xref: /openbmc/linux/drivers/opp/core.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	return 0;
703 
704 restore_freq:
705 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
706 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
707 			__func__, old_freq);
708 restore_voltage:
709 	/* This shouldn't harm even if the voltages weren't updated earlier */
710 	if (old_supply)
711 		_set_opp_voltage(dev, reg, old_supply);
712 
713 	return ret;
714 }
715 
716 static int _set_opp_custom(const struct opp_table *opp_table,
717 			   struct device *dev, unsigned long old_freq,
718 			   unsigned long freq,
719 			   struct dev_pm_opp_supply *old_supply,
720 			   struct dev_pm_opp_supply *new_supply)
721 {
722 	struct dev_pm_set_opp_data *data;
723 	int size;
724 
725 	data = opp_table->set_opp_data;
726 	data->regulators = opp_table->regulators;
727 	data->regulator_count = opp_table->regulator_count;
728 	data->clk = opp_table->clk;
729 	data->dev = dev;
730 
731 	data->old_opp.rate = old_freq;
732 	size = sizeof(*old_supply) * opp_table->regulator_count;
733 	if (!old_supply)
734 		memset(data->old_opp.supplies, 0, size);
735 	else
736 		memcpy(data->old_opp.supplies, old_supply, size);
737 
738 	data->new_opp.rate = freq;
739 	memcpy(data->new_opp.supplies, new_supply, size);
740 
741 	return opp_table->set_opp(data);
742 }
743 
744 /* This is only called for PM domain for now */
745 static int _set_required_opps(struct device *dev,
746 			      struct opp_table *opp_table,
747 			      struct dev_pm_opp *opp)
748 {
749 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
750 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
751 	unsigned int pstate;
752 	int i, ret = 0;
753 
754 	if (!required_opp_tables)
755 		return 0;
756 
757 	/* Single genpd case */
758 	if (!genpd_virt_devs) {
759 		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
760 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
761 		if (ret) {
762 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
763 				dev_name(dev), pstate, ret);
764 		}
765 		return ret;
766 	}
767 
768 	/* Multiple genpd case */
769 
770 	/*
771 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
772 	 * after it is freed from another thread.
773 	 */
774 	mutex_lock(&opp_table->genpd_virt_dev_lock);
775 
776 	for (i = 0; i < opp_table->required_opp_count; i++) {
777 		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
778 
779 		if (!genpd_virt_devs[i])
780 			continue;
781 
782 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
783 		if (ret) {
784 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
785 				dev_name(genpd_virt_devs[i]), pstate, ret);
786 			break;
787 		}
788 	}
789 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
790 
791 	return ret;
792 }
793 
794 /**
795  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
796  * @dev:	 device for which we do this operation
797  * @target_freq: frequency to achieve
798  *
799  * This configures the power-supplies to the levels specified by the OPP
800  * corresponding to the target_freq, and programs the clock to a value <=
801  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
802  * provided by the opp, should have already rounded to the target OPP's
803  * frequency.
804  */
805 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
806 {
807 	struct opp_table *opp_table;
808 	unsigned long freq, old_freq, temp_freq;
809 	struct dev_pm_opp *old_opp, *opp;
810 	struct clk *clk;
811 	int ret;
812 
813 	opp_table = _find_opp_table(dev);
814 	if (IS_ERR(opp_table)) {
815 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
816 		return PTR_ERR(opp_table);
817 	}
818 
819 	if (unlikely(!target_freq)) {
820 		if (opp_table->required_opp_tables) {
821 			ret = _set_required_opps(dev, opp_table, NULL);
822 		} else {
823 			dev_err(dev, "target frequency can't be 0\n");
824 			ret = -EINVAL;
825 		}
826 
827 		goto put_opp_table;
828 	}
829 
830 	clk = opp_table->clk;
831 	if (IS_ERR(clk)) {
832 		dev_err(dev, "%s: No clock available for the device\n",
833 			__func__);
834 		ret = PTR_ERR(clk);
835 		goto put_opp_table;
836 	}
837 
838 	freq = clk_round_rate(clk, target_freq);
839 	if ((long)freq <= 0)
840 		freq = target_freq;
841 
842 	old_freq = clk_get_rate(clk);
843 
844 	/* Return early if nothing to do */
845 	if (old_freq == freq) {
846 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
847 			__func__, freq);
848 		ret = 0;
849 		goto put_opp_table;
850 	}
851 
852 	temp_freq = old_freq;
853 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
854 	if (IS_ERR(old_opp)) {
855 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
856 			__func__, old_freq, PTR_ERR(old_opp));
857 	}
858 
859 	temp_freq = freq;
860 	opp = _find_freq_ceil(opp_table, &temp_freq);
861 	if (IS_ERR(opp)) {
862 		ret = PTR_ERR(opp);
863 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
864 			__func__, freq, ret);
865 		goto put_old_opp;
866 	}
867 
868 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
869 		old_freq, freq);
870 
871 	/* Scaling up? Configure required OPPs before frequency */
