1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP OF helpers 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/cpu.h> 14 #include <linux/errno.h> 15 #include <linux/device.h> 16 #include <linux/of_device.h> 17 #include <linux/pm_domain.h> 18 #include <linux/slab.h> 19 #include <linux/export.h> 20 #include <linux/energy_model.h> 21 22 #include "opp.h" 23 24 /* 25 * Returns opp descriptor node for a device node, caller must 26 * do of_node_put(). 27 */ 28 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, 29 int index) 30 { 31 /* "operating-points-v2" can be an array for power domain providers */ 32 return of_parse_phandle(np, "operating-points-v2", index); 33 } 34 35 /* Returns opp descriptor node for a device, caller must do of_node_put() */ 36 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) 37 { 38 return _opp_of_get_opp_desc_node(dev->of_node, 0); 39 } 40 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); 41 42 struct opp_table *_managed_opp(struct device *dev, int index) 43 { 44 struct opp_table *opp_table, *managed_table = NULL; 45 struct device_node *np; 46 47 np = _opp_of_get_opp_desc_node(dev->of_node, index); 48 if (!np) 49 return NULL; 50 51 list_for_each_entry(opp_table, &opp_tables, node) { 52 if (opp_table->np == np) { 53 /* 54 * Multiple devices can point to the same OPP table and 55 * so will have same node-pointer, np. 56 * 57 * But the OPPs will be considered as shared only if the 58 * OPP table contains a "opp-shared" property. 59 */ 60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { 61 _get_opp_table_kref(opp_table); 62 managed_table = opp_table; 63 } 64 65 break; 66 } 67 } 68 69 of_node_put(np); 70 71 return managed_table; 72 } 73 74 /* The caller must call dev_pm_opp_put() after the OPP is used */ 75 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, 76 struct device_node *opp_np) 77 { 78 struct dev_pm_opp *opp; 79 80 mutex_lock(&opp_table->lock); 81 82 list_for_each_entry(opp, &opp_table->opp_list, node) { 83 if (opp->np == opp_np) { 84 dev_pm_opp_get(opp); 85 mutex_unlock(&opp_table->lock); 86 return opp; 87 } 88 } 89 90 mutex_unlock(&opp_table->lock); 91 92 return NULL; 93 } 94 95 static struct device_node *of_parse_required_opp(struct device_node *np, 96 int index) 97 { 98 return of_parse_phandle(np, "required-opps", index); 99 } 100 101 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ 102 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) 103 { 104 struct opp_table *opp_table; 105 struct device_node *opp_table_np; 106 107 opp_table_np = of_get_parent(opp_np); 108 if (!opp_table_np) 109 goto err; 110 111 /* It is safe to put the node now as all we need now is its address */ 112 of_node_put(opp_table_np); 113 114 mutex_lock(&opp_table_lock); 115 list_for_each_entry(opp_table, &opp_tables, node) { 116 if (opp_table_np == opp_table->np) { 117 _get_opp_table_kref(opp_table); 118 mutex_unlock(&opp_table_lock); 119 return opp_table; 120 } 121 } 122 mutex_unlock(&opp_table_lock); 123 124 err: 125 return ERR_PTR(-ENODEV); 126 } 127 128 /* Free resources previously acquired by _opp_table_alloc_required_tables() */ 129 static void _opp_table_free_required_tables(struct opp_table *opp_table) 130 { 131 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 132 int i; 133 134 if (!required_opp_tables) 135 return; 136 137 for (i = 0; i < opp_table->required_opp_count; i++) { 138 if (IS_ERR_OR_NULL(required_opp_tables[i])) 139 continue; 140 141 dev_pm_opp_put_opp_table(required_opp_tables[i]); 142 } 143 144 kfree(required_opp_tables); 145 146 opp_table->required_opp_count = 0; 147 opp_table->required_opp_tables = NULL; 148 list_del(&opp_table->lazy); 149 } 150 151 /* 152 * Populate all devices and opp tables which are part of "required-opps" list. 153 * Checking only the first OPP node should be enough. 154 */ 155 static void _opp_table_alloc_required_tables(struct opp_table *opp_table, 156 struct device *dev, 157 struct device_node *opp_np) 158 { 159 struct opp_table **required_opp_tables; 160 struct device_node *required_np, *np; 161 bool lazy = false; 162 int count, i; 163 164 /* Traversing the first OPP node is all we need */ 165 np = of_get_next_available_child(opp_np, NULL); 166 if (!np) { 167 dev_warn(dev, "Empty OPP table\n"); 168 169 return; 170 } 171 172 count = of_count_phandle_with_args(np, "required-opps", NULL); 173 if (count <= 0) 174 goto put_np; 175 176 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables), 177 GFP_KERNEL); 178 if (!required_opp_tables) 179 goto put_np; 180 181 opp_table->required_opp_tables = required_opp_tables; 182 opp_table->required_opp_count = count; 183 184 for (i = 0; i < count; i++) { 185 required_np = of_parse_required_opp(np, i); 186 if (!required_np) 187 goto free_required_tables; 188 189 required_opp_tables[i] = _find_table_of_opp_np(required_np); 190 of_node_put(required_np); 191 192 if (IS_ERR(required_opp_tables[i])) 193 lazy = true; 194 } 195 196 /* Let's do the linking later on */ 197 if (lazy) 198 list_add(&opp_table->lazy, &lazy_opp_tables); 199 200 goto put_np; 201 202 free_required_tables: 203 _opp_table_free_required_tables(opp_table); 204 put_np: 205 of_node_put(np); 206 } 207 208 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, 209 int index) 210 { 211 struct device_node *np, *opp_np; 212 u32 val; 213 214 /* 215 * Only required for backward compatibility with v1 bindings, but isn't 216 * harmful for other cases. And so we do it unconditionally. 