xref: /openbmc/linux/drivers/opp/core.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * Generic OPP Interface
3  *
4  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
5  *	Nishanth Menon
6  *	Romit Dasgupta
7  *	Kevin Hilman
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/pm_domain.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include "opp.h"
26 
27 /*
28  * The root of the list of all opp-tables. All opp_table structures branch off
29  * from here, with each opp_table containing the list of opps it supports in
30  * various states of availability.
31  */
32 LIST_HEAD(opp_tables);
33 /* Lock to allow exclusive modification to the device and opp lists */
34 DEFINE_MUTEX(opp_table_lock);
35 
36 static struct opp_device *_find_opp_dev(const struct device *dev,
37 					struct opp_table *opp_table)
38 {
39 	struct opp_device *opp_dev;
40 
41 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 		if (opp_dev->dev == dev)
43 			return opp_dev;
44 
45 	return NULL;
46 }
47 
48 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
49 {
50 	struct opp_table *opp_table;
51 	bool found;
52 
53 	list_for_each_entry(opp_table, &opp_tables, node) {
54 		mutex_lock(&opp_table->lock);
55 		found = !!_find_opp_dev(dev, opp_table);
56 		mutex_unlock(&opp_table->lock);
57 
58 		if (found) {
59 			_get_opp_table_kref(opp_table);
60 
61 			return opp_table;
62 		}
63 	}
64 
65 	return ERR_PTR(-ENODEV);
66 }
67 
68 /**
69  * _find_opp_table() - find opp_table struct using device pointer
70  * @dev:	device pointer used to lookup OPP table
71  *
72  * Search OPP table for one containing matching device.
73  *
74  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
75  * -EINVAL based on type of error.
76  *
77  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
78  */
79 struct opp_table *_find_opp_table(struct device *dev)
80 {
81 	struct opp_table *opp_table;
82 
83 	if (IS_ERR_OR_NULL(dev)) {
84 		pr_err("%s: Invalid parameters\n", __func__);
85 		return ERR_PTR(-EINVAL);
86 	}
87 
88 	mutex_lock(&opp_table_lock);
89 	opp_table = _find_opp_table_unlocked(dev);
90 	mutex_unlock(&opp_table_lock);
91 
92 	return opp_table;
93 }
94 
95 /**
96  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
97  * @opp:	opp for which voltage has to be returned for
98  *
99  * Return: voltage in micro volt corresponding to the opp, else
100  * return 0
101  *
102  * This is useful only for devices with single power supply.
103  */
104 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
105 {
106 	if (IS_ERR_OR_NULL(opp)) {
107 		pr_err("%s: Invalid parameters\n", __func__);
108 		return 0;
109 	}
110 
111 	return opp->supplies[0].u_volt;
112 }
113 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
114 
115 /**
116  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
117  * @opp:	opp for which frequency has to be returned for
118  *
119  * Return: frequency in hertz corresponding to the opp, else
120  * return 0
121  */
122 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
123 {
124 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
125 		pr_err("%s: Invalid parameters\n", __func__);
126 		return 0;
127 	}
128 
129 	return opp->rate;
130 }
131 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
132 
133 /**
134  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
135  * @opp: opp for which turbo mode is being verified
136  *
137  * Turbo OPPs are not for normal use, and can be enabled (under certain
138  * conditions) for short duration of times to finish high throughput work
139  * quickly. Running on them for longer times may overheat the chip.
140  *
141  * Return: true if opp is turbo opp, else false.
142  */
143 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
144 {
145 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
146 		pr_err("%s: Invalid parameters\n", __func__);
147 		return false;
148 	}
149 
150 	return opp->turbo;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
153 
154 /**
155  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
156  * @dev:	device for which we do this operation
157  *
158  * Return: This function returns the max clock latency in nanoseconds.
159  */
160 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
161 {
162 	struct opp_table *opp_table;
163 	unsigned long clock_latency_ns;
164 
165 	opp_table = _find_opp_table(dev);
166 	if (IS_ERR(opp_table))
167 		return 0;
168 
169 	clock_latency_ns = opp_table->clock_latency_ns_max;
170 
171 	dev_pm_opp_put_opp_table(opp_table);
172 
173 	return clock_latency_ns;
174 }
175 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
176 
177 /**
178  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
179  * @dev: device for which we do this operation
180  *
181  * Return: This function returns the max voltage latency in nanoseconds.
182  */
183 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
184 {
185 	struct opp_table *opp_table;
186 	struct dev_pm_opp *opp;
187 	struct regulator *reg;
188 	unsigned long latency_ns = 0;
189 	int ret, i, count;
190 	struct {
191 		unsigned long min;
192 		unsigned long max;
193 	} *uV;
194 
195 	opp_table = _find_opp_table(dev);
196 	if (IS_ERR(opp_table))
197 		return 0;
198 
199 	count = opp_table->regulator_count;
200 
201 	/* Regulator may not be required for the device */
202 	if (!count)
203 		goto put_opp_table;
204 
205 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
206 	if (!uV)
207 		goto put_opp_table;
208 
209 	mutex_lock(&opp_table->lock);
210 
211 	for (i = 0; i < count; i++) {
212 		uV[i].min = ~0;
213 		uV[i].max = 0;
214 
215 		list_for_each_entry(opp, &opp_table->opp_list, node) {
216 			if (!opp->available)
217 				continue;
218 
219 			if (opp->supplies[i].u_volt_min < uV[i].min)
220 				uV[i].min = opp->supplies[i].u_volt_min;
221 			if (opp->supplies[i].u_volt_max > uV[i].max)
222 				uV[i].max = opp->supplies[i].u_volt_max;
223 		}
224 	}
225 
226 	mutex_unlock(&opp_table->lock);
227 
228 	/*
229 	 * The caller needs to ensure that opp_table (and hence the regulator)
230 	 * isn't freed, while we are executing this routine.
231 	 */
232 	for (i = 0; i < count; i++) {
233 		reg = opp_table->regulators[i];
234 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
235 		if (ret > 0)
236 			latency_ns += ret * 1000;
237 	}
238 
239 	kfree(uV);
240 put_opp_table:
241 	dev_pm_opp_put_opp_table(opp_table);
242 
243 	return latency_ns;
244 }
245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
246 
247 /**
248  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
249  *					     nanoseconds
250  * @dev: device for which we do this operation
251  *
252  * Return: This function returns the max transition latency, in nanoseconds, to
253  * switch from one OPP to other.
