1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp) || !opp->available) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 /** 405 * dev_pm_opp_find_level_exact() - search for an exact level 406 * @dev: device for which we do this operation 407 * @level: level to search for 408 * 409 * Return: Searches for exact match in the opp table and returns pointer to the 410 * matching opp if found, else returns ERR_PTR in case of error and should 411 * be handled using IS_ERR. Error return values can be: 412 * EINVAL: for bad pointer 413 * ERANGE: no match found for search 414 * ENODEV: if device not found in list of registered devices 415 * 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after 417 * use. 418 */ 419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 420 unsigned int level) 421 { 422 struct opp_table *opp_table; 423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 424 425 opp_table = _find_opp_table(dev); 426 if (IS_ERR(opp_table)) { 427 int r = PTR_ERR(opp_table); 428 429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 430 return ERR_PTR(r); 431 } 432 433 mutex_lock(&opp_table->lock); 434 435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 436 if (temp_opp->level == level) { 437 opp = temp_opp; 438 439 /* Increment the reference count of OPP */ 440 dev_pm_opp_get(opp); 441 break; 442 } 443 } 444 445 mutex_unlock(&opp_table->lock); 446 dev_pm_opp_put_opp_table(opp_table); 447 448 return opp; 449 } 450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 451 452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 453 unsigned long *freq) 454 { 455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 456 457 mutex_lock(&opp_table->lock); 458 459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 460 if (temp_opp->available && temp_opp->rate >= *freq) { 461 opp = temp_opp; 462 *freq = opp->rate; 463 464 /* Increment the reference count of OPP */ 465 dev_pm_opp_get(opp); 466 break; 467 } 468 } 469 470 mutex_unlock(&opp_table->lock); 471 472 return opp; 473 } 474 475 /** 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 477 * @dev: device for which we do this operation 478 * @freq: Start frequency 479 * 480 * Search for the matching ceil *available* OPP from a starting freq 481 * for a device. 482 * 483 * Return: matching *opp and refreshes *freq accordingly, else returns 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 485 * values can be: 486 * EINVAL: for bad pointer 487 * ERANGE: no match found for search 488 * ENODEV: if device not found in list of registered devices 489 * 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after 491 * use. 492 */ 493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 494 unsigned long *freq) 495 { 496 struct opp_table *opp_table; 497 struct dev_pm_opp *opp; 498 499 if (!dev || !freq) { 500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 501 return ERR_PTR(-EINVAL); 502 } 503 504 opp_table = _find_opp_table(dev); 505 if (IS_ERR(opp_table)) 506 return ERR_CAST(opp_table); 507 508 opp = _find_freq_ceil(opp_table, freq); 509 510 dev_pm_opp_put_opp_table(opp_table); 511 512 return opp; 513 } 514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 515 516 /** 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 518 * @dev: device for which we do this operation 519 * @freq: Start frequency 520 * 521 * Search for the matching floor *available* OPP from a starting freq 522 * for a device. 523 * 524 * Return: matching *opp and refreshes *freq accordingly, else returns 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 526 * values can be: 527 * EINVAL: for bad pointer 528 * ERANGE: no match found for search 529 * ENODEV: if device not found in list of registered devices 530 * 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after 532 * use. 533 */ 534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 535 unsigned long *freq) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 539 540 if (!dev || !freq) { 541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 542 return ERR_PTR(-EINVAL); 543 } 544 545 opp_table = _find_opp_table(dev); 546 if (IS_ERR(opp_table)) 547 return ERR_CAST(opp_table); 548 549 mutex_lock(&opp_table->lock); 550 551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 552 if (temp_opp->available) { 553 /* go to the next node, before choosing prev */ 554 if (temp_opp->rate > *freq) 555 break; 556 else 557 opp = temp_opp; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) 563 dev_pm_opp_get(opp); 564 mutex_unlock(&opp_table->lock); 565 dev_pm_opp_put_opp_table(opp_table); 566 567 if (!IS_ERR(opp)) 568 *freq = opp->rate; 569 570 return opp; 571 } 572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 573 574 /** 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 576 * target voltage. 577 * @dev: Device for which we do this operation. 578 * @u_volt: Target voltage. 579 * 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 581 * 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be 583 * handled using IS_ERR. 584 * 585 * Error return values can be: 586 * EINVAL: bad parameters 587 * 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after 589 * use. 590 */ 591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 592 unsigned long u_volt) 593 { 594 struct opp_table *opp_table; 595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 596 597 if (!dev || !u_volt) { 598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 599 u_volt); 600 return ERR_PTR(-EINVAL); 601 } 602 603 opp_table = _find_opp_table(dev); 604 if (IS_ERR(opp_table)) 605 return ERR_CAST(opp_table); 606 607 mutex_lock(&opp_table->lock); 608 609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 610 if (temp_opp->available) { 611 if (temp_opp->supplies[0].u_volt > u_volt) 612 break; 613 opp = temp_opp; 614 } 615 } 616 617 /* Increment the reference count of OPP */ 618 if (!IS_ERR(opp)) 619 dev_pm_opp_get(opp); 620 621 mutex_unlock(&opp_table->lock); 622 dev_pm_opp_put_opp_table(opp_table); 623 624 return opp; 625 } 626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 627 628 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 629 struct dev_pm_opp_supply *supply) 630 { 631 int ret; 632 633 /* Regulator not available for device */ 634 if (IS_ERR(reg)) { 635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 636 PTR_ERR(reg)); 637 return 0; 638 } 639 640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 641 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 642 643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 644 supply->u_volt, supply->u_volt_max); 645 if (ret) 646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 647 __func__, supply->u_volt_min, supply->u_volt, 648 supply->u_volt_max, ret); 649 650 return ret; 651 } 652 653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 654 unsigned long freq) 655 { 656 int ret; 657 658 ret = clk_set_rate(clk, freq); 659 if (ret) { 660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 661 ret); 662 } 663 664 return ret; 665 } 666 667 static int _generic_set_opp_regulator(struct opp_table *opp_table, 668 struct device *dev, 669 unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct regulator *reg = opp_table->regulators[0]; 675 int ret; 676 677 /* This function only supports single regulator per device */ 678 if (WARN_ON(opp_table->regulator_count > 1)) { 679 dev_err(dev, "multiple regulators are not supported\n"); 680 return -EINVAL; 681 } 682 683 /* Scaling up? Scale voltage before frequency */ 684 if (freq >= old_freq) { 685 ret = _set_opp_voltage(dev, reg, new_supply); 686 if (ret) 687 goto restore_voltage; 688 } 689 690 /* Change frequency */ 691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 692 if (ret) 693 goto restore_voltage; 694 695 /* Scaling down? Scale voltage after frequency */ 696 if (freq < old_freq) { 697 ret = _set_opp_voltage(dev, reg, new_supply); 698 if (ret) 699 goto restore_freq; 700 } 701 702 /* 703 * Enable the regulator after setting its voltages, otherwise it breaks 704 * some boot-enabled regulators. 