp-suspend")) { 933 if (opp_table->suspend_opp) { 934 /* Pick the OPP with higher rate as suspend OPP */ 935 if (new_opp->rate > opp_table->suspend_opp->rate) { 936 opp_table->suspend_opp->suspend = false; 937 new_opp->suspend = true; 938 opp_table->suspend_opp = new_opp; 939 } 940 } else { 941 new_opp->suspend = true; 942 opp_table->suspend_opp = new_opp; 943 } 944 } 945 946 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) 947 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; 948 949 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", 950 __func__, new_opp->turbo, new_opp->rate, 951 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, 952 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, 953 new_opp->level); 954 955 /* 956 * Notify the changes in the availability of the operable 957 * frequency/voltage list. 958 */ 959 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 960 return new_opp; 961 962 free_required_opps: 963 _of_opp_free_required_opps(opp_table, new_opp); 964 free_opp: 965 _opp_free(new_opp); 966 967 return ret ? ERR_PTR(ret) : NULL; 968 } 969 970 /* Initializes OPP tables based on new bindings */ 971 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) 972 { 973 struct device_node *np; 974 int ret, count = 0; 975 struct dev_pm_opp *opp; 976 977 /* OPP table is already initialized for the device */ 978 mutex_lock(&opp_table->lock); 979 if (opp_table->parsed_static_opps) { 980 opp_table->parsed_static_opps++; 981 mutex_unlock(&opp_table->lock); 982 return 0; 983 } 984 985 opp_table->parsed_static_opps = 1; 986 mutex_unlock(&opp_table->lock); 987 988 /* We have opp-table node now, iterate over it and add OPPs */ 989 for_each_available_child_of_node(opp_table->np, np) { 990 opp = _opp_add_static_v2(opp_table, dev, np); 991 if (IS_ERR(opp)) { 992 ret = PTR_ERR(opp); 993 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, 994 ret); 995 of_node_put(np); 996 goto remove_static_opp; 997 } else if (opp) { 998 count++; 999 } 1000 } 1001 1002 /* There should be one or more OPPs defined */ 1003 if (!count) { 1004 dev_err(dev, "%s: no supported OPPs", __func__); 1005 ret = -ENOENT; 1006 goto remove_static_opp; 1007 } 1008 1009 list_for_each_entry(opp, &opp_table->opp_list, node) { 1010 /* Any non-zero performance state would enable the feature */ 1011 if (opp->pstate) { 1012 opp_table->genpd_performance_state = true; 1013 break; 1014 } 1015 } 1016 1017 lazy_link_required_opp_table(opp_table); 1018 1019 return 0; 1020 1021 remove_static_opp: 1022 _opp_remove_all_static(opp_table); 1023 1024 return ret; 1025 } 1026 1027 /* Initializes OPP tables based on old-deprecated bindings */ 1028 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) 1029 { 1030 const struct property *prop; 1031 const __be32 *val; 1032 int nr, ret = 0; 1033 1034 mutex_lock(&opp_table->lock); 1035 if (opp_table->parsed_static_opps) { 1036 opp_table->parsed_static_opps++; 1037 mutex_unlock(&opp_table->lock); 1038 return 0; 1039 } 1040 1041 opp_table->parsed_static_opps = 1; 1042 mutex_unlock(&opp_table->lock); 1043 1044 prop = of_find_property(dev->of_node, "operating-points", NULL); 1045 if (!prop) { 1046 ret = -ENODEV; 1047 goto remove_static_opp; 1048 } 1049 if (!prop->value) { 1050 ret = -ENODATA; 1051 goto remove_static_opp; 1052 } 1053 1054 /* 1055 * Each OPP is a set of tuples consisting of frequency and 1056 * voltage like <freq-kHz vol-uV>. 1057 */ 1058 nr = prop->length / sizeof(u32); 1059 if (nr % 2) { 1060 dev_err(dev, "%s: Invalid OPP table\n", __func__); 1061 ret = -EINVAL; 1062 goto remove_static_opp; 1063 } 1064 1065 val = prop->value; 1066 while (nr) { 1067 unsigned long freq = be32_to_cpup(val++) * 1000; 1068 unsigned long volt = be32_to_cpup(val++); 1069 1070 ret = _opp_add_v1(opp_table, dev, freq, volt, false); 1071 if (ret) { 1072 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", 1073 __func__, freq, ret); 1074 goto remove_static_opp; 1075 } 1076 nr -= 2; 1077 } 1078 1079 return 0; 1080 1081 remove_static_opp: 1082 _opp_remove_all_static(opp_table); 1083 1084 return ret; 1085 } 1086 1087 static int _of_add_table_indexed(struct device *dev, int index, bool getclk) 1088 { 1089 struct opp_table *opp_table; 1090 int ret, count; 1091 1092 if (index) { 1093 /* 1094 * If only one phandle is present, then the same OPP table 1095 * applies for all index requests. 