254  */
255 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
256 {
257 	return dev_pm_opp_get_max_volt_latency(dev) +
258 		dev_pm_opp_get_max_clock_latency(dev);
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
261 
262 /**
263  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
264  * @dev:	device for which we do this operation
265  *
266  * Return: This function returns the frequency of the OPP marked as suspend_opp
267  * if one is available, else returns 0;
268  */
269 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
270 {
271 	struct opp_table *opp_table;
272 	unsigned long freq = 0;
273 
274 	opp_table = _find_opp_table(dev);
275 	if (IS_ERR(opp_table))
276 		return 0;
277 
278 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
279 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
280 
281 	dev_pm_opp_put_opp_table(opp_table);
282 
283 	return freq;
284 }
285 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
286 
287 int _get_opp_count(struct opp_table *opp_table)
288 {
289 	struct dev_pm_opp *opp;
290 	int count = 0;
291 
292 	mutex_lock(&opp_table->lock);
293 
294 	list_for_each_entry(opp, &opp_table->opp_list, node) {
295 		if (opp->available)
296 			count++;
297 	}
298 
299 	mutex_unlock(&opp_table->lock);
300 
301 	return count;
302 }
303 
304 /**
305  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
306  * @dev:	device for which we do this operation
307  *
308  * Return: This function returns the number of available opps if there are any,
309  * else returns 0 if none or the corresponding error value.
310  */
311 int dev_pm_opp_get_opp_count(struct device *dev)
312 {
313 	struct opp_table *opp_table;
314 	int count;
315 
316 	opp_table = _find_opp_table(dev);
317 	if (IS_ERR(opp_table)) {
318 		count = PTR_ERR(opp_table);
319 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
320 			__func__, count);
321 		return count;
322 	}
323 
324 	count = _get_opp_count(opp_table);
325 	dev_pm_opp_put_opp_table(opp_table);
326 
327 	return count;
328 }
329 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
330 
331 /**
332  * dev_pm_opp_find_freq_exact() - search for an exact frequency
333  * @dev:		device for which we do this operation
334  * @freq:		frequency to search for
335  * @available:		true/false - match for available opp
336  *
337  * Return: Searches for exact match in the opp table and returns pointer to the
338  * matching opp if found, else returns ERR_PTR in case of error and should
339  * be handled using IS_ERR. Error return values can be:
340  * EINVAL:	for bad pointer
341  * ERANGE:	no match found for search
342  * ENODEV:	if device not found in list of registered devices
343  *
344  * Note: available is a modifier for the search. if available=true, then the
345  * match is for exact matching frequency and is available in the stored OPP
346  * table. if false, the match is for exact frequency which is not available.
347  *
348  * This provides a mechanism to enable an opp which is not available currently
349  * or the opposite as well.
350  *
351  * The callers are required to call dev_pm_opp_put() for the returned OPP after
352  * use.
353  */
354 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
355 					      unsigned long freq,
356 					      bool available)
357 {
358 	struct opp_table *opp_table;
359 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
360 
361 	opp_table = _find_opp_table(dev);
362 	if (IS_ERR(opp_table)) {
363 		int r = PTR_ERR(opp_table);
364 
365 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
366 		return ERR_PTR(r);
367 	}
368 
369 	mutex_lock(&opp_table->lock);
370 
371 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
372 		if (temp_opp->available == available &&
373 				temp_opp->rate == freq) {
374 			opp = temp_opp;
375 
376 			/* Increment the reference count of OPP */
377 			dev_pm_opp_get(opp);
378 			break;
379 		}
380 	}
381 
382 	mutex_unlock(&opp_table->lock);
383 	dev_pm_opp_put_opp_table(opp_table);
384 
385 	return opp;
386 }
387 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
388 
389 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
390 						   unsigned long *freq)
391 {
392 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
393 
394 	mutex_lock(&opp_table->lock);
395 
396 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
397 		if (temp_opp->available && temp_opp->rate >= *freq) {
398 			opp = temp_opp;
399 			*freq = opp->rate;
400 
401 			/* Increment the reference count of OPP */
402 			dev_pm_opp_get(opp);
403 			break;
404 		}
405 	}
406 
407 	mutex_unlock(&opp_table->lock);
408 
409 	return opp;
410 }
411 
412 /**
413  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
414  * @dev:	device for which we do this operation
415  * @freq:	Start frequency
416  *
417  * Search for the matching ceil *available* OPP from a starting freq
418  * for a device.
419  *
420  * Return: matching *opp and refreshes *freq accordingly, else returns
421  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
422  * values can be:
423  * EINVAL:	for bad pointer
424  * ERANGE:	no match found for search
425  * ENODEV:	if device not found in list of registered devices
426  *
427  * The callers are required to call dev_pm_opp_put() for the returned OPP after
428  * use.
429  */
430 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
431 					     unsigned long *freq)
432 {
433 	struct opp_table *opp_table;
434 	struct dev_pm_opp *opp;
435 
436 	if (!dev || !freq) {
437 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
438 		return ERR_PTR(-EINVAL);
439 	}
440 
441 	opp_table = _find_opp_table(dev);
442 	if (IS_ERR(opp_table))
443 		return ERR_CAST(opp_table);
444 
445 	opp = _find_freq_ceil(opp_table, freq);
446 
447 	dev_pm_opp_put_opp_table(opp_table);
448 
449 	return opp;
450 }
451 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
452 
453 /**
454  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
455  * @dev:	device for which we do this operation
456  * @freq:	Start frequency
457  *
458  * Search for the matching floor *available* OPP from a starting freq
459  * for a device.
460  *
461  * Return: matching *opp and refreshes *freq accordingly, else returns
462  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
463  * values can be:
464  * EINVAL:	for bad pointer
465  * ERANGE:	no match found for search
466  * ENODEV:	if device not found in list of registered devices
467  *
468  * The callers are required to call dev_pm_opp_put() for the returned OPP after
469  * use.