872 	if (freq >= old_freq) {
873 		ret = _set_required_opps(dev, opp_table, opp);
874 		if (ret)
875 			goto put_opp;
876 	}
877 
878 	if (opp_table->set_opp) {
879 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
880 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
881 				      opp->supplies);
882 	} else if (opp_table->regulators) {
883 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
884 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
885 						 opp->supplies);
886 	} else {
887 		/* Only frequency scaling */
888 		ret = _generic_set_opp_clk_only(dev, clk, freq);
889 	}
890 
891 	/* Scaling down? Configure required OPPs after frequency */
892 	if (!ret && freq < old_freq) {
893 		ret = _set_required_opps(dev, opp_table, opp);
894 		if (ret)
895 			dev_err(dev, "Failed to set required opps: %d\n", ret);
896 	}
897 
898 put_opp:
899 	dev_pm_opp_put(opp);
900 put_old_opp:
901 	if (!IS_ERR(old_opp))
902 		dev_pm_opp_put(old_opp);
903 put_opp_table:
904 	dev_pm_opp_put_opp_table(opp_table);
905 	return ret;
906 }
907 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
908 
909 /* OPP-dev Helpers */
910 static void _remove_opp_dev(struct opp_device *opp_dev,
911 			    struct opp_table *opp_table)
912 {
913 	opp_debug_unregister(opp_dev, opp_table);
914 	list_del(&opp_dev->node);
915 	kfree(opp_dev);
916 }
917 
918 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
919 						struct opp_table *opp_table)
920 {
921 	struct opp_device *opp_dev;
922 
923 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
924 	if (!opp_dev)
925 		return NULL;
926 
927 	/* Initialize opp-dev */
928 	opp_dev->dev = dev;
929 
930 	list_add(&opp_dev->node, &opp_table->dev_list);
931 
932 	/* Create debugfs entries for the opp_table */
933 	opp_debug_register(opp_dev, opp_table);
934 
935 	return opp_dev;
936 }
937 
938 struct opp_device *_add_opp_dev(const struct device *dev,
939 				struct opp_table *opp_table)
940 {
941 	struct opp_device *opp_dev;
942 
943 	mutex_lock(&opp_table->lock);
944 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
945 	mutex_unlock(&opp_table->lock);
946 
947 	return opp_dev;
948 }
949 
950 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
951 {
952 	struct opp_table *opp_table;
953 	struct opp_device *opp_dev;
954 	int ret;
955 
956 	/*
957 	 * Allocate a new OPP table. In the infrequent case where a new
958 	 * device is needed to be added, we pay this penalty.
959 	 */
960 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
961 	if (!opp_table)
962 		return NULL;
963 
964 	mutex_init(&opp_table->lock);
965 	mutex_init(&opp_table->genpd_virt_dev_lock);
966 	INIT_LIST_HEAD(&opp_table->dev_list);
967 
968 	/* Mark regulator count uninitialized */
969 	opp_table->regulator_count = -1;
970 
971 	opp_dev = _add_opp_dev(dev, opp_table);
972 	if (!opp_dev) {
973 		kfree(opp_table);
974 		return NULL;
975 	}
976 
977 	_of_init_opp_table(opp_table, dev, index);
978 
979 	/* Find clk for the device */
980 	opp_table->clk = clk_get(dev, NULL);
981 	if (IS_ERR(opp_table->clk)) {
982 		ret = PTR_ERR(opp_table->clk);
983 		if (ret != -EPROBE_DEFER)
984 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
985 				ret);
986 	}
987 
988 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
989 	INIT_LIST_HEAD(&opp_table->opp_list);
990 	kref_init(&opp_table->kref);
991 
992 	/* Secure the device table modification */
993 	list_add(&opp_table->node, &opp_tables);
994 	return opp_table;
995 }
996 
997 void _get_opp_table_kref(struct opp_table *opp_table)
998 {
999 	kref_get(&opp_table->kref);
1000 }
1001 
1002 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1003 {
1004 	struct opp_table *opp_table;
1005 
1006 	/* Hold our table modification lock here */
1007 	mutex_lock(&opp_table_lock);
1008 
1009 	opp_table = _find_opp_table_unlocked(dev);
1010 	if (!IS_ERR(opp_table))
1011 		goto unlock;
1012 
1013 	opp_table = _managed_opp(dev, index);
1014 	if (opp_table) {
1015 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1016 			dev_pm_opp_put_opp_table(opp_table);
1017 			opp_table = NULL;
1018 		}
1019 		goto unlock;
1020 	}
1021 
1022 	opp_table = _allocate_opp_table(dev, index);
1023 
1024 unlock:
1025 	mutex_unlock(&opp_table_lock);
1026 
1027 	return opp_table;
1028 }
1029 
1030 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1031 {
1032 	return _opp_get_opp_table(dev, 0);
1033 }
1034 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1035 
1036 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1037 						   int index)
1038 {
1039 	return _opp_get_opp_table(dev, index);
1040 }
1041 
1042 static void _opp_table_kref_release(struct kref *kref)
1043 {
1044 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1045 	struct opp_device *opp_dev, *temp;
1046 
1047 	_of_clear_opp_table(opp_table);
1048 
1049 	/* Release clk */
1050 	if (!IS_ERR(opp_table->clk))
1051 		clk_put(opp_table->clk);
1052 
1053 	WARN_ON(!list_empty(&opp_table->opp_list));
1054 
1055 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1056 		/*
1057 		 * The OPP table is getting removed, drop the performance state
1058 		 * constraints.