1096 */ 1097 count = of_count_phandle_with_args(dev->of_node, 1098 "operating-points-v2", NULL); 1099 if (count == 1) 1100 index = 0; 1101 } 1102 1103 opp_table = _add_opp_table_indexed(dev, index, getclk); 1104 if (IS_ERR(opp_table)) 1105 return PTR_ERR(opp_table); 1106 1107 /* 1108 * OPPs have two version of bindings now. Also try the old (v1) 1109 * bindings for backward compatibility with older dtbs. 1110 */ 1111 if (opp_table->np) 1112 ret = _of_add_opp_table_v2(dev, opp_table); 1113 else 1114 ret = _of_add_opp_table_v1(dev, opp_table); 1115 1116 if (ret) 1117 dev_pm_opp_put_opp_table(opp_table); 1118 1119 return ret; 1120 } 1121 1122 static void devm_pm_opp_of_table_release(void *data) 1123 { 1124 dev_pm_opp_of_remove_table(data); 1125 } 1126 1127 static int _devm_of_add_table_indexed(struct device *dev, int index, bool getclk) 1128 { 1129 int ret; 1130 1131 ret = _of_add_table_indexed(dev, index, getclk); 1132 if (ret) 1133 return ret; 1134 1135 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); 1136 } 1137 1138 /** 1139 * devm_pm_opp_of_add_table() - Initialize opp table from device tree 1140 * @dev: device pointer used to lookup OPP table. 1141 * 1142 * Register the initial OPP table with the OPP library for given device. 1143 * 1144 * The opp_table structure will be freed after the device is destroyed. 1145 * 1146 * Return: 1147 * 0 On success OR 1148 * Duplicate OPPs (both freq and volt are same) and opp->available 1149 * -EEXIST Freq are same and volt are different OR 1150 * Duplicate OPPs (both freq and volt are same) and !opp->available 1151 * -ENOMEM Memory allocation failure 1152 * -ENODEV when 'operating-points' property is not found or is invalid data 1153 * in device node. 1154 * -ENODATA when empty 'operating-points' property is found 1155 * -EINVAL when invalid entries are found in opp-v2 table 1156 */ 1157 int devm_pm_opp_of_add_table(struct device *dev) 1158 { 1159 return _devm_of_add_table_indexed(dev, 0, true); 1160 } 1161 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); 1162 1163 /** 1164 * dev_pm_opp_of_add_table() - Initialize opp table from device tree 1165 * @dev: device pointer used to lookup OPP table. 1166 * 1167 * Register the initial OPP table with the OPP library for given device. 1168 * 1169 * Return: 1170 * 0 On success OR 1171 * Duplicate OPPs (both freq and volt are same) and opp->available 1172 * -EEXIST Freq are same and volt are different OR 1173 * Duplicate OPPs (both freq and volt are same) and !opp->available 1174 * -ENOMEM Memory allocation failure 1175 * -ENODEV when 'operating-points' property is not found or is invalid data 1176 * in device node. 1177 * -ENODATA when empty 'operating-points' property is found 1178 * -EINVAL when invalid entries are found in opp-v2 table 1179 */ 1180 int dev_pm_opp_of_add_table(struct device *dev) 1181 { 1182 return _of_add_table_indexed(dev, 0, true); 1183 } 1184 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); 1185 1186 /** 1187 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1188 * @dev: device pointer used to lookup OPP table. 1189 * @index: Index number. 1190 * 1191 * Register the initial OPP table with the OPP library for given device only 1192 * using the "operating-points-v2" property. 1193 * 1194 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1195 */ 1196 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) 1197 { 1198 return _of_add_table_indexed(dev, index, true); 1199 } 1200 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); 1201 1202 /** 1203 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1204 * @dev: device pointer used to lookup OPP table. 