470  */
471 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
472 					      unsigned long *freq)
473 {
474 	struct opp_table *opp_table;
475 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
476 
477 	if (!dev || !freq) {
478 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
479 		return ERR_PTR(-EINVAL);
480 	}
481 
482 	opp_table = _find_opp_table(dev);
483 	if (IS_ERR(opp_table))
484 		return ERR_CAST(opp_table);
485 
486 	mutex_lock(&opp_table->lock);
487 
488 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
489 		if (temp_opp->available) {
490 			/* go to the next node, before choosing prev */
491 			if (temp_opp->rate > *freq)
492 				break;
493 			else
494 				opp = temp_opp;
495 		}
496 	}
497 
498 	/* Increment the reference count of OPP */
499 	if (!IS_ERR(opp))
500 		dev_pm_opp_get(opp);
501 	mutex_unlock(&opp_table->lock);
502 	dev_pm_opp_put_opp_table(opp_table);
503 
504 	if (!IS_ERR(opp))
505 		*freq = opp->rate;
506 
507 	return opp;
508 }
509 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
510 
511 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
512 			    struct dev_pm_opp_supply *supply)
513 {
514 	int ret;
515 
516 	/* Regulator not available for device */
517 	if (IS_ERR(reg)) {
518 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
519 			PTR_ERR(reg));
520 		return 0;
521 	}
522 
523 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
524 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
525 
526 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
527 					    supply->u_volt, supply->u_volt_max);
528 	if (ret)
529 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
530 			__func__, supply->u_volt_min, supply->u_volt,
531 			supply->u_volt_max, ret);
532 
533 	return ret;
534 }
535 
536 static inline int
537 _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
538 			  unsigned long old_freq, unsigned long freq)
539 {
540 	int ret;
541 
542 	ret = clk_set_rate(clk, freq);
543 	if (ret) {
544 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
545 			ret);
546 	}
547 
548 	return ret;
549 }
550 
551 static inline int
552 _generic_set_opp_domain(struct device *dev, struct clk *clk,
553 			unsigned long old_freq, unsigned long freq,
554 			unsigned int old_pstate, unsigned int new_pstate)
555 {
556 	int ret;
557 
558 	/* Scaling up? Scale domain performance state before frequency */
559 	if (freq > old_freq) {
560 		ret = dev_pm_genpd_set_performance_state(dev, new_pstate);
561 		if (ret)
562 			return ret;
563 	}
564 
565 	ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq);
566 	if (ret)
567 		goto restore_domain_state;
568 
569 	/* Scaling down? Scale domain performance state after frequency */
570 	if (freq < old_freq) {
571 		ret = dev_pm_genpd_set_performance_state(dev, new_pstate);
572 		if (ret)
573 			goto restore_freq;
574 	}
575 
576 	return 0;
577 
578 restore_freq:
579 	if (_generic_set_opp_clk_only(dev, clk, freq, old_freq))
580 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
581 			__func__, old_freq);
582 restore_domain_state:
583 	if (freq > old_freq)
584 		dev_pm_genpd_set_performance_state(dev, old_pstate);
585 
586 	return ret;
587 }
588 
589 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
590 				      struct device *dev,
591 				      unsigned long old_freq,
592 				      unsigned long freq,
593 				      struct dev_pm_opp_supply *old_supply,
594 				      struct dev_pm_opp_supply *new_supply)
595 {
596 	struct regulator *reg = opp_table->regulators[0];
597 	int ret;
598 
599 	/* This function only supports single regulator per device */
600 	if (WARN_ON(opp_table->regulator_count > 1)) {
601 		dev_err(dev, "multiple regulators are not supported\n");
602 		return -EINVAL;
603 	}
604 
605 	/* Scaling up? Scale voltage before frequency */
606 	if (freq >= old_freq) {
607 		ret = _set_opp_voltage(dev, reg, new_supply);
608 		if (ret)
609 			goto restore_voltage;
610 	}
611 
612 	/* Change frequency */
613 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, old_freq, freq);
614 	if (ret)
615 		goto restore_voltage;
616 
617 	/* Scaling down? Scale voltage after frequency */
618 	if (freq < old_freq) {
619 		ret = _set_opp_voltage(dev, reg, new_supply);
620 		if (ret)
621 			goto restore_freq;
622 	}
623 
624 	return 0;
625 
626 restore_freq:
627 	if (_generic_set_opp_clk_only(dev, opp_table->clk, freq, old_freq))
628 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
629 			__func__, old_freq);
630 restore_voltage:
631 	/* This shouldn't harm even if the voltages weren't updated earlier */
632 	if (old_supply)
633 		_set_opp_voltage(dev, reg, old_supply);
634 
635 	return ret;
636 }
637 
638 /**
639  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
640  * @dev:	 device for which we do this operation
641  * @target_freq: frequency to achieve
642  *
643  * This configures the power-supplies and clock source to the levels specified
644  * by the OPP corresponding to the target_freq.
645  */
646 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
647 {
648 	struct opp_table *opp_table;
649 	unsigned long freq, old_freq;
650 	struct dev_pm_opp *old_opp, *opp;
651 	struct clk *clk;
652 	int ret, size;
653 
654 	if (unlikely(!target_freq)) {
655 		dev_err(dev, "%s: Invalid target frequency %lu\n", __func__,
656 			target_freq);
657 		return -EINVAL;
658 	}
659 
660 	opp_table = _find_opp_table(dev);
661 	if (IS_ERR(opp_table)) {
662 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
663 		return PTR_ERR(opp_table);
664 	}
665 
666 	clk = opp_table->clk;
667 	if (IS_ERR(clk)) {
668 		dev_err(dev, "%s: No clock available for the device\n",
669 			__func__);
670 		ret = PTR_ERR(clk);
671 		goto put_opp_table;
672 	}
673 
674 	freq = clk_round_rate(clk, target_freq);
675 	if ((long)freq <= 0)
676 		freq = target_freq;
677 
678 	old_freq = clk_get_rate(clk);
679 
680 	/* Return early if nothing to do */
681 	if (old_freq == freq) {
682 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
683 			__func__, freq);
684 		ret = 0;
685 		goto put_opp_table;
686 	}
687 
688 	old_opp = _find_freq_ceil(opp_table, &old_freq);
689 	if (IS_ERR(old_opp)) {
690 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
691 			__func__, old_freq, PTR_ERR(old_opp));
692 	}
693 
694 	opp = _find_freq_ceil(opp_table, &freq);
695 	if (IS_ERR(opp)) {
696 		ret = PTR_ERR(opp);
697 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
698 			__func__, freq, ret);
699 		goto put_old_opp;
700 	}
701 
702 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
703 		old_freq, freq);
704 
705 	/* Only frequency scaling */
706 	if (!opp_table->regulators) {
707 		/*
708 		 * We don't support devices with both regulator and
709 		 * domain performance-state for now.