1059 		 */
1060 		if (opp_table->genpd_performance_state)
1061 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1062 
1063 		_remove_opp_dev(opp_dev, opp_table);
1064 	}
1065 
1066 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1067 	mutex_destroy(&opp_table->lock);
1068 	list_del(&opp_table->node);
1069 	kfree(opp_table);
1070 
1071 	mutex_unlock(&opp_table_lock);
1072 }
1073 
1074 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1075 {
1076 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1077 		       &opp_table_lock);
1078 }
1079 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1080 
1081 void _opp_free(struct dev_pm_opp *opp)
1082 {
1083 	kfree(opp);
1084 }
1085 
1086 static void _opp_kref_release(struct dev_pm_opp *opp,
1087 			      struct opp_table *opp_table)
1088 {
1089 	/*
1090 	 * Notify the changes in the availability of the operable
1091 	 * frequency/voltage list.
1092 	 */
1093 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1094 	_of_opp_free_required_opps(opp_table, opp);
1095 	opp_debug_remove_one(opp);
1096 	list_del(&opp->node);
1097 	kfree(opp);
1098 }
1099 
1100 static void _opp_kref_release_unlocked(struct kref *kref)
1101 {
1102 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1103 	struct opp_table *opp_table = opp->opp_table;
1104 
1105 	_opp_kref_release(opp, opp_table);
1106 }
1107 
1108 static void _opp_kref_release_locked(struct kref *kref)
1109 {
1110 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1111 	struct opp_table *opp_table = opp->opp_table;
1112 
1113 	_opp_kref_release(opp, opp_table);
1114 	mutex_unlock(&opp_table->lock);
1115 }
1116 
1117 void dev_pm_opp_get(struct dev_pm_opp *opp)
1118 {
1119 	kref_get(&opp->kref);
1120 }
1121 
1122 void dev_pm_opp_put(struct dev_pm_opp *opp)
1123 {
1124 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1125 		       &opp->opp_table->lock);
1126 }
1127 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1128 
1129 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1130 {
1131 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1132 }
1133 
1134 /**
1135  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1136  * @dev:	device for which we do this operation
1137  * @freq:	OPP to remove with matching 'freq'
1138  *
1139  * This function removes an opp from the opp table.
1140  */
1141 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1142 {
1143 	struct dev_pm_opp *opp;
1144 	struct opp_table *opp_table;
1145 	bool found = false;
1146 
1147 	opp_table = _find_opp_table(dev);
1148 	if (IS_ERR(opp_table))
1149 		return;
1150 
1151 	mutex_lock(&opp_table->lock);
1152 
1153 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1154 		if (opp->rate == freq) {
1155 			found = true;
1156 			break;
1157 		}
1158 	}
1159 
1160 	mutex_unlock(&opp_table->lock);
1161 
1162 	if (found) {
1163 		dev_pm_opp_put(opp);
1164 
1165 		/* Drop the reference taken by dev_pm_opp_add() */
1166 		dev_pm_opp_put_opp_table(opp_table);
1167 	} else {
1168 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1169 			 __func__, freq);
1170 	}
1171 
1172 	/* Drop the reference taken by _find_opp_table() */
1173 	dev_pm_opp_put_opp_table(opp_table);
1174 }
1175 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1176 
1177 void _opp_remove_all_static(struct opp_table *opp_table)
1178 {
1179 	struct dev_pm_opp *opp, *tmp;
1180 
1181 	mutex_lock(&opp_table->lock);
1182 
1183 	if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1184 		goto unlock;
1185 
1186 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1187 		if (!opp->dynamic)
1188 			dev_pm_opp_put_unlocked(opp);
1189 	}
1190 
1191 unlock:
1192 	mutex_unlock(&opp_table->lock);
1193 }
1194 
1195 /**
1196  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1197  * @dev:	device for which we do this operation
1198  *
1199  * This function removes all dynamically created OPPs from the opp table.
1200  */
1201 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1202 {
1203 	struct opp_table *opp_table;
1204 	struct dev_pm_opp *opp, *temp;
1205 	int count = 0;
1206 
1207 	opp_table = _find_opp_table(dev);
1208 	if (IS_ERR(opp_table))
1209 		return;
1210 
1211 	mutex_lock(&opp_table->lock);
1212 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1213 		if (opp->dynamic) {
1214 			dev_pm_opp_put_unlocked(opp);
1215 			count++;
1216 		}
1217 	}
1218 	mutex_unlock(&opp_table->lock);
1219 
1220 	/* Drop the references taken by dev_pm_opp_add() */
1221 	while (count--)
1222 		dev_pm_opp_put_opp_table(opp_table);
1223 
1224 	/* Drop the reference taken by _find_opp_table() */
1225 	dev_pm_opp_put_opp_table(opp_table);
1226 }
1227 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1228 
1229 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1230 {
1231 	struct dev_pm_opp *opp;
1232 	int count, supply_size;
1233 
1234 	/* Allocate space for at least one supply */
1235 	count = table->regulator_count > 0 ? table->regulator_count : 1;
1236 	supply_size = sizeof(*opp->supplies) * count;
1237 
1238 	/* allocate new OPP node and supplies structures */
1239 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1240 	if (!opp)
1241 		return NULL;
1242 
1243 	/* Put the supplies at the end of the OPP structure as an empty array */
1244 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1245 	INIT_LIST_HEAD(&opp->node);
1246 
1247 	return opp;
1248 }
1249 
1250 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1251 					 struct opp_table *opp_table)
1252 {
1253 	struct regulator *reg;
1254 	int i;
1255 
1256 	if (!opp_table->regulators)
1257 		return true;
1258 
1259 	for (i = 0; i < opp_table->regulator_count; i++) {
1260 		reg = opp_table->regulators[i];
1261 
1262 		if (!regulator_is_supported_voltage(reg,
1263 					opp->supplies[i].u_volt_min,
1264 					opp->supplies[i].u_volt_max)) {
1265 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1266 				__func__, opp->supplies[i].u_volt_min,
1267 				opp->supplies[i].u_volt_max);
1268 			return false;
1269 		}
1270 	}
1271 
1272 	return true;
1273 }
1274 
1275 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1276 			     struct opp_table *opp_table,
1277 			     struct list_head **head)
1278 {
1279 	struct dev_pm_opp *opp;
1280 
1281 	/*
1282 	 * Insert new OPP in order of increasing frequency and discard if
1283 	 * already present.
