xref: /openbmc/linux/drivers/opp/core.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp)) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	/*
703 	 * Enable the regulator after setting its voltages, otherwise it breaks
704 	 * some boot-enabled regulators.
705 	 */
706 	if (unlikely(!opp_table->regulator_enabled)) {
707 		ret = regulator_enable(reg);
708 		if (ret < 0)
709 			dev_warn(dev, "Failed to enable regulator: %d", ret);
710 		else
711 			opp_table->regulator_enabled = true;
712 	}
713 
714 	return 0;
715 
716 restore_freq:
717 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
718 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
719 			__func__, old_freq);
720 restore_voltage:
721 	/* This shouldn't harm even if the voltages weren't updated earlier */
722 	if (old_supply)
723 		_set_opp_voltage(dev, reg, old_supply);
724 
725 	return ret;
726 }
727 
728 static int _set_opp_bw(const struct opp_table *opp_table,
729 		       struct dev_pm_opp *opp, struct device *dev, bool remove)
730 {
731 	u32 avg, peak;
732 	int i, ret;
733 
734 	if (!opp_table->paths)
735 		return 0;
736 
737 	for (i = 0; i < opp_table->path_count; i++) {
738 		if (remove) {
739 			avg = 0;
740 			peak = 0;
741 		} else {
742 			avg = opp->bandwidth[i].avg;
743 			peak = opp->bandwidth[i].peak;
744 		}
745 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
746 		if (ret) {
747 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
748 				remove ? "remove" : "set", i, ret);
749 			return ret;
750 		}
751 	}
752 
753 	return 0;
754 }
755 
756 static int _set_opp_custom(const struct opp_table *opp_table,
757 			   struct device *dev, unsigned long old_freq,
758 			   unsigned long freq,
759 			   struct dev_pm_opp_supply *old_supply,
760 			   struct dev_pm_opp_supply *new_supply)
761 {
762 	struct dev_pm_set_opp_data *data;
763 	int size;
764 
765 	data = opp_table->set_opp_data;
766 	data->regulators = opp_table->regulators;
767 	data->regulator_count = opp_table->regulator_count;
768 	data->clk = opp_table->clk;
769 	data->dev = dev;
770 
771 	data->old_opp.rate = old_freq;
772 	size = sizeof(*old_supply) * opp_table->regulator_count;
773 	if (!old_supply)
774 		memset(data->old_opp.supplies, 0, size);
775 	else
776 		memcpy(data->old_opp.supplies, old_supply, size);
777 
778 	data->new_opp.rate = freq;
779 	memcpy(data->new_opp.supplies, new_supply, size);
780 
781 	return opp_table->set_opp(data);
782 }
783 
784 /* This is only called for PM domain for now */
785 static int _set_required_opps(struct device *dev,
786 			      struct opp_table *opp_table,
787 			      struct dev_pm_opp *opp)
788 {
789 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
790 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
791 	unsigned int pstate;
792 	int i, ret = 0;
793 
794 	if (!required_opp_tables)
795 		return 0;
796 
797 	/* Single genpd case */
798 	if (!genpd_virt_devs) {
799 		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
800 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
801 		if (ret) {
802 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
803 				dev_name(dev), pstate, ret);
804 		}
805 		return ret;
806 	}
807 
808 	/* Multiple genpd case */
809 
810 	/*
811 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
812 	 * after it is freed from another thread.
813 	 */
814 	mutex_lock(&opp_table->genpd_virt_dev_lock);
815 
816 	for (i = 0; i < opp_table->required_opp_count; i++) {
817 		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
818 
819 		if (!genpd_virt_devs[i])
820 			continue;
821 
822 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
823 		if (ret) {
824 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
825 				dev_name(genpd_virt_devs[i]), pstate, ret);
826 			break;
827 		}
828 	}
829 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
830 
831 	return ret;
832 }
833 
834 /**
835  * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
836  * @dev:	device for which we do this operation
837  * @opp:	opp based on which the bandwidth levels are to be configured
838  *
839  * This configures the bandwidth to the levels specified by the OPP. However
840  * if the OPP specified is NULL the bandwidth levels are cleared out.
841  *
842  * Return: 0 on success or a negative error value.
843  */
844 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
845 {
846 	struct opp_table *opp_table;
847 	int ret;
848 
849 	opp_table = _find_opp_table(dev);
850 	if (IS_ERR(opp_table)) {
851 		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
852 		return PTR_ERR(opp_table);
853 	}
854 
855 	if (opp)
856 		ret = _set_opp_bw(opp_table, opp, dev, false);
857 	else
858 		ret = _set_opp_bw(opp_table, NULL, dev, true);
859 
860 	dev_pm_opp_put_opp_table(opp_table);
861 	return ret;
862 }
863 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
864 
865 /**
866  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
867  * @dev:	 device for which we do this operation
868  * @target_freq: frequency to achieve
869  *
870  * This configures the power-supplies to the levels specified by the OPP
871  * corresponding to the target_freq, and programs the clock to a value <=
872  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
873  * provided by the opp, should have already rounded to the target OPP's
874  * frequency.
875  */
876 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
877 {
878 	struct opp_table *opp_table;
879 	unsigned long freq, old_freq, temp_freq;
880 	struct dev_pm_opp *old_opp, *opp;
881 	struct clk *clk;
882 	int ret;
883 
884 	opp_table = _find_opp_table(dev);
885 	if (IS_ERR(opp_table)) {
886 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
887 		return PTR_ERR(opp_table);
888 	}
889 
890 	if (unlikely(!target_freq)) {
891 		/*
892 		 * Some drivers need to support cases where some platforms may
893 		 * have OPP table for the device, while others don't and
894 		 * opp_set_rate() just needs to behave like clk_set_rate().