710 		 */
711 		if (opp_table->genpd_performance_state)
712 			ret = _generic_set_opp_domain(dev, clk, old_freq, freq,
713 						      IS_ERR(old_opp) ? 0 : old_opp->pstate,
714 						      opp->pstate);
715 		else
716 			ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq);
717 	} else if (!opp_table->set_opp) {
718 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
719 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
720 						 opp->supplies);
721 	} else {
722 		struct dev_pm_set_opp_data *data;
723 
724 		data = opp_table->set_opp_data;
725 		data->regulators = opp_table->regulators;
726 		data->regulator_count = opp_table->regulator_count;
727 		data->clk = clk;
728 		data->dev = dev;
729 
730 		data->old_opp.rate = old_freq;
731 		size = sizeof(*opp->supplies) * opp_table->regulator_count;
732 		if (IS_ERR(old_opp))
733 			memset(data->old_opp.supplies, 0, size);
734 		else
735 			memcpy(data->old_opp.supplies, old_opp->supplies, size);
736 
737 		data->new_opp.rate = freq;
738 		memcpy(data->new_opp.supplies, opp->supplies, size);
739 
740 		ret = opp_table->set_opp(data);
741 	}
742 
743 	dev_pm_opp_put(opp);
744 put_old_opp:
745 	if (!IS_ERR(old_opp))
746 		dev_pm_opp_put(old_opp);
747 put_opp_table:
748 	dev_pm_opp_put_opp_table(opp_table);
749 	return ret;
750 }
751 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
752 
753 /* OPP-dev Helpers */
754 static void _remove_opp_dev(struct opp_device *opp_dev,
755 			    struct opp_table *opp_table)
756 {
757 	opp_debug_unregister(opp_dev, opp_table);
758 	list_del(&opp_dev->node);
759 	kfree(opp_dev);
760 }
761 
762 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
763 						struct opp_table *opp_table)
764 {
765 	struct opp_device *opp_dev;
766 	int ret;
767 
768 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
769 	if (!opp_dev)
770 		return NULL;
771 
772 	/* Initialize opp-dev */
773 	opp_dev->dev = dev;
774 
775 	list_add(&opp_dev->node, &opp_table->dev_list);
776 
777 	/* Create debugfs entries for the opp_table */
778 	ret = opp_debug_register(opp_dev, opp_table);
779 	if (ret)
780 		dev_err(dev, "%s: Failed to register opp debugfs (%d)\n",
781 			__func__, ret);
782 
783 	return opp_dev;
784 }
785 
786 struct opp_device *_add_opp_dev(const struct device *dev,
787 				struct opp_table *opp_table)
788 {
789 	struct opp_device *opp_dev;
790 
791 	mutex_lock(&opp_table->lock);
792 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
793 	mutex_unlock(&opp_table->lock);
794 
795 	return opp_dev;
796 }
797 
798 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
799 {
800 	struct opp_table *opp_table;
801 	struct opp_device *opp_dev;
802 	int ret;
803 
804 	/*
805 	 * Allocate a new OPP table. In the infrequent case where a new
806 	 * device is needed to be added, we pay this penalty.
807 	 */
808 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
809 	if (!opp_table)
810 		return NULL;
811 
812 	mutex_init(&opp_table->lock);
813 	INIT_LIST_HEAD(&opp_table->dev_list);
814 
815 	opp_dev = _add_opp_dev(dev, opp_table);
816 	if (!opp_dev) {
817 		kfree(opp_table);
818 		return NULL;
819 	}
820 
821 	_of_init_opp_table(opp_table, dev, index);
822 
823 	/* Find clk for the device */
824 	opp_table->clk = clk_get(dev, NULL);
825 	if (IS_ERR(opp_table->clk)) {
826 		ret = PTR_ERR(opp_table->clk);
827 		if (ret != -EPROBE_DEFER)
828 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
829 				ret);
830 	}
831 
832 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
833 	INIT_LIST_HEAD(&opp_table->opp_list);
834 	kref_init(&opp_table->kref);
835 
836 	/* Secure the device table modification */
837 	list_add(&opp_table->node, &opp_tables);
838 	return opp_table;
839 }
840 
841 void _get_opp_table_kref(struct opp_table *opp_table)
842 {
843 	kref_get(&opp_table->kref);
844 }
845 
846 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
847 {
848 	struct opp_table *opp_table;
849 
850 	/* Hold our table modification lock here */
851 	mutex_lock(&opp_table_lock);
852 
853 	opp_table = _find_opp_table_unlocked(dev);
854 	if (!IS_ERR(opp_table))
855 		goto unlock;
856 
857 	opp_table = _managed_opp(dev, index);
858 	if (opp_table) {
859 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
860 			dev_pm_opp_put_opp_table(opp_table);
861 			opp_table = NULL;
862 		}
863 		goto unlock;
864 	}
865 
866 	opp_table = _allocate_opp_table(dev, index);
867 
868 unlock:
869 	mutex_unlock(&opp_table_lock);
870 
871 	return opp_table;
872 }
873 
874 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
875 {
876 	return _opp_get_opp_table(dev, 0);
877 }
878 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
879 
880 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
881 						   int index)
882 {
883 	return _opp_get_opp_table(dev, index);
884 }
885 
886 static void _opp_table_kref_release(struct kref *kref)
887 {
888 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
889 	struct opp_device *opp_dev, *temp;
890 
891 	/* Release clk */
892 	if (!IS_ERR(opp_table->clk))
893 		clk_put(opp_table->clk);
894 
895 	WARN_ON(!list_empty(&opp_table->opp_list));
896 
897 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
898 		/*
899 		 * The OPP table is getting removed, drop the performance state
900 		 * constraints.
901 		 */
902 		if (opp_table->genpd_performance_state)
903 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
904 
905 		_remove_opp_dev(opp_dev, opp_table);
906 	}
907 
908 	mutex_destroy(&opp_table->lock);
909 	list_del(&opp_table->node);
910 	kfree(opp_table);
911 
912 	mutex_unlock(&opp_table_lock);
913 }
914 
915 void _opp_remove_all_static(struct opp_table *opp_table)
916 {
917 	struct dev_pm_opp *opp, *tmp;
918 
919 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
920 		if (!opp->dynamic)
921 			dev_pm_opp_put(opp);
922 	}
923 
924 	opp_table->parsed_static_opps = false;
925 }
926 
927 static void _opp_table_list_kref_release(struct kref *kref)
928 {
929 	struct opp_table *opp_table = container_of(kref, struct opp_table,
930 						   list_kref);
931 
932 	_opp_remove_all_static(opp_table);
933 	mutex_unlock(&opp_table_lock);
934 }
935 
936 void _put_opp_list_kref(struct opp_table *opp_table)
937 {
938 	kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
939 		       &opp_table_lock);
940 }
941 
942 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
943 {
944 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
945 		       &opp_table_lock);
946 }
947 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
948 
949 void _opp_free(struct dev_pm_opp *opp)
950 {
951 	kfree(opp);
952 }
953 
954 static void _opp_kref_release(struct kref *kref)
955 {
956 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
957 	struct opp_table *opp_table = opp->opp_table;
958 
959 	/*
960 	 * Notify the changes in the availability of the operable
961 	 * frequency/voltage list.