217 */ 218 np = of_node_get(dev->of_node); 219 if (!np) 220 return; 221 222 if (!of_property_read_u32(np, "clock-latency", &val)) 223 opp_table->clock_latency_ns_max = val; 224 of_property_read_u32(np, "voltage-tolerance", 225 &opp_table->voltage_tolerance_v1); 226 227 if (of_find_property(np, "#power-domain-cells", NULL)) 228 opp_table->is_genpd = true; 229 230 /* Get OPP table node */ 231 opp_np = _opp_of_get_opp_desc_node(np, index); 232 of_node_put(np); 233 234 if (!opp_np) 235 return; 236 237 if (of_property_read_bool(opp_np, "opp-shared")) 238 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; 239 else 240 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; 241 242 opp_table->np = opp_np; 243 244 _opp_table_alloc_required_tables(opp_table, dev, opp_np); 245 } 246 247 void _of_clear_opp_table(struct opp_table *opp_table) 248 { 249 _opp_table_free_required_tables(opp_table); 250 of_node_put(opp_table->np); 251 } 252 253 /* 254 * Release all resources previously acquired with a call to 255 * _of_opp_alloc_required_opps(). 256 */ 257 static void _of_opp_free_required_opps(struct opp_table *opp_table, 258 struct dev_pm_opp *opp) 259 { 260 struct dev_pm_opp **required_opps = opp->required_opps; 261 int i; 262 263 if (!required_opps) 264 return; 265 266 for (i = 0; i < opp_table->required_opp_count; i++) { 267 if (!required_opps[i]) 268 continue; 269 270 /* Put the reference back */ 271 dev_pm_opp_put(required_opps[i]); 272 } 273 274 opp->required_opps = NULL; 275 kfree(required_opps); 276 } 277 278 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp) 279 { 280 _of_opp_free_required_opps(opp_table, opp); 281 of_node_put(opp->np); 282 } 283 284 /* Populate all required OPPs which are part of "required-opps" list */ 285 static int _of_opp_alloc_required_opps(struct opp_table *opp_table, 286 struct dev_pm_opp *opp) 287 { 288 struct dev_pm_opp **required_opps; 289 struct opp_table *required_table; 290 struct device_node *np; 291 int i, ret, count = opp_table->required_opp_count; 292 293 if (!count) 294 return 0; 295 296 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL); 297 if (!required_opps) 298 return -ENOMEM; 299 300 opp->required_opps = required_opps; 301 302 for (i = 0; i < count; i++) { 303 required_table = opp_table->required_opp_tables[i]; 304 305 /* Required table not added yet, we will link later */ 306 if (IS_ERR_OR_NULL(required_table)) 307 continue; 308 309 np = of_parse_required_opp(opp->np, i); 310 if (unlikely(!np)) { 311 ret = -ENODEV; 312 goto free_required_opps; 313 } 314 315 required_opps[i] = _find_opp_of_np(required_table, np); 316 of_node_put(np); 317 318 if (!required_opps[i]) { 319 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 320 __func__, opp->np, i); 321 ret = -ENODEV; 322 goto free_required_opps; 323 } 324 } 325 326 return 0; 327 328 free_required_opps: 329 _of_opp_free_required_opps(opp_table, opp); 330 331 return ret; 332 } 333 334 /* Link required OPPs for an individual OPP */ 335 static int lazy_link_required_opps(struct opp_table *opp_table, 336 struct opp_table *new_table, int index) 337 { 338 struct device_node *required_np; 339 struct dev_pm_opp *opp; 340 341 list_for_each_entry(opp, &opp_table->opp_list, node) { 342 required_np = of_parse_required_opp(opp->np, index); 343 if (unlikely(!required_np)) 344 return -ENODEV; 345 346 opp->required_opps[index] = _find_opp_of_np(new_table, required_np); 347 of_node_put(required_np); 348 349 if (!opp->required_opps[index]) { 350 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", 351 __func__, opp->np, index); 352 return -ENODEV; 353 } 354 } 355 356 return 0; 357 } 358 359 /* Link required OPPs for all OPPs of the newly added OPP table */ 360 static void lazy_link_required_opp_table(struct opp_table *new_table) 361 { 362 struct opp_table *opp_table, *temp, **required_opp_tables; 363 struct device_node *required_np, *opp_np, *required_table_np; 364 struct dev_pm_opp *opp; 365 int i, ret; 366 367 mutex_lock(&opp_table_lock); 368 369 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { 370 bool lazy = false; 371 372 /* opp_np can't be invalid here */ 373 opp_np = of_get_next_available_child(opp_table->np, NULL); 374 375 for (i = 0; i < opp_table->required_opp_count; i++) { 376 required_opp_tables = opp_table->required_opp_tables; 377 378 /* Required opp-table is already parsed */ 379 if (!IS_ERR(required_opp_tables[i])) 380 continue; 381 382 /* required_np can't be invalid here */ 383 required_np = of_parse_required_opp(opp_np, i); 384 required_table_np = of_get_parent(required_np); 385 386 of_node_put(required_table_np); 387 of_node_put(required_np); 388 389 /* 390 * Newly added table isn't the required opp-table for 391 * opp_table. 