1284 	 *
1285 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1286 	 * loop, don't replace it with head otherwise it will become an infinite
1287 	 * loop.
1288 	 */
1289 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1290 		if (new_opp->rate > opp->rate) {
1291 			*head = &opp->node;
1292 			continue;
1293 		}
1294 
1295 		if (new_opp->rate < opp->rate)
1296 			return 0;
1297 
1298 		/* Duplicate OPPs */
1299 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1300 			 __func__, opp->rate, opp->supplies[0].u_volt,
1301 			 opp->available, new_opp->rate,
1302 			 new_opp->supplies[0].u_volt, new_opp->available);
1303 
1304 		/* Should we compare voltages for all regulators here ? */
1305 		return opp->available &&
1306 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 /*
1313  * Returns:
1314  * 0: On success. And appropriate error message for duplicate OPPs.
1315  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1316  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1317  *  sure we don't print error messages unnecessarily if different parts of
1318  *  kernel try to initialize the OPP table.
1319  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1320  *  should be considered an error by the callers of _opp_add().
1321  */
1322 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1323 	     struct opp_table *opp_table, bool rate_not_available)
1324 {
1325 	struct list_head *head;
1326 	int ret;
1327 
1328 	mutex_lock(&opp_table->lock);
1329 	head = &opp_table->opp_list;
1330 
1331 	if (likely(!rate_not_available)) {
1332 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1333 		if (ret) {
1334 			mutex_unlock(&opp_table->lock);
1335 			return ret;
1336 		}
1337 	}
1338 
1339 	list_add(&new_opp->node, head);
1340 	mutex_unlock(&opp_table->lock);
1341 
1342 	new_opp->opp_table = opp_table;
1343 	kref_init(&new_opp->kref);
1344 
1345 	opp_debug_create_one(new_opp, opp_table);
1346 
1347 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1348 		new_opp->available = false;
1349 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1350 			 __func__, new_opp->rate);
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 /**
1357  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1358  * @opp_table:	OPP table
1359  * @dev:	device for which we do this operation
1360  * @freq:	Frequency in Hz for this OPP
1361  * @u_volt:	Voltage in uVolts for this OPP
1362  * @dynamic:	Dynamically added OPPs.
1363  *
1364  * This function adds an opp definition to the opp table and returns status.
1365  * The opp is made available by default and it can be controlled using
1366  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1367  *
1368  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1369  * and freed by dev_pm_opp_of_remove_table.
1370  *
1371  * Return:
1372  * 0		On success OR
1373  *		Duplicate OPPs (both freq and volt are same) and opp->available
1374  * -EEXIST	Freq are same and volt are different OR
1375  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1376  * -ENOMEM	Memory allocation failure
1377  */
1378 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1379 		unsigned long freq, long u_volt, bool dynamic)
1380 {
1381 	struct dev_pm_opp *new_opp;
1382 	unsigned long tol;
1383 	int ret;
1384 
1385 	new_opp = _opp_allocate(opp_table);
1386 	if (!new_opp)
1387 		return -ENOMEM;
1388 
1389 	/* populate the opp table */
1390 	new_opp->rate = freq;
1391 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1392 	new_opp->supplies[0].u_volt = u_volt;
1393 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1394 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1395 	new_opp->available = true;
1396 	new_opp->dynamic = dynamic;
1397 
1398 	ret = _opp_add(dev, new_opp, opp_table, false);
1399 	if (ret) {
1400 		/* Don't return error for duplicate OPPs */
1401 		if (ret == -EBUSY)
1402 			ret = 0;
1403 		goto free_opp;
1404 	}
1405 
1406 	/*
1407 	 * Notify the changes in the availability of the operable
1408 	 * frequency/voltage list.
1409 	 */
1410 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1411 	return 0;
1412 
1413 free_opp:
1414 	_opp_free(new_opp);
1415 
1416 	return ret;
1417 }
1418 
1419 /**
1420  * dev_pm_opp_set_supported_hw() - Set supported platforms
1421  * @dev: Device for which supported-hw has to be set.
1422  * @versions: Array of hierarchy of versions to match.
1423  * @count: Number of elements in the array.
1424  *
1425  * This is required only for the V2 bindings, and it enables a platform to
1426  * specify the hierarchy of versions it supports. OPP layer will then enable
1427  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1428  * property.
1429  */
1430 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1431 			const u32 *versions, unsigned int count)
1432 {
1433 	struct opp_table *opp_table;
1434 
1435 	opp_table = dev_pm_opp_get_opp_table(dev);
1436 	if (!opp_table)
1437 		return ERR_PTR(-ENOMEM);
1438 
1439 	/* Make sure there are no concurrent readers while updating opp_table */
1440 	WARN_ON(!list_empty(&opp_table->opp_list));
1441 
1442 	/* Another CPU that shares the OPP table has set the property ? */
1443 	if (opp_table->supported_hw)
1444 		return opp_table;
1445 
1446 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1447 					GFP_KERNEL);
1448 	if (!opp_table->supported_hw) {
1449 		dev_pm_opp_put_opp_table(opp_table);
1450 		return ERR_PTR(-ENOMEM);
1451 	}
1452 
1453 	opp_table->supported_hw_count = count;
1454 
1455 	return opp_table;
1456 }
1457 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1458 
1459 /**
1460  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1461  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1462  *
1463  * This is required only for the V2 bindings, and is called for a matching
1464  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1465  * will not be freed.