705 */ 706 if (unlikely(!opp_table->regulator_enabled)) { 707 ret = regulator_enable(reg); 708 if (ret < 0) 709 dev_warn(dev, "Failed to enable regulator: %d", ret); 710 else 711 opp_table->regulator_enabled = true; 712 } 713 714 return 0; 715 716 restore_freq: 717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 719 __func__, old_freq); 720 restore_voltage: 721 /* This shouldn't harm even if the voltages weren't updated earlier */ 722 if (old_supply) 723 _set_opp_voltage(dev, reg, old_supply); 724 725 return ret; 726 } 727 728 static int _set_opp_bw(const struct opp_table *opp_table, 729 struct dev_pm_opp *opp, struct device *dev, bool remove) 730 { 731 u32 avg, peak; 732 int i, ret; 733 734 if (!opp_table->paths) 735 return 0; 736 737 for (i = 0; i < opp_table->path_count; i++) { 738 if (remove) { 739 avg = 0; 740 peak = 0; 741 } else { 742 avg = opp->bandwidth[i].avg; 743 peak = opp->bandwidth[i].peak; 744 } 745 ret = icc_set_bw(opp_table->paths[i], avg, peak); 746 if (ret) { 747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 748 remove ? "remove" : "set", i, ret); 749 return ret; 750 } 751 } 752 753 return 0; 754 } 755 756 static int _set_opp_custom(const struct opp_table *opp_table, 757 struct device *dev, unsigned long old_freq, 758 unsigned long freq, 759 struct dev_pm_opp_supply *old_supply, 760 struct dev_pm_opp_supply *new_supply) 761 { 762 struct dev_pm_set_opp_data *data; 763 int size; 764 765 data = opp_table->set_opp_data; 766 data->regulators = opp_table->regulators; 767 data->regulator_count = opp_table->regulator_count; 768 data->clk = opp_table->clk; 769 data->dev = dev; 770 771 data->old_opp.rate = old_freq; 772 size = sizeof(*old_supply) * opp_table->regulator_count; 773 if (!old_supply) 774 memset(data->old_opp.supplies, 0, size); 775 else 776 memcpy(data->old_opp.supplies, old_supply, size); 777 778 data->new_opp.rate = freq; 779 memcpy(data->new_opp.supplies, new_supply, size); 780 781 return opp_table->set_opp(data); 782 } 783 784 /* This is only called for PM domain for now */ 785 static int _set_required_opps(struct device *dev, 786 struct opp_table *opp_table, 787 struct dev_pm_opp *opp) 788 { 789 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 791 unsigned int pstate; 792 int i, ret = 0; 793 794 if (!required_opp_tables) 795 return 0; 796 797 /* Single genpd case */ 798 if (!genpd_virt_devs) { 799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0; 800 ret = dev_pm_genpd_set_performance_state(dev, pstate); 801 if (ret) { 802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 803 dev_name(dev), pstate, ret); 804 } 805 return ret; 806 } 807 808 /* Multiple genpd case */ 809 810 /* 811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 812 * after it is freed from another thread. 813 */ 814 mutex_lock(&opp_table->genpd_virt_dev_lock); 815 816 for (i = 0; i < opp_table->required_opp_count; i++) { 817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 818 819 if (!genpd_virt_devs[i]) 820 continue; 821 822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 823 if (ret) { 824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 825 dev_name(genpd_virt_devs[i]), pstate, ret); 826 break; 827 } 828 } 829 mutex_unlock(&opp_table->genpd_virt_dev_lock); 830 831 return ret; 832 } 833 834 /** 835 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 836 * @dev: device for which we do this operation 837 * @target_freq: frequency to achieve 838 * 839 * This configures the power-supplies to the levels specified by the OPP 840 * corresponding to the target_freq, and programs the clock to a value <= 841 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 842 * provided by the opp, should have already rounded to the target OPP's 843 * frequency. 844 */ 845 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 846 { 847 struct opp_table *opp_table; 848 unsigned long freq, old_freq, temp_freq; 849 struct dev_pm_opp *old_opp, *opp; 850 struct clk *clk; 851 int ret; 852 853 opp_table = _find_opp_table(dev); 854 if (IS_ERR(opp_table)) { 855 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 856 return PTR_ERR(opp_table); 857 } 858 859 if (unlikely(!target_freq)) { 860 /* 861 * Some drivers need to support cases where some platforms may 862 * have OPP table for the device, while others don't and 863 * opp_set_rate() just needs to behave like clk_set_rate(). 864 */ 865 if (!_get_opp_count(opp_table)) 866 return 0; 867 868 if (!opp_table->required_opp_tables && !opp_table->regulators && 869 !opp_table->paths) { 870 dev_err(dev, "target frequency can't be 0\n"); 871 ret = -EINVAL; 872 goto put_opp_table; 873 } 874 875 ret = _set_opp_bw(opp_table, NULL, dev, true); 876 if (ret) 877 return ret; 878 879 if (opp_table->regulator_enabled) { 880 regulator_disable(opp_table->regulators[0]); 881 opp_table->regulator_enabled = false; 882 } 883 884 ret = _set_required_opps(dev, opp_table, NULL); 885 goto put_opp_table; 886 } 887 888 clk = opp_table->clk; 889 if (IS_ERR(clk)) { 890 dev_err(dev, "%s: No clock available for the device\n", 891 __func__); 892 ret = PTR_ERR(clk); 893 goto put_opp_table; 894 } 895 896 freq = clk_round_rate(clk, target_freq); 897 if ((long)freq <= 0) 898 freq = target_freq; 899 900 old_freq = clk_get_rate(clk); 901 902 /* Return early if nothing to do */ 903 if (old_freq == freq) { 904 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 905 __func__, freq); 906 ret = 0; 907 goto put_opp_table; 908 } 909 910 /* 911 * For IO devices which require an OPP on some platforms/SoCs 912 * while just needing to scale the clock on some others 913 * we look for empty OPP tables with just a clock handle and 914 * scale only the clk. This makes dev_pm_opp_set_rate() 915 * equivalent to a clk_set_rate() 916 */ 917 if (!