962 	 */
963 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
964 	opp_debug_remove_one(opp);
965 	list_del(&opp->node);
966 	kfree(opp);
967 
968 	mutex_unlock(&opp_table->lock);
969 }
970 
971 void dev_pm_opp_get(struct dev_pm_opp *opp)
972 {
973 	kref_get(&opp->kref);
974 }
975 
976 void dev_pm_opp_put(struct dev_pm_opp *opp)
977 {
978 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
979 }
980 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
981 
982 /**
983  * dev_pm_opp_remove()  - Remove an OPP from OPP table
984  * @dev:	device for which we do this operation
985  * @freq:	OPP to remove with matching 'freq'
986  *
987  * This function removes an opp from the opp table.
988  */
989 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
990 {
991 	struct dev_pm_opp *opp;
992 	struct opp_table *opp_table;
993 	bool found = false;
994 
995 	opp_table = _find_opp_table(dev);
996 	if (IS_ERR(opp_table))
997 		return;
998 
999 	mutex_lock(&opp_table->lock);
1000 
1001 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1002 		if (opp->rate == freq) {
1003 			found = true;
1004 			break;
1005 		}
1006 	}
1007 
1008 	mutex_unlock(&opp_table->lock);
1009 
1010 	if (found) {
1011 		dev_pm_opp_put(opp);
1012 
1013 		/* Drop the reference taken by dev_pm_opp_add() */
1014 		dev_pm_opp_put_opp_table(opp_table);
1015 	} else {
1016 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1017 			 __func__, freq);
1018 	}
1019 
1020 	/* Drop the reference taken by _find_opp_table() */
1021 	dev_pm_opp_put_opp_table(opp_table);
1022 }
1023 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1024 
1025 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1026 {
1027 	struct dev_pm_opp *opp;
1028 	int count, supply_size;
1029 
1030 	/* Allocate space for at least one supply */
1031 	count = table->regulator_count ? table->regulator_count : 1;
1032 	supply_size = sizeof(*opp->supplies) * count;
1033 
1034 	/* allocate new OPP node and supplies structures */
1035 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1036 	if (!opp)
1037 		return NULL;
1038 
1039 	/* Put the supplies at the end of the OPP structure as an empty array */
1040 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1041 	INIT_LIST_HEAD(&opp->node);
1042 
1043 	return opp;
1044 }
1045 
1046 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1047 					 struct opp_table *opp_table)
1048 {
1049 	struct regulator *reg;
1050 	int i;
1051 
1052 	for (i = 0; i < opp_table->regulator_count; i++) {
1053 		reg = opp_table->regulators[i];
1054 
1055 		if (!regulator_is_supported_voltage(reg,
1056 					opp->supplies[i].u_volt_min,
1057 					opp->supplies[i].u_volt_max)) {
1058 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1059 				__func__, opp->supplies[i].u_volt_min,
1060 				opp->supplies[i].u_volt_max);
1061 			return false;
1062 		}
1063 	}
1064 
1065 	return true;
1066 }
1067 
1068 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1069 			     struct opp_table *opp_table,
1070 			     struct list_head **head)
1071 {
1072 	struct dev_pm_opp *opp;
1073 
1074 	/*
1075 	 * Insert new OPP in order of increasing frequency and discard if
1076 	 * already present.
1077 	 *
1078 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1079 	 * loop, don't replace it with head otherwise it will become an infinite
1080 	 * loop.
1081 	 */
1082 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1083 		if (new_opp->rate > opp->rate) {
1084 			*head = &opp->node;
1085 			continue;
1086 		}
1087 
1088 		if (new_opp->rate < opp->rate)
1089 			return 0;
1090 
1091 		/* Duplicate OPPs */
1092 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1093 			 __func__, opp->rate, opp->supplies[0].u_volt,
1094 			 opp->available, new_opp->rate,
1095 			 new_opp->supplies[0].u_volt, new_opp->available);
1096 
1097 		/* Should we compare voltages for all regulators here ? */
1098 		return opp->available &&
1099 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Returns:
1107  * 0: On success. And appropriate error message for duplicate OPPs.
1108  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1109  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1110  *  sure we don't print error messages unnecessarily if different parts of
1111  *  kernel try to initialize the OPP table.
1112  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1113  *  should be considered an error by the callers of _opp_add().
1114  */
1115 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1116 	     struct opp_table *opp_table, bool rate_not_available)
1117 {
1118 	struct list_head *head;
1119 	int ret;
1120 
1121 	mutex_lock(&opp_table->lock);
1122 	head = &opp_table->opp_list;
1123 
1124 	if (likely(!rate_not_available)) {
1125 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1126 		if (ret) {
1127 			mutex_unlock(&opp_table->lock);
1128 			return ret;
1129 		}
1130 	}
1131 
1132 	list_add(&new_opp->node, head);
1133 	mutex_unlock(&opp_table->lock);
1134 
1135 	new_opp->opp_table = opp_table;
1136 	kref_init(&new_opp->kref);
1137 
1138 	ret = opp_debug_create_one(new_opp, opp_table);
1139 	if (ret)
1140 		dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n",
1141 			__func__, ret);
1142 
1143 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1144 		new_opp->available = false;
1145 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1146 			 __func__, new_opp->rate);
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 /**
1153  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1154  * @opp_table:	OPP table
1155  * @dev:	device for which we do this operation
1156  * @freq:	Frequency in Hz for this OPP
1157  * @u_volt:	Voltage in uVolts for this OPP
1158  * @dynamic:	Dynamically added OPPs.
1159  *
1160  * This function adds an opp definition to the opp table and returns status.
1161  * The opp is made available by default and it can be controlled using
1162  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1163  *
1164  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1165  * and freed by dev_pm_opp_of_remove_table.
1166  *
1167  * Return:
1168  * 0		On success OR
1169  *		Duplicate OPPs (both freq and volt are same) and opp->available
1170  * -EEXIST	Freq are same and volt are different OR
1171  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1172  * -ENOMEM	Memory allocation failure
1173  */
1174 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1175 		unsigned long freq, long u_volt, bool dynamic)
1176 {
1177 	struct dev_pm_opp *new_opp;
1178 	unsigned long tol;
1179 	int ret;
1180 
1181 	new_opp = _opp_allocate(opp_table);
1182 	if (!new_opp)
1183 		return -ENOMEM;
1184 
1185 	/* populate the opp table */
1186 	new_opp->rate = freq;
1187 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1188 	new_opp->supplies[0].u_volt = u_volt;
1189 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1190 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1191 	new_opp->available = true;
1192 	new_opp->dynamic = dynamic;
1193 
1194 	ret = _opp_add(dev, new_opp, opp_table, false);
1195 	if (ret) {
1196 		/* Don't return error for duplicate OPPs */
1197 		if (ret == -EBUSY)
1198 			ret = 0;
1199 		goto free_opp;
1200 	}
1201 
1202 	/*
1203 	 * Notify the changes in the availability of the operable
1204 	 * frequency/voltage list.
