xref: /openbmc/linux/drivers/opp/core.c (revision ea21f589)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp)) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	/*
703 	 * Enable the regulator after setting its voltages, otherwise it breaks
704 	 * some boot-enabled regulators.
705 	 */
706 	if (unlikely(!opp_table->enabled)) {
707 		ret = regulator_enable(reg);
708 		if (ret < 0)
709 			dev_warn(dev, "Failed to enable regulator: %d", ret);
710 	}
711 
712 	return 0;
713 
714 restore_freq:
715 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717 			__func__, old_freq);
718 restore_voltage:
719 	/* This shouldn't harm even if the voltages weren't updated earlier */
720 	if (old_supply)
721 		_set_opp_voltage(dev, reg, old_supply);
722 
723 	return ret;
724 }
725 
726 static int _set_opp_bw(const struct opp_table *opp_table,
727 		       struct dev_pm_opp *opp, struct device *dev, bool remove)
728 {
729 	u32 avg, peak;
730 	int i, ret;
731 
732 	if (!opp_table->paths)
733 		return 0;
734 
735 	for (i = 0; i < opp_table->path_count; i++) {
736 		if (remove) {
737 			avg = 0;
738 			peak = 0;
739 		} else {
740 			avg = opp->bandwidth[i].avg;
741 			peak = opp->bandwidth[i].peak;
742 		}
743 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
744 		if (ret) {
745 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746 				remove ? "remove" : "set", i, ret);
747 			return ret;
748 		}
749 	}
750 
751 	return 0;
752 }
753 
754 static int _set_opp_custom(const struct opp_table *opp_table,
755 			   struct device *dev, unsigned long old_freq,
756 			   unsigned long freq,
757 			   struct dev_pm_opp_supply *old_supply,
758 			   struct dev_pm_opp_supply *new_supply)
759 {
760 	struct dev_pm_set_opp_data *data;
761 	int size;
762 
763 	data = opp_table->set_opp_data;
764 	data->regulators = opp_table->regulators;
765 	data->regulator_count = opp_table->regulator_count;
766 	data->clk = opp_table->clk;
767 	data->dev = dev;
768 
769 	data->old_opp.rate = old_freq;
770 	size = sizeof(*old_supply) * opp_table->regulator_count;
771 	if (!old_supply)
772 		memset(data->old_opp.supplies, 0, size);
773 	else
774 		memcpy(data->old_opp.supplies, old_supply, size);
775 
776 	data->new_opp.rate = freq;
777 	memcpy(data->new_opp.supplies, new_supply, size);
778 
779 	return opp_table->set_opp(data);
780 }
781 
782 static int _set_required_opp(struct device *dev, struct device *pd_dev,
783 			     struct dev_pm_opp *opp, int i)
784 {
785 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786 	int ret;
787 
788 	if (!pd_dev)
789 		return 0;
790 
791 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792 	if (ret) {
793 		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794 			dev_name(pd_dev), pstate, ret);
795 	}
796 
797 	return ret;
798 }
799 
800 /* This is only called for PM domain for now */
801 static int _set_required_opps(struct device *dev,
802 			      struct opp_table *opp_table,
803 			      struct dev_pm_opp *opp, bool up)
804 {
805 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807 	int i, ret = 0;
808 
809 	if (!required_opp_tables)
810 		return 0;
811 
812 	/* Single genpd case */
813 	if (!genpd_virt_devs)
814 		return _set_required_opp(dev, dev, opp, 0);
815 
816 	/* Multiple genpd case */
817 
818 	/*
819 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820 	 * after it is freed from another thread.
821 	 */
822 	mutex_lock(&opp_table->genpd_virt_dev_lock);
823 
824 	/* Scaling up? Set required OPPs in normal order, else reverse */
825 	if (up) {
826 		for (i = 0; i < opp_table->required_opp_count; i++) {
827 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828 			if (ret)
829 				break;
830 		}
831 	} else {
832 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834 			if (ret)
835 				break;
836 		}
837 	}
838 
839 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
840 
841 	return ret;
842 }
843 
844 /**
845  * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846  * @dev:	device for which we do this operation
847  * @opp:	opp based on which the bandwidth levels are to be configured
848  *
849  * This configures the bandwidth to the levels specified by the OPP. However
850  * if the OPP specified is NULL the bandwidth levels are cleared out.
851  *
852  * Return: 0 on success or a negative error value.
853  */
854 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
855 {
856 	struct opp_table *opp_table;
857 	int ret;
858 
859 	opp_table = _find_opp_table(dev);
860 	if (IS_ERR(opp_table)) {
861 		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862 		return PTR_ERR(opp_table);
863 	}
864 
865 	if (opp)
866 		ret = _set_opp_bw(opp_table, opp, dev, false);
867 	else
868 		ret = _set_opp_bw(opp_table, NULL, dev, true);
869 
870 	dev_pm_opp_put_opp_table(opp_table);
871 	return ret;
872 }
873 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
874 
875 static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
876 {
877 	int ret;
878 
879 	if (!opp_table->enabled)
880 		return 0;
881 
882 	/*
883 	 * Some drivers need to support cases where some platforms may
884 	 * have OPP table for the device, while others don't and
885 	 * opp_set_rate() just needs to behave like clk_set_rate().
886 	 */
887 	if (!_get_opp_count(opp_table))
888 		return 0;
889 
890 	ret = _set_opp_bw(opp_table, NULL, dev, true);
891 	if (ret)
892 		return ret;
893 
894 	if (opp_table->regulators)
895 		regulator_disable(opp_table->regulators[0]);
896 
897 	ret = _set_required_opps(dev, opp_table, NULL, false);
898 
899 	opp_table->enabled = false;
900 	return ret;
901 }
902 
903 /**
904  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905  * @dev:	 device for which we do this operation
906  * @target_freq: frequency to achieve
907  *
908  * This configures the power-supplies to the levels specified by the OPP
909  * corresponding to the target_freq, and programs the clock to a value <=
910  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911  * provided by the opp, should have already rounded to the target OPP's
912  * frequency.