_get_opp_count(opp_table)) { 918 ret = _generic_set_opp_clk_only(dev, clk, freq); 919 goto put_opp_table; 920 } 921 922 temp_freq = old_freq; 923 old_opp = _find_freq_ceil(opp_table, &temp_freq); 924 if (IS_ERR(old_opp)) { 925 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 926 __func__, old_freq, PTR_ERR(old_opp)); 927 } 928 929 temp_freq = freq; 930 opp = _find_freq_ceil(opp_table, &temp_freq); 931 if (IS_ERR(opp)) { 932 ret = PTR_ERR(opp); 933 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 934 __func__, freq, ret); 935 goto put_old_opp; 936 } 937 938 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 939 old_freq, freq); 940 941 /* Scaling up? Configure required OPPs before frequency */ 942 if (freq >= old_freq) { 943 ret = _set_required_opps(dev, opp_table, opp); 944 if (ret) 945 goto put_opp; 946 } 947 948 if (opp_table->set_opp) { 949 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 950 IS_ERR(old_opp) ? NULL : old_opp->supplies, 951 opp->supplies); 952 } else if (opp_table->regulators) { 953 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 954 IS_ERR(old_opp) ? NULL : old_opp->supplies, 955 opp->supplies); 956 } else { 957 /* Only frequency scaling */ 958 ret = _generic_set_opp_clk_only(dev, clk, freq); 959 } 960 961 /* Scaling down? Configure required OPPs after frequency */ 962 if (!ret && freq < old_freq) { 963 ret = _set_required_opps(dev, opp_table, opp); 964 if (ret) 965 dev_err(dev, "Failed to set required opps: %d\n", ret); 966 } 967 968 if (!ret) 969 ret = _set_opp_bw(opp_table, opp, dev, false); 970 971 put_opp: 972 dev_pm_opp_put(opp); 973 put_old_opp: 974 if (!IS_ERR(old_opp)) 975 dev_pm_opp_put(old_opp); 976 put_opp_table: 977 dev_pm_opp_put_opp_table(opp_table); 978 return ret; 979 } 980 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 981 982 /* OPP-dev Helpers */ 983 static void _remove_opp_dev(struct opp_device *opp_dev, 984 struct opp_table *opp_table) 985 { 986 opp_debug_unregister(opp_dev, opp_table); 987 list_del(&opp_dev->node); 988 kfree(opp_dev); 989 } 990 991 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 992 struct opp_table *opp_table) 993 { 994 struct opp_device *opp_dev; 995 996 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 997 if (!opp_dev) 998 return NULL; 999 1000 /* Initialize opp-dev */ 1001 opp_dev->dev = dev; 1002 1003 list_add(&opp_dev->node, &opp_table->dev_list); 1004 1005 /* Create debugfs entries for the opp_table */ 1006 opp_debug_register(opp_dev, opp_table); 1007 1008 return opp_dev; 1009 } 1010 1011 struct opp_device *_add_opp_dev(const struct device *dev, 1012 struct opp_table *opp_table) 1013 { 1014 struct opp_device *opp_dev; 1015 1016 mutex_lock(&opp_table->lock); 1017 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 1018 mutex_unlock(&opp_table->lock); 1019 1020 return opp_dev; 1021 } 1022 1023 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1024 { 1025 struct opp_table *opp_table; 1026 struct opp_device *opp_dev; 1027 int ret; 1028 1029 /* 1030 * Allocate a new OPP table. In the infrequent case where a new 1031 * device is needed to be added, we pay this penalty. 1032 */ 1033 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1034 if (!opp_table) 1035 return NULL; 1036 1037 mutex_init(&opp_table->lock); 1038 mutex_init(&opp_table->genpd_virt_dev_lock); 1039 INIT_LIST_HEAD(&opp_table->dev_list); 1040 1041 /* Mark regulator count uninitialized */ 1042 opp_table->regulator_count = -1; 1043 1044 opp_dev = _add_opp_dev(dev, opp_table); 1045 if (!opp_dev) { 1046 kfree(opp_table); 1047 return NULL; 1048 } 1049 1050 _of_init_opp_table(opp_table, dev, index); 1051 1052 /* Find clk for the device */ 1053 opp_table->clk = clk_get(dev, NULL); 1054 if (IS_ERR(opp_table->clk)) { 1055 ret = PTR_ERR(opp_table->clk); 1056 if (ret != -EPROBE_DEFER) 1057 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 1058 ret); 1059 } 1060 1061 /* Find interconnect path(s) for the device */ 1062 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1063 if (ret) 1064 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1065 __func__, ret); 1066 1067 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1068 INIT_LIST_HEAD(&opp_table->opp_list); 1069 kref_init(&opp_table->kref); 1070 1071 /* Secure the device table modification */ 1072 list_add(&opp_table->node, &opp_tables); 1073 return opp_table; 1074 } 1075 1076 void _get_opp_table_kref(struct opp_table *opp_table) 1077 { 1078 kref_get(&opp_table->kref); 1079 } 1080 1081 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 1082 { 1083 struct opp_table *opp_table; 1084 1085 /* Hold our table modification lock here */ 1086 mutex_lock(&opp_table_lock); 1087 1088 opp_table = _find_opp_table_unlocked(dev); 1089 if (!IS_ERR(opp_table)) 1090 goto unlock; 1091 1092 opp_table = _managed_opp(dev, index); 1093 if (opp_table) { 1094 if (!_add_opp_dev_unlocked(dev, opp_table)) { 1095 dev_pm_opp_put_opp_table(opp_table); 1096 opp_table = NULL; 1097 } 1098 goto unlock; 1099 } 1100 1101 opp_table = _allocate_opp_table(dev, index); 1102 1103 unlock: 1104 mutex_unlock(&opp_table_lock); 1105 1106 return opp_table; 1107 } 1108 1109 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1110 { 1111 return _opp_get_opp_table(dev, 0); 1112 } 1113 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1114 1115 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 1116 int index) 1117 { 1118 return _opp_get_opp_table(dev, index); 1119 } 1120 1121 static void _opp_table_kref_release(struct kref *kref) 1122 { 1123 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1124 struct opp_device *opp_dev, *temp; 1125 int i; 1126 1127 _of_clear_opp_table(opp_table); 1128 1129 /* Release clk */ 1130 if (!IS_ERR(opp_table->clk)) 1131 clk_put(opp_table->clk); 1132 1133 if (opp_table->paths) { 1134 for (i = 0; i < opp_table->path_count; i++) 1135 icc_put(opp_table->paths[i]); 1136 kfree(opp_table->paths); 1137 } 1138 1139 WARN_ON(!list_empty(&opp_table->opp_list)); 1140 1141 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1142 /* 1143 * The OPP table is getting removed, drop the performance state 1144 * constraints. 1145 */ 1146 if (opp_table->genpd_performance_state) 1147 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1148 1149 _remove_opp_dev(opp_dev, opp_table); 1150 } 1151 1152 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1153 mutex_destroy(&opp_table->lock); 1154 list_del(&opp_table->node); 1155 kfree(opp_table); 1156 1157 mutex_unlock(&opp_table_lock); 1158 } 1159 1160 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1161 { 1162 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1163 &opp_table_lock); 1164 } 1165 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1166 1167 void _opp_free(struct dev_pm_opp *opp) 1168 { 1169 kfree(opp); 1170 } 1171 1172 static void _opp_kref_release(struct dev_pm_opp *opp, 1173 struct opp_table *opp_table) 1174 { 1175 /* 1176 * Notify the changes in the availability of the operable 1177 * frequency/voltage list. 1178 */ 1179 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1180 _of_opp_free_required_opps(opp_table, opp); 1181 opp_debug_remove_one(opp); 1182 list_del(&opp->node); 1183 kfree(opp); 1184 } 1185 1186 static void _opp_kref_release_unlocked(struct kref *kref) 1187 { 1188 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1189 struct opp_table *opp_table = opp->opp_table; 1190 1191 _opp_kref_release(opp, opp_table); 1192 } 1193 1194 static void _opp_kref_release_locked(struct kref *kref) 1195 { 1196 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1197 struct opp_table *opp_table = opp->opp_table; 1198 1199 _opp_kref_release(opp, opp_table); 1200 mutex_unlock(&opp_table->lock); 1201 } 1202 1203 void dev_pm_opp_get(struct dev_pm_opp *opp) 1204 { 1205 kref_get(&opp->kref); 1206 } 1207 1208 void dev_pm_opp_put(struct dev_pm_opp *opp) 1209 { 1210 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1211 &opp->opp_table->lock); 1212 } 1213 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1214 1215 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1216 { 1217 kref_put(&opp->kref, _opp_kref_release_unlocked); 1218 } 1219 1220 /** 1221 * dev_pm_opp_remove() - Remove an OPP from OPP table 1222 * @dev: device for which we do this operation 1223 * @freq: OPP to remove with matching 'freq' 1224 * 1225 * This function removes an opp from the opp table. 