895 		 */
896 		if (!_get_opp_count(opp_table)) {
897 			ret = 0;
898 			goto put_opp_table;
899 		}
900 
901 		if (!opp_table->required_opp_tables && !opp_table->regulators &&
902 		    !opp_table->paths) {
903 			dev_err(dev, "target frequency can't be 0\n");
904 			ret = -EINVAL;
905 			goto put_opp_table;
906 		}
907 
908 		ret = _set_opp_bw(opp_table, NULL, dev, true);
909 		if (ret)
910 			goto put_opp_table;
911 
912 		if (opp_table->regulator_enabled) {
913 			regulator_disable(opp_table->regulators[0]);
914 			opp_table->regulator_enabled = false;
915 		}
916 
917 		ret = _set_required_opps(dev, opp_table, NULL);
918 		goto put_opp_table;
919 	}
920 
921 	clk = opp_table->clk;
922 	if (IS_ERR(clk)) {
923 		dev_err(dev, "%s: No clock available for the device\n",
924 			__func__);
925 		ret = PTR_ERR(clk);
926 		goto put_opp_table;
927 	}
928 
929 	freq = clk_round_rate(clk, target_freq);
930 	if ((long)freq <= 0)
931 		freq = target_freq;
932 
933 	old_freq = clk_get_rate(clk);
934 
935 	/* Return early if nothing to do */
936 	if (old_freq == freq) {
937 		if (!opp_table->required_opp_tables && !opp_table->regulators &&
938 		    !opp_table->paths) {
939 			dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
940 				__func__, freq);
941 			ret = 0;
942 			goto put_opp_table;
943 		}
944 	}
945 
946 	/*
947 	 * For IO devices which require an OPP on some platforms/SoCs
948 	 * while just needing to scale the clock on some others
949 	 * we look for empty OPP tables with just a clock handle and
950 	 * scale only the clk. This makes dev_pm_opp_set_rate()
951 	 * equivalent to a clk_set_rate()
952 	 */
953 	if (!_get_opp_count(opp_table)) {
954 		ret = _generic_set_opp_clk_only(dev, clk, freq);
955 		goto put_opp_table;
956 	}
957 
958 	temp_freq = old_freq;
959 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
960 	if (IS_ERR(old_opp)) {
961 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
962 			__func__, old_freq, PTR_ERR(old_opp));
963 	}
964 
965 	temp_freq = freq;
966 	opp = _find_freq_ceil(opp_table, &temp_freq);
967 	if (IS_ERR(opp)) {
968 		ret = PTR_ERR(opp);
969 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
970 			__func__, freq, ret);
971 		goto put_old_opp;
972 	}
973 
974 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
975 		old_freq, freq);
976 
977 	/* Scaling up? Configure required OPPs before frequency */
978 	if (freq >= old_freq) {
979 		ret = _set_required_opps(dev, opp_table, opp);
980 		if (ret)
981 			goto put_opp;
982 	}
983 
984 	if (opp_table->set_opp) {
985 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
986 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
987 				      opp->supplies);
988 	} else if (opp_table->regulators) {
989 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
990 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
991 						 opp->supplies);
992 	} else {
993 		/* Only frequency scaling */
994 		ret = _generic_set_opp_clk_only(dev, clk, freq);
995 	}
996 
997 	/* Scaling down? Configure required OPPs after frequency */
998 	if (!ret && freq < old_freq) {
999 		ret = _set_required_opps(dev, opp_table, opp);
1000 		if (ret)
1001 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1002 	}
1003 
1004 	if (!ret)
1005 		ret = _set_opp_bw(opp_table, opp, dev, false);
1006 
1007 put_opp:
1008 	dev_pm_opp_put(opp);
1009 put_old_opp:
1010 	if (!IS_ERR(old_opp))
1011 		dev_pm_opp_put(old_opp);
1012 put_opp_table:
1013 	dev_pm_opp_put_opp_table(opp_table);
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1017 
1018 /* OPP-dev Helpers */
1019 static void _remove_opp_dev(struct opp_device *opp_dev,
1020 			    struct opp_table *opp_table)
1021 {
1022 	opp_debug_unregister(opp_dev, opp_table);
1023 	list_del(&opp_dev->node);
1024 	kfree(opp_dev);
1025 }
1026 
1027 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1028 						struct opp_table *opp_table)
1029 {
1030 	struct opp_device *opp_dev;
1031 
1032 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1033 	if (!opp_dev)
1034 		return NULL;
1035 
1036 	/* Initialize opp-dev */
1037 	opp_dev->dev = dev;
1038 
1039 	list_add(&opp_dev->node, &opp_table->dev_list);
1040 
1041 	/* Create debugfs entries for the opp_table */
1042 	opp_debug_register(opp_dev, opp_table);
1043 
1044 	return opp_dev;
1045 }
1046 
1047 struct opp_device *_add_opp_dev(const struct device *dev,
1048 				struct opp_table *opp_table)
1049 {
1050 	struct opp_device *opp_dev;
1051 
1052 	mutex_lock(&opp_table->lock);
1053 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1054 	mutex_unlock(&opp_table->lock);
1055 
1056 	return opp_dev;
1057 }
1058 
1059 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1060 {
1061 	struct opp_table *opp_table;
1062 	struct opp_device *opp_dev;
1063 	int ret;
1064 
1065 	/*
1066 	 * Allocate a new OPP table. In the infrequent case where a new
1067 	 * device is needed to be added, we pay this penalty.
1068 	 */
1069 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1070 	if (!opp_table)
1071 		return NULL;
1072 
1073 	mutex_init(&opp_table->lock);
1074 	mutex_init(&opp_table->genpd_virt_dev_lock);
1075 	INIT_LIST_HEAD(&opp_table->dev_list);
1076 
1077 	/* Mark regulator count uninitialized */
1078 	opp_table->regulator_count = -1;
1079 
1080 	opp_dev = _add_opp_dev(dev, opp_table);
1081 	if (!opp_dev) {
1082 		kfree(opp_table);
1083 		return NULL;
1084 	}
1085 
1086 	_of_init_opp_table(opp_table, dev, index);
1087 
1088 	/* Find clk for the device */
1089 	opp_table->clk = clk_get(dev, NULL);
1090 	if (IS_ERR(opp_table->clk)) {
1091 		ret = PTR_ERR(opp_table->clk);
1092 		if (ret != -EPROBE_DEFER)
1093 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1094 				ret);
1095 	}
1096 
1097 	/* Find interconnect path(s) for the device */
1098 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1099 	if (ret)
1100 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1101 			 __func__, ret);
1102 
1103 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1104 	INIT_LIST_HEAD(&opp_table->opp_list);
1105 	kref_init(&opp_table->kref);
1106 
1107 	/* Secure the device table modification */
1108 	list_add(&opp_table->node, &opp_tables);
1109 	return opp_table;
1110 }
1111 
1112 void _get_opp_table_kref(struct opp_table *opp_table)
1113 {
1114 	kref_get(&opp_table->kref);
1115 }
1116 
1117 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1118 {
1119 	struct opp_table *opp_table;
1120 
1121 	/* Hold our table modification lock here */
1122 	mutex_lock(&opp_table_lock);
1123 
1124 	opp_table = _find_opp_table_unlocked(dev);
1125 	if (!IS_ERR(opp_table))
1126 		goto unlock;
1127 
1128 	opp_table = _managed_opp(dev, index);
1129 	if (opp_table) {
1130 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1131 			dev_pm_opp_put_opp_table(opp_table);
1132 			opp_table = NULL;
1133 		}
1134 		goto unlock;
1135 	}
1136 
1137 	opp_table = _allocate_opp_table(dev, index);
1138 
1139 unlock:
1140 	mutex_unlock(&opp_table_lock);
1141 
1142 	return opp_table;
1143 }
1144 
1145 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1146 {
1147 	return _opp_get_opp_table(dev, 0);
1148 }
1149 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1150 
1151 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1152 						   int index)
1153 {
1154 	return _opp_get_opp_table(dev, index);
1155 }
1156 
1157 static void _opp_table_kref_release(struct kref *kref)
1158 {
1159 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1160 	struct opp_device *opp_dev, *temp;
1161 	int i;
1162 
1163 	_of_clear_opp_table(opp_table);
1164 
1165 	/* Release clk */
1166 	if (!IS_ERR(opp_table->clk))
1167 		clk_put(opp_table->clk);
1168 
1169 	if (opp_table->paths) {
1170 		for (i = 0; i < opp_table->path_count; i++)
1171 			icc_put(opp_table->paths[i]);
1172 		kfree(opp_table->paths);
1173 	}
1174 
1175 	WARN_ON(!list_empty(&opp_table->opp_list));
1176 
1177 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1178 		/*
1179 		 * The OPP table is getting removed, drop the performance state
1180 		 * constraints.