913  */
914 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
915 {
916 	struct opp_table *opp_table;
917 	unsigned long freq, old_freq, temp_freq;
918 	struct dev_pm_opp *old_opp, *opp;
919 	struct clk *clk;
920 	int ret;
921 
922 	opp_table = _find_opp_table(dev);
923 	if (IS_ERR(opp_table)) {
924 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925 		return PTR_ERR(opp_table);
926 	}
927 
928 	if (unlikely(!target_freq)) {
929 		ret = _opp_set_rate_zero(dev, opp_table);
930 		goto put_opp_table;
931 	}
932 
933 	clk = opp_table->clk;
934 	if (IS_ERR(clk)) {
935 		dev_err(dev, "%s: No clock available for the device\n",
936 			__func__);
937 		ret = PTR_ERR(clk);
938 		goto put_opp_table;
939 	}
940 
941 	freq = clk_round_rate(clk, target_freq);
942 	if ((long)freq <= 0)
943 		freq = target_freq;
944 
945 	old_freq = clk_get_rate(clk);
946 
947 	/* Return early if nothing to do */
948 	if (opp_table->enabled && old_freq == freq) {
949 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950 			__func__, freq);
951 		ret = 0;
952 		goto put_opp_table;
953 	}
954 
955 	/*
956 	 * For IO devices which require an OPP on some platforms/SoCs
957 	 * while just needing to scale the clock on some others
958 	 * we look for empty OPP tables with just a clock handle and
959 	 * scale only the clk. This makes dev_pm_opp_set_rate()
960 	 * equivalent to a clk_set_rate()
961 	 */
962 	if (!_get_opp_count(opp_table)) {
963 		ret = _generic_set_opp_clk_only(dev, clk, freq);
964 		goto put_opp_table;
965 	}
966 
967 	temp_freq = old_freq;
968 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
969 	if (IS_ERR(old_opp)) {
970 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971 			__func__, old_freq, PTR_ERR(old_opp));
972 	}
973 
974 	temp_freq = freq;
975 	opp = _find_freq_ceil(opp_table, &temp_freq);
976 	if (IS_ERR(opp)) {
977 		ret = PTR_ERR(opp);
978 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979 			__func__, freq, ret);
980 		goto put_old_opp;
981 	}
982 
983 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984 		old_freq, freq);
985 
986 	/* Scaling up? Configure required OPPs before frequency */
987 	if (freq >= old_freq) {
988 		ret = _set_required_opps(dev, opp_table, opp, true);
989 		if (ret)
990 			goto put_opp;
991 	}
992 
993 	if (opp_table->set_opp) {
994 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
996 				      opp->supplies);
997 	} else if (opp_table->regulators) {
998 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000 						 opp->supplies);
1001 	} else {
1002 		/* Only frequency scaling */
1003 		ret = _generic_set_opp_clk_only(dev, clk, freq);
1004 	}
1005 
1006 	/* Scaling down? Configure required OPPs after frequency */
1007 	if (!ret && freq < old_freq) {
1008 		ret = _set_required_opps(dev, opp_table, opp, false);
1009 		if (ret)
1010 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1011 	}
1012 
1013 	if (!ret) {
1014 		ret = _set_opp_bw(opp_table, opp, dev, false);
1015 		if (!ret)
1016 			opp_table->enabled = true;
1017 	}
1018 
1019 put_opp:
1020 	dev_pm_opp_put(opp);
1021 put_old_opp:
1022 	if (!IS_ERR(old_opp))
1023 		dev_pm_opp_put(old_opp);
1024 put_opp_table:
1025 	dev_pm_opp_put_opp_table(opp_table);
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1029 
1030 /* OPP-dev Helpers */
1031 static void _remove_opp_dev(struct opp_device *opp_dev,
1032 			    struct opp_table *opp_table)
1033 {
1034 	opp_debug_unregister(opp_dev, opp_table);
1035 	list_del(&opp_dev->node);
1036 	kfree(opp_dev);
1037 }
1038 
1039 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1040 						struct opp_table *opp_table)
1041 {
1042 	struct opp_device *opp_dev;
1043 
1044 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045 	if (!opp_dev)
1046 		return NULL;
1047 
1048 	/* Initialize opp-dev */
1049 	opp_dev->dev = dev;
1050 
1051 	list_add(&opp_dev->node, &opp_table->dev_list);
1052 
1053 	/* Create debugfs entries for the opp_table */
1054 	opp_debug_register(opp_dev, opp_table);
1055 
1056 	return opp_dev;
1057 }
1058 
1059 struct opp_device *_add_opp_dev(const struct device *dev,
1060 				struct opp_table *opp_table)
1061 {
1062 	struct opp_device *opp_dev;
1063 
1064 	mutex_lock(&opp_table->lock);
1065 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1066 	mutex_unlock(&opp_table->lock);
1067 
1068 	return opp_dev;
1069 }
1070 
1071 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1072 {
1073 	struct opp_table *opp_table;
1074 	struct opp_device *opp_dev;
1075 	int ret;
1076 
1077 	/*
1078 	 * Allocate a new OPP table. In the infrequent case where a new
1079 	 * device is needed to be added, we pay this penalty.
1080 	 */
1081 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1082 	if (!opp_table)
1083 		return ERR_PTR(-ENOMEM);
1084 
1085 	mutex_init(&opp_table->lock);
1086 	mutex_init(&opp_table->genpd_virt_dev_lock);
1087 	INIT_LIST_HEAD(&opp_table->dev_list);
1088 
1089 	/* Mark regulator count uninitialized */
1090 	opp_table->regulator_count = -1;
1091 
1092 	opp_dev = _add_opp_dev(dev, opp_table);
1093 	if (!opp_dev) {
1094 		ret = -ENOMEM;
1095 		goto err;
1096 	}
1097 
1098 	_of_init_opp_table(opp_table, dev, index);
1099 
1100 	/* Find clk for the device */
1101 	opp_table->clk = clk_get(dev, NULL);
1102 	if (IS_ERR(opp_table->clk)) {
1103 		ret = PTR_ERR(opp_table->clk);
1104 		if (ret == -EPROBE_DEFER)
1105 			goto err;
1106 
1107 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1108 	}
1109 
1110 	/* Find interconnect path(s) for the device */
1111 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1112 	if (ret) {
1113 		if (ret == -EPROBE_DEFER)
1114 			goto err;
1115 
1116 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1117 			 __func__, ret);
1118 	}
1119 
1120 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1121 	INIT_LIST_HEAD(&opp_table->opp_list);
1122 	kref_init(&opp_table->kref);
1123 
1124 	/* Secure the device table modification */
1125 	list_add(&opp_table->node, &opp_tables);
1126 	return opp_table;
1127 
1128 err:
1129 	kfree(opp_table);
1130 	return ERR_PTR(ret);
1131 }
1132 
1133 void _get_opp_table_kref(struct opp_table *opp_table)
1134 {
1135 	kref_get(&opp_table->kref);
1136 }
1137 
1138 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1139 {
1140 	struct opp_table *opp_table;
1141 
1142 	/* Hold our table modification lock here */
1143 	mutex_lock(&opp_table_lock);
1144 
1145 	opp_table = _find_opp_table_unlocked(dev);
1146 	if (!IS_ERR(opp_table))
1147 		goto unlock;
1148 
1149 	opp_table = _managed_opp(dev, index);
1150 	if (opp_table) {
1151 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1152 			dev_pm_opp_put_opp_table(opp_table);
1153 			opp_table = ERR_PTR(-ENOMEM);
1154 		}
1155 		goto unlock;
1156 	}
1157 
1158 	opp_table = _allocate_opp_table(dev, index);
1159 
1160 unlock:
1161 	mutex_unlock(&opp_table_lock);
1162 
1163 	return opp_table;
1164 }
1165 
1166 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1167 {
1168 	return _opp_get_opp_table(dev, 0);
1169 }
1170 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1171 
1172 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1173 						   int index)
1174 {
1175 	return _opp_get_opp_table(dev, index);
1176 }
1177 
1178 static void _opp_table_kref_release(struct kref *kref)
1179 {
1180 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1181 	struct opp_device *opp_dev, *temp;
1182 	int i;
1183 
1184 	_of_clear_opp_table(opp_table);
1185 
1186 	/* Release clk */
1187 	if (!IS_ERR(opp_table->clk))
1188 		clk_put(opp_table->clk);
1189 
1190 	if (opp_table->paths) {
1191 		for (i = 0; i < opp_table->path_count; i++)
1192 			icc_put(opp_table->paths[i]);
1193 		kfree(opp_table->paths);
1194 	}
1195 
1196 	WARN_ON(!list_empty(&opp_table->opp_list));
1197 
1198 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1199 		/*
1200 		 * The OPP table is getting removed, drop the performance state
1201 		 * constraints.