1226 */ 1227 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1228 { 1229 struct dev_pm_opp *opp; 1230 struct opp_table *opp_table; 1231 bool found = false; 1232 1233 opp_table = _find_opp_table(dev); 1234 if (IS_ERR(opp_table)) 1235 return; 1236 1237 mutex_lock(&opp_table->lock); 1238 1239 list_for_each_entry(opp, &opp_table->opp_list, node) { 1240 if (opp->rate == freq) { 1241 found = true; 1242 break; 1243 } 1244 } 1245 1246 mutex_unlock(&opp_table->lock); 1247 1248 if (found) { 1249 dev_pm_opp_put(opp); 1250 1251 /* Drop the reference taken by dev_pm_opp_add() */ 1252 dev_pm_opp_put_opp_table(opp_table); 1253 } else { 1254 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1255 __func__, freq); 1256 } 1257 1258 /* Drop the reference taken by _find_opp_table() */ 1259 dev_pm_opp_put_opp_table(opp_table); 1260 } 1261 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1262 1263 void _opp_remove_all_static(struct opp_table *opp_table) 1264 { 1265 struct dev_pm_opp *opp, *tmp; 1266 1267 mutex_lock(&opp_table->lock); 1268 1269 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps) 1270 goto unlock; 1271 1272 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1273 if (!opp->dynamic) 1274 dev_pm_opp_put_unlocked(opp); 1275 } 1276 1277 unlock: 1278 mutex_unlock(&opp_table->lock); 1279 } 1280 1281 /** 1282 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1283 * @dev: device for which we do this operation 1284 * 1285 * This function removes all dynamically created OPPs from the opp table. 1286 */ 1287 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1288 { 1289 struct opp_table *opp_table; 1290 struct dev_pm_opp *opp, *temp; 1291 int count = 0; 1292 1293 opp_table = _find_opp_table(dev); 1294 if (IS_ERR(opp_table)) 1295 return; 1296 1297 mutex_lock(&opp_table->lock); 1298 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1299 if (opp->dynamic) { 1300 dev_pm_opp_put_unlocked(opp); 1301 count++; 1302 } 1303 } 1304 mutex_unlock(&opp_table->lock); 1305 1306 /* Drop the references taken by dev_pm_opp_add() */ 1307 while (count--) 1308 dev_pm_opp_put_opp_table(opp_table); 1309 1310 /* Drop the reference taken by _find_opp_table() */ 1311 dev_pm_opp_put_opp_table(opp_table); 1312 } 1313 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1314 1315 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1316 { 1317 struct dev_pm_opp *opp; 1318 int supply_count, supply_size, icc_size; 1319 1320 /* Allocate space for at least one supply */ 1321 supply_count = table->regulator_count > 0 ? table->regulator_count : 1; 1322 supply_size = sizeof(*opp->supplies) * supply_count; 1323 icc_size = sizeof(*opp->bandwidth) * table->path_count; 1324 1325 /* allocate new OPP node and supplies structures */ 1326 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL); 1327 1328 if (!opp) 1329 return NULL; 1330 1331 /* Put the supplies at the end of the OPP structure as an empty array */ 1332 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1333 if (icc_size) 1334 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count); 1335 INIT_LIST_HEAD(&opp->node); 1336 1337 return opp; 1338 } 1339 1340 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1341 struct opp_table *opp_table) 1342 { 1343 struct regulator *reg; 1344 int i; 1345 1346 if (!opp_table->regulators) 1347 return true; 1348 1349 for (i = 0; i < opp_table->regulator_count; i++) { 1350 reg = opp_table->regulators[i]; 1351 1352 if (!regulator_is_supported_voltage(reg, 1353 opp->supplies[i].u_volt_min, 1354 opp->supplies[i].u_volt_max)) { 1355 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1356 __func__, opp->supplies[i].u_volt_min, 1357 opp->supplies[i].u_volt_max); 1358 return false; 1359 } 1360 } 1361 1362 return true; 1363 } 1364 1365 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1366 { 1367 if (opp1->rate != opp2->rate) 1368 return opp1->rate < opp2->rate ? -1 : 1; 1369 if (opp1->bandwidth && opp2->bandwidth && 1370 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak) 1371 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1; 1372 if (opp1->level != opp2->level) 1373 return opp1->level < opp2->level ? -1 : 1; 1374 return 0; 1375 } 1376 1377 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1378 struct opp_table *opp_table, 1379 struct list_head **head) 1380 { 1381 struct dev_pm_opp *opp; 1382 int opp_cmp; 1383 1384 /* 1385 * Insert new OPP in order of increasing frequency and discard if 1386 * already present. 1387 * 1388 * Need to use &opp_table->opp_list in the condition part of the 'for' 1389 * loop, don't replace it with head otherwise it will become an infinite 1390 * loop. 1391 */ 1392 list_for_each_entry(opp, &opp_table->opp_list, node) { 1393 opp_cmp = _opp_compare_key(new_opp, opp); 1394 if (opp_cmp > 0) { 1395 *head = &opp->node; 1396 continue; 1397 } 1398 1399 if (opp_cmp < 0) 1400 return 0; 1401 1402 /* Duplicate OPPs */ 1403 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1404 __func__, opp->rate, opp->supplies[0].u_volt, 1405 opp->available, new_opp->rate, 1406 new_opp->supplies[0].u_volt, new_opp->available); 1407 1408 /* Should we compare voltages for all regulators here ? */ 1409 return opp->available && 1410 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1411 } 1412 1413 return 0; 1414 } 1415 1416 /* 1417 * Returns: 1418 * 0: On success. And appropriate error message for duplicate OPPs. 1419 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1420 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1421 * sure we don't print error messages unnecessarily if different parts of 1422 * kernel try to initialize the OPP table. 1423 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1424 * should be considered an error by the callers of _opp_add(). 1425 */ 1426 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1427 struct opp_table *opp_table, bool rate_not_available) 1428 { 1429 struct list_head *head; 1430 int ret; 1431 1432 mutex_lock(&opp_table->lock); 1433 head = &opp_table->opp_list; 1434 1435 if (likely(!rate_not_available)) { 1436 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1437 if (ret) { 1438 mutex_unlock(&opp_table->lock); 1439 return ret; 1440 } 1441 } 1442 1443 list_add(&new_opp->node, head); 1444 mutex_unlock(&opp_table->lock); 1445 1446 new_opp->opp_table = opp_table; 1447 kref_init(&new_opp->kref); 1448 1449 opp_debug_create_one(new_opp, opp_table); 1450 1451 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1452 new_opp->available = false; 1453 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1454 __func__, new_opp->rate); 1455 } 1456 1457 return 0; 1458 } 1459 1460 /** 1461 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1462 * @opp_table: OPP table 1463 * @dev: device for which we do this operation 1464 * @freq: Frequency in Hz for this OPP 1465 * @u_volt: Voltage in uVolts for this OPP 1466 * @dynamic: Dynamically added OPPs. 1467 * 1468 * This function adds an opp definition to the opp table and returns status. 