1205 * @index: Index number. 1206 * 1207 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). 1208 */ 1209 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) 1210 { 1211 return _devm_of_add_table_indexed(dev, index, true); 1212 } 1213 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); 1214 1215 /** 1216 * dev_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device 1217 * tree without getting clk for device. 1218 * @dev: device pointer used to lookup OPP table. 1219 * @index: Index number. 1220 * 1221 * Register the initial OPP table with the OPP library for given device only 1222 * using the "operating-points-v2" property. Do not try to get the clk for the 1223 * device. 1224 * 1225 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1226 */ 1227 int dev_pm_opp_of_add_table_noclk(struct device *dev, int index) 1228 { 1229 return _of_add_table_indexed(dev, index, false); 1230 } 1231 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_noclk); 1232 1233 /** 1234 * devm_pm_opp_of_add_table_noclk() - Initialize indexed opp table from device 1235 * tree without getting clk for device. 1236 * @dev: device pointer used to lookup OPP table. 1237 * @index: Index number. 1238 * 1239 * This is a resource-managed variant of dev_pm_opp_of_add_table_noclk(). 1240 */ 1241 int devm_pm_opp_of_add_table_noclk(struct device *dev, int index) 1242 { 1243 return _devm_of_add_table_indexed(dev, index, false); 1244 } 1245 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_noclk); 1246 1247 /* CPU device specific helpers */ 1248 1249 /** 1250 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask 1251 * @cpumask: cpumask for which OPP table needs to be removed 1252 * 1253 * This removes the OPP tables for CPUs present in the @cpumask. 1254 * This should be used only to remove static entries created from DT. 1255 */ 1256 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) 1257 { 1258 _dev_pm_opp_cpumask_remove_table(cpumask, -1); 1259 } 1260 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); 1261 1262 /** 1263 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask 1264 * @cpumask: cpumask for which OPP table needs to be added. 1265 * 1266 * This adds the OPP tables for CPUs present in the @cpumask. 1267 */ 1268 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) 1269 { 1270 struct device *cpu_dev; 1271 int cpu, ret; 1272 1273 if (WARN_ON(cpumask_empty(cpumask))) 1274 return -ENODEV; 1275 1276 for_each_cpu(cpu, cpumask) { 1277 cpu_dev = get_cpu_device(cpu); 1278 if (!cpu_dev) { 1279 pr_err("%s: failed to get cpu%d device\n", __func__, 1280 cpu); 1281 ret = -ENODEV; 1282 goto remove_table; 1283 } 1284 1285 ret = dev_pm_opp_of_add_table(cpu_dev); 1286 if (ret) { 1287 /* 1288 * OPP may get registered dynamically, don't print error 1289 * message here. 1290 */ 1291 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", 1292 __func__, cpu, ret); 1293 1294 goto remove_table; 1295 } 1296 } 1297 1298 return 0; 1299 1300 remove_table: 1301 /* Free all other OPPs */ 1302 _dev_pm_opp_cpumask_remove_table(cpumask, cpu); 1303 1304 return ret; 1305 } 1306 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); 1307 1308 /* 1309 * Works only for OPP v2 bindings. 1310 * 1311 * Returns -ENOENT if operating-points-v2 bindings aren't supported. 1312 */ 1313 /** 1314 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with 1315 * @cpu_dev using operating-points-v2 1316 * bindings. 1317 * 1318 * @cpu_dev: CPU device for which we do this operation 1319 * @cpumask: cpumask to update with information of sharing CPUs 1320 * 1321 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. 1322 * 1323 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. 