1202 		 */
1203 		if (opp_table->genpd_performance_state)
1204 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1205 
1206 		_remove_opp_dev(opp_dev, opp_table);
1207 	}
1208 
1209 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1210 	mutex_destroy(&opp_table->lock);
1211 	list_del(&opp_table->node);
1212 	kfree(opp_table);
1213 
1214 	mutex_unlock(&opp_table_lock);
1215 }
1216 
1217 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1218 {
1219 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1220 		       &opp_table_lock);
1221 }
1222 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1223 
1224 void _opp_free(struct dev_pm_opp *opp)
1225 {
1226 	kfree(opp);
1227 }
1228 
1229 static void _opp_kref_release(struct dev_pm_opp *opp,
1230 			      struct opp_table *opp_table)
1231 {
1232 	/*
1233 	 * Notify the changes in the availability of the operable
1234 	 * frequency/voltage list.
1235 	 */
1236 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1237 	_of_opp_free_required_opps(opp_table, opp);
1238 	opp_debug_remove_one(opp);
1239 	list_del(&opp->node);
1240 	kfree(opp);
1241 }
1242 
1243 static void _opp_kref_release_unlocked(struct kref *kref)
1244 {
1245 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1246 	struct opp_table *opp_table = opp->opp_table;
1247 
1248 	_opp_kref_release(opp, opp_table);
1249 }
1250 
1251 static void _opp_kref_release_locked(struct kref *kref)
1252 {
1253 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1254 	struct opp_table *opp_table = opp->opp_table;
1255 
1256 	_opp_kref_release(opp, opp_table);
1257 	mutex_unlock(&opp_table->lock);
1258 }
1259 
1260 void dev_pm_opp_get(struct dev_pm_opp *opp)
1261 {
1262 	kref_get(&opp->kref);
1263 }
1264 
1265 void dev_pm_opp_put(struct dev_pm_opp *opp)
1266 {
1267 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1268 		       &opp->opp_table->lock);
1269 }
1270 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1271 
1272 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1273 {
1274 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1275 }
1276 
1277 /**
1278  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1279  * @dev:	device for which we do this operation
1280  * @freq:	OPP to remove with matching 'freq'
1281  *
1282  * This function removes an opp from the opp table.
1283  */
1284 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1285 {
1286 	struct dev_pm_opp *opp;
1287 	struct opp_table *opp_table;
1288 	bool found = false;
1289 
1290 	opp_table = _find_opp_table(dev);
1291 	if (IS_ERR(opp_table))
1292 		return;
1293 
1294 	mutex_lock(&opp_table->lock);
1295 
1296 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1297 		if (opp->rate == freq) {
1298 			found = true;
1299 			break;
1300 		}
1301 	}
1302 
1303 	mutex_unlock(&opp_table->lock);
1304 
1305 	if (found) {
1306 		dev_pm_opp_put(opp);
1307 
1308 		/* Drop the reference taken by dev_pm_opp_add() */
1309 		dev_pm_opp_put_opp_table(opp_table);
1310 	} else {
1311 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1312 			 __func__, freq);
1313 	}
1314 
1315 	/* Drop the reference taken by _find_opp_table() */
1316 	dev_pm_opp_put_opp_table(opp_table);
1317 }
1318 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1319 
1320 bool _opp_remove_all_static(struct opp_table *opp_table)
1321 {
1322 	struct dev_pm_opp *opp, *tmp;
1323 	bool ret = true;
1324 
1325 	mutex_lock(&opp_table->lock);
1326 
1327 	if (!opp_table->parsed_static_opps) {
1328 		ret = false;
1329 		goto unlock;
1330 	}
1331 
1332 	if (--opp_table->parsed_static_opps)
1333 		goto unlock;
1334 
1335 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1336 		if (!opp->dynamic)
1337 			dev_pm_opp_put_unlocked(opp);
1338 	}
1339 
1340 unlock:
1341 	mutex_unlock(&opp_table->lock);
1342 
1343 	return ret;
1344 }
1345 
1346 /**
1347  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1348  * @dev:	device for which we do this operation
1349  *
1350  * This function removes all dynamically created OPPs from the opp table.