392 */ 393 if (required_table_np != new_table->np) { 394 lazy = true; 395 continue; 396 } 397 398 required_opp_tables[i] = new_table; 399 _get_opp_table_kref(new_table); 400 401 /* Link OPPs now */ 402 ret = lazy_link_required_opps(opp_table, new_table, i); 403 if (ret) { 404 /* The OPPs will be marked unusable */ 405 lazy = false; 406 break; 407 } 408 } 409 410 of_node_put(opp_np); 411 412 /* All required opp-tables found, remove from lazy list */ 413 if (!lazy) { 414 list_del_init(&opp_table->lazy); 415 416 list_for_each_entry(opp, &opp_table->opp_list, node) 417 _required_opps_available(opp, opp_table->required_opp_count); 418 } 419 } 420 421 mutex_unlock(&opp_table_lock); 422 } 423 424 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) 425 { 426 struct device_node *np, *opp_np; 427 struct property *prop; 428 429 if (!opp_table) { 430 np = of_node_get(dev->of_node); 431 if (!np) 432 return -ENODEV; 433 434 opp_np = _opp_of_get_opp_desc_node(np, 0); 435 of_node_put(np); 436 } else { 437 opp_np = of_node_get(opp_table->np); 438 } 439 440 /* Lets not fail in case we are parsing opp-v1 bindings */ 441 if (!opp_np) 442 return 0; 443 444 /* Checking only first OPP is sufficient */ 445 np = of_get_next_available_child(opp_np, NULL); 446 of_node_put(opp_np); 447 if (!np) { 448 dev_err(dev, "OPP table empty\n"); 449 return -EINVAL; 450 } 451 452 prop = of_find_property(np, "opp-peak-kBps", NULL); 453 of_node_put(np); 454 455 if (!prop || !prop->length) 456 return 0; 457 458 return 1; 459 } 460 461 int dev_pm_opp_of_find_icc_paths(struct device *dev, 462 struct opp_table *opp_table) 463 { 464 struct device_node *np; 465 int ret, i, count, num_paths; 466 struct icc_path **paths; 467 468 ret = _bandwidth_supported(dev, opp_table); 469 if (ret == -EINVAL) 470 return 0; /* Empty OPP table is a valid corner-case, let's not fail */ 471 else if (ret <= 0) 472 return ret; 473 474 ret = 0; 475 476 np = of_node_get(dev->of_node); 477 if (!np) 478 return 0; 479 480 count = of_count_phandle_with_args(np, "interconnects", 481 "#interconnect-cells"); 482 of_node_put(np); 483 if (count < 0) 484 return 0; 485 486 /* two phandles when #interconnect-cells = <1> */ 487 if (count % 2) { 488 dev_err(dev, "%s: Invalid interconnects values\n", __func__); 489 return -EINVAL; 490 } 491 492 num_paths = count / 2; 493 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); 494 if (!paths) 495 return -ENOMEM; 496 497 for (i = 0; i < num_paths; i++) { 498 paths[i] = of_icc_get_by_index(dev, i); 499 if (IS_ERR(paths[i])) { 500 ret = PTR_ERR(paths[i]); 501 if (ret != -EPROBE_DEFER) { 502 dev_err(dev, "%s: Unable to get path%d: %d\n", 503 __func__, i, ret); 504 } 505 goto err; 506 } 507 } 508 509 if (opp_table) { 510 opp_table->paths = paths; 511 opp_table->path_count = num_paths; 512 return 0; 513 } 514 515 err: 516 while (i--) 517 icc_put(paths[i]); 518 519 kfree(paths); 520 521 return ret; 522 } 523 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); 524 525 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, 526 struct device_node *np) 527 { 528 unsigned int levels = opp_table->supported_hw_count; 529 int count, versions, ret, i, j; 530 u32 val; 531 532 if (!opp_table->supported_hw) { 533 /* 534 * In the case that no supported_hw has been set by the 535 * platform but there is an opp-supported-hw value set for 536 * an OPP then the OPP should not be enabled as there is 537 * no way to see if the hardware supports it. 538 */ 539 if (of_find_property(np, "opp-supported-hw", NULL)) 540 return false; 541 else 542 return true; 543 } 544 545 count = of_property_count_u32_elems(np, "opp-supported-hw"); 546 if (count <= 0 || count % levels) { 547 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", 548 __func__, count); 549 return false; 550 } 551 552 versions = count / levels; 553 554 /* All levels in at least one of the versions should match */ 555 for (i = 0; i < versions; i++) { 556 bool supported = true; 557 558 for (j = 0; j < levels; j++) { 559 ret = of_property_read_u32_index(np, "opp-supported-hw", 560 i * levels + j, &val); 561 if (ret) { 562 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", 563 __func__, i * levels + j, ret); 564 return false; 565 } 566 567 /* Check if the level is supported */ 568 if (!(val & opp_table->supported_hw[j])) { 569 supported = false; 570 break; 571 } 572 } 573 574 if (supported) 575 return true; 576 } 577 578 return false; 579 } 580 581 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev, 582 struct opp_table *opp_table, 583 const char *prop_type, bool *triplet) 584 { 585 struct property *prop = NULL; 586 char name[NAME_MAX]; 587 int count, ret; 588 u32 *out; 589 590 /* Search for "opp-<prop_type>-<name>" */ 591 if (opp_table->prop_name) { 592 snprintf(name, sizeof(name), "opp-%s-%s", prop_type, 593 opp_table->prop_name); 594 prop = of_find_property(opp->np, name, NULL); 595 } 596 597 if (!prop) { 598 /* Search for "opp-<prop_type>" */ 599 snprintf(name, sizeof(name), "opp-%s", prop_type); 600 prop = of_find_property(opp->np, name, NULL); 601 if (!prop) 602 return NULL; 603 } 604 605 count = of_property_count_u32_elems(opp->np, name); 606 if (count < 0) { 607 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name, 608 count); 609 return ERR_PTR(count); 610 } 611 612 /* 613 * Initialize regulator_count, if regulator information isn't provided 614 * by the platform. Now that one of the properties is available, fix the 615 * regulator_count to 1. 