1324 */ 1325 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, 1326 struct cpumask *cpumask) 1327 { 1328 struct device_node *np, *tmp_np, *cpu_np; 1329 int cpu, ret = 0; 1330 1331 /* Get OPP descriptor node */ 1332 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1333 if (!np) { 1334 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); 1335 return -ENOENT; 1336 } 1337 1338 cpumask_set_cpu(cpu_dev->id, cpumask); 1339 1340 /* OPPs are shared ? */ 1341 if (!of_property_read_bool(np, "opp-shared")) 1342 goto put_cpu_node; 1343 1344 for_each_possible_cpu(cpu) { 1345 if (cpu == cpu_dev->id) 1346 continue; 1347 1348 cpu_np = of_cpu_device_node_get(cpu); 1349 if (!cpu_np) { 1350 dev_err(cpu_dev, "%s: failed to get cpu%d node\n", 1351 __func__, cpu); 1352 ret = -ENOENT; 1353 goto put_cpu_node; 1354 } 1355 1356 /* Get OPP descriptor node */ 1357 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); 1358 of_node_put(cpu_np); 1359 if (!tmp_np) { 1360 pr_err("%pOF: Couldn't find opp node\n", cpu_np); 1361 ret = -ENOENT; 1362 goto put_cpu_node; 1363 } 1364 1365 /* CPUs are sharing opp node */ 1366 if (np == tmp_np) 1367 cpumask_set_cpu(cpu, cpumask); 1368 1369 of_node_put(tmp_np); 1370 } 1371 1372 put_cpu_node: 1373 of_node_put(np); 1374 return ret; 1375 } 1376 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); 1377 1378 /** 1379 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. 1380 * @np: Node that contains the "required-opps" property. 1381 * @index: Index of the phandle to parse. 1382 * 1383 * Returns the performance state of the OPP pointed out by the "required-opps" 1384 * property at @index in @np. 1385 * 1386 * Return: Zero or positive performance state on success, otherwise negative 1387 * value on errors. 1388 */ 1389 int of_get_required_opp_performance_state(struct device_node *np, int index) 1390 { 1391 struct dev_pm_opp *opp; 1392 struct device_node *required_np; 1393 struct opp_table *opp_table; 1394 int pstate = -EINVAL; 1395 1396 required_np = of_parse_required_opp(np, index); 1397 if (!required_np) 1398 return -ENODEV; 1399 1400 opp_table = _find_table_of_opp_np(required_np); 1401 if (IS_ERR(opp_table)) { 1402 pr_err("%s: Failed to find required OPP table %pOF: %ld\n", 1403 __func__, np, PTR_ERR(opp_table)); 1404 goto put_required_np; 1405 } 1406 1407 opp = _find_opp_of_np(opp_table, required_np); 1408 if (opp) { 1409 pstate = opp->pstate; 1410 dev_pm_opp_put(opp); 1411 } 1412 1413 dev_pm_opp_put_opp_table(opp_table); 1414 1415 put_required_np: 1416 of_node_put(required_np); 1417 1418 return pstate; 1419 } 1420 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); 1421 1422 /** 1423 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp 1424 * @opp: opp for which DT node has to be returned for 1425 * 1426 * Return: DT node corresponding to the opp, else 0 on success. 1427 * 1428 * The caller needs to put the node with of_node_put() after using it. 1429 */ 1430 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) 1431 { 1432 if (IS_ERR_OR_NULL(opp)) { 1433 pr_err("%s: Invalid parameters\n", __func__); 1434 return NULL; 1435 } 1436 1437 return of_node_get(opp->np); 1438 } 1439 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); 1440 1441 /* 1442 * Callback function provided to the Energy Model framework upon registration. 1443 * It provides the power used by @dev at @kHz if it is the frequency of an 1444 * existing OPP, or at the frequency of the first OPP above @kHz otherwise 1445 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1446 * frequency and @mW to the associated power. 1447 * 1448 * Returns 0 on success or a proper -EINVAL value in case of error. 1449 */ 1450 static int __maybe_unused 1451 _get_dt_power(unsigned long *mW, unsigned long *kHz, struct device *dev) 1452 { 1453 struct dev_pm_opp *opp; 1454 unsigned long opp_freq, opp_power; 1455 1456 /* Find the right frequency and related OPP */ 1457 opp_freq = *kHz * 1000; 1458 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq); 1459 if (IS_ERR(opp)) 1460 return -EINVAL; 1461 1462 opp_power = dev_pm_opp_get_power(opp); 1463 dev_pm_opp_put(opp); 1464 if (!opp_power) 1465 return -EINVAL; 1466 1467 *kHz = opp_freq / 1000; 1468 *mW = opp_power / 1000; 1469 1470 return 0; 1471 } 1472 1473 /* 1474 * Callback function provided to the Energy Model framework upon registration. 