1181 		 */
1182 		if (opp_table->genpd_performance_state)
1183 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1184 
1185 		_remove_opp_dev(opp_dev, opp_table);
1186 	}
1187 
1188 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1189 	mutex_destroy(&opp_table->lock);
1190 	list_del(&opp_table->node);
1191 	kfree(opp_table);
1192 
1193 	mutex_unlock(&opp_table_lock);
1194 }
1195 
1196 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1197 {
1198 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1199 		       &opp_table_lock);
1200 }
1201 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1202 
1203 void _opp_free(struct dev_pm_opp *opp)
1204 {
1205 	kfree(opp);
1206 }
1207 
1208 static void _opp_kref_release(struct dev_pm_opp *opp,
1209 			      struct opp_table *opp_table)
1210 {
1211 	/*
1212 	 * Notify the changes in the availability of the operable
1213 	 * frequency/voltage list.
1214 	 */
1215 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1216 	_of_opp_free_required_opps(opp_table, opp);
1217 	opp_debug_remove_one(opp);
1218 	list_del(&opp->node);
1219 	kfree(opp);
1220 }
1221 
1222 static void _opp_kref_release_unlocked(struct kref *kref)
1223 {
1224 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1225 	struct opp_table *opp_table = opp->opp_table;
1226 
1227 	_opp_kref_release(opp, opp_table);
1228 }
1229 
1230 static void _opp_kref_release_locked(struct kref *kref)
1231 {
1232 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1233 	struct opp_table *opp_table = opp->opp_table;
1234 
1235 	_opp_kref_release(opp, opp_table);
1236 	mutex_unlock(&opp_table->lock);
1237 }
1238 
1239 void dev_pm_opp_get(struct dev_pm_opp *opp)
1240 {
1241 	kref_get(&opp->kref);
1242 }
1243 
1244 void dev_pm_opp_put(struct dev_pm_opp *opp)
1245 {
1246 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1247 		       &opp->opp_table->lock);
1248 }
1249 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1250 
1251 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1252 {
1253 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1254 }
1255 
1256 /**
1257  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1258  * @dev:	device for which we do this operation
1259  * @freq:	OPP to remove with matching 'freq'
1260  *
1261  * This function removes an opp from the opp table.
1262  */
1263 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1264 {
1265 	struct dev_pm_opp *opp;
1266 	struct opp_table *opp_table;
1267 	bool found = false;
1268 
1269 	opp_table = _find_opp_table(dev);
1270 	if (IS_ERR(opp_table))
1271 		return;
1272 
1273 	mutex_lock(&opp_table->lock);
1274 
1275 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1276 		if (opp->rate == freq) {
1277 			found = true;
1278 			break;
1279 		}
1280 	}
1281 
1282 	mutex_unlock(&opp_table->lock);
1283 
1284 	if (found) {
1285 		dev_pm_opp_put(opp);
1286 
1287 		/* Drop the reference taken by dev_pm_opp_add() */
1288 		dev_pm_opp_put_opp_table(opp_table);
1289 	} else {
1290 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1291 			 __func__, freq);
1292 	}
1293 
1294 	/* Drop the reference taken by _find_opp_table() */
1295 	dev_pm_opp_put_opp_table(opp_table);
1296 }
1297 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1298 
1299 bool _opp_remove_all_static(struct opp_table *opp_table)
1300 {
1301 	struct dev_pm_opp *opp, *tmp;
1302 	bool ret = true;
1303 
1304 	mutex_lock(&opp_table->lock);
1305 
1306 	if (!opp_table->parsed_static_opps) {
1307 		ret = false;
1308 		goto unlock;
1309 	}
1310 
1311 	if (--opp_table->parsed_static_opps)
1312 		goto unlock;
1313 
1314 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1315 		if (!opp->dynamic)
1316 			dev_pm_opp_put_unlocked(opp);
1317 	}
1318 
1319 unlock:
1320 	mutex_unlock(&opp_table->lock);
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1327  * @dev:	device for which we do this operation
1328  *
1329  * This function removes all dynamically created OPPs from the opp table.