616 */ 617 if (unlikely(opp_table->regulator_count == -1)) 618 opp_table->regulator_count = 1; 619 620 if (count != opp_table->regulator_count && 621 (!triplet || count != opp_table->regulator_count * 3)) { 622 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n", 623 __func__, prop_type, count, opp_table->regulator_count); 624 return ERR_PTR(-EINVAL); 625 } 626 627 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL); 628 if (!out) 629 return ERR_PTR(-EINVAL); 630 631 ret = of_property_read_u32_array(opp->np, name, out, count); 632 if (ret) { 633 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); 634 kfree(out); 635 return ERR_PTR(-EINVAL); 636 } 637 638 if (triplet) 639 *triplet = count != opp_table->regulator_count; 640 641 return out; 642 } 643 644 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev, 645 struct opp_table *opp_table, bool *triplet) 646 { 647 u32 *microvolt; 648 649 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet); 650 if (IS_ERR(microvolt)) 651 return microvolt; 652 653 if (!microvolt) { 654 /* 655 * Missing property isn't a problem, but an invalid 656 * entry is. This property isn't optional if regulator 657 * information is provided. Check only for the first OPP, as 658 * regulator_count may get initialized after that to a valid 659 * value. 660 */ 661 if (list_empty(&opp_table->opp_list) && 662 opp_table->regulator_count > 0) { 663 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", 664 __func__); 665 return ERR_PTR(-EINVAL); 666 } 667 } 668 669 return microvolt; 670 } 671 672 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, 673 struct opp_table *opp_table) 674 { 675 u32 *microvolt, *microamp, *microwatt; 676 int ret = 0, i, j; 677 bool triplet; 678 679 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet); 680 if (IS_ERR(microvolt)) 681 return PTR_ERR(microvolt); 682 683 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL); 684 if (IS_ERR(microamp)) { 685 ret = PTR_ERR(microamp); 686 goto free_microvolt; 687 } 688 689 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL); 690 if (IS_ERR(microwatt)) { 691 ret = PTR_ERR(microwatt); 692 goto free_microamp; 693 } 694 695 /* 696 * Initialize regulator_count if it is uninitialized and no properties 697 * are found. 698 */ 699 if (unlikely(opp_table->regulator_count == -1)) { 700 opp_table->regulator_count = 0; 701 return 0; 702 } 703 704 for (i = 0, j = 0; i < opp_table->regulator_count; i++) { 705 if (microvolt) { 706 opp->supplies[i].u_volt = microvolt[j++]; 707 708 if (triplet) { 709 opp->supplies[i].u_volt_min = microvolt[j++]; 710 opp->supplies[i].u_volt_max = microvolt[j++]; 711 } else { 712 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; 713 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; 714 } 715 } 716 717 if (microamp) 718 opp->supplies[i].u_amp = microamp[i]; 719 720 if (microwatt) 721 opp->supplies[i].u_watt = microwatt[i]; 722 } 723 724 kfree(microwatt); 725 free_microamp: 726 kfree(microamp); 727 free_microvolt: 728 kfree(microvolt); 729 730 return ret; 731 } 732 733 /** 734 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT 735 * entries 736 * @dev: device pointer used to lookup OPP table. 737 * 738 * Free OPPs created using static entries present in DT. 739 */ 740 void dev_pm_opp_of_remove_table(struct device *dev) 741 { 742 dev_pm_opp_remove_table(dev); 743 } 744 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); 745 746 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 747 struct device_node *np) 748 { 749 struct property *prop; 750 int i, count, ret; 751 u64 *rates; 752 753 prop = of_find_property(np, "opp-hz", NULL); 754 if (!prop) 755 return -ENODEV; 756 757 count = prop->length / sizeof(u64); 758 if (opp_table->clk_count != count) { 759 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n", 760 __func__, count, opp_table->clk_count); 761 return -EINVAL; 762 } 763 764 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL); 765 if (!rates) 766 return -ENOMEM; 767 768 ret = of_property_read_u64_array(np, "opp-hz", rates, count); 769 if (ret) { 770 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret); 771 } else { 772 /* 773 * Rate is defined as an unsigned long in clk API, and so 774 * casting explicitly to its type. Must be fixed once rate is 64 775 * bit guaranteed in clk API. 776 */ 777 for (i = 0; i < count; i++) { 778 new_opp->rates[i] = (unsigned long)rates[i]; 779 780 /* This will happen for frequencies > 4.29 GHz */ 781 WARN_ON(new_opp->rates[i] != rates[i]); 782 } 783 } 784 785 kfree(rates); 786 787 return ret; 788 } 789 790 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table, 791 struct device_node *np, bool peak) 792 { 793 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; 794 struct property *prop; 795 int i, count, ret; 796 u32 *bw; 797 798 prop = of_find_property(np, name, NULL); 799 if (!prop) 800 return -ENODEV; 801 802 count = prop->length / sizeof(u32); 803 if (opp_table->path_count != count) { 804 pr_err("%s: Mismatch between %s and paths (%d %d)\n", 805 __func__, name, count, opp_table->path_count); 806 return -EINVAL; 807 } 808 809 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); 810 if (!bw) 811 return -ENOMEM; 812 813 ret = of_property_read_u32_array(np, name, bw, count); 814 if (ret) { 815 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); 816 goto out; 817 } 818 819 for (i = 0; i < count; i++) { 820 if (peak) 821 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); 822 else 823 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); 824 } 825 826 out: 827 kfree(bw); 828 return ret; 829 } 830 831 static int _read_opp_key(struct dev_pm_opp *new_opp, 832 struct opp_table *opp_table, struct device_node *np) 833 { 834 bool found = false; 835 int ret; 836 837 ret = _read_rate(new_opp, opp_table, np); 838 if (!ret) 839 found = true; 840 else if (ret != -ENODEV) 841 return ret; 842 843 /* 844 * Bandwidth consists of peak and average (optional) values: 845 * opp-peak-kBps = <path1_value path2_value>; 846 * opp-avg-kBps = <path1_value path2_value>; 847 */ 848 ret = _read_bw(new_opp, opp_table, np, true); 849 if (!ret) { 850 found = true; 851 ret = _read_bw(new_opp, opp_table, np, false); 852 } 853 854 /* The properties were found but we failed to parse them */ 855 if (ret && ret != -ENODEV) 856 return ret; 857 858 if (!of_property_read_u32(np, "opp-level", &new_opp->level)) 859 found = true; 860 861 if (found) 862 return 0; 863 864 return ret; 865 } 866 867 /** 868 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) 869 * @opp_table: OPP table 870 * @dev: device for which we do this operation 871 * @np: device node 872 * 873 * This function adds an opp definition to the opp table and returns status. The 874 * opp can be controlled using dev_pm_opp_enable/disable functions and may be 875 * removed by dev_pm_opp_remove. 876 * 877 * Return: 878 * Valid OPP pointer: 879 * On success 880 * NULL: 881 * Duplicate OPPs (both freq and volt are same) and opp->available 882 * OR if the OPP is not supported by hardware. 883 * ERR_PTR(-EEXIST): 884 * Freq are same and volt are different OR 885 * Duplicate OPPs (both freq and volt are same) and !opp->available 886 * ERR_PTR(-ENOMEM): 887 * Memory allocation failure 888 * ERR_PTR(-EINVAL): 889 * Failed parsing the OPP node 890 */ 891 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, 892 struct device *dev, struct device_node *np) 893 { 894 struct dev_pm_opp *new_opp; 895 u32 val; 896 int ret; 897 898 new_opp = _opp_allocate(opp_table); 899 if (!new_opp) 900 return ERR_PTR(-ENOMEM); 901 902 ret = _read_opp_key(new_opp, opp_table, np); 903 if (ret < 0) { 904 dev_err(dev, "%s: opp key field not found\n", __func__); 905 goto free_opp; 906 } 907 908 /* Check if the OPP supports hardware's hierarchy of versions or not */ 909 if (!_opp_is_supported(dev, opp_table, np)) { 910 dev_dbg(dev, "OPP not supported by hardware: %s\n", 911 of_node_full_name(np)); 912 goto free_opp; 913 } 914 915 new_opp->turbo = of_property_read_bool(np, "turbo-mode"); 916 917 new_opp->np = of_node_get(np); 918 new_opp->dynamic = false; 919 new_opp->available = true; 920 921 ret = _of_opp_alloc_required_opps(opp_table, new_opp); 922 if (ret) 923 goto free_opp; 924 925 if (!of_property_read_u32(np, "clock-latency-ns", &val)) 926 new_opp->clock_latency_ns = val; 927 928 ret = opp_parse_supplies(new_opp, dev, opp_table); 929 if (ret) 930 goto free_required_opps; 931 932 if (opp_table->is_genpd) 933 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp); 934 935 ret = _opp_add(dev, new_opp, opp_table); 936 if (ret) { 937 /* Don't return error for duplicate OPPs */ 938 if (ret == -EBUSY) 939 ret = 0; 940 goto free_required_opps; 941 } 942 943 /* OPP to select on device suspend */ 944 if (of_property_read_bool(np, "opp-suspend")) { 945 if (opp_table->suspend_opp) { 946 /* Pick the OPP with higher rate/bw/level as suspend OPP */ 947 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) { 948 opp_table->suspend_opp->suspend = false; 949 new_opp->suspend = true; 950 opp_table->suspend_opp = new_opp; 951 } 952 } else { 953 new_opp->suspend = true; 954 opp_table->suspend_opp = new_opp; 955 } 956 } 957 958 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) 959 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; 960 961 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", 962 __func__, new_opp->turbo, new_opp->rates[0], 963 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, 964 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, 965 new_opp->level); 966 967 /* 968 * Notify the changes in the availability of the operable 969 * frequency/voltage list. 970 */ 971 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 972 return new_opp; 973 974 free_required_opps: 975 _of_opp_free_required_opps(opp_table, new_opp); 976 free_opp: 977 _opp_free(new_opp); 978 979 return ret ? ERR_PTR(ret) : NULL; 980 } 981 982 /* Initializes OPP tables based on new bindings */ 983 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) 984 { 985 struct device_node *np; 986 int ret, count = 0; 987 struct dev_pm_opp *opp; 988 989 /* OPP table is already initialized for the device */ 990 mutex_lock(&opp_table->lock); 991 if (opp_table->parsed_static_opps) { 992 opp_table->parsed_static_opps++; 993 mutex_unlock(&opp_table->lock); 994 return 0; 995 } 996 997 opp_table->parsed_static_opps = 1; 998 mutex_unlock(&opp_table->lock); 999 1000 /* We have opp-table node now, iterate over it and add OPPs */ 1001 for_each_available_child_of_node(opp_table->np, np) { 1002 opp = _opp_add_static_v2(opp_table, dev, np); 1003 if (IS_ERR(opp)) { 1004 ret = PTR_ERR(opp); 1005 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, 1006 ret); 1007 of_node_put(np); 1008 goto remove_static_opp; 1009 } else if (opp) { 1010 count++; 1011 } 1012 } 1013 1014 /* There should be one or more OPPs defined */ 1015 if (!count) { 1016 dev_err(dev, "%s: no supported OPPs", __func__); 1017 ret = -ENOENT; 1018 goto remove_static_opp; 1019 } 1020 1021 list_for_each_entry(opp, &opp_table->opp_list, node) { 1022 /* Any non-zero performance state would enable the feature */ 1023 if (opp->pstate) { 1024 opp_table->genpd_performance_state = true; 1025 break; 1026 } 1027 } 1028 1029 lazy_link_required_opp_table(opp_table); 1030 1031 return 0; 1032 1033 remove_static_opp: 1034 _opp_remove_all_static(opp_table); 1035 1036 return