1469 * The opp is made available by default and it can be controlled using 1470 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1471 * 1472 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1473 * and freed by dev_pm_opp_of_remove_table. 1474 * 1475 * Return: 1476 * 0 On success OR 1477 * Duplicate OPPs (both freq and volt are same) and opp->available 1478 * -EEXIST Freq are same and volt are different OR 1479 * Duplicate OPPs (both freq and volt are same) and !opp->available 1480 * -ENOMEM Memory allocation failure 1481 */ 1482 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1483 unsigned long freq, long u_volt, bool dynamic) 1484 { 1485 struct dev_pm_opp *new_opp; 1486 unsigned long tol; 1487 int ret; 1488 1489 new_opp = _opp_allocate(opp_table); 1490 if (!new_opp) 1491 return -ENOMEM; 1492 1493 /* populate the opp table */ 1494 new_opp->rate = freq; 1495 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1496 new_opp->supplies[0].u_volt = u_volt; 1497 new_opp->supplies[0].u_volt_min = u_volt - tol; 1498 new_opp->supplies[0].u_volt_max = u_volt + tol; 1499 new_opp->available = true; 1500 new_opp->dynamic = dynamic; 1501 1502 ret = _opp_add(dev, new_opp, opp_table, false); 1503 if (ret) { 1504 /* Don't return error for duplicate OPPs */ 1505 if (ret == -EBUSY) 1506 ret = 0; 1507 goto free_opp; 1508 } 1509 1510 /* 1511 * Notify the changes in the availability of the operable 1512 * frequency/voltage list. 1513 */ 1514 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1515 return 0; 1516 1517 free_opp: 1518 _opp_free(new_opp); 1519 1520 return ret; 1521 } 1522 1523 /** 1524 * dev_pm_opp_set_supported_hw() - Set supported platforms 1525 * @dev: Device for which supported-hw has to be set. 1526 * @versions: Array of hierarchy of versions to match. 1527 * @count: Number of elements in the array. 1528 * 1529 * This is required only for the V2 bindings, and it enables a platform to 1530 * specify the hierarchy of versions it supports. OPP layer will then enable 1531 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1532 * property. 1533 */ 1534 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1535 const u32 *versions, unsigned int count) 1536 { 1537 struct opp_table *opp_table; 1538 1539 opp_table = dev_pm_opp_get_opp_table(dev); 1540 if (!opp_table) 1541 return ERR_PTR(-ENOMEM); 1542 1543 /* Make sure there are no concurrent readers while updating opp_table */ 1544 WARN_ON(!list_empty(&opp_table->opp_list)); 1545 1546 /* Another CPU that shares the OPP table has set the property ? */ 1547 if (opp_table->supported_hw) 1548 return opp_table; 1549 1550 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1551 GFP_KERNEL); 1552 if (!opp_table->supported_hw) { 1553 dev_pm_opp_put_opp_table(opp_table); 1554 return ERR_PTR(-ENOMEM); 1555 } 1556 1557 opp_table->supported_hw_count = count; 1558 1559 return opp_table; 1560 } 1561 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1562 1563 /** 1564 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1565 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1566 * 1567 * This is required only for the V2 bindings, and is called for a matching 1568 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1569 * will not be freed. 1570 */ 1571 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1572 { 1573 /* Make sure there are no concurrent readers while updating opp_table */ 1574 WARN_ON(!list_empty(&opp_table->opp_list)); 1575 1576 kfree(opp_table->supported_hw); 1577 opp_table->supported_hw = NULL; 1578 opp_table->supported_hw_count = 0; 1579 1580 dev_pm_opp_put_opp_table(opp_table); 1581 } 1582 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1583 1584 /** 1585 * dev_pm_opp_set_prop_name() - Set prop-extn name 1586 * @dev: Device for which the prop-name has to be set. 1587 * @name: name to postfix to properties. 1588 * 1589 * This is required only for the V2 bindings, and it enables a platform to 1590 * specify the extn to be used for certain property names. The properties to 1591 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1592 * should postfix the property name with -<name> while looking for them. 1593 */ 1594 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1595 { 1596 struct opp_table *opp_table; 1597 1598 opp_table = dev_pm_opp_get_opp_table(dev); 1599 if (!opp_table) 1600 return ERR_PTR(-ENOMEM); 1601 1602 /* Make sure there are no concurrent readers while updating opp_table */ 1603 WARN_ON(!list_empty(&opp_table->opp_list)); 1604 1605 /* Another CPU that shares the OPP table has set the property ? */ 1606 if (opp_table->prop_name) 1607 return opp_table; 1608 1609 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1610 if (!opp_table->prop_name) { 1611 dev_pm_opp_put_opp_table(opp_table); 1612 return ERR_PTR(-ENOMEM); 1613 } 1614 1615 return opp_table; 1616 } 1617 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1618 1619 /** 1620 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1621 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1622 * 1623 * This is required only for the V2 bindings, and is called for a matching 1624 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1625 * will not be freed. 1626 */ 1627 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1628 { 1629 /* Make sure there are no concurrent readers while updating opp_table */ 1630 WARN_ON(!list_empty(&opp_table->opp_list)); 1631 1632 kfree(opp_table->prop_name); 1633 opp_table->prop_name = NULL; 1634 1635 dev_pm_opp_put_opp_table(opp_table); 1636 } 1637 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1638 1639 static int _allocate_set_opp_data(struct opp_table *opp_table) 1640 { 1641 struct dev_pm_set_opp_data *data; 1642 int len, count = opp_table->regulator_count; 1643 1644 if (WARN_ON(!opp_table->regulators)) 1645 return -EINVAL; 1646 1647 /* space for set_opp_data */ 1648 len = sizeof(*data); 1649 1650 /* space for old_opp.supplies and new_opp.supplies */ 1651 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1652 1653 data = kzalloc(len, GFP_KERNEL); 1654 if (!data) 1655 return -ENOMEM; 1656 1657 data->old_opp.supplies = (void *)(data + 1); 1658 data->new_opp.supplies = data->old_opp.supplies + count; 1659 1660 opp_table->set_opp_data = data; 1661 1662 return 0; 1663 } 1664 1665 static void _free_set_opp_data(struct opp_table *opp_table) 1666 { 1667 kfree(opp_table->set_opp_data); 1668 opp_table->set_opp_data = NULL; 1669 } 1670 1671 /** 1672 * dev_pm_opp_set_regulators() - Set regulator names for the device 1673 * @dev: Device for which regulator name is being set. 1674 * @names: Array of pointers to the names of the regulator. 1675 * @count: Number of regulators. 1676 * 1677 * In order to support OPP switching, OPP layer needs to know the name of the 1678 * device's regulators, as the core would be required to switch voltages as 1679 * well. 1680 * 1681 * This must be called before any OPPs are initialized for the device. 