1330  */
1331 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1332 {
1333 	struct opp_table *opp_table;
1334 	struct dev_pm_opp *opp, *temp;
1335 	int count = 0;
1336 
1337 	opp_table = _find_opp_table(dev);
1338 	if (IS_ERR(opp_table))
1339 		return;
1340 
1341 	mutex_lock(&opp_table->lock);
1342 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1343 		if (opp->dynamic) {
1344 			dev_pm_opp_put_unlocked(opp);
1345 			count++;
1346 		}
1347 	}
1348 	mutex_unlock(&opp_table->lock);
1349 
1350 	/* Drop the references taken by dev_pm_opp_add() */
1351 	while (count--)
1352 		dev_pm_opp_put_opp_table(opp_table);
1353 
1354 	/* Drop the reference taken by _find_opp_table() */
1355 	dev_pm_opp_put_opp_table(opp_table);
1356 }
1357 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1358 
1359 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1360 {
1361 	struct dev_pm_opp *opp;
1362 	int supply_count, supply_size, icc_size;
1363 
1364 	/* Allocate space for at least one supply */
1365 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1366 	supply_size = sizeof(*opp->supplies) * supply_count;
1367 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1368 
1369 	/* allocate new OPP node and supplies structures */
1370 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1371 
1372 	if (!opp)
1373 		return NULL;
1374 
1375 	/* Put the supplies at the end of the OPP structure as an empty array */
1376 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1377 	if (icc_size)
1378 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1379 	INIT_LIST_HEAD(&opp->node);
1380 
1381 	return opp;
1382 }
1383 
1384 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1385 					 struct opp_table *opp_table)
1386 {
1387 	struct regulator *reg;
1388 	int i;
1389 
1390 	if (!opp_table->regulators)
1391 		return true;
1392 
1393 	for (i = 0; i < opp_table->regulator_count; i++) {
1394 		reg = opp_table->regulators[i];
1395 
1396 		if (!regulator_is_supported_voltage(reg,
1397 					opp->supplies[i].u_volt_min,
1398 					opp->supplies[i].u_volt_max)) {
1399 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1400 				__func__, opp->supplies[i].u_volt_min,
1401 				opp->supplies[i].u_volt_max);
1402 			return false;
1403 		}
1404 	}
1405 
1406 	return true;
1407 }
1408 
1409 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1410 {
1411 	if (opp1->rate != opp2->rate)
1412 		return opp1->rate < opp2->rate ? -1 : 1;
1413 	if (opp1->bandwidth && opp2->bandwidth &&
1414 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1415 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1416 	if (opp1->level != opp2->level)
1417 		return opp1->level < opp2->level ? -1 : 1;
1418 	return 0;
1419 }
1420 
1421 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1422 			     struct opp_table *opp_table,
1423 			     struct list_head **head)
1424 {
1425 	struct dev_pm_opp *opp;
1426 	int opp_cmp;
1427 
1428 	/*
1429 	 * Insert new OPP in order of increasing frequency and discard if
1430 	 * already present.
1431 	 *
1432 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1433 	 * loop, don't replace it with head otherwise it will become an infinite
1434 	 * loop.
1435 	 */
1436 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1437 		opp_cmp = _opp_compare_key(new_opp, opp);
1438 		if (opp_cmp > 0) {
1439 			*head = &opp->node;
1440 			continue;
1441 		}
1442 
1443 		if (opp_cmp < 0)
1444 			return 0;
1445 
1446 		/* Duplicate OPPs */
1447 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1448 			 __func__, opp->rate, opp->supplies[0].u_volt,
1449 			 opp->available, new_opp->rate,
1450 			 new_opp->supplies[0].u_volt, new_opp->available);
1451 
1452 		/* Should we compare voltages for all regulators here ? */
1453 		return opp->available &&
1454 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 /*
1461  * Returns:
1462  * 0: On success. And appropriate error message for duplicate OPPs.
1463  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1464  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1465  *  sure we don't print error messages unnecessarily if different parts of
1466  *  kernel try to initialize the OPP table.
1467  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1468  *  should be considered an error by the callers of _opp_add().
1469  */
1470 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1471 	     struct opp_table *opp_table, bool rate_not_available)
1472 {
1473 	struct list_head *head;
1474 	int ret;
1475 
1476 	mutex_lock(&opp_table->lock);
1477 	head = &opp_table->opp_list;
1478 
1479 	if (likely(!rate_not_available)) {
1480 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1481 		if (ret) {
1482 			mutex_unlock(&opp_table->lock);
1483 			return ret;
1484 		}
1485 	}
1486 
1487 	list_add(&new_opp->node, head);
1488 	mutex_unlock(&opp_table->lock);
1489 
1490 	new_opp->opp_table = opp_table;
1491 	kref_init(&new_opp->kref);
1492 
1493 	opp_debug_create_one(new_opp, opp_table);
1494 
1495 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1496 		new_opp->available = false;
1497 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1498 			 __func__, new_opp->rate);
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 /**
1505  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1506  * @opp_table:	OPP table
1507  * @dev:	device for which we do this operation
1508  * @freq:	Frequency in Hz for this OPP
1509  * @u_volt:	Voltage in uVolts for this OPP
1510  * @dynamic:	Dynamically added OPPs.
1511  *
1512  * This function adds an opp definition to the opp table and returns status.
1513  * The opp is made available by default and it can be controlled using
1514  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1515  *
1516  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1517  * and freed by dev_pm_opp_of_remove_table.
1518  *
1519  * Return:
1520  * 0		On success OR
1521  *		Duplicate OPPs (both freq and volt are same) and opp->available
1522  * -EEXIST	Freq are same and volt are different OR
1523  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1524  * -ENOMEM	Memory allocation failure
1525  */
1526 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1527 		unsigned long freq, long u_volt, bool dynamic)
1528 {
1529 	struct dev_pm_opp *new_opp;
1530 	unsigned long tol;
1531 	int ret;
1532 
1533 	new_opp = _opp_allocate(opp_table);
1534 	if (!new_opp)
1535 		return -ENOMEM;
1536 
1537 	/* populate the opp table */
1538 	new_opp->rate = freq;
1539 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1540 	new_opp->supplies[0].u_volt = u_volt;
1541 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1542 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1543 	new_opp->available = true;
1544 	new_opp->dynamic = dynamic;
1545 
1546 	ret = _opp_add(dev, new_opp, opp_table, false);
1547 	if (ret) {
1548 		/* Don't return error for duplicate OPPs */
1549 		if (ret == -EBUSY)
1550 			ret = 0;
1551 		goto free_opp;
1552 	}
1553 
1554 	/*
1555 	 * Notify the changes in the availability of the operable
1556 	 * frequency/voltage list.
1557 	 */
1558 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1559 	return 0;
1560 
1561 free_opp:
1562 	_opp_free(new_opp);
1563 
1564 	return ret;
1565 }
1566 
1567 /**
1568  * dev_pm_opp_set_supported_hw() - Set supported platforms
1569  * @dev: Device for which supported-hw has to be set.
1570  * @versions: Array of hierarchy of versions to match.
1571  * @count: Number of elements in the array.
1572  *
1573  * This is required only for the V2 bindings, and it enables a platform to
1574  * specify the hierarchy of versions it supports. OPP layer will then enable
1575  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1576  * property.
1577  */
1578 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1579 			const u32 *versions, unsigned int count)
1580 {
1581 	struct opp_table *opp_table;
1582 
1583 	opp_table = dev_pm_opp_get_opp_table(dev);
1584 	if (!opp_table)
1585 		return ERR_PTR(-ENOMEM);
1586 
1587 	/* Make sure there are no concurrent readers while updating opp_table */
1588 	WARN_ON(!list_empty(&opp_table->opp_list));
1589 
1590 	/* Another CPU that shares the OPP table has set the property ? */
1591 	if (opp_table->supported_hw)
1592 		return opp_table;
1593 
1594 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1595 					GFP_KERNEL);
1596 	if (!opp_table->supported_hw) {
1597 		dev_pm_opp_put_opp_table(opp_table);
1598 		return ERR_PTR(-ENOMEM);
1599 	}
1600 
1601 	opp_table->supported_hw_count = count;
1602 
1603 	return opp_table;
1604 }
1605 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1606 
1607 /**
1608  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1609  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1610  *
1611  * This is required only for the V2 bindings, and is called for a matching
1612  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1613  * will not be freed.