1351  */
1352 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1353 {
1354 	struct opp_table *opp_table;
1355 	struct dev_pm_opp *opp, *temp;
1356 	int count = 0;
1357 
1358 	opp_table = _find_opp_table(dev);
1359 	if (IS_ERR(opp_table))
1360 		return;
1361 
1362 	mutex_lock(&opp_table->lock);
1363 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1364 		if (opp->dynamic) {
1365 			dev_pm_opp_put_unlocked(opp);
1366 			count++;
1367 		}
1368 	}
1369 	mutex_unlock(&opp_table->lock);
1370 
1371 	/* Drop the references taken by dev_pm_opp_add() */
1372 	while (count--)
1373 		dev_pm_opp_put_opp_table(opp_table);
1374 
1375 	/* Drop the reference taken by _find_opp_table() */
1376 	dev_pm_opp_put_opp_table(opp_table);
1377 }
1378 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1379 
1380 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1381 {
1382 	struct dev_pm_opp *opp;
1383 	int supply_count, supply_size, icc_size;
1384 
1385 	/* Allocate space for at least one supply */
1386 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1387 	supply_size = sizeof(*opp->supplies) * supply_count;
1388 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1389 
1390 	/* allocate new OPP node and supplies structures */
1391 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1392 
1393 	if (!opp)
1394 		return NULL;
1395 
1396 	/* Put the supplies at the end of the OPP structure as an empty array */
1397 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1398 	if (icc_size)
1399 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1400 	INIT_LIST_HEAD(&opp->node);
1401 
1402 	return opp;
1403 }
1404 
1405 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1406 					 struct opp_table *opp_table)
1407 {
1408 	struct regulator *reg;
1409 	int i;
1410 
1411 	if (!opp_table->regulators)
1412 		return true;
1413 
1414 	for (i = 0; i < opp_table->regulator_count; i++) {
1415 		reg = opp_table->regulators[i];
1416 
1417 		if (!regulator_is_supported_voltage(reg,
1418 					opp->supplies[i].u_volt_min,
1419 					opp->supplies[i].u_volt_max)) {
1420 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1421 				__func__, opp->supplies[i].u_volt_min,
1422 				opp->supplies[i].u_volt_max);
1423 			return false;
1424 		}
1425 	}
1426 
1427 	return true;
1428 }
1429 
1430 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1431 {
1432 	if (opp1->rate != opp2->rate)
1433 		return opp1->rate < opp2->rate ? -1 : 1;
1434 	if (opp1->bandwidth && opp2->bandwidth &&
1435 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1436 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1437 	if (opp1->level != opp2->level)
1438 		return opp1->level < opp2->level ? -1 : 1;
1439 	return 0;
1440 }
1441 
1442 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1443 			     struct opp_table *opp_table,
1444 			     struct list_head **head)
1445 {
1446 	struct dev_pm_opp *opp;
1447 	int opp_cmp;
1448 
1449 	/*
1450 	 * Insert new OPP in order of increasing frequency and discard if
1451 	 * already present.
1452 	 *
1453 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1454 	 * loop, don't replace it with head otherwise it will become an infinite
1455 	 * loop.
1456 	 */
1457 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1458 		opp_cmp = _opp_compare_key(new_opp, opp);
1459 		if (opp_cmp > 0) {
1460 			*head = &opp->node;
1461 			continue;
1462 		}
1463 
1464 		if (opp_cmp < 0)
1465 			return 0;
1466 
1467 		/* Duplicate OPPs */
1468 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1469 			 __func__, opp->rate, opp->supplies[0].u_volt,
1470 			 opp->available, new_opp->rate,
1471 			 new_opp->supplies[0].u_volt, new_opp->available);
1472 
1473 		/* Should we compare voltages for all regulators here ? */
1474 		return opp->available &&
1475 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 /*
1482  * Returns:
1483  * 0: On success. And appropriate error message for duplicate OPPs.
1484  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1485  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1486  *  sure we don't print error messages unnecessarily if different parts of
1487  *  kernel try to initialize the OPP table.
1488  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1489  *  should be considered an error by the callers of _opp_add().
1490  */
1491 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1492 	     struct opp_table *opp_table, bool rate_not_available)
1493 {
1494 	struct list_head *head;
1495 	int ret;
1496 
1497 	mutex_lock(&opp_table->lock);
1498 	head = &opp_table->opp_list;
1499 
1500 	if (likely(!rate_not_available)) {
1501 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1502 		if (ret) {
1503 			mutex_unlock(&opp_table->lock);
1504 			return ret;
1505 		}
1506 	}
1507 
1508 	list_add(&new_opp->node, head);
1509 	mutex_unlock(&opp_table->lock);
1510 
1511 	new_opp->opp_table = opp_table;
1512 	kref_init(&new_opp->kref);
1513 
1514 	opp_debug_create_one(new_opp, opp_table);
1515 
1516 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1517 		new_opp->available = false;
1518 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1519 			 __func__, new_opp->rate);
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /**
1526  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1527  * @opp_table:	OPP table
1528  * @dev:	device for which we do this operation
1529  * @freq:	Frequency in Hz for this OPP
1530  * @u_volt:	Voltage in uVolts for this OPP
1531  * @dynamic:	Dynamically added OPPs.
1532  *
1533  * This function adds an opp definition to the opp table and returns status.
1534  * The opp is made available by default and it can be controlled using
1535  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1536  *
1537  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1538  * and freed by dev_pm_opp_of_remove_table.
1539  *
1540  * Return:
1541  * 0		On success OR
1542  *		Duplicate OPPs (both freq and volt are same) and opp->available
1543  * -EEXIST	Freq are same and volt are different OR
1544  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1545  * -ENOMEM	Memory allocation failure
1546  */
1547 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1548 		unsigned long freq, long u_volt, bool dynamic)
1549 {
1550 	struct dev_pm_opp *new_opp;
1551 	unsigned long tol;
1552 	int ret;
1553 
1554 	new_opp = _opp_allocate(opp_table);
1555 	if (!new_opp)
1556 		return -ENOMEM;
1557 
1558 	/* populate the opp table */
1559 	new_opp->rate = freq;
1560 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1561 	new_opp->supplies[0].u_volt = u_volt;
1562 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1563 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1564 	new_opp->available = true;
1565 	new_opp->dynamic = dynamic;
1566 
1567 	ret = _opp_add(dev, new_opp, opp_table, false);
1568 	if (ret) {
1569 		/* Don't return error for duplicate OPPs */
1570 		if (ret == -EBUSY)
1571 			ret = 0;
1572 		goto free_opp;
1573 	}
1574 
1575 	/*
1576 	 * Notify the changes in the availability of the operable
1577 	 * frequency/voltage list.
1578 	 */
1579 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1580 	return 0;
1581 
1582 free_opp:
1583 	_opp_free(new_opp);
1584 
1585 	return ret;
1586 }
1587 
1588 /**
1589  * dev_pm_opp_set_supported_hw() - Set supported platforms
1590  * @dev: Device for which supported-hw has to be set.
1591  * @versions: Array of hierarchy of versions to match.
1592  * @count: Number of elements in the array.
1593  *
1594  * This is required only for the V2 bindings, and it enables a platform to
1595  * specify the hierarchy of versions it supports. OPP layer will then enable
1596  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1597  * property.