1205 	 */
1206 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1207 	return 0;
1208 
1209 free_opp:
1210 	_opp_free(new_opp);
1211 
1212 	return ret;
1213 }
1214 
1215 /**
1216  * dev_pm_opp_set_supported_hw() - Set supported platforms
1217  * @dev: Device for which supported-hw has to be set.
1218  * @versions: Array of hierarchy of versions to match.
1219  * @count: Number of elements in the array.
1220  *
1221  * This is required only for the V2 bindings, and it enables a platform to
1222  * specify the hierarchy of versions it supports. OPP layer will then enable
1223  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1224  * property.
1225  */
1226 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1227 			const u32 *versions, unsigned int count)
1228 {
1229 	struct opp_table *opp_table;
1230 
1231 	opp_table = dev_pm_opp_get_opp_table(dev);
1232 	if (!opp_table)
1233 		return ERR_PTR(-ENOMEM);
1234 
1235 	/* Make sure there are no concurrent readers while updating opp_table */
1236 	WARN_ON(!list_empty(&opp_table->opp_list));
1237 
1238 	/* Another CPU that shares the OPP table has set the property ? */
1239 	if (opp_table->supported_hw)
1240 		return opp_table;
1241 
1242 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1243 					GFP_KERNEL);
1244 	if (!opp_table->supported_hw) {
1245 		dev_pm_opp_put_opp_table(opp_table);
1246 		return ERR_PTR(-ENOMEM);
1247 	}
1248 
1249 	opp_table->supported_hw_count = count;
1250 
1251 	return opp_table;
1252 }
1253 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1254 
1255 /**
1256  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1257  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1258  *
1259  * This is required only for the V2 bindings, and is called for a matching
1260  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1261  * will not be freed.
1262  */
1263 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1264 {
1265 	/* Make sure there are no concurrent readers while updating opp_table */
1266 	WARN_ON(!list_empty(&opp_table->opp_list));
1267 
1268 	kfree(opp_table->supported_hw);
1269 	opp_table->supported_hw = NULL;
1270 	opp_table->supported_hw_count = 0;
1271 
1272 	dev_pm_opp_put_opp_table(opp_table);
1273 }
1274 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1275 
1276 /**
1277  * dev_pm_opp_set_prop_name() - Set prop-extn name
1278  * @dev: Device for which the prop-name has to be set.
1279  * @name: name to postfix to properties.
1280  *
1281  * This is required only for the V2 bindings, and it enables a platform to
1282  * specify the extn to be used for certain property names. The properties to
1283  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1284  * should postfix the property name with -<name> while looking for them.
1285  */
1286 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1287 {
1288 	struct opp_table *opp_table;
1289 
1290 	opp_table = dev_pm_opp_get_opp_table(dev);
1291 	if (!opp_table)
1292 		return ERR_PTR(-ENOMEM);
1293 
1294 	/* Make sure there are no concurrent readers while updating opp_table */
1295 	WARN_ON(!list_empty(&opp_table->opp_list));
1296 
1297 	/* Another CPU that shares the OPP table has set the property ? */
1298 	if (opp_table->prop_name)
1299 		return opp_table;
1300 
1301 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1302 	if (!opp_table->prop_name) {
1303 		dev_pm_opp_put_opp_table(opp_table);
1304 		return ERR_PTR(-ENOMEM);
1305 	}
1306 
1307 	return opp_table;
1308 }
1309 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1310 
1311 /**
1312  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1313  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1314  *
1315  * This is required only for the V2 bindings, and is called for a matching
1316  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1317  * will not be freed.
1318  */
1319 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1320 {
1321 	/* Make sure there are no concurrent readers while updating opp_table */
1322 	WARN_ON(!list_empty(&opp_table->opp_list));
1323 
1324 	kfree(opp_table->prop_name);
1325 	opp_table->prop_name = NULL;
1326 
1327 	dev_pm_opp_put_opp_table(opp_table);
1328 }
1329 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1330 
1331 static int _allocate_set_opp_data(struct opp_table *opp_table)
1332 {
1333 	struct dev_pm_set_opp_data *data;
1334 	int len, count = opp_table->regulator_count;
1335 
1336 	if (WARN_ON(!count))
1337 		return -EINVAL;
1338 
1339 	/* space for set_opp_data */
1340 	len = sizeof(*data);
1341 
1342 	/* space for old_opp.supplies and new_opp.supplies */
1343 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1344 
1345 	data = kzalloc(len, GFP_KERNEL);
1346 	if (!data)
1347 		return -ENOMEM;
1348 
1349 	data->old_opp.supplies = (void *)(data + 1);
1350 	data->new_opp.supplies = data->old_opp.supplies + count;
1351 
1352 	opp_table->set_opp_data = data;
1353 
1354 	return 0;
1355 }
1356 
1357 static void _free_set_opp_data(struct opp_table *opp_table)
1358 {
1359 	kfree(opp_table->set_opp_data);
1360 	opp_table->set_opp_data = NULL;
1361 }
1362 
1363 /**
1364  * dev_pm_opp_set_regulators() - Set regulator names for the device
1365  * @dev: Device for which regulator name is being set.
1366  * @names: Array of pointers to the names of the regulator.
1367  * @count: Number of regulators.
1368  *
1369  * In order to support OPP switching, OPP layer needs to know the name of the
1370  * device's regulators, as the core would be required to switch voltages as
1371  * well.
1372  *
1373  * This must be called before any OPPs are initialized for the device.