1614  */
1615 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1616 {
1617 	/* Make sure there are no concurrent readers while updating opp_table */
1618 	WARN_ON(!list_empty(&opp_table->opp_list));
1619 
1620 	kfree(opp_table->supported_hw);
1621 	opp_table->supported_hw = NULL;
1622 	opp_table->supported_hw_count = 0;
1623 
1624 	dev_pm_opp_put_opp_table(opp_table);
1625 }
1626 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1627 
1628 /**
1629  * dev_pm_opp_set_prop_name() - Set prop-extn name
1630  * @dev: Device for which the prop-name has to be set.
1631  * @name: name to postfix to properties.
1632  *
1633  * This is required only for the V2 bindings, and it enables a platform to
1634  * specify the extn to be used for certain property names. The properties to
1635  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1636  * should postfix the property name with -<name> while looking for them.
1637  */
1638 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1639 {
1640 	struct opp_table *opp_table;
1641 
1642 	opp_table = dev_pm_opp_get_opp_table(dev);
1643 	if (!opp_table)
1644 		return ERR_PTR(-ENOMEM);
1645 
1646 	/* Make sure there are no concurrent readers while updating opp_table */
1647 	WARN_ON(!list_empty(&opp_table->opp_list));
1648 
1649 	/* Another CPU that shares the OPP table has set the property ? */
1650 	if (opp_table->prop_name)
1651 		return opp_table;
1652 
1653 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1654 	if (!opp_table->prop_name) {
1655 		dev_pm_opp_put_opp_table(opp_table);
1656 		return ERR_PTR(-ENOMEM);
1657 	}
1658 
1659 	return opp_table;
1660 }
1661 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1662 
1663 /**
1664  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1665  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1666  *
1667  * This is required only for the V2 bindings, and is called for a matching
1668  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1669  * will not be freed.
1670  */
1671 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1672 {
1673 	/* Make sure there are no concurrent readers while updating opp_table */
1674 	WARN_ON(!list_empty(&opp_table->opp_list));
1675 
1676 	kfree(opp_table->prop_name);
1677 	opp_table->prop_name = NULL;
1678 
1679 	dev_pm_opp_put_opp_table(opp_table);
1680 }
1681 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1682 
1683 static int _allocate_set_opp_data(struct opp_table *opp_table)
1684 {
1685 	struct dev_pm_set_opp_data *data;
1686 	int len, count = opp_table->regulator_count;
1687 
1688 	if (WARN_ON(!opp_table->regulators))
1689 		return -EINVAL;
1690 
1691 	/* space for set_opp_data */
1692 	len = sizeof(*data);
1693 
1694 	/* space for old_opp.supplies and new_opp.supplies */
1695 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1696 
1697 	data = kzalloc(len, GFP_KERNEL);
1698 	if (!data)
1699 		return -ENOMEM;
1700 
1701 	data->old_opp.supplies = (void *)(data + 1);
1702 	data->new_opp.supplies = data->old_opp.supplies + count;
1703 
1704 	opp_table->set_opp_data = data;
1705 
1706 	return 0;
1707 }
1708 
1709 static void _free_set_opp_data(struct opp_table *opp_table)
1710 {
1711 	kfree(opp_table->set_opp_data);
1712 	opp_table->set_opp_data = NULL;
1713 }
1714 
1715 /**
1716  * dev_pm_opp_set_regulators() - Set regulator names for the device
1717  * @dev: Device for which regulator name is being set.
1718  * @names: Array of pointers to the names of the regulator.
1719  * @count: Number of regulators.
1720  *
1721  * In order to support OPP switching, OPP layer needs to know the name of the
1722  * device's regulators, as the core would be required to switch voltages as
1723  * well.
1724  *
1725  * This must be called before any OPPs are initialized for the device.
1726  */
1727 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1728 					    const char * const names[],
1729 					    unsigned int count)
1730 {
1731 	struct opp_table *opp_table;
1732 	struct regulator *reg;
1733 	int ret, i;
1734 
1735 	opp_table = dev_pm_opp_get_opp_table(dev);
1736 	if (!opp_table)
1737 		return ERR_PTR(-ENOMEM);
1738 
1739 	/* This should be called before OPPs are initialized */
1740 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1741 		ret = -EBUSY;
1742 		goto err;
1743 	}
1744 
1745 	/* Another CPU that shares the OPP table has set the regulators ? */
1746 	if (opp_table->regulators)
1747 		return opp_table;
1748 
1749 	opp_table->regulators = kmalloc_array(count,
1750 					      sizeof(*opp_table->regulators),
1751 					      GFP_KERNEL);
1752 	if (!opp_table->regulators) {
1753 		ret = -ENOMEM;
1754 		goto err;
1755 	}
1756 
1757 	for (i = 0; i < count; i++) {
1758 		reg = regulator_get_optional(dev, names[i]);
1759 		if (IS_ERR(reg)) {
1760 			ret = PTR_ERR(reg);
1761 			if (ret != -EPROBE_DEFER)
1762 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1763 					__func__, names[i], ret);
1764 			goto free_regulators;
1765 		}
1766 
1767 		opp_table->regulators[i] = reg;
1768 	}
1769 
1770 	opp_table->regulator_count = count;
1771 
1772 	/* Allocate block only once to pass to set_opp() routines */
1773 	ret = _allocate_set_opp_data(opp_table);
1774 	if (ret)
1775 		goto free_regulators;
1776 
1777 	return opp_table;
1778 
1779 free_regulators:
1780 	while (i != 0)
1781 		regulator_put(opp_table->regulators[--i]);
1782 
1783 	kfree(opp_table->regulators);
1784 	opp_table->regulators = NULL;
1785 	opp_table->regulator_count = -1;
1786 err:
1787 	dev_pm_opp_put_opp_table(opp_table);
1788 
1789 	return ERR_PTR(ret);
1790 }
1791 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1792 
1793 /**
1794  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1795  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1796  */
1797 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1798 {
1799 	int i;
1800 
1801 	if (!opp_table->regulators)
1802 		goto put_opp_table;
1803 
1804 	/* Make sure there are no concurrent readers while updating opp_table */
1805 	WARN_ON(!list_empty(&opp_table->opp_list));
1806 
1807 	if (opp_table->regulator_enabled) {
1808 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1809 			regulator_disable(opp_table->regulators[i]);
1810 
1811 		opp_table->regulator_enabled = false;
1812 	}
1813 
1814 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1815 		regulator_put(opp_table->regulators[i]);
1816 
1817 	_free_set_opp_data(opp_table);
1818 
1819 	kfree(opp_table->regulators);
1820 	opp_table->regulators = NULL;
1821 	opp_table->regulator_count = -1;
1822 
1823 put_opp_table:
1824 	dev_pm_opp_put_opp_table(opp_table);
1825 }
1826 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1827 
1828 /**
1829  * dev_pm_opp_set_clkname() - Set clk name for the device
1830  * @dev: Device for which clk name is being set.