1598  */
1599 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1600 			const u32 *versions, unsigned int count)
1601 {
1602 	struct opp_table *opp_table;
1603 
1604 	opp_table = dev_pm_opp_get_opp_table(dev);
1605 	if (IS_ERR(opp_table))
1606 		return opp_table;
1607 
1608 	/* Make sure there are no concurrent readers while updating opp_table */
1609 	WARN_ON(!list_empty(&opp_table->opp_list));
1610 
1611 	/* Another CPU that shares the OPP table has set the property ? */
1612 	if (opp_table->supported_hw)
1613 		return opp_table;
1614 
1615 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1616 					GFP_KERNEL);
1617 	if (!opp_table->supported_hw) {
1618 		dev_pm_opp_put_opp_table(opp_table);
1619 		return ERR_PTR(-ENOMEM);
1620 	}
1621 
1622 	opp_table->supported_hw_count = count;
1623 
1624 	return opp_table;
1625 }
1626 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1627 
1628 /**
1629  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1630  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1631  *
1632  * This is required only for the V2 bindings, and is called for a matching
1633  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1634  * will not be freed.
1635  */
1636 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1637 {
1638 	/* Make sure there are no concurrent readers while updating opp_table */
1639 	WARN_ON(!list_empty(&opp_table->opp_list));
1640 
1641 	kfree(opp_table->supported_hw);
1642 	opp_table->supported_hw = NULL;
1643 	opp_table->supported_hw_count = 0;
1644 
1645 	dev_pm_opp_put_opp_table(opp_table);
1646 }
1647 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1648 
1649 /**
1650  * dev_pm_opp_set_prop_name() - Set prop-extn name
1651  * @dev: Device for which the prop-name has to be set.
1652  * @name: name to postfix to properties.
1653  *
1654  * This is required only for the V2 bindings, and it enables a platform to
1655  * specify the extn to be used for certain property names. The properties to
1656  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1657  * should postfix the property name with -<name> while looking for them.
1658  */
1659 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1660 {
1661 	struct opp_table *opp_table;
1662 
1663 	opp_table = dev_pm_opp_get_opp_table(dev);
1664 	if (IS_ERR(opp_table))
1665 		return opp_table;
1666 
1667 	/* Make sure there are no concurrent readers while updating opp_table */
1668 	WARN_ON(!list_empty(&opp_table->opp_list));
1669 
1670 	/* Another CPU that shares the OPP table has set the property ? */
1671 	if (opp_table->prop_name)
1672 		return opp_table;
1673 
1674 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1675 	if (!opp_table->prop_name) {
1676 		dev_pm_opp_put_opp_table(opp_table);
1677 		return ERR_PTR(-ENOMEM);
1678 	}
1679 
1680 	return opp_table;
1681 }
1682 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1683 
1684 /**
1685  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1686  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1687  *
1688  * This is required only for the V2 bindings, and is called for a matching
1689  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1690  * will not be freed.
1691  */
1692 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1693 {
1694 	/* Make sure there are no concurrent readers while updating opp_table */
1695 	WARN_ON(!list_empty(&opp_table->opp_list));
1696 
1697 	kfree(opp_table->prop_name);
1698 	opp_table->prop_name = NULL;
1699 
1700 	dev_pm_opp_put_opp_table(opp_table);
1701 }
1702 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1703 
1704 static int _allocate_set_opp_data(struct opp_table *opp_table)
1705 {
1706 	struct dev_pm_set_opp_data *data;
1707 	int len, count = opp_table->regulator_count;
1708 
1709 	if (WARN_ON(!opp_table->regulators))
1710 		return -EINVAL;
1711 
1712 	/* space for set_opp_data */
1713 	len = sizeof(*data);
1714 
1715 	/* space for old_opp.supplies and new_opp.supplies */
1716 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1717 
1718 	data = kzalloc(len, GFP_KERNEL);
1719 	if (!data)
1720 		return -ENOMEM;
1721 
1722 	data->old_opp.supplies = (void *)(data + 1);
1723 	data->new_opp.supplies = data->old_opp.supplies + count;
1724 
1725 	opp_table->set_opp_data = data;
1726 
1727 	return 0;
1728 }
1729 
1730 static void _free_set_opp_data(struct opp_table *opp_table)
1731 {
1732 	kfree(opp_table->set_opp_data);
1733 	opp_table->set_opp_data = NULL;
1734 }
1735 
1736 /**
1737  * dev_pm_opp_set_regulators() - Set regulator names for the device
1738  * @dev: Device for which regulator name is being set.
1739  * @names: Array of pointers to the names of the regulator.
1740  * @count: Number of regulators.
1741  *
1742  * In order to support OPP switching, OPP layer needs to know the name of the
1743  * device's regulators, as the core would be required to switch voltages as
1744  * well.
1745  *
1746  * This must be called before any OPPs are initialized for the device.
1747  */
1748 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1749 					    const char * const names[],
1750 					    unsigned int count)
1751 {
1752 	struct opp_table *opp_table;
1753 	struct regulator *reg;
1754 	int ret, i;
1755 
1756 	opp_table = dev_pm_opp_get_opp_table(dev);
1757 	if (IS_ERR(opp_table))
1758 		return opp_table;
1759 
1760 	/* This should be called before OPPs are initialized */
1761 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1762 		ret = -EBUSY;
1763 		goto err;
1764 	}
1765 
1766 	/* Another CPU that shares the OPP table has set the regulators ? */
1767 	if (opp_table->regulators)
1768 		return opp_table;
1769 
1770 	opp_table->regulators = kmalloc_array(count,
1771 					      sizeof(*opp_table->regulators),
1772 					      GFP_KERNEL);
1773 	if (!opp_table->regulators) {
1774 		ret = -ENOMEM;
1775 		goto err;
1776 	}
1777 
1778 	for (i = 0; i < count; i++) {
1779 		reg = regulator_get_optional(dev, names[i]);
1780 		if (IS_ERR(reg)) {
1781 			ret = PTR_ERR(reg);
1782 			if (ret != -EPROBE_DEFER)
1783 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1784 					__func__, names[i], ret);
1785 			goto free_regulators;
1786 		}
1787 
1788 		opp_table->regulators[i] = reg;
1789 	}
1790 
1791 	opp_table->regulator_count = count;
1792 
1793 	/* Allocate block only once to pass to set_opp() routines */
1794 	ret = _allocate_set_opp_data(opp_table);
1795 	if (ret)
1796 		goto free_regulators;
1797 
1798 	return opp_table;
1799 
1800 free_regulators:
1801 	while (i != 0)
1802 		regulator_put(opp_table->regulators[--i]);
1803 
1804 	kfree(opp_table->regulators);
1805 	opp_table->regulators = NULL;
1806 	opp_table->regulator_count = -1;
1807 err:
1808 	dev_pm_opp_put_opp_table(opp_table);
1809 
1810 	return ERR_PTR(ret);
1811 }
1812 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1813 
1814 /**
1815  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1816  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1817  */
1818 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1819 {
1820 	int i;
1821 
1822 	if (!opp_table->regulators)
1823 		goto put_opp_table;
1824 
1825 	/* Make sure there are no concurrent readers while updating opp_table */
1826 	WARN_ON(!list_empty(&opp_table->opp_list));
1827 
1828 	if (opp_table->enabled) {
1829 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1830 			regulator_disable(opp_table->regulators[i]);
1831 	}
1832 
1833 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1834 		regulator_put(opp_table->regulators[i]);
1835 
1836 	_free_set_opp_data(opp_table);
1837 
1838 	kfree(opp_table->regulators);
1839 	opp_table->regulators = NULL;
1840 	opp_table->regulator_count = -1;
1841 
1842 put_opp_table:
1843 	dev_pm_opp_put_opp_table(opp_table);
1844 }
1845 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1846 
1847 /**
1848  * dev_pm_opp_set_clkname() - Set clk name for the device
1849  * @dev: Device for which clk name is being set.