ret; 1037 } 1038 1039 /* Initializes OPP tables based on old-deprecated bindings */ 1040 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) 1041 { 1042 const struct property *prop; 1043 const __be32 *val; 1044 int nr, ret = 0; 1045 1046 mutex_lock(&opp_table->lock); 1047 if (opp_table->parsed_static_opps) { 1048 opp_table->parsed_static_opps++; 1049 mutex_unlock(&opp_table->lock); 1050 return 0; 1051 } 1052 1053 opp_table->parsed_static_opps = 1; 1054 mutex_unlock(&opp_table->lock); 1055 1056 prop = of_find_property(dev->of_node, "operating-points", NULL); 1057 if (!prop) { 1058 ret = -ENODEV; 1059 goto remove_static_opp; 1060 } 1061 if (!prop->value) { 1062 ret = -ENODATA; 1063 goto remove_static_opp; 1064 } 1065 1066 /* 1067 * Each OPP is a set of tuples consisting of frequency and 1068 * voltage like <freq-kHz vol-uV>. 1069 */ 1070 nr = prop->length / sizeof(u32); 1071 if (nr % 2) { 1072 dev_err(dev, "%s: Invalid OPP table\n", __func__); 1073 ret = -EINVAL; 1074 goto remove_static_opp; 1075 } 1076 1077 val = prop->value; 1078 while (nr) { 1079 unsigned long freq = be32_to_cpup(val++) * 1000; 1080 unsigned long volt = be32_to_cpup(val++); 1081 1082 ret = _opp_add_v1(opp_table, dev, freq, volt, false); 1083 if (ret) { 1084 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", 1085 __func__, freq, ret); 1086 goto remove_static_opp; 1087 } 1088 nr -= 2; 1089 } 1090 1091 return 0; 1092 1093 remove_static_opp: 1094 _opp_remove_all_static(opp_table); 1095 1096 return ret; 1097 } 1098 1099 static int _of_add_table_indexed(struct device *dev, int index) 1100 { 1101 struct opp_table *opp_table; 1102 int ret, count; 1103 1104 if (index) { 1105 /* 1106 * If only one phandle is present, then the same OPP table 1107 * applies for all index requests. 1108 */ 1109 count = of_count_phandle_with_args(dev->of_node, 1110 "operating-points-v2", NULL); 1111 if (count == 1) 1112 index = 0; 1113 } 1114 1115 opp_table = _add_opp_table_indexed(dev, index, true); 1116 if (IS_ERR(opp_table)) 1117 return PTR_ERR(opp_table); 1118 1119 /* 1120 * OPPs have two version of bindings now. Also try the old (v1) 1121 * bindings for backward compatibility with older dtbs. 1122 */ 1123 if (opp_table->np) 1124 ret = _of_add_opp_table_v2(dev, opp_table); 1125 else 1126 ret = _of_add_opp_table_v1(dev, opp_table); 1127 1128 if (ret) 1129 dev_pm_opp_put_opp_table(opp_table); 1130 1131 return ret; 1132 } 1133 1134 static void devm_pm_opp_of_table_release(void *data) 1135 { 1136 dev_pm_opp_of_remove_table(data); 1137 } 1138 1139 static int _devm_of_add_table_indexed(struct device *dev, int index) 1140 { 1141 int ret; 1142 1143 ret = _of_add_table_indexed(dev, index); 1144 if (ret) 1145 return ret; 1146 1147 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); 1148 } 1149 1150 /** 1151 * devm_pm_opp_of_add_table() - Initialize opp table from device tree 1152 * @dev: device pointer used to lookup OPP table. 1153 * 1154 * Register the initial OPP table with the OPP library for given device. 1155 * 1156 * The opp_table structure will be freed after the device is destroyed. 1157 * 1158 * Return: 1159 * 0 On success OR 1160 * Duplicate OPPs (both freq and volt are same) and opp->available 1161 * -EEXIST Freq are same and volt are different OR 1162 * Duplicate OPPs (both freq and volt are same) and !opp->available 1163 * -ENOMEM Memory allocation failure 1164 * -ENODEV when 'operating-points' property is not found or is invalid data 1165 * in device node. 1166 * -ENODATA when empty 'operating-points' property is found 1167 * -EINVAL when invalid entries are found in opp-v2 table 1168 */ 1169 int devm_pm_opp_of_add_table(struct device *dev) 1170 { 1171 return _devm_of_add_table_indexed(dev, 0); 1172 } 1173 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); 1174 1175 /** 1176 * dev_pm_opp_of_add_table() - Initialize opp table from device tree 1177 * @dev: device pointer used to lookup OPP table. 1178 * 1179 * Register the initial OPP table with the OPP library for given device. 1180 * 1181 * Return: 1182 * 0 On success OR 1183 * Duplicate OPPs (both freq and volt are same) and opp->available 1184 * -EEXIST Freq are same and volt are different OR 1185 * Duplicate OPPs (both freq and volt are same) and !opp->available 1186 * -ENOMEM Memory allocation failure 1187 * -ENODEV when 'operating-points' property is not found or is invalid data 1188 * in device node. 1189 * -ENODATA when empty 'operating-points' property is found 1190 * -EINVAL when invalid entries are found in opp-v2 table 1191 */ 1192 int dev_pm_opp_of_add_table(struct device *dev) 1193 { 1194 return _of_add_table_indexed(dev, 0); 1195 } 1196 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); 1197 1198 /** 1199 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1200 * @dev: device pointer used to lookup OPP table. 1201 * @index: Index number. 1202 * 1203 * Register the initial OPP table with the OPP library for given device only 1204 * using the "operating-points-v2" property. 1205 * 1206 * Return: Refer to dev_pm_opp_of_add_table() for return values. 1207 */ 1208 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) 1209 { 1210 return _of_add_table_indexed(dev, index); 1211 } 1212 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); 1213 1214 /** 1215 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree 1216 * @dev: device pointer used to lookup OPP table. 1217 * @index: Index number. 