1831  * @name: Clk name.
1832  *
1833  * In order to support OPP switching, OPP layer needs to get pointer to the
1834  * clock for the device. Simple cases work fine without using this routine (i.e.
1835  * by passing connection-id as NULL), but for a device with multiple clocks
1836  * available, the OPP core needs to know the exact name of the clk to use.
1837  *
1838  * This must be called before any OPPs are initialized for the device.
1839  */
1840 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1841 {
1842 	struct opp_table *opp_table;
1843 	int ret;
1844 
1845 	opp_table = dev_pm_opp_get_opp_table(dev);
1846 	if (!opp_table)
1847 		return ERR_PTR(-ENOMEM);
1848 
1849 	/* This should be called before OPPs are initialized */
1850 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1851 		ret = -EBUSY;
1852 		goto err;
1853 	}
1854 
1855 	/* Already have default clk set, free it */
1856 	if (!IS_ERR(opp_table->clk))
1857 		clk_put(opp_table->clk);
1858 
1859 	/* Find clk for the device */
1860 	opp_table->clk = clk_get(dev, name);
1861 	if (IS_ERR(opp_table->clk)) {
1862 		ret = PTR_ERR(opp_table->clk);
1863 		if (ret != -EPROBE_DEFER) {
1864 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1865 				ret);
1866 		}
1867 		goto err;
1868 	}
1869 
1870 	return opp_table;
1871 
1872 err:
1873 	dev_pm_opp_put_opp_table(opp_table);
1874 
1875 	return ERR_PTR(ret);
1876 }
1877 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1878 
1879 /**
1880  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1881  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1882  */
1883 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1884 {
1885 	/* Make sure there are no concurrent readers while updating opp_table */
1886 	WARN_ON(!list_empty(&opp_table->opp_list));
1887 
1888 	clk_put(opp_table->clk);
1889 	opp_table->clk = ERR_PTR(-EINVAL);
1890 
1891 	dev_pm_opp_put_opp_table(opp_table);
1892 }
1893 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1894 
1895 /**
1896  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1897  * @dev: Device for which the helper is getting registered.
1898  * @set_opp: Custom set OPP helper.
1899  *
1900  * This is useful to support complex platforms (like platforms with multiple
1901  * regulators per device), instead of the generic OPP set rate helper.
1902  *
1903  * This must be called before any OPPs are initialized for the device.
1904  */
1905 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1906 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1907 {
1908 	struct opp_table *opp_table;
1909 
1910 	if (!set_opp)
1911 		return ERR_PTR(-EINVAL);
1912 
1913 	opp_table = dev_pm_opp_get_opp_table(dev);
1914 	if (!opp_table)
1915 		return ERR_PTR(-ENOMEM);
1916 
1917 	/* This should be called before OPPs are initialized */
1918 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1919 		dev_pm_opp_put_opp_table(opp_table);
1920 		return ERR_PTR(-EBUSY);
1921 	}
1922 
1923 	/* Another CPU that shares the OPP table has set the helper ? */
1924 	if (!opp_table->set_opp)
1925 		opp_table->set_opp = set_opp;
1926 
1927 	return opp_table;
1928 }
1929 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1930 
1931 /**
1932  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1933  *					   set_opp helper
1934  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1935  *
1936  * Release resources blocked for platform specific set_opp helper.
1937  */
1938 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1939 {
1940 	/* Make sure there are no concurrent readers while updating opp_table */
1941 	WARN_ON(!list_empty(&opp_table->opp_list));
1942 
1943 	opp_table->set_opp = NULL;
1944 	dev_pm_opp_put_opp_table(opp_table);
1945 }
1946 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1947 
1948 static void _opp_detach_genpd(struct opp_table *opp_table)
1949 {
1950 	int index;
1951 
1952 	for (index = 0; index < opp_table->required_opp_count; index++) {
1953 		if (!opp_table->genpd_virt_devs[index])
1954 			continue;
1955 
1956 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1957 		opp_table->genpd_virt_devs[index] = NULL;
1958 	}
1959 
1960 	kfree(opp_table->genpd_virt_devs);
1961 	opp_table->genpd_virt_devs = NULL;
1962 }
1963 
1964 /**
1965  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1966  * @dev: Consumer device for which the genpd is getting attached.
1967  * @names: Null terminated array of pointers containing names of genpd to attach.
1968  * @virt_devs: Pointer to return the array of virtual devices.
1969  *
1970  * Multiple generic power domains for a device are supported with the help of
1971  * virtual genpd devices, which are created for each consumer device - genpd
1972  * pair. These are the device structures which are attached to the power domain
1973  * and are required by the OPP core to set the performance state of the genpd.
1974  * The same API also works for the case where single genpd is available and so
1975  * we don't need to support that separately.
1976  *
1977  * This helper will normally be called by the consumer driver of the device
1978  * "dev", as only that has details of the genpd names.
1979  *
1980  * This helper needs to be called once with a list of all genpd to attach.
1981  * Otherwise the original device structure will be used instead by the OPP core.
1982  *
1983  * The order of entries in the names array must match the order in which
1984  * "required-opps" are added in DT.
1985  */
1986 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1987 		const char **names, struct device ***virt_devs)
1988 {
1989 	struct opp_table *opp_table;
1990 	struct device *virt_dev;
1991 	int index = 0, ret = -EINVAL;
1992 	const char **name = names;
1993 
1994 	opp_table = dev_pm_opp_get_opp_table(dev);
1995 	if (!opp_table)
1996 		return ERR_PTR(-ENOMEM);
1997 
1998 	/*
1999 	 * If the genpd's OPP table isn't already initialized, parsing of the
2000 	 * required-opps fail for dev. We should retry this after genpd's OPP
2001 	 * table is added.