1374  */
1375 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1376 					    const char * const names[],
1377 					    unsigned int count)
1378 {
1379 	struct opp_table *opp_table;
1380 	struct regulator *reg;
1381 	int ret, i;
1382 
1383 	opp_table = dev_pm_opp_get_opp_table(dev);
1384 	if (!opp_table)
1385 		return ERR_PTR(-ENOMEM);
1386 
1387 	/* This should be called before OPPs are initialized */
1388 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1389 		ret = -EBUSY;
1390 		goto err;
1391 	}
1392 
1393 	/* Another CPU that shares the OPP table has set the regulators ? */
1394 	if (opp_table->regulators)
1395 		return opp_table;
1396 
1397 	opp_table->regulators = kmalloc_array(count,
1398 					      sizeof(*opp_table->regulators),
1399 					      GFP_KERNEL);
1400 	if (!opp_table->regulators) {
1401 		ret = -ENOMEM;
1402 		goto err;
1403 	}
1404 
1405 	for (i = 0; i < count; i++) {
1406 		reg = regulator_get_optional(dev, names[i]);
1407 		if (IS_ERR(reg)) {
1408 			ret = PTR_ERR(reg);
1409 			if (ret != -EPROBE_DEFER)
1410 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1411 					__func__, names[i], ret);
1412 			goto free_regulators;
1413 		}
1414 
1415 		opp_table->regulators[i] = reg;
1416 	}
1417 
1418 	opp_table->regulator_count = count;
1419 
1420 	/* Allocate block only once to pass to set_opp() routines */
1421 	ret = _allocate_set_opp_data(opp_table);
1422 	if (ret)
1423 		goto free_regulators;
1424 
1425 	return opp_table;
1426 
1427 free_regulators:
1428 	while (i != 0)
1429 		regulator_put(opp_table->regulators[--i]);
1430 
1431 	kfree(opp_table->regulators);
1432 	opp_table->regulators = NULL;
1433 	opp_table->regulator_count = 0;
1434 err:
1435 	dev_pm_opp_put_opp_table(opp_table);
1436 
1437 	return ERR_PTR(ret);
1438 }
1439 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1440 
1441 /**
1442  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1443  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1444  */
1445 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1446 {
1447 	int i;
1448 
1449 	if (!opp_table->regulators)
1450 		goto put_opp_table;
1451 
1452 	/* Make sure there are no concurrent readers while updating opp_table */
1453 	WARN_ON(!list_empty(&opp_table->opp_list));
1454 
1455 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1456 		regulator_put(opp_table->regulators[i]);
1457 
1458 	_free_set_opp_data(opp_table);
1459 
1460 	kfree(opp_table->regulators);
1461 	opp_table->regulators = NULL;
1462 	opp_table->regulator_count = 0;
1463 
1464 put_opp_table:
1465 	dev_pm_opp_put_opp_table(opp_table);
1466 }
1467 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1468 
1469 /**
1470  * dev_pm_opp_set_clkname() - Set clk name for the device
1471  * @dev: Device for which clk name is being set.
1472  * @name: Clk name.
1473  *
1474  * In order to support OPP switching, OPP layer needs to get pointer to the
1475  * clock for the device. Simple cases work fine without using this routine (i.e.
1476  * by passing connection-id as NULL), but for a device with multiple clocks
1477  * available, the OPP core needs to know the exact name of the clk to use.
1478  *
1479  * This must be called before any OPPs are initialized for the device.
1480  */
1481 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1482 {
1483 	struct opp_table *opp_table;
1484 	int ret;
1485 
1486 	opp_table = dev_pm_opp_get_opp_table(dev);
1487 	if (!opp_table)
1488 		return ERR_PTR(-ENOMEM);
1489 
1490 	/* This should be called before OPPs are initialized */
1491 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1492 		ret = -EBUSY;
1493 		goto err;
1494 	}
1495 
1496 	/* Already have default clk set, free it */
1497 	if (!IS_ERR(opp_table->clk))
1498 		clk_put(opp_table->clk);
1499 
1500 	/* Find clk for the device */
1501 	opp_table->clk = clk_get(dev, name);
1502 	if (IS_ERR(opp_table->clk)) {
1503 		ret = PTR_ERR(opp_table->clk);
1504 		if (ret != -EPROBE_DEFER) {
1505 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1506 				ret);
1507 		}
1508 		goto err;
1509 	}
1510 
1511 	return opp_table;
1512 
1513 err:
1514 	dev_pm_opp_put_opp_table(opp_table);
1515 
1516 	return ERR_PTR(ret);
1517 }
1518 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1519 
1520 /**
1521  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1522  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1523  */
1524 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1525 {
1526 	/* Make sure there are no concurrent readers while updating opp_table */
1527 	WARN_ON(!list_empty(&opp_table->opp_list));
1528 
1529 	clk_put(opp_table->clk);
1530 	opp_table->clk = ERR_PTR(-EINVAL);
1531 
1532 	dev_pm_opp_put_opp_table(opp_table);
1533 }
1534 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1535 
1536 /**
1537  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1538  * @dev: Device for which the helper is getting registered.
1539  * @set_opp: Custom set OPP helper.
1540  *
1541  * This is useful to support complex platforms (like platforms with multiple
1542  * regulators per device), instead of the generic OPP set rate helper.
1543  *
1544  * This must be called before any OPPs are initialized for the device.
1545  */
1546 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1547 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1548 {
1549 	struct opp_table *opp_table;
1550 
1551 	if (!set_opp)
1552 		return ERR_PTR(-EINVAL);
1553 
1554 	opp_table = dev_pm_opp_get_opp_table(dev);
1555 	if (!opp_table)
1556 		return ERR_PTR(-ENOMEM);
1557 
1558 	/* This should be called before OPPs are initialized */
1559 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1560 		dev_pm_opp_put_opp_table(opp_table);
1561 		return ERR_PTR(-EBUSY);
1562 	}
1563 
1564 	/* Another CPU that shares the OPP table has set the helper ? */
1565 	if (!opp_table->set_opp)
1566 		opp_table->set_opp = set_opp;
1567 
1568 	return opp_table;
1569 }
1570 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1571 
1572 /**
1573  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1574  *					   set_opp helper
1575  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1576  *
1577  * Release resources blocked for platform specific set_opp helper.
1578  */
1579 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1580 {
1581 	/* Make sure there are no concurrent readers while updating opp_table */
1582 	WARN_ON(!list_empty(&opp_table->opp_list));
1583 
1584 	opp_table->set_opp = NULL;
1585 	dev_pm_opp_put_opp_table(opp_table);
1586 }
1587 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1588 
1589 /**
1590  * dev_pm_opp_add()  - Add an OPP table from a table definitions
1591  * @dev:	device for which we do this operation
1592  * @freq:	Frequency in Hz for this OPP
1593  * @u_volt:	Voltage in uVolts for this OPP
1594  *
1595  * This function adds an opp definition to the opp table and returns status.
1596  * The opp is made available by default and it can be controlled using
1597  * dev_pm_opp_enable/disable functions.