1850  * @name: Clk name.
1851  *
1852  * In order to support OPP switching, OPP layer needs to get pointer to the
1853  * clock for the device. Simple cases work fine without using this routine (i.e.
1854  * by passing connection-id as NULL), but for a device with multiple clocks
1855  * available, the OPP core needs to know the exact name of the clk to use.
1856  *
1857  * This must be called before any OPPs are initialized for the device.
1858  */
1859 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1860 {
1861 	struct opp_table *opp_table;
1862 	int ret;
1863 
1864 	opp_table = dev_pm_opp_get_opp_table(dev);
1865 	if (IS_ERR(opp_table))
1866 		return opp_table;
1867 
1868 	/* This should be called before OPPs are initialized */
1869 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1870 		ret = -EBUSY;
1871 		goto err;
1872 	}
1873 
1874 	/* Already have default clk set, free it */
1875 	if (!IS_ERR(opp_table->clk))
1876 		clk_put(opp_table->clk);
1877 
1878 	/* Find clk for the device */
1879 	opp_table->clk = clk_get(dev, name);
1880 	if (IS_ERR(opp_table->clk)) {
1881 		ret = PTR_ERR(opp_table->clk);
1882 		if (ret != -EPROBE_DEFER) {
1883 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1884 				ret);
1885 		}
1886 		goto err;
1887 	}
1888 
1889 	return opp_table;
1890 
1891 err:
1892 	dev_pm_opp_put_opp_table(opp_table);
1893 
1894 	return ERR_PTR(ret);
1895 }
1896 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1897 
1898 /**
1899  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1900  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1901  */
1902 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1903 {
1904 	/* Make sure there are no concurrent readers while updating opp_table */
1905 	WARN_ON(!list_empty(&opp_table->opp_list));
1906 
1907 	clk_put(opp_table->clk);
1908 	opp_table->clk = ERR_PTR(-EINVAL);
1909 
1910 	dev_pm_opp_put_opp_table(opp_table);
1911 }
1912 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1913 
1914 /**
1915  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1916  * @dev: Device for which the helper is getting registered.
1917  * @set_opp: Custom set OPP helper.
1918  *
1919  * This is useful to support complex platforms (like platforms with multiple
1920  * regulators per device), instead of the generic OPP set rate helper.
1921  *
1922  * This must be called before any OPPs are initialized for the device.
1923  */
1924 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1925 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1926 {
1927 	struct opp_table *opp_table;
1928 
1929 	if (!set_opp)
1930 		return ERR_PTR(-EINVAL);
1931 
1932 	opp_table = dev_pm_opp_get_opp_table(dev);
1933 	if (!IS_ERR(opp_table))
1934 		return opp_table;
1935 
1936 	/* This should be called before OPPs are initialized */
1937 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1938 		dev_pm_opp_put_opp_table(opp_table);
1939 		return ERR_PTR(-EBUSY);
1940 	}
1941 
1942 	/* Another CPU that shares the OPP table has set the helper ? */
1943 	if (!opp_table->set_opp)
1944 		opp_table->set_opp = set_opp;
1945 
1946 	return opp_table;
1947 }
1948 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1949 
1950 /**
1951  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1952  *					   set_opp helper
1953  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1954  *
1955  * Release resources blocked for platform specific set_opp helper.
1956  */
1957 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1958 {
1959 	/* Make sure there are no concurrent readers while updating opp_table */
1960 	WARN_ON(!list_empty(&opp_table->opp_list));
1961 
1962 	opp_table->set_opp = NULL;
1963 	dev_pm_opp_put_opp_table(opp_table);
1964 }
1965 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1966 
1967 static void _opp_detach_genpd(struct opp_table *opp_table)
1968 {
1969 	int index;
1970 
1971 	if (!opp_table->genpd_virt_devs)
1972 		return;
1973 
1974 	for (index = 0; index < opp_table->required_opp_count; index++) {
1975 		if (!opp_table->genpd_virt_devs[index])
1976 			continue;
1977 
1978 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1979 		opp_table->genpd_virt_devs[index] = NULL;
1980 	}
1981 
1982 	kfree(opp_table->genpd_virt_devs);
1983 	opp_table->genpd_virt_devs = NULL;
1984 }
1985 
1986 /**
1987  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1988  * @dev: Consumer device for which the genpd is getting attached.
1989  * @names: Null terminated array of pointers containing names of genpd to attach.
1990  * @virt_devs: Pointer to return the array of virtual devices.
1991  *
1992  * Multiple generic power domains for a device are supported with the help of
1993  * virtual genpd devices, which are created for each consumer device - genpd
1994  * pair. These are the device structures which are attached to the power domain
1995  * and are required by the OPP core to set the performance state of the genpd.
1996  * The same API also works for the case where single genpd is available and so
1997  * we don't need to support that separately.
1998  *
1999  * This helper will normally be called by the consumer driver of the device
2000  * "dev", as only that has details of the genpd names.
2001  *
2002  * This helper needs to be called once with a list of all genpd to attach.
2003  * Otherwise the original device structure will be used instead by the OPP core.
2004  *
2005  * The order of entries in the names array must match the order in which
2006  * "required-opps" are added in DT.
2007  */
2008 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2009 		const char **names, struct device ***virt_devs)
2010 {
2011 	struct opp_table *opp_table;
2012 	struct device *virt_dev;
2013 	int index = 0, ret = -EINVAL;
2014 	const char **name = names;
2015 
2016 	opp_table = dev_pm_opp_get_opp_table(dev);
2017 	if (IS_ERR(opp_table))
2018 		return opp_table;
2019 
2020 	if (opp_table->genpd_virt_devs)
2021 		return opp_table;
2022 
2023 	/*
2024 	 * If the genpd's OPP table isn't already initialized, parsing of the
2025 	 * required-opps fail for dev. We should retry this after genpd's OPP
2026 	 * table is added.