2002 	 */
2003 	if (!opp_table->required_opp_count) {
2004 		ret = -EPROBE_DEFER;
2005 		goto put_table;
2006 	}
2007 
2008 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2009 
2010 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2011 					     sizeof(*opp_table->genpd_virt_devs),
2012 					     GFP_KERNEL);
2013 	if (!opp_table->genpd_virt_devs)
2014 		goto unlock;
2015 
2016 	while (*name) {
2017 		if (index >= opp_table->required_opp_count) {
2018 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2019 				*name, opp_table->required_opp_count, index);
2020 			goto err;
2021 		}
2022 
2023 		if (opp_table->genpd_virt_devs[index]) {
2024 			dev_err(dev, "Genpd virtual device already set %s\n",
2025 				*name);
2026 			goto err;
2027 		}
2028 
2029 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2030 		if (IS_ERR(virt_dev)) {
2031 			ret = PTR_ERR(virt_dev);
2032 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2033 			goto err;
2034 		}
2035 
2036 		opp_table->genpd_virt_devs[index] = virt_dev;
2037 		index++;
2038 		name++;
2039 	}
2040 
2041 	if (virt_devs)
2042 		*virt_devs = opp_table->genpd_virt_devs;
2043 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2044 
2045 	return opp_table;
2046 
2047 err:
2048 	_opp_detach_genpd(opp_table);
2049 unlock:
2050 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2051 
2052 put_table:
2053 	dev_pm_opp_put_opp_table(opp_table);
2054 
2055 	return ERR_PTR(ret);
2056 }
2057 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2058 
2059 /**
2060  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2061  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2062  *
2063  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2064  * OPP table.
2065  */
2066 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2067 {
2068 	/*
2069 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2070 	 * used in parallel.
2071 	 */
2072 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2073 	_opp_detach_genpd(opp_table);
2074 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2075 
2076 	dev_pm_opp_put_opp_table(opp_table);
2077 }
2078 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2079 
2080 /**
2081  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2082  * @src_table: OPP table which has dst_table as one of its required OPP table.
2083  * @dst_table: Required OPP table of the src_table.
2084  * @pstate: Current performance state of the src_table.
2085  *
2086  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2087  * "required-opps" property of the OPP (present in @src_table) which has
2088  * performance state set to @pstate.
2089  *
2090  * Return: Zero or positive performance state on success, otherwise negative
2091  * value on errors.
2092  */
2093 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2094 				       struct opp_table *dst_table,
2095 				       unsigned int pstate)
2096 {
2097 	struct dev_pm_opp *opp;
2098 	int dest_pstate = -EINVAL;
2099 	int i;
2100 
2101 	if (!pstate)
2102 		return 0;
2103 
2104 	/*
2105 	 * Normally the src_table will have the "required_opps" property set to
2106 	 * point to one of the OPPs in the dst_table, but in some cases the
2107 	 * genpd and its master have one to one mapping of performance states
2108 	 * and so none of them have the "required-opps" property set. Return the
2109 	 * pstate of the src_table as it is in such cases.
2110 	 */
2111 	if (!src_table->required_opp_count)
2112 		return pstate;
2113 
2114 	for (i = 0; i < src_table->required_opp_count; i++) {
2115 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2116 			break;
2117 	}
2118 
2119 	if (unlikely(i == src_table->required_opp_count)) {
2120 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2121 		       __func__, src_table, dst_table);
2122 		return -EINVAL;
2123 	}
2124 
2125 	mutex_lock(&src_table->lock);
2126 
2127 	list_for_each_entry(opp, &src_table->opp_list, node) {
2128 		if (opp->pstate == pstate) {
2129 			dest_pstate = opp->required_opps[i]->pstate;
2130 			goto unlock;
2131 		}
2132 	}
2133 
2134 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2135 	       dst_table);
2136 
2137 unlock:
2138 	mutex_unlock(&src_table->lock);
2139 
2140 	return dest_pstate;
2141 }
2142 
2143 /**
2144  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2145  * @dev:	device for which we do this operation
2146  * @freq:	Frequency in Hz for this OPP
2147  * @u_volt:	Voltage in uVolts for this OPP
2148  *
2149  * This function adds an opp definition to the opp table and returns status.
2150  * The opp is made available by default and it can be controlled using
2151  * dev_pm_opp_enable/disable functions.
2152  *
2153  * Return:
2154  * 0		On success OR
2155  *		Duplicate OPPs (both freq and volt are same) and opp->available
2156  * -EEXIST	Freq are same and volt are different OR
2157  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2158  * -ENOMEM	Memory allocation failure
2159  */
2160 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2161 {
2162 	struct opp_table *opp_table;
2163 	int ret;
2164 
2165 	opp_table = dev_pm_opp_get_opp_table(dev);
2166 	if (!opp_table)
2167 		return -ENOMEM;
2168 
2169 	/* Fix regulator count for dynamic OPPs */
2170 	opp_table->regulator_count = 1;
2171 
2172 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2173 	if (ret)
2174 		dev_pm_opp_put_opp_table(opp_table);
2175 
2176 	return ret;
2177 }
2178 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2179 
2180 /**
2181  * _opp_set_availability() - helper to set the availability of an opp
2182  * @dev:		device for which we do this operation
2183  * @freq:		OPP frequency to modify availability
2184  * @availability_req:	availability status requested for this opp
2185  *
2186  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2187  * which is isolated here.
2188  *
2189  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2190  * copy operation, returns 0 if no modification was done OR modification was
2191  * successful.
2192  */
2193 static int _opp_set_availability(struct device *dev, unsigned long freq,
2194 				 bool availability_req)
2195 {
2196 	struct opp_table *opp_table;
2197 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2198 	int r = 0;
2199 
2200 	/* Find the opp_table */
2201 	opp_table = _find_opp_table(dev);
2202 	if (IS_ERR(opp_table)) {
2203 		r = PTR_ERR(opp_table);
2204 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2205 		return r;
2206 	}
2207 
2208 	mutex_lock(&opp_table->lock);
2209 
2210 	/* Do we have the frequency? */
2211 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2212 		if (tmp_opp->rate == freq) {
2213 			opp = tmp_opp;
2214 			break;
2215 		}
2216 	}
2217 
2218 	if (IS_ERR(opp)) {
2219 		r = PTR_ERR(opp);
2220 		goto unlock;
2221 	}
2222 
2223 	/* Is update really needed? */
2224 	if (opp->available == availability_req)
2225 		goto unlock;
2226 
2227 	opp->available = availability_req;
2228 
2229 	dev_pm_opp_get(opp);
2230 	mutex_unlock(&opp_table->lock);
2231 
2232 	/* Notify the change of the OPP availability */
2233 	if (availability_req)
2234 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2235 					     opp);
2236 	else
2237 		blocking_notifier_call_chain(&opp_table->head,
2238 					     OPP_EVENT_DISABLE, opp);
2239 
2240 	dev_pm_opp_put(opp);
2241 	goto put_table;
2242 
2243 unlock:
2244 	mutex_unlock(&opp_table->lock);
2245 put_table:
2246 	dev_pm_opp_put_opp_table(opp_table);
2247 	return r;
2248 }
2249 
2250 /**
2251  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2252  * @dev:		device for which we do this operation
2253  * @freq:		OPP frequency to adjust voltage of
2254  * @u_volt:		new OPP target voltage
2255  * @u_volt_min:		new OPP min voltage
2256  * @u_volt_max:		new OPP max voltage
2257  *
2258  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2259  * copy operation, returns 0 if no modifcation was done OR modification was
2260  * successful.