1466  */
1467 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1468 {
1469 	/* Make sure there are no concurrent readers while updating opp_table */
1470 	WARN_ON(!list_empty(&opp_table->opp_list));
1471 
1472 	kfree(opp_table->supported_hw);
1473 	opp_table->supported_hw = NULL;
1474 	opp_table->supported_hw_count = 0;
1475 
1476 	dev_pm_opp_put_opp_table(opp_table);
1477 }
1478 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1479 
1480 /**
1481  * dev_pm_opp_set_prop_name() - Set prop-extn name
1482  * @dev: Device for which the prop-name has to be set.
1483  * @name: name to postfix to properties.
1484  *
1485  * This is required only for the V2 bindings, and it enables a platform to
1486  * specify the extn to be used for certain property names. The properties to
1487  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1488  * should postfix the property name with -<name> while looking for them.
1489  */
1490 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1491 {
1492 	struct opp_table *opp_table;
1493 
1494 	opp_table = dev_pm_opp_get_opp_table(dev);
1495 	if (!opp_table)
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	/* Make sure there are no concurrent readers while updating opp_table */
1499 	WARN_ON(!list_empty(&opp_table->opp_list));
1500 
1501 	/* Another CPU that shares the OPP table has set the property ? */
1502 	if (opp_table->prop_name)
1503 		return opp_table;
1504 
1505 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1506 	if (!opp_table->prop_name) {
1507 		dev_pm_opp_put_opp_table(opp_table);
1508 		return ERR_PTR(-ENOMEM);
1509 	}
1510 
1511 	return opp_table;
1512 }
1513 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1514 
1515 /**
1516  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1517  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1518  *
1519  * This is required only for the V2 bindings, and is called for a matching
1520  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1521  * will not be freed.
1522  */
1523 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1524 {
1525 	/* Make sure there are no concurrent readers while updating opp_table */
1526 	WARN_ON(!list_empty(&opp_table->opp_list));
1527 
1528 	kfree(opp_table->prop_name);
1529 	opp_table->prop_name = NULL;
1530 
1531 	dev_pm_opp_put_opp_table(opp_table);
1532 }
1533 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1534 
1535 static int _allocate_set_opp_data(struct opp_table *opp_table)
1536 {
1537 	struct dev_pm_set_opp_data *data;
1538 	int len, count = opp_table->regulator_count;
1539 
1540 	if (WARN_ON(!opp_table->regulators))
1541 		return -EINVAL;
1542 
1543 	/* space for set_opp_data */
1544 	len = sizeof(*data);
1545 
1546 	/* space for old_opp.supplies and new_opp.supplies */
1547 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1548 
1549 	data = kzalloc(len, GFP_KERNEL);
1550 	if (!data)
1551 		return -ENOMEM;
1552 
1553 	data->old_opp.supplies = (void *)(data + 1);
1554 	data->new_opp.supplies = data->old_opp.supplies + count;
1555 
1556 	opp_table->set_opp_data = data;
1557 
1558 	return 0;
1559 }
1560 
1561 static void _free_set_opp_data(struct opp_table *opp_table)
1562 {
1563 	kfree(opp_table->set_opp_data);
1564 	opp_table->set_opp_data = NULL;
1565 }
1566 
1567 /**
1568  * dev_pm_opp_set_regulators() - Set regulator names for the device
1569  * @dev: Device for which regulator name is being set.
1570  * @names: Array of pointers to the names of the regulator.
1571  * @count: Number of regulators.
1572  *
1573  * In order to support OPP switching, OPP layer needs to know the name of the
1574  * device's regulators, as the core would be required to switch voltages as
1575  * well.
1576  *
1577  * This must be called before any OPPs are initialized for the device.