1682 */ 1683 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1684 const char * const names[], 1685 unsigned int count) 1686 { 1687 struct opp_table *opp_table; 1688 struct regulator *reg; 1689 int ret, i; 1690 1691 opp_table = dev_pm_opp_get_opp_table(dev); 1692 if (!opp_table) 1693 return ERR_PTR(-ENOMEM); 1694 1695 /* This should be called before OPPs are initialized */ 1696 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1697 ret = -EBUSY; 1698 goto err; 1699 } 1700 1701 /* Another CPU that shares the OPP table has set the regulators ? */ 1702 if (opp_table->regulators) 1703 return opp_table; 1704 1705 opp_table->regulators = kmalloc_array(count, 1706 sizeof(*opp_table->regulators), 1707 GFP_KERNEL); 1708 if (!opp_table->regulators) { 1709 ret = -ENOMEM; 1710 goto err; 1711 } 1712 1713 for (i = 0; i < count; i++) { 1714 reg = regulator_get_optional(dev, names[i]); 1715 if (IS_ERR(reg)) { 1716 ret = PTR_ERR(reg); 1717 if (ret != -EPROBE_DEFER) 1718 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1719 __func__, names[i], ret); 1720 goto free_regulators; 1721 } 1722 1723 opp_table->regulators[i] = reg; 1724 } 1725 1726 opp_table->regulator_count = count; 1727 1728 /* Allocate block only once to pass to set_opp() routines */ 1729 ret = _allocate_set_opp_data(opp_table); 1730 if (ret) 1731 goto free_regulators; 1732 1733 return opp_table; 1734 1735 free_regulators: 1736 while (i != 0) 1737 regulator_put(opp_table->regulators[--i]); 1738 1739 kfree(opp_table->regulators); 1740 opp_table->regulators = NULL; 1741 opp_table->regulator_count = -1; 1742 err: 1743 dev_pm_opp_put_opp_table(opp_table); 1744 1745 return ERR_PTR(ret); 1746 } 1747 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1748 1749 /** 1750 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1751 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1752 */ 1753 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1754 { 1755 int i; 1756 1757 if (!opp_table->regulators) 1758 goto put_opp_table; 1759 1760 /* Make sure there are no concurrent readers while updating opp_table */ 1761 WARN_ON(!list_empty(&opp_table->opp_list)); 1762 1763 if (opp_table->regulator_enabled) { 1764 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1765 regulator_disable(opp_table->regulators[i]); 1766 1767 opp_table->regulator_enabled = false; 1768 } 1769 1770 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1771 regulator_put(opp_table->regulators[i]); 1772 1773 _free_set_opp_data(opp_table); 1774 1775 kfree(opp_table->regulators); 1776 opp_table->regulators = NULL; 1777 opp_table->regulator_count = -1; 1778 1779 put_opp_table: 1780 dev_pm_opp_put_opp_table(opp_table); 1781 } 1782 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1783 1784 /** 1785 * dev_pm_opp_set_clkname() - Set clk name for the device 1786 * @dev: Device for which clk name is being set. 1787 * @name: Clk name. 1788 * 1789 * In order to support OPP switching, OPP layer needs to get pointer to the 1790 * clock for the device. Simple cases work fine without using this routine (i.e. 1791 * by passing connection-id as NULL), but for a device with multiple clocks 1792 * available, the OPP core needs to know the exact name of the clk to use. 1793 * 1794 * This must be called before any OPPs are initialized for the device. 1795 */ 1796 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1797 { 1798 struct opp_table *opp_table; 1799 int ret; 1800 1801 opp_table = dev_pm_opp_get_opp_table(dev); 1802 if (!opp_table) 1803 return ERR_PTR(-ENOMEM); 1804 1805 /* This should be called before OPPs are initialized */ 1806 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1807 ret = -EBUSY; 1808 goto err; 1809 } 1810 1811 /* Already have default clk set, free it */ 1812 if (!IS_ERR(opp_table->clk)) 1813 clk_put(opp_table->clk); 1814 1815 /* Find clk for the device */ 1816 opp_table->clk = clk_get(dev, name); 1817 if (IS_ERR(opp_table->clk)) { 1818 ret = PTR_ERR(opp_table->clk); 1819 if (ret != -EPROBE_DEFER) { 1820 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1821 ret); 1822 } 1823 goto err; 1824 } 1825 1826 return opp_table; 1827 1828 err: 1829 dev_pm_opp_put_opp_table(opp_table); 1830 1831 return ERR_PTR(ret); 1832 } 1833 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1834 1835 /** 1836 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1837 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1838 */ 1839 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1840 { 1841 /* Make sure there are no concurrent readers while updating opp_table */ 1842 WARN_ON(!list_empty(&opp_table->opp_list)); 1843 1844 clk_put(opp_table->clk); 1845 opp_table->clk = ERR_PTR(-EINVAL); 1846 1847 dev_pm_opp_put_opp_table(opp_table); 1848 } 1849 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1850 1851 /** 1852 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1853 * @dev: Device for which the helper is getting registered. 1854 * @set_opp: Custom set OPP helper. 1855 * 1856 * This is useful to support complex platforms (like platforms with multiple 1857 * regulators per device), instead of the generic OPP set rate helper. 1858 * 1859 * This must be called before any OPPs are initialized for the device. 1860 */ 1861 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1862 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1863 { 1864 struct opp_table *opp_table; 1865 1866 if (!set_opp) 1867 return ERR_PTR(-EINVAL); 1868 1869 opp_table = dev_pm_opp_get_opp_table(dev); 1870 if (!opp_table) 1871 return ERR_PTR(-ENOMEM); 1872 1873 /* This should be called before OPPs are initialized */ 1874 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1875 dev_pm_opp_put_opp_table(opp_table); 1876 return ERR_PTR(-EBUSY); 1877 } 1878 1879 /* Another CPU that shares the OPP table has set the helper ? */ 1880 if (!opp_table->set_opp) 1881 opp_table->set_opp = set_opp; 1882 1883 return opp_table; 1884 } 1885 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1886 1887 /** 1888 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1889 * set_opp helper 1890 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1891 * 1892 * Release resources blocked for platform specific set_opp helper. 1893 */ 1894 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1895 { 1896 /* Make sure there are no concurrent readers while updating opp_table */ 1897 WARN_ON(!list_empty(&opp_table->opp_list)); 1898 1899 opp_table->set_opp = NULL; 1900 dev_pm_opp_put_opp_table(opp_table); 1901 } 1902 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1903 1904 static void _opp_detach_genpd(struct opp_table *opp_table) 1905 { 1906 int index; 1907 1908 for (index = 0; index < opp_table->required_opp_count; index++) { 1909 if (!opp_table->genpd_virt_devs[index]) 1910 continue; 1911 1912 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1913 opp_table->genpd_virt_devs[index] = NULL; 1914 } 1915 1916 kfree(opp_table->genpd_virt_devs); 1917 opp_table->genpd_virt_devs = NULL; 1918 } 1919 1920 /** 1921 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1922 * @dev: Consumer device for which the genpd is getting attached. 1923 * @names: Null terminated array of pointers containing names of genpd to attach. 1924 * @virt_devs: Pointer to return the array of virtual devices. 