1475 * This computes the power estimated by @dev at @kHz if it is the frequency 1476 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise 1477 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1478 * frequency and @mW to the associated power. The power is estimated as 1479 * P = C * V^2 * f with C being the device's capacitance and V and f 1480 * respectively the voltage and frequency of the OPP. 1481 * 1482 * Returns -EINVAL if the power calculation failed because of missing 1483 * parameters, 0 otherwise. 1484 */ 1485 static int __maybe_unused _get_power(unsigned long *mW, unsigned long *kHz, 1486 struct device *dev) 1487 { 1488 struct dev_pm_opp *opp; 1489 struct device_node *np; 1490 unsigned long mV, Hz; 1491 u32 cap; 1492 u64 tmp; 1493 int ret; 1494 1495 np = of_node_get(dev->of_node); 1496 if (!np) 1497 return -EINVAL; 1498 1499 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1500 of_node_put(np); 1501 if (ret) 1502 return -EINVAL; 1503 1504 Hz = *kHz * 1000; 1505 opp = dev_pm_opp_find_freq_ceil(dev, &Hz); 1506 if (IS_ERR(opp)) 1507 return -EINVAL; 1508 1509 mV = dev_pm_opp_get_voltage(opp) / 1000; 1510 dev_pm_opp_put(opp); 1511 if (!mV) 1512 return -EINVAL; 1513 1514 tmp = (u64)cap * mV * mV * (Hz / 1000000); 1515 do_div(tmp, 1000000000); 1516 1517 *mW = (unsigned long)tmp; 1518 *kHz = Hz / 1000; 1519 1520 return 0; 1521 } 1522 1523 static bool _of_has_opp_microwatt_property(struct device *dev) 1524 { 1525 unsigned long power, freq = 0; 1526 struct dev_pm_opp *opp; 1527 1528 /* Check if at least one OPP has needed property */ 1529 opp = dev_pm_opp_find_freq_ceil(dev, &freq); 1530 if (IS_ERR(opp)) 1531 return false; 1532 1533 power = dev_pm_opp_get_power(opp); 1534 dev_pm_opp_put(opp); 1535 if (!power) 1536 return false; 1537 1538 return true; 1539 } 1540 1541 /** 1542 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model 1543 * @dev : Device for which an Energy Model has to be registered 1544 * @cpus : CPUs for which an Energy Model has to be registered. For 1545 * other type of devices it should be set to NULL. 1546 * 1547 * This checks whether the "dynamic-power-coefficient" devicetree property has 1548 * been specified, and tries to register an Energy Model with it if it has. 1549 * Having this property means the voltages are known for OPPs and the EM 1550 * might be calculated. 1551 */ 1552 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) 1553 { 1554 struct em_data_callback em_cb; 1555 struct device_node *np; 1556 int ret, nr_opp; 1557 u32 cap; 1558 1559 if (IS_ERR_OR_NULL(dev)) { 1560 ret = -EINVAL; 1561 goto failed; 1562 } 1563 1564 nr_opp = dev_pm_opp_get_opp_count(dev); 1565 if (nr_opp <= 0) { 1566 ret = -EINVAL; 1567 goto failed; 1568 } 1569 1570 /* First, try to find more precised Energy Model in DT */ 1571 if (_of_has_opp_microwatt_property(dev)) { 1572 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power); 1573 goto register_em; 1574 } 1575 1576 np = of_node_get(dev->of_node); 1577 if (!np) { 1578 ret = -EINVAL; 1579 goto failed; 1580 } 1581 1582 /* 1583 * Register an EM only if the 'dynamic-power-coefficient' property is 1584 * set in devicetree. It is assumed the voltage values are known if that 1585 * property is set since it is useless otherwise. If voltages are not 1586 * known, just let the EM registration fail with an error to alert the 1587 * user about the inconsistent configuration. 1588 */ 1589 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1590 of_node_put(np); 1591 if (ret || !cap) { 1592 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); 1593 ret = -EINVAL; 1594 goto failed; 1595 } 1596 1597 EM_SET_ACTIVE_POWER_CB(em_cb, _get_power); 1598 1599 register_em: 1600 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); 1601 if (ret) 1602 goto failed; 1603 1604 return 0; 1605 1606 failed: 1607 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); 1608 return ret; 1609 } 1610 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); 1611