1218 * 1219 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). 1220 */ 1221 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) 1222 { 1223 return _devm_of_add_table_indexed(dev, index); 1224 } 1225 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); 1226 1227 /* CPU device specific helpers */ 1228 1229 /** 1230 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask 1231 * @cpumask: cpumask for which OPP table needs to be removed 1232 * 1233 * This removes the OPP tables for CPUs present in the @cpumask. 1234 * This should be used only to remove static entries created from DT. 1235 */ 1236 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) 1237 { 1238 _dev_pm_opp_cpumask_remove_table(cpumask, -1); 1239 } 1240 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); 1241 1242 /** 1243 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask 1244 * @cpumask: cpumask for which OPP table needs to be added. 1245 * 1246 * This adds the OPP tables for CPUs present in the @cpumask. 1247 */ 1248 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) 1249 { 1250 struct device *cpu_dev; 1251 int cpu, ret; 1252 1253 if (WARN_ON(cpumask_empty(cpumask))) 1254 return -ENODEV; 1255 1256 for_each_cpu(cpu, cpumask) { 1257 cpu_dev = get_cpu_device(cpu); 1258 if (!cpu_dev) { 1259 pr_err("%s: failed to get cpu%d device\n", __func__, 1260 cpu); 1261 ret = -ENODEV; 1262 goto remove_table; 1263 } 1264 1265 ret = dev_pm_opp_of_add_table(cpu_dev); 1266 if (ret) { 1267 /* 1268 * OPP may get registered dynamically, don't print error 1269 * message here. 1270 */ 1271 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", 1272 __func__, cpu, ret); 1273 1274 goto remove_table; 1275 } 1276 } 1277 1278 return 0; 1279 1280 remove_table: 1281 /* Free all other OPPs */ 1282 _dev_pm_opp_cpumask_remove_table(cpumask, cpu); 1283 1284 return ret; 1285 } 1286 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); 1287 1288 /* 1289 * Works only for OPP v2 bindings. 1290 * 1291 * Returns -ENOENT if operating-points-v2 bindings aren't supported. 1292 */ 1293 /** 1294 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with 1295 * @cpu_dev using operating-points-v2 1296 * bindings. 1297 * 1298 * @cpu_dev: CPU device for which we do this operation 1299 * @cpumask: cpumask to update with information of sharing CPUs 1300 * 1301 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. 1302 * 1303 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. 1304 */ 1305 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, 1306 struct cpumask *cpumask) 1307 { 1308 struct device_node *np, *tmp_np, *cpu_np; 1309 int cpu, ret = 0; 1310 1311 /* Get OPP descriptor node */ 1312 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 1313 if (!np) { 1314 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); 1315 return -ENOENT; 1316 } 1317 1318 cpumask_set_cpu(cpu_dev->id, cpumask); 1319 1320 /* OPPs are shared ? */ 1321 if (!of_property_read_bool(np, "opp-shared")) 1322 goto put_cpu_node; 1323 1324 for_each_possible_cpu(cpu) { 1325 if (cpu == cpu_dev->id) 1326 continue; 1327 1328 cpu_np = of_cpu_device_node_get(cpu); 1329 if (!cpu_np) { 1330 dev_err(cpu_dev, "%s: failed to get cpu%d node\n", 1331 __func__, cpu); 1332 ret = -ENOENT; 1333 goto put_cpu_node; 1334 } 1335 1336 /* Get OPP descriptor node */ 1337 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); 1338 of_node_put(cpu_np); 1339 if (!tmp_np) { 1340 pr_err("%pOF: Couldn't find opp node\n", cpu_np); 1341 ret = -ENOENT; 1342 goto put_cpu_node; 1343 } 1344 1345 /* CPUs are sharing opp node */ 1346 if (np == tmp_np) 1347 cpumask_set_cpu(cpu, cpumask); 1348 1349 of_node_put(tmp_np); 1350 } 1351 1352 put_cpu_node: 1353 of_node_put(np); 1354 return ret; 1355 } 1356 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); 1357 1358 /** 1359 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. 1360 * @np: Node that contains the "required-opps" property. 1361 * @index: Index of the phandle to parse. 1362 * 1363 * Returns the performance state of the OPP pointed out by the "required-opps" 1364 * property at @index in @np. 1365 * 1366 * Return: Zero or positive performance state on success, otherwise negative 1367 * value on errors. 1368 */ 1369 int of_get_required_opp_performance_state(struct device_node *np, int index) 1370 { 1371 struct dev_pm_opp *opp; 1372 struct device_node *required_np; 1373 struct opp_table *opp_table; 1374 int pstate = -EINVAL; 1375 1376 required_np = of_parse_required_opp(np, index); 1377 if (!required_np) 1378 return -ENODEV; 1379 1380 opp_table = _find_table_of_opp_np(required_np); 1381 if (IS_ERR(opp_table)) { 1382 pr_err("%s: Failed to find required OPP table %pOF: %ld\n", 1383 __func__, np, PTR_ERR(opp_table)); 1384 goto put_required_np; 1385 } 1386 1387 opp = _find_opp_of_np(opp_table, required_np); 1388 if (opp) { 1389 pstate = opp->pstate; 1390 dev_pm_opp_put(opp); 1391 } 1392 1393 dev_pm_opp_put_opp_table(opp_table); 1394 1395 put_required_np: 1396 of_node_put(required_np); 1397 1398 return pstate; 1399 } 1400 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); 1401 1402 /** 1403 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp 1404 * @opp: opp for which DT node has to be returned for 1405 * 1406 * Return: DT node corresponding to the opp, else 0 on success. 