2027 	 */
2028 	if (!opp_table->required_opp_count) {
2029 		ret = -EPROBE_DEFER;
2030 		goto put_table;
2031 	}
2032 
2033 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2034 
2035 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2036 					     sizeof(*opp_table->genpd_virt_devs),
2037 					     GFP_KERNEL);
2038 	if (!opp_table->genpd_virt_devs)
2039 		goto unlock;
2040 
2041 	while (*name) {
2042 		if (index >= opp_table->required_opp_count) {
2043 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2044 				*name, opp_table->required_opp_count, index);
2045 			goto err;
2046 		}
2047 
2048 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2049 		if (IS_ERR(virt_dev)) {
2050 			ret = PTR_ERR(virt_dev);
2051 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2052 			goto err;
2053 		}
2054 
2055 		opp_table->genpd_virt_devs[index] = virt_dev;
2056 		index++;
2057 		name++;
2058 	}
2059 
2060 	if (virt_devs)
2061 		*virt_devs = opp_table->genpd_virt_devs;
2062 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2063 
2064 	return opp_table;
2065 
2066 err:
2067 	_opp_detach_genpd(opp_table);
2068 unlock:
2069 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2070 
2071 put_table:
2072 	dev_pm_opp_put_opp_table(opp_table);
2073 
2074 	return ERR_PTR(ret);
2075 }
2076 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2077 
2078 /**
2079  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2080  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2081  *
2082  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2083  * OPP table.
2084  */
2085 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2086 {
2087 	/*
2088 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2089 	 * used in parallel.
2090 	 */
2091 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2092 	_opp_detach_genpd(opp_table);
2093 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2094 
2095 	dev_pm_opp_put_opp_table(opp_table);
2096 }
2097 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2098 
2099 /**
2100  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2101  * @src_table: OPP table which has dst_table as one of its required OPP table.
2102  * @dst_table: Required OPP table of the src_table.
2103  * @pstate: Current performance state of the src_table.
2104  *
2105  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2106  * "required-opps" property of the OPP (present in @src_table) which has
2107  * performance state set to @pstate.
2108  *
2109  * Return: Zero or positive performance state on success, otherwise negative
2110  * value on errors.
2111  */
2112 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2113 				       struct opp_table *dst_table,
2114 				       unsigned int pstate)
2115 {
2116 	struct dev_pm_opp *opp;
2117 	int dest_pstate = -EINVAL;
2118 	int i;
2119 
2120 	/*
2121 	 * Normally the src_table will have the "required_opps" property set to
2122 	 * point to one of the OPPs in the dst_table, but in some cases the
2123 	 * genpd and its master have one to one mapping of performance states
2124 	 * and so none of them have the "required-opps" property set. Return the
2125 	 * pstate of the src_table as it is in such cases.
2126 	 */
2127 	if (!src_table->required_opp_count)
2128 		return pstate;
2129 
2130 	for (i = 0; i < src_table->required_opp_count; i++) {
2131 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2132 			break;
2133 	}
2134 
2135 	if (unlikely(i == src_table->required_opp_count)) {
2136 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2137 		       __func__, src_table, dst_table);
2138 		return -EINVAL;
2139 	}
2140 
2141 	mutex_lock(&src_table->lock);
2142 
2143 	list_for_each_entry(opp, &src_table->opp_list, node) {
2144 		if (opp->pstate == pstate) {
2145 			dest_pstate = opp->required_opps[i]->pstate;
2146 			goto unlock;
2147 		}
2148 	}
2149 
2150 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2151 	       dst_table);
2152 
2153 unlock:
2154 	mutex_unlock(&src_table->lock);
2155 
2156 	return dest_pstate;
2157 }
2158 
2159 /**
2160  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2161  * @dev:	device for which we do this operation
2162  * @freq:	Frequency in Hz for this OPP
2163  * @u_volt:	Voltage in uVolts for this OPP
2164  *
2165  * This function adds an opp definition to the opp table and returns status.
2166  * The opp is made available by default and it can be controlled using
2167  * dev_pm_opp_enable/disable functions.
2168  *
2169  * Return:
2170  * 0		On success OR
2171  *		Duplicate OPPs (both freq and volt are same) and opp->available
2172  * -EEXIST	Freq are same and volt are different OR
2173  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2174  * -ENOMEM	Memory allocation failure
2175  */
2176 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2177 {
2178 	struct opp_table *opp_table;
2179 	int ret;
2180 
2181 	opp_table = dev_pm_opp_get_opp_table(dev);
2182 	if (IS_ERR(opp_table))
2183 		return PTR_ERR(opp_table);
2184 
2185 	/* Fix regulator count for dynamic OPPs */
2186 	opp_table->regulator_count = 1;
2187 
2188 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2189 	if (ret)
2190 		dev_pm_opp_put_opp_table(opp_table);
2191 
2192 	return ret;
2193 }
2194 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2195 
2196 /**
2197  * _opp_set_availability() - helper to set the availability of an opp
2198  * @dev:		device for which we do this operation
2199  * @freq:		OPP frequency to modify availability
2200  * @availability_req:	availability status requested for this opp
2201  *
2202  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2203  * which is isolated here.
2204  *
2205  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2206  * copy operation, returns 0 if no modification was done OR modification was
2207  * successful.
2208  */
2209 static int _opp_set_availability(struct device *dev, unsigned long freq,
2210 				 bool availability_req)
2211 {
2212 	struct opp_table *opp_table;
2213 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2214 	int r = 0;
2215 
2216 	/* Find the opp_table */
2217 	opp_table = _find_opp_table(dev);
2218 	if (IS_ERR(opp_table)) {
2219 		r = PTR_ERR(opp_table);
2220 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2221 		return r;
2222 	}
2223 
2224 	mutex_lock(&opp_table->lock);
2225 
2226 	/* Do we have the frequency? */
2227 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2228 		if (tmp_opp->rate == freq) {
2229 			opp = tmp_opp;
2230 			break;
2231 		}
2232 	}
2233 
2234 	if (IS_ERR(opp)) {
2235 		r = PTR_ERR(opp);
2236 		goto unlock;
2237 	}
2238 
2239 	/* Is update really needed? */
2240 	if (opp->available == availability_req)
2241 		goto unlock;
2242 
2243 	opp->available = availability_req;
2244 
2245 	dev_pm_opp_get(opp);
2246 	mutex_unlock(&opp_table->lock);
2247 
2248 	/* Notify the change of the OPP availability */
2249 	if (availability_req)
2250 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2251 					     opp);
2252 	else
2253 		blocking_notifier_call_chain(&opp_table->head,
2254 					     OPP_EVENT_DISABLE, opp);
2255 
2256 	dev_pm_opp_put(opp);
2257 	goto put_table;
2258 
2259 unlock:
2260 	mutex_unlock(&opp_table->lock);
2261 put_table:
2262 	dev_pm_opp_put_opp_table(opp_table);
2263 	return r;
2264 }
2265 
2266 /**
2267  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2268  * @dev:		device for which we do this operation
2269  * @freq:		OPP frequency to adjust voltage of
2270  * @u_volt:		new OPP target voltage
2271  * @u_volt_min:		new OPP min voltage
2272  * @u_volt_max:		new OPP max voltage
2273  *
2274  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2275  * copy operation, returns 0 if no modifcation was done OR modification was
2276  * successful.