1925 * 1926 * Multiple generic power domains for a device are supported with the help of 1927 * virtual genpd devices, which are created for each consumer device - genpd 1928 * pair. These are the device structures which are attached to the power domain 1929 * and are required by the OPP core to set the performance state of the genpd. 1930 * The same API also works for the case where single genpd is available and so 1931 * we don't need to support that separately. 1932 * 1933 * This helper will normally be called by the consumer driver of the device 1934 * "dev", as only that has details of the genpd names. 1935 * 1936 * This helper needs to be called once with a list of all genpd to attach. 1937 * Otherwise the original device structure will be used instead by the OPP core. 1938 * 1939 * The order of entries in the names array must match the order in which 1940 * "required-opps" are added in DT. 1941 */ 1942 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 1943 const char **names, struct device ***virt_devs) 1944 { 1945 struct opp_table *opp_table; 1946 struct device *virt_dev; 1947 int index = 0, ret = -EINVAL; 1948 const char **name = names; 1949 1950 opp_table = dev_pm_opp_get_opp_table(dev); 1951 if (!opp_table) 1952 return ERR_PTR(-ENOMEM); 1953 1954 /* 1955 * If the genpd's OPP table isn't already initialized, parsing of the 1956 * required-opps fail for dev. We should retry this after genpd's OPP 1957 * table is added. 1958 */ 1959 if (!opp_table->required_opp_count) { 1960 ret = -EPROBE_DEFER; 1961 goto put_table; 1962 } 1963 1964 mutex_lock(&opp_table->genpd_virt_dev_lock); 1965 1966 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 1967 sizeof(*opp_table->genpd_virt_devs), 1968 GFP_KERNEL); 1969 if (!opp_table->genpd_virt_devs) 1970 goto unlock; 1971 1972 while (*name) { 1973 if (index >= opp_table->required_opp_count) { 1974 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 1975 *name, opp_table->required_opp_count, index); 1976 goto err; 1977 } 1978 1979 if (opp_table->genpd_virt_devs[index]) { 1980 dev_err(dev, "Genpd virtual device already set %s\n", 1981 *name); 1982 goto err; 1983 } 1984 1985 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 1986 if (IS_ERR(virt_dev)) { 1987 ret = PTR_ERR(virt_dev); 1988 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 1989 goto err; 1990 } 1991 1992 opp_table->genpd_virt_devs[index] = virt_dev; 1993 index++; 1994 name++; 1995 } 1996 1997 if (virt_devs) 1998 *virt_devs = opp_table->genpd_virt_devs; 1999 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2000 2001 return opp_table; 2002 2003 err: 2004 _opp_detach_genpd(opp_table); 2005 unlock: 2006 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2007 2008 put_table: 2009 dev_pm_opp_put_opp_table(opp_table); 2010 2011 return ERR_PTR(ret); 2012 } 2013 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 2014 2015 /** 2016 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 2017 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 2018 * 2019 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2020 * OPP table. 2021 */ 2022 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 2023 { 2024 /* 2025 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2026 * used in parallel. 2027 */ 2028 mutex_lock(&opp_table->genpd_virt_dev_lock); 2029 _opp_detach_genpd(opp_table); 2030 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2031 2032 dev_pm_opp_put_opp_table(opp_table); 2033 } 2034 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 2035 2036 /** 2037 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2038 * @src_table: OPP table which has dst_table as one of its required OPP table. 2039 * @dst_table: Required OPP table of the src_table. 2040 * @pstate: Current performance state of the src_table. 2041 * 2042 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2043 * "required-opps" property of the OPP (present in @src_table) which has 2044 * performance state set to @pstate. 2045 * 2046 * Return: Zero or positive performance state on success, otherwise negative 2047 * value on errors. 2048 */ 2049 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2050 struct opp_table *dst_table, 2051 unsigned int pstate) 2052 { 2053 struct dev_pm_opp *opp; 2054 int dest_pstate = -EINVAL; 2055 int i; 2056 2057 if (!pstate) 2058 return 0; 2059 2060 /* 2061 * Normally the src_table will have the "required_opps" property set to 2062 * point to one of the OPPs in the dst_table, but in some cases the 2063 * genpd and its master have one to one mapping of performance states 2064 * and so none of them have the "required-opps" property set. Return the 2065 * pstate of the src_table as it is in such cases. 2066 */ 2067 if (!src_table->required_opp_count) 2068 return pstate; 2069 2070 for (i = 0; i < src_table->required_opp_count; i++) { 2071 if (src_table->required_opp_tables[i]->np == dst_table->np) 2072 break; 2073 } 2074 2075 if (unlikely(i == src_table->required_opp_count)) { 2076 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2077 __func__, src_table, dst_table); 2078 return -EINVAL; 2079 } 2080 2081 mutex_lock(&src_table->lock); 2082 2083 list_for_each_entry(opp, &src_table->opp_list, node) { 2084 if (opp->pstate == pstate) { 2085 dest_pstate = opp->required_opps[i]->pstate; 2086 goto unlock; 2087 } 2088 } 2089 2090 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2091 dst_table); 2092 2093 unlock: 2094 mutex_unlock(&src_table->lock); 2095 2096 return dest_pstate; 2097 } 2098 2099 /** 2100 * dev_pm_opp_add() - Add an OPP table from a table definitions 2101 * @dev: device for which we do this operation 2102 * @freq: Frequency in Hz for this OPP 2103 * @u_volt: Voltage in uVolts for this OPP 2104 * 2105 * This function adds an opp definition to the opp table and returns status. 2106 * The opp is made available by default and it can be controlled using 2107 * dev_pm_opp_enable/disable functions. 2108 * 2109 * Return: 2110 * 0 On success OR 2111 * Duplicate OPPs (both freq and volt are same) and opp->available 2112 * -EEXIST Freq are same and volt are different OR 2113 * Duplicate OPPs (both freq and volt are same) and !opp->available 2114 * -ENOMEM Memory allocation failure 2115 */ 2116 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2117 { 2118 struct opp_table *opp_table; 2119 int ret; 2120 2121 opp_table = dev_pm_opp_get_opp_table(dev); 2122 if (!opp_table) 2123 return -ENOMEM; 2124 2125 /* Fix regulator count for dynamic OPPs */ 2126 opp_table->regulator_count = 1; 2127 2128 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2129 if (ret) 2130 dev_pm_opp_put_opp_table(opp_table); 2131 2132 return ret; 2133 } 2134 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2135 2136 /** 2137 * _opp_set_availability() - helper to set the availability of an opp 2138 * @dev: device for which we do this operation 2139 * @freq: OPP frequency to modify availability 2140 * @availability_req: availability status requested for this opp 2141 * 2142 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2143 * which is isolated here. 2144 * 2145 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2146 * copy operation, returns 0 if no modification was done OR modification was 2147 * successful. 