1407 * 1408 * The caller needs to put the node with of_node_put() after using it. 1409 */ 1410 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) 1411 { 1412 if (IS_ERR_OR_NULL(opp)) { 1413 pr_err("%s: Invalid parameters\n", __func__); 1414 return NULL; 1415 } 1416 1417 return of_node_get(opp->np); 1418 } 1419 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); 1420 1421 /* 1422 * Callback function provided to the Energy Model framework upon registration. 1423 * It provides the power used by @dev at @kHz if it is the frequency of an 1424 * existing OPP, or at the frequency of the first OPP above @kHz otherwise 1425 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1426 * frequency and @uW to the associated power. 1427 * 1428 * Returns 0 on success or a proper -EINVAL value in case of error. 1429 */ 1430 static int __maybe_unused 1431 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz) 1432 { 1433 struct dev_pm_opp *opp; 1434 unsigned long opp_freq, opp_power; 1435 1436 /* Find the right frequency and related OPP */ 1437 opp_freq = *kHz * 1000; 1438 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq); 1439 if (IS_ERR(opp)) 1440 return -EINVAL; 1441 1442 opp_power = dev_pm_opp_get_power(opp); 1443 dev_pm_opp_put(opp); 1444 if (!opp_power) 1445 return -EINVAL; 1446 1447 *kHz = opp_freq / 1000; 1448 *uW = opp_power; 1449 1450 return 0; 1451 } 1452 1453 /* 1454 * Callback function provided to the Energy Model framework upon registration. 1455 * This computes the power estimated by @dev at @kHz if it is the frequency 1456 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise 1457 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled 1458 * frequency and @uW to the associated power. The power is estimated as 1459 * P = C * V^2 * f with C being the device's capacitance and V and f 1460 * respectively the voltage and frequency of the OPP. 1461 * 1462 * Returns -EINVAL if the power calculation failed because of missing 1463 * parameters, 0 otherwise. 1464 */ 1465 static int __maybe_unused _get_power(struct device *dev, unsigned long *uW, 1466 unsigned long *kHz) 1467 { 1468 struct dev_pm_opp *opp; 1469 struct device_node *np; 1470 unsigned long mV, Hz; 1471 u32 cap; 1472 u64 tmp; 1473 int ret; 1474 1475 np = of_node_get(dev->of_node); 1476 if (!np) 1477 return -EINVAL; 1478 1479 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1480 of_node_put(np); 1481 if (ret) 1482 return -EINVAL; 1483 1484 Hz = *kHz * 1000; 1485 opp = dev_pm_opp_find_freq_ceil(dev, &Hz); 1486 if (IS_ERR(opp)) 1487 return -EINVAL; 1488 1489 mV = dev_pm_opp_get_voltage(opp) / 1000; 1490 dev_pm_opp_put(opp); 1491 if (!mV) 1492 return -EINVAL; 1493 1494 tmp = (u64)cap * mV * mV * (Hz / 1000000); 1495 /* Provide power in micro-Watts */ 1496 do_div(tmp, 1000000); 1497 1498 *uW = (unsigned long)tmp; 1499 *kHz = Hz / 1000; 1500 1501 return 0; 1502 } 1503 1504 static bool _of_has_opp_microwatt_property(struct device *dev) 1505 { 1506 unsigned long power, freq = 0; 1507 struct dev_pm_opp *opp; 1508 1509 /* Check if at least one OPP has needed property */ 1510 opp = dev_pm_opp_find_freq_ceil(dev, &freq); 1511 if (IS_ERR(opp)) 1512 return false; 1513 1514 power = dev_pm_opp_get_power(opp); 1515 dev_pm_opp_put(opp); 1516 if (!power) 1517 return false; 1518 1519 return true; 1520 } 1521 1522 /** 1523 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model 1524 * @dev : Device for which an Energy Model has to be registered 1525 * @cpus : CPUs for which an Energy Model has to be registered. For 1526 * other type of devices it should be set to NULL. 1527 * 1528 * This checks whether the "dynamic-power-coefficient" devicetree property has 1529 * been specified, and tries to register an Energy Model with it if it has. 1530 * Having this property means the voltages are known for OPPs and the EM 1531 * might be calculated. 1532 */ 1533 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) 1534 { 1535 struct em_data_callback em_cb; 1536 struct device_node *np; 1537 int ret, nr_opp; 1538 u32 cap; 1539 1540 if (IS_ERR_OR_NULL(dev)) { 1541 ret = -EINVAL; 1542 goto failed; 1543 } 1544 1545 nr_opp = dev_pm_opp_get_opp_count(dev); 1546 if (nr_opp <= 0) { 1547 ret = -EINVAL; 1548 goto failed; 1549 } 1550 1551 /* First, try to find more precised Energy Model in DT */ 1552 if (_of_has_opp_microwatt_property(dev)) { 1553 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power); 1554 goto register_em; 1555 } 1556 1557 np = of_node_get(dev->of_node); 1558 if (!np) { 1559 ret = -EINVAL; 1560 goto failed; 1561 } 1562 1563 /* 1564 * Register an EM only if the 'dynamic-power-coefficient' property is 1565 * set in devicetree. It is assumed the voltage values are known if that 1566 * property is set since it is useless otherwise. If voltages are not 1567 * known, just let the EM registration fail with an error to alert the 1568 * user about the inconsistent configuration. 1569 */ 1570 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); 1571 of_node_put(np); 1572 if (ret || !cap) { 1573 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); 1574 ret = -EINVAL; 1575 goto failed; 1576 } 1577 1578 EM_SET_ACTIVE_POWER_CB(em_cb, _get_power); 1579 1580 register_em: 1581 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); 1582 if (ret) 1583 goto failed; 1584 1585 return 0; 1586 1587 failed: 1588 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); 1589 return ret; 1590 } 1591 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); 1592