2261  */
2262 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2263 			      unsigned long u_volt, unsigned long u_volt_min,
2264 			      unsigned long u_volt_max)
2265 
2266 {
2267 	struct opp_table *opp_table;
2268 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2269 	int r = 0;
2270 
2271 	/* Find the opp_table */
2272 	opp_table = _find_opp_table(dev);
2273 	if (IS_ERR(opp_table)) {
2274 		r = PTR_ERR(opp_table);
2275 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2276 		return r;
2277 	}
2278 
2279 	mutex_lock(&opp_table->lock);
2280 
2281 	/* Do we have the frequency? */
2282 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2283 		if (tmp_opp->rate == freq) {
2284 			opp = tmp_opp;
2285 			break;
2286 		}
2287 	}
2288 
2289 	if (IS_ERR(opp)) {
2290 		r = PTR_ERR(opp);
2291 		goto adjust_unlock;
2292 	}
2293 
2294 	/* Is update really needed? */
2295 	if (opp->supplies->u_volt == u_volt)
2296 		goto adjust_unlock;
2297 
2298 	opp->supplies->u_volt = u_volt;
2299 	opp->supplies->u_volt_min = u_volt_min;
2300 	opp->supplies->u_volt_max = u_volt_max;
2301 
2302 	dev_pm_opp_get(opp);
2303 	mutex_unlock(&opp_table->lock);
2304 
2305 	/* Notify the voltage change of the OPP */
2306 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2307 				     opp);
2308 
2309 	dev_pm_opp_put(opp);
2310 	goto adjust_put_table;
2311 
2312 adjust_unlock:
2313 	mutex_unlock(&opp_table->lock);
2314 adjust_put_table:
2315 	dev_pm_opp_put_opp_table(opp_table);
2316 	return r;
2317 }
2318 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2319 
2320 /**
2321  * dev_pm_opp_enable() - Enable a specific OPP
2322  * @dev:	device for which we do this operation
2323  * @freq:	OPP frequency to enable
2324  *
2325  * Enables a provided opp. If the operation is valid, this returns 0, else the
2326  * corresponding error value. It is meant to be used for users an OPP available
2327  * after being temporarily made unavailable with dev_pm_opp_disable.
2328  *
2329  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2330  * copy operation, returns 0 if no modification was done OR modification was
2331  * successful.
2332  */
2333 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2334 {
2335 	return _opp_set_availability(dev, freq, true);
2336 }
2337 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2338 
2339 /**
2340  * dev_pm_opp_disable() - Disable a specific OPP
2341  * @dev:	device for which we do this operation
2342  * @freq:	OPP frequency to disable
2343  *
2344  * Disables a provided opp. If the operation is valid, this returns
2345  * 0, else the corresponding error value. It is meant to be a temporary
2346  * control by users to make this OPP not available until the circumstances are
2347  * right to make it available again (with a call to dev_pm_opp_enable).
2348  *
2349  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2350  * copy operation, returns 0 if no modification was done OR modification was
2351  * successful.
2352  */
2353 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2354 {
2355 	return _opp_set_availability(dev, freq, false);
2356 }
2357 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2358 
2359 /**
2360  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2361  * @dev:	Device for which notifier needs to be registered
2362  * @nb:		Notifier block to be registered
2363  *
2364  * Return: 0 on success or a negative error value.
2365  */
2366 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2367 {
2368 	struct opp_table *opp_table;
2369 	int ret;
2370 
2371 	opp_table = _find_opp_table(dev);
2372 	if (IS_ERR(opp_table))
2373 		return PTR_ERR(opp_table);
2374 
2375 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2376 
2377 	dev_pm_opp_put_opp_table(opp_table);
2378 
2379 	return ret;
2380 }
2381 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2382 
2383 /**
2384  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2385  * @dev:	Device for which notifier needs to be unregistered
2386  * @nb:		Notifier block to be unregistered
2387  *
2388  * Return: 0 on success or a negative error value.
2389  */
2390 int dev_pm_opp_unregister_notifier(struct device *dev,
2391 				   struct notifier_block *nb)
2392 {
2393 	struct opp_table *opp_table;
2394 	int ret;
2395 
2396 	opp_table = _find_opp_table(dev);
2397 	if (IS_ERR(opp_table))
2398 		return PTR_ERR(opp_table);
2399 
2400 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2401 
2402 	dev_pm_opp_put_opp_table(opp_table);
2403 
2404 	return ret;
2405 }
2406 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2407 
2408 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2409 {
2410 	struct opp_table *opp_table;
2411 
2412 	/* Check for existing table for 'dev' */
2413 	opp_table = _find_opp_table(dev);
2414 	if (IS_ERR(opp_table)) {
2415 		int error = PTR_ERR(opp_table);
2416 
2417 		if (error != -ENODEV)
2418 			WARN(1, "%s: opp_table: %d\n",
2419 			     IS_ERR_OR_NULL(dev) ?
2420 					"Invalid device" : dev_name(dev),
2421 			     error);
2422 		return;
2423 	}
2424 
2425 	/*
2426 	 * Drop the extra reference only if the OPP table was successfully added
2427 	 * with dev_pm_opp_of_add_table() earlier.
2428 	 **/
2429 	if (_opp_remove_all_static(opp_table))
2430 		dev_pm_opp_put_opp_table(opp_table);
2431 
2432 	/* Drop reference taken by _find_opp_table() */
2433 	dev_pm_opp_put_opp_table(opp_table);
2434 }
2435 
2436 /**
2437  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2438  * @dev:	device pointer used to lookup OPP table.
2439  *
2440  * Free both OPPs created using static entries present in DT and the
2441  * dynamically added entries.
2442  */
2443 void dev_pm_opp_remove_table(struct device *dev)
2444 {
2445 	_dev_pm_opp_find_and_remove_table(dev);
2446 }
2447 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2448