1578  */
1579 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1580 					    const char * const names[],
1581 					    unsigned int count)
1582 {
1583 	struct opp_table *opp_table;
1584 	struct regulator *reg;
1585 	int ret, i;
1586 
1587 	opp_table = dev_pm_opp_get_opp_table(dev);
1588 	if (!opp_table)
1589 		return ERR_PTR(-ENOMEM);
1590 
1591 	/* This should be called before OPPs are initialized */
1592 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1593 		ret = -EBUSY;
1594 		goto err;
1595 	}
1596 
1597 	/* Another CPU that shares the OPP table has set the regulators ? */
1598 	if (opp_table->regulators)
1599 		return opp_table;
1600 
1601 	opp_table->regulators = kmalloc_array(count,
1602 					      sizeof(*opp_table->regulators),
1603 					      GFP_KERNEL);
1604 	if (!opp_table->regulators) {
1605 		ret = -ENOMEM;
1606 		goto err;
1607 	}
1608 
1609 	for (i = 0; i < count; i++) {
1610 		reg = regulator_get_optional(dev, names[i]);
1611 		if (IS_ERR(reg)) {
1612 			ret = PTR_ERR(reg);
1613 			if (ret != -EPROBE_DEFER)
1614 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1615 					__func__, names[i], ret);
1616 			goto free_regulators;
1617 		}
1618 
1619 		opp_table->regulators[i] = reg;
1620 	}
1621 
1622 	opp_table->regulator_count = count;
1623 
1624 	/* Allocate block only once to pass to set_opp() routines */
1625 	ret = _allocate_set_opp_data(opp_table);
1626 	if (ret)
1627 		goto free_regulators;
1628 
1629 	return opp_table;
1630 
1631 free_regulators:
1632 	while (i != 0)
1633 		regulator_put(opp_table->regulators[--i]);
1634 
1635 	kfree(opp_table->regulators);
1636 	opp_table->regulators = NULL;
1637 	opp_table->regulator_count = -1;
1638 err:
1639 	dev_pm_opp_put_opp_table(opp_table);
1640 
1641 	return ERR_PTR(ret);
1642 }
1643 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1644 
1645 /**
1646  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1647  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1648  */
1649 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1650 {
1651 	int i;
1652 
1653 	if (!opp_table->regulators)
1654 		goto put_opp_table;
1655 
1656 	/* Make sure there are no concurrent readers while updating opp_table */
1657 	WARN_ON(!list_empty(&opp_table->opp_list));
1658 
1659 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1660 		regulator_put(opp_table->regulators[i]);
1661 
1662 	_free_set_opp_data(opp_table);
1663 
1664 	kfree(opp_table->regulators);
1665 	opp_table->regulators = NULL;
1666 	opp_table->regulator_count = -1;
1667 
1668 put_opp_table:
1669 	dev_pm_opp_put_opp_table(opp_table);
1670 }
1671 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1672 
1673 /**
1674  * dev_pm_opp_set_clkname() - Set clk name for the device
1675  * @dev: Device for which clk name is being set.
1676  * @name: Clk name.
1677  *
1678  * In order to support OPP switching, OPP layer needs to get pointer to the
1679  * clock for the device. Simple cases work fine without using this routine (i.e.
1680  * by passing connection-id as NULL), but for a device with multiple clocks
1681  * available, the OPP core needs to know the exact name of the clk to use.
1682  *
1683  * This must be called before any OPPs are initialized for the device.
1684  */
1685 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1686 {
1687 	struct opp_table *opp_table;
1688 	int ret;
1689 
1690 	opp_table = dev_pm_opp_get_opp_table(dev);
1691 	if (!opp_table)
1692 		return ERR_PTR(-ENOMEM);
1693 
1694 	/* This should be called before OPPs are initialized */
1695 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1696 		ret = -EBUSY;
1697 		goto err;
1698 	}
1699 
1700 	/* Already have default clk set, free it */
1701 	if (!IS_ERR(opp_table->clk))
1702 		clk_put(opp_table->clk);
1703 
1704 	/* Find clk for the device */
1705 	opp_table->clk = clk_get(dev, name);
1706 	if (IS_ERR(opp_table->clk)) {
1707 		ret = PTR_ERR(opp_table->clk);
1708 		if (ret != -EPROBE_DEFER) {
1709 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1710 				ret);
1711 		}
1712 		goto err;
1713 	}
1714 
1715 	return opp_table;
1716 
1717 err:
1718 	dev_pm_opp_put_opp_table(opp_table);
1719 
1720 	return ERR_PTR(ret);
1721 }
1722 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1723 
1724 /**
1725  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1726  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1727  */
1728 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1729 {
1730 	/* Make sure there are no concurrent readers while updating opp_table */
1731 	WARN_ON(!list_empty(&opp_table->opp_list));
1732 
1733 	clk_put(opp_table->clk);
1734 	opp_table->clk = ERR_PTR(-EINVAL);
1735 
1736 	dev_pm_opp_put_opp_table(opp_table);
1737 }
1738 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1739 
1740 /**
1741  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1742  * @dev: Device for which the helper is getting registered.
1743  * @set_opp: Custom set OPP helper.
1744  *
1745  * This is useful to support complex platforms (like platforms with multiple
1746  * regulators per device), instead of the generic OPP set rate helper.
1747  *
1748  * This must be called before any OPPs are initialized for the device.
1749  */
1750 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1751 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1752 {
1753 	struct opp_table *opp_table;
1754 
1755 	if (!set_opp)
1756 		return ERR_PTR(-EINVAL);
1757 
1758 	opp_table = dev_pm_opp_get_opp_table(dev);
1759 	if (!opp_table)
1760 		return ERR_PTR(-ENOMEM);
1761 
1762 	/* This should be called before OPPs are initialized */
1763 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1764 		dev_pm_opp_put_opp_table(opp_table);
1765 		return ERR_PTR(-EBUSY);
1766 	}
1767 
1768 	/* Another CPU that shares the OPP table has set the helper ? */
1769 	if (!opp_table->set_opp)
1770 		opp_table->set_opp = set_opp;
1771 
1772 	return opp_table;
1773 }
1774 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1775 
1776 /**
1777  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1778  *					   set_opp helper
1779  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1780  *
1781  * Release resources blocked for platform specific set_opp helper.