2148 */ 2149 static int _opp_set_availability(struct device *dev, unsigned long freq, 2150 bool availability_req) 2151 { 2152 struct opp_table *opp_table; 2153 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2154 int r = 0; 2155 2156 /* Find the opp_table */ 2157 opp_table = _find_opp_table(dev); 2158 if (IS_ERR(opp_table)) { 2159 r = PTR_ERR(opp_table); 2160 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2161 return r; 2162 } 2163 2164 mutex_lock(&opp_table->lock); 2165 2166 /* Do we have the frequency? */ 2167 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2168 if (tmp_opp->rate == freq) { 2169 opp = tmp_opp; 2170 break; 2171 } 2172 } 2173 2174 if (IS_ERR(opp)) { 2175 r = PTR_ERR(opp); 2176 goto unlock; 2177 } 2178 2179 /* Is update really needed? */ 2180 if (opp->available == availability_req) 2181 goto unlock; 2182 2183 opp->available = availability_req; 2184 2185 dev_pm_opp_get(opp); 2186 mutex_unlock(&opp_table->lock); 2187 2188 /* Notify the change of the OPP availability */ 2189 if (availability_req) 2190 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2191 opp); 2192 else 2193 blocking_notifier_call_chain(&opp_table->head, 2194 OPP_EVENT_DISABLE, opp); 2195 2196 dev_pm_opp_put(opp); 2197 goto put_table; 2198 2199 unlock: 2200 mutex_unlock(&opp_table->lock); 2201 put_table: 2202 dev_pm_opp_put_opp_table(opp_table); 2203 return r; 2204 } 2205 2206 /** 2207 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2208 * @dev: device for which we do this operation 2209 * @freq: OPP frequency to adjust voltage of 2210 * @u_volt: new OPP target voltage 2211 * @u_volt_min: new OPP min voltage 2212 * @u_volt_max: new OPP max voltage 2213 * 2214 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2215 * copy operation, returns 0 if no modifcation was done OR modification was 2216 * successful. 2217 */ 2218 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2219 unsigned long u_volt, unsigned long u_volt_min, 2220 unsigned long u_volt_max) 2221 2222 { 2223 struct opp_table *opp_table; 2224 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2225 int r = 0; 2226 2227 /* Find the opp_table */ 2228 opp_table = _find_opp_table(dev); 2229 if (IS_ERR(opp_table)) { 2230 r = PTR_ERR(opp_table); 2231 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2232 return r; 2233 } 2234 2235 mutex_lock(&opp_table->lock); 2236 2237 /* Do we have the frequency? */ 2238 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2239 if (tmp_opp->rate == freq) { 2240 opp = tmp_opp; 2241 break; 2242 } 2243 } 2244 2245 if (IS_ERR(opp)) { 2246 r = PTR_ERR(opp); 2247 goto adjust_unlock; 2248 } 2249 2250 /* Is update really needed? */ 2251 if (opp->supplies->u_volt == u_volt) 2252 goto adjust_unlock; 2253 2254 opp->supplies->u_volt = u_volt; 2255 opp->supplies->u_volt_min = u_volt_min; 2256 opp->supplies->u_volt_max = u_volt_max; 2257 2258 dev_pm_opp_get(opp); 2259 mutex_unlock(&opp_table->lock); 2260 2261 /* Notify the voltage change of the OPP */ 2262 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2263 opp); 2264 2265 dev_pm_opp_put(opp); 2266 goto adjust_put_table; 2267 2268 adjust_unlock: 2269 mutex_unlock(&opp_table->lock); 2270 adjust_put_table: 2271 dev_pm_opp_put_opp_table(opp_table); 2272 return r; 2273 } 2274 2275 /** 2276 * dev_pm_opp_enable() - Enable a specific OPP 2277 * @dev: device for which we do this operation 2278 * @freq: OPP frequency to enable 2279 * 2280 * Enables a provided opp. If the operation is valid, this returns 0, else the 2281 * corresponding error value. It is meant to be used for users an OPP available 2282 * after being temporarily made unavailable with dev_pm_opp_disable. 2283 * 2284 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2285 * copy operation, returns 0 if no modification was done OR modification was 2286 * successful. 2287 */ 2288 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2289 { 2290 return _opp_set_availability(dev, freq, true); 2291 } 2292 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2293 2294 /** 2295 * dev_pm_opp_disable() - Disable a specific OPP 2296 * @dev: device for which we do this operation 2297 * @freq: OPP frequency to disable 2298 * 2299 * Disables a provided opp. If the operation is valid, this returns 2300 * 0, else the corresponding error value. It is meant to be a temporary 2301 * control by users to make this OPP not available until the circumstances are 2302 * right to make it available again (with a call to dev_pm_opp_enable). 2303 * 2304 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2305 * copy operation, returns 0 if no modification was done OR modification was 2306 * successful. 2307 */ 2308 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2309 { 2310 return _opp_set_availability(dev, freq, false); 2311 } 2312 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2313 2314 /** 2315 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2316 * @dev: Device for which notifier needs to be registered 2317 * @nb: Notifier block to be registered 2318 * 2319 * Return: 0 on success or a negative error value. 2320 */ 2321 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2322 { 2323 struct opp_table *opp_table; 2324 int ret; 2325 2326 opp_table = _find_opp_table(dev); 2327 if (IS_ERR(opp_table)) 2328 return PTR_ERR(opp_table); 2329 2330 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2331 2332 dev_pm_opp_put_opp_table(opp_table); 2333 2334 return ret; 2335 } 2336 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2337 2338 /** 2339 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2340 * @dev: Device for which notifier needs to be unregistered 2341 * @nb: Notifier block to be unregistered 2342 * 2343 * Return: 0 on success or a negative error value. 2344 */ 2345 int dev_pm_opp_unregister_notifier(struct device *dev, 2346 struct notifier_block *nb) 2347 { 2348 struct opp_table *opp_table; 2349 int ret; 2350 2351 opp_table = _find_opp_table(dev); 2352 if (IS_ERR(opp_table)) 2353 return PTR_ERR(opp_table); 2354 2355 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2356 2357 dev_pm_opp_put_opp_table(opp_table); 2358 2359 return ret; 2360 } 2361 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2362 2363 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2364 { 2365 struct opp_table *opp_table; 2366 2367 /* Check for existing table for 'dev' */ 2368 opp_table = _find_opp_table(dev); 2369 if (IS_ERR(opp_table)) { 2370 int error = PTR_ERR(opp_table); 2371 2372 if (error != -ENODEV) 2373 WARN(1, "%s: opp_table: %d\n", 2374 IS_ERR_OR_NULL(dev) ? 2375 "Invalid device" : dev_name(dev), 2376 error); 2377 return; 2378 } 2379 2380 _opp_remove_all_static(opp_table); 2381 2382 /* Drop reference taken by _find_opp_table() */ 2383 dev_pm_opp_put_opp_table(opp_table); 2384 2385 /* Drop reference taken while the OPP table was added */ 2386 dev_pm_opp_put_opp_table(opp_table); 2387 } 2388 2389 /** 2390 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2391 * @dev: device pointer used to lookup OPP table. 2392 * 2393 * Free both OPPs created using static entries present in DT and the 2394 * dynamically added entries. 2395 */ 2396 void dev_pm_opp_remove_table(struct device *dev) 2397 { 2398 _dev_pm_opp_find_and_remove_table(dev); 2399 } 2400 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2401