2277  */
2278 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2279 			      unsigned long u_volt, unsigned long u_volt_min,
2280 			      unsigned long u_volt_max)
2281 
2282 {
2283 	struct opp_table *opp_table;
2284 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2285 	int r = 0;
2286 
2287 	/* Find the opp_table */
2288 	opp_table = _find_opp_table(dev);
2289 	if (IS_ERR(opp_table)) {
2290 		r = PTR_ERR(opp_table);
2291 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2292 		return r;
2293 	}
2294 
2295 	mutex_lock(&opp_table->lock);
2296 
2297 	/* Do we have the frequency? */
2298 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2299 		if (tmp_opp->rate == freq) {
2300 			opp = tmp_opp;
2301 			break;
2302 		}
2303 	}
2304 
2305 	if (IS_ERR(opp)) {
2306 		r = PTR_ERR(opp);
2307 		goto adjust_unlock;
2308 	}
2309 
2310 	/* Is update really needed? */
2311 	if (opp->supplies->u_volt == u_volt)
2312 		goto adjust_unlock;
2313 
2314 	opp->supplies->u_volt = u_volt;
2315 	opp->supplies->u_volt_min = u_volt_min;
2316 	opp->supplies->u_volt_max = u_volt_max;
2317 
2318 	dev_pm_opp_get(opp);
2319 	mutex_unlock(&opp_table->lock);
2320 
2321 	/* Notify the voltage change of the OPP */
2322 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2323 				     opp);
2324 
2325 	dev_pm_opp_put(opp);
2326 	goto adjust_put_table;
2327 
2328 adjust_unlock:
2329 	mutex_unlock(&opp_table->lock);
2330 adjust_put_table:
2331 	dev_pm_opp_put_opp_table(opp_table);
2332 	return r;
2333 }
2334 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2335 
2336 /**
2337  * dev_pm_opp_enable() - Enable a specific OPP
2338  * @dev:	device for which we do this operation
2339  * @freq:	OPP frequency to enable
2340  *
2341  * Enables a provided opp. If the operation is valid, this returns 0, else the
2342  * corresponding error value. It is meant to be used for users an OPP available
2343  * after being temporarily made unavailable with dev_pm_opp_disable.
2344  *
2345  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2346  * copy operation, returns 0 if no modification was done OR modification was
2347  * successful.
2348  */
2349 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2350 {
2351 	return _opp_set_availability(dev, freq, true);
2352 }
2353 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2354 
2355 /**
2356  * dev_pm_opp_disable() - Disable a specific OPP
2357  * @dev:	device for which we do this operation
2358  * @freq:	OPP frequency to disable
2359  *
2360  * Disables a provided opp. If the operation is valid, this returns
2361  * 0, else the corresponding error value. It is meant to be a temporary
2362  * control by users to make this OPP not available until the circumstances are
2363  * right to make it available again (with a call to dev_pm_opp_enable).
2364  *
2365  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2366  * copy operation, returns 0 if no modification was done OR modification was
2367  * successful.
2368  */
2369 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2370 {
2371 	return _opp_set_availability(dev, freq, false);
2372 }
2373 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2374 
2375 /**
2376  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2377  * @dev:	Device for which notifier needs to be registered
2378  * @nb:		Notifier block to be registered
2379  *
2380  * Return: 0 on success or a negative error value.
2381  */
2382 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2383 {
2384 	struct opp_table *opp_table;
2385 	int ret;
2386 
2387 	opp_table = _find_opp_table(dev);
2388 	if (IS_ERR(opp_table))
2389 		return PTR_ERR(opp_table);
2390 
2391 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2392 
2393 	dev_pm_opp_put_opp_table(opp_table);
2394 
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2398 
2399 /**
2400  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2401  * @dev:	Device for which notifier needs to be unregistered
2402  * @nb:		Notifier block to be unregistered
2403  *
2404  * Return: 0 on success or a negative error value.
2405  */
2406 int dev_pm_opp_unregister_notifier(struct device *dev,
2407 				   struct notifier_block *nb)
2408 {
2409 	struct opp_table *opp_table;
2410 	int ret;
2411 
2412 	opp_table = _find_opp_table(dev);
2413 	if (IS_ERR(opp_table))
2414 		return PTR_ERR(opp_table);
2415 
2416 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2417 
2418 	dev_pm_opp_put_opp_table(opp_table);
2419 
2420 	return ret;
2421 }
2422 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2423 
2424 /**
2425  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2426  * @dev:	device pointer used to lookup OPP table.
2427  *
2428  * Free both OPPs created using static entries present in DT and the
2429  * dynamically added entries.
2430  */
2431 void dev_pm_opp_remove_table(struct device *dev)
2432 {
2433 	struct opp_table *opp_table;
2434 
2435 	/* Check for existing table for 'dev' */
2436 	opp_table = _find_opp_table(dev);
2437 	if (IS_ERR(opp_table)) {
2438 		int error = PTR_ERR(opp_table);
2439 
2440 		if (error != -ENODEV)
2441 			WARN(1, "%s: opp_table: %d\n",
2442 			     IS_ERR_OR_NULL(dev) ?
2443 					"Invalid device" : dev_name(dev),
2444 			     error);
2445 		return;
2446 	}
2447 
2448 	/*
2449 	 * Drop the extra reference only if the OPP table was successfully added
2450 	 * with dev_pm_opp_of_add_table() earlier.
2451 	 **/
2452 	if (_opp_remove_all_static(opp_table))
2453 		dev_pm_opp_put_opp_table(opp_table);
2454 
2455 	/* Drop reference taken by _find_opp_table() */
2456 	dev_pm_opp_put_opp_table(opp_table);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2459