1782  */
1783 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1784 {
1785 	/* Make sure there are no concurrent readers while updating opp_table */
1786 	WARN_ON(!list_empty(&opp_table->opp_list));
1787 
1788 	opp_table->set_opp = NULL;
1789 	dev_pm_opp_put_opp_table(opp_table);
1790 }
1791 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1792 
1793 static void _opp_detach_genpd(struct opp_table *opp_table)
1794 {
1795 	int index;
1796 
1797 	for (index = 0; index < opp_table->required_opp_count; index++) {
1798 		if (!opp_table->genpd_virt_devs[index])
1799 			continue;
1800 
1801 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1802 		opp_table->genpd_virt_devs[index] = NULL;
1803 	}
1804 
1805 	kfree(opp_table->genpd_virt_devs);
1806 	opp_table->genpd_virt_devs = NULL;
1807 }
1808 
1809 /**
1810  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1811  * @dev: Consumer device for which the genpd is getting attached.
1812  * @names: Null terminated array of pointers containing names of genpd to attach.
1813  * @virt_devs: Pointer to return the array of virtual devices.
1814  *
1815  * Multiple generic power domains for a device are supported with the help of
1816  * virtual genpd devices, which are created for each consumer device - genpd
1817  * pair. These are the device structures which are attached to the power domain
1818  * and are required by the OPP core to set the performance state of the genpd.
1819  * The same API also works for the case where single genpd is available and so
1820  * we don't need to support that separately.
1821  *
1822  * This helper will normally be called by the consumer driver of the device
1823  * "dev", as only that has details of the genpd names.
1824  *
1825  * This helper needs to be called once with a list of all genpd to attach.
1826  * Otherwise the original device structure will be used instead by the OPP core.
1827  *
1828  * The order of entries in the names array must match the order in which
1829  * "required-opps" are added in DT.
1830  */
1831 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1832 		const char **names, struct device ***virt_devs)
1833 {
1834 	struct opp_table *opp_table;
1835 	struct device *virt_dev;
1836 	int index = 0, ret = -EINVAL;
1837 	const char **name = names;
1838 
1839 	opp_table = dev_pm_opp_get_opp_table(dev);
1840 	if (!opp_table)
1841 		return ERR_PTR(-ENOMEM);
1842 
1843 	/*
1844 	 * If the genpd's OPP table isn't already initialized, parsing of the
1845 	 * required-opps fail for dev. We should retry this after genpd's OPP
1846 	 * table is added.
1847 	 */
1848 	if (!opp_table->required_opp_count) {
1849 		ret = -EPROBE_DEFER;
1850 		goto put_table;
1851 	}
1852 
1853 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1854 
1855 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1856 					     sizeof(*opp_table->genpd_virt_devs),
1857 					     GFP_KERNEL);
1858 	if (!opp_table->genpd_virt_devs)
1859 		goto unlock;
1860 
1861 	while (*name) {
1862 		if (index >= opp_table->required_opp_count) {
1863 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1864 				*name, opp_table->required_opp_count, index);
1865 			goto err;
1866 		}
1867 
1868 		if (opp_table->genpd_virt_devs[index]) {
1869 			dev_err(dev, "Genpd virtual device already set %s\n",
1870 				*name);
1871 			goto err;
1872 		}
1873 
1874 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1875 		if (IS_ERR(virt_dev)) {
1876 			ret = PTR_ERR(virt_dev);
1877 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1878 			goto err;
1879 		}
1880 
1881 		opp_table->genpd_virt_devs[index] = virt_dev;
1882 		index++;
1883 		name++;
1884 	}
1885 
1886 	if (virt_devs)
1887 		*virt_devs = opp_table->genpd_virt_devs;
1888 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1889 
1890 	return opp_table;
1891 
1892 err:
1893 	_opp_detach_genpd(opp_table);
1894 unlock:
1895 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1896 
1897 put_table:
1898 	dev_pm_opp_put_opp_table(opp_table);
1899 
1900 	return ERR_PTR(ret);
1901 }
1902 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1903 
1904 /**
1905  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1906  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1907  *
1908  * This detaches the genpd(s), resets the virtual device pointers, and puts the
1909  * OPP table.
1910  */
1911 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1912 {
1913 	/*
1914 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1915 	 * used in parallel.
1916 	 */
1917 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1918 	_opp_detach_genpd(opp_table);
1919 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1920 
1921 	dev_pm_opp_put_opp_table(opp_table);
1922 }
1923 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1924 
1925 /**
1926  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1927  * @src_table: OPP table which has dst_table as one of its required OPP table.
1928  * @dst_table: Required OPP table of the src_table.
1929  * @pstate: Current performance state of the src_table.
1930  *
1931  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1932  * "required-opps" property of the OPP (present in @src_table) which has
1933  * performance state set to @pstate.
1934  *
1935  * Return: Zero or positive performance state on success, otherwise negative
1936  * value on errors.
1937  */
1938 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1939 				       struct opp_table *dst_table,
1940 				       unsigned int pstate)
1941 {
1942 	struct dev_pm_opp *opp;
1943 	int dest_pstate = -EINVAL;
1944 	int i;
1945 
1946 	if (!pstate)
1947 		return 0;
1948 
1949 	/*
1950 	 * Normally the src_table will have the "required_opps" property set to
1951 	 * point to one of the OPPs in the dst_table, but in some cases the
1952 	 * genpd and its master have one to one mapping of performance states
1953 	 * and so none of them have the "required-opps" property set. Return the
1954 	 * pstate of the src_table as it is in such cases.
1955 	 */
1956 	if (!src_table->required_opp_count)
1957 		return pstate;
1958 
1959 	for (i = 0; i < src_table->required_opp_count; i++) {
1960 		if (src_table->required_opp_tables[i]->np == dst_table->np)
1961 			break;
1962 	}
1963 
1964 	if (unlikely(i == src_table->required_opp_count)) {
1965 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1966 		       __func__, src_table, dst_table);
1967 		return -EINVAL;
1968 	}
1969 
1970 	mutex_lock(&src_table->lock);
1971 
1972 	list_for_each_entry(opp, &src_table->opp_list, node) {
1973 		if (opp->pstate == pstate) {
1974 			dest_pstate = opp->required_opps[i]->pstate;
1975 			goto unlock;
1976 		}
1977 	}
1978 
1979 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1980 	       dst_table);
1981 
1982 unlock:
1983 	mutex_unlock(&src_table->lock);
1984 
1985 	return dest_pstate;
1986 }
1987 
1988 /**
1989  * dev_pm_opp_add()  - Add an OPP table from a table definitions
1990  * @dev:	device for which we do this operation
1991  * @freq:	Frequency in Hz for this OPP
1992  * @u_volt:	Voltage in uVolts for this OPP
1993  *
1994  * This function adds an opp definition to the opp table and returns status.
1995  * The opp is made available by default and it can be controlled using
1996  * dev_pm_opp_enable/disable functions.
1997  *
1998  * Return:
1999  * 0		On success OR
2000  *		Duplicate OPPs (both freq and volt are same) and opp->available
2001  * -EEXIST	Freq are same and volt are different OR
2002  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2003  * -ENOMEM	Memory allocation failure
2004  */
2005 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2006 {
2007 	struct opp_table *opp_table;
2008 	int ret;
2009 
2010 	opp_table = dev_pm_opp_get_opp_table(dev);
2011 	if (!opp_table)
2012 		return -ENOMEM;
2013 
2014 	/* Fix regulator count for dynamic OPPs */
2015 	opp_table->regulator_count = 1;
2016 
2017 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2018 	if (ret)
2019 		dev_pm_opp_put_opp_table(opp_table);
2020 
2021 	return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2024 
2025 /**
2026  * _opp_set_availability() - helper to set the availability of an opp
2027  * @dev:		device for which we do this operation
2028  * @freq:		OPP frequency to modify availability
2029  * @availability_req:	availability status requested for this opp
2030  *
2031  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2032  * which is isolated here.
2033  *
2034  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2035  * copy operation, returns 0 if no modification was done OR modification was
2036  * successful.
2037  */
2038 static int _opp_set_availability(struct device *dev, unsigned long freq,
2039 				 bool availability_req)
2040 {
2041 	struct opp_table *opp_table;
2042 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2043 	int r = 0;
2044 
2045 	/* Find the opp_table */
2046 	opp_table = _find_opp_table(dev);
2047 	if (IS_ERR(opp_table)) {
2048 		r = PTR_ERR(opp_table);
2049 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2050 		return r;
2051 	}
2052 
2053 	mutex_lock(&opp_table->lock);
2054 
2055 	/* Do we have the frequency? */
2056 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2057 		if (tmp_opp->rate == freq) {
2058 			opp = tmp_opp;
2059 			break;
2060 		}
2061 	}
2062 
2063 	if (IS_ERR(opp)) {
2064 		r = PTR_ERR(opp);
2065 		goto unlock;
2066 	}
2067 
2068 	/* Is update really needed? */
2069 	if (opp->available == availability_req)
2070 		goto unlock;
2071 
2072 	opp->available = availability_req;
2073 
2074 	dev_pm_opp_get(opp);
2075 	mutex_unlock(&opp_table->lock);
2076 
2077 	/* Notify the change of the OPP availability */
2078 	if (availability_req)
2079 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2080 					     opp);
2081 	else
2082 		blocking_notifier_call_chain(&opp_table->head,
2083 					     OPP_EVENT_DISABLE, opp);
2084 
2085 	dev_pm_opp_put(opp);
2086 	goto put_table;
2087 
2088 unlock:
2089 	mutex_unlock(&opp_table->lock);
2090 put_table:
2091 	dev_pm_opp_put_opp_table(opp_table);
2092 	return r;
2093 }
2094 
2095 /**
2096  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2097  * @dev:		device for which we do this operation
2098  * @freq:		OPP frequency to adjust voltage of
2099  * @u_volt:		new OPP target voltage
2100  * @u_volt_min:		new OPP min voltage
2101  * @u_volt_max:		new OPP max voltage
2102  *
2103  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2104  * copy operation, returns 0 if no modifcation was done OR modification was
2105  * successful.
2106  */
2107 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2108 			      unsigned long u_volt, unsigned long u_volt_min,
2109 			      unsigned long u_volt_max)
2110 
2111 {
2112 	struct opp_table *opp_table;
2113 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2114 	int r = 0;
2115 
2116 	/* Find the opp_table */
2117 	opp_table = _find_opp_table(dev);
2118 	if (IS_ERR(opp_table)) {
2119 		r = PTR_ERR(opp_table);
2120 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2121 		return r;
2122 	}
2123 
2124 	mutex_lock(&opp_table->lock);
2125 
2126 	/* Do we have the frequency? */
2127 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2128 		if (tmp_opp->rate == freq) {
2129 			opp = tmp_opp;
2130 			break;
2131 		}
2132 	}
2133 
2134 	if (IS_ERR(opp)) {
2135 		r = PTR_ERR(opp);
2136 		goto adjust_unlock;
2137 	}
2138 
2139 	/* Is update really needed? */
2140 	if (opp->supplies->u_volt == u_volt)
2141 		