1598  *
1599  * Return:
1600  * 0		On success OR
1601  *		Duplicate OPPs (both freq and volt are same) and opp->available
1602  * -EEXIST	Freq are same and volt are different OR
1603  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1604  * -ENOMEM	Memory allocation failure
1605  */
1606 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1607 {
1608 	struct opp_table *opp_table;
1609 	int ret;
1610 
1611 	opp_table = dev_pm_opp_get_opp_table(dev);
1612 	if (!opp_table)
1613 		return -ENOMEM;
1614 
1615 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1616 	if (ret)
1617 		dev_pm_opp_put_opp_table(opp_table);
1618 
1619 	return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1622 
1623 /**
1624  * _opp_set_availability() - helper to set the availability of an opp
1625  * @dev:		device for which we do this operation
1626  * @freq:		OPP frequency to modify availability
1627  * @availability_req:	availability status requested for this opp
1628  *
1629  * Set the availability of an OPP, opp_{enable,disable} share a common logic
1630  * which is isolated here.
1631  *
1632  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1633  * copy operation, returns 0 if no modification was done OR modification was
1634  * successful.
1635  */
1636 static int _opp_set_availability(struct device *dev, unsigned long freq,
1637 				 bool availability_req)
1638 {
1639 	struct opp_table *opp_table;
1640 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
1641 	int r = 0;
1642 
1643 	/* Find the opp_table */
1644 	opp_table = _find_opp_table(dev);
1645 	if (IS_ERR(opp_table)) {
1646 		r = PTR_ERR(opp_table);
1647 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
1648 		return r;
1649 	}
1650 
1651 	mutex_lock(&opp_table->lock);
1652 
1653 	/* Do we have the frequency? */
1654 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
1655 		if (tmp_opp->rate == freq) {
1656 			opp = tmp_opp;
1657 			break;
1658 		}
1659 	}
1660 
1661 	if (IS_ERR(opp)) {
1662 		r = PTR_ERR(opp);
1663 		goto unlock;
1664 	}
1665 
1666 	/* Is update really needed? */
1667 	if (opp->available == availability_req)
1668 		goto unlock;
1669 
1670 	opp->available = availability_req;
1671 
1672 	dev_pm_opp_get(opp);
1673 	mutex_unlock(&opp_table->lock);
1674 
1675 	/* Notify the change of the OPP availability */
1676 	if (availability_req)
1677 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
1678 					     opp);
1679 	else
1680 		blocking_notifier_call_chain(&opp_table->head,
1681 					     OPP_EVENT_DISABLE, opp);
1682 
1683 	dev_pm_opp_put(opp);
1684 	goto put_table;
1685 
1686 unlock:
1687 	mutex_unlock(&opp_table->lock);
1688 put_table:
1689 	dev_pm_opp_put_opp_table(opp_table);
1690 	return r;
1691 }
1692 
1693 /**
1694  * dev_pm_opp_enable() - Enable a specific OPP
1695  * @dev:	device for which we do this operation
1696  * @freq:	OPP frequency to enable
1697  *
1698  * Enables a provided opp. If the operation is valid, this returns 0, else the
1699  * corresponding error value. It is meant to be used for users an OPP available
1700  * after being temporarily made unavailable with dev_pm_opp_disable.
1701  *
1702  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1703  * copy operation, returns 0 if no modification was done OR modification was
1704  * successful.
1705  */
1706 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
1707 {
1708 	return _opp_set_availability(dev, freq, true);
1709 }
1710 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
1711 
1712 /**
1713  * dev_pm_opp_disable() - Disable a specific OPP
1714  * @dev:	device for which we do this operation
1715  * @freq:	OPP frequency to disable
1716  *
1717  * Disables a provided opp. If the operation is valid, this returns
1718  * 0, else the corresponding error value. It is meant to be a temporary
1719  * control by users to make this OPP not available until the circumstances are
1720  * right to make it available again (with a call to dev_pm_opp_enable).
1721  *
1722  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1723  * copy operation, returns 0 if no modification was done OR modification was
1724  * successful.
1725  */
1726 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
1727 {
1728 	return _opp_set_availability(dev, freq, false);
1729 }
1730 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
1731 
1732 /**
1733  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
1734  * @dev:	Device for which notifier needs to be registered
1735  * @nb:		Notifier block to be registered
1736  *
1737  * Return: 0 on success or a negative error value.
1738  */
1739 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
1740 {
1741 	struct opp_table *opp_table;
1742 	int ret;
1743 
1744 	opp_table = _find_opp_table(dev);
1745 	if (IS_ERR(opp_table))
1746 		return PTR_ERR(opp_table);
1747 
1748 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
1749 
1750 	dev_pm_opp_put_opp_table(opp_table);
1751 
1752 	return ret;
1753 }
1754 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
1755 
1756 /**
1757  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
1758  * @dev:	Device for which notifier needs to be unregistered
1759  * @nb:		Notifier block to be unregistered
1760  *
1761  * Return: 0 on success or a negative error value.
1762  */
1763 int dev_pm_opp_unregister_notifier(struct device *dev,
1764 				   struct notifier_block *nb)
1765 {
1766 	struct opp_table *opp_table;
1767 	int ret;
1768 
1769 	opp_table = _find_opp_table(dev);
1770 	if (IS_ERR(opp_table))
1771 		return PTR_ERR(opp_table);
1772 
1773 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
1774 
1775 	dev_pm_opp_put_opp_table(opp_table);
1776 
1777 	return ret;
1778 }
1779 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
1780 
1781 void _dev_pm_opp_find_and_remove_table(struct device *dev)
1782 {
1783 	struct opp_table *opp_table;
1784 
1785 	/* Check for existing table for 'dev' */
1786 	opp_table = _find_opp_table(dev);
1787 	if (IS_ERR(opp_table)) {
1788 		int error = PTR_ERR(opp_table);
1789 
1790 		if (error != -ENODEV)
1791 			WARN(1, "%s: opp_table: %d\n",
1792 			     IS_ERR_OR_NULL(dev) ?
1793 					"Invalid device" : dev_name(dev),
1794 			     error);
1795 		return;
1796 	}
1797 
1798 	_put_opp_list_kref(opp_table);
1799 
1800 	/* Drop reference taken by _find_opp_table() */
1801 	dev_pm_opp_put_opp_table(opp_table);
1802 
1803 	/* Drop reference taken while the OPP table was added */
1804 	dev_pm_opp_put_opp_table(opp_table);
1805 }
1806 
1807 /**
1808  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
1809  * @dev:	device pointer used to lookup OPP table.
1810  *
1811  * Free both OPPs created using static entries present in DT and the
1812  * dynamically added entries.
1813  */
1814 void dev_pm_opp_remove_table(struct device *dev)
1815 {
1816 	_dev_pm_opp_find_and_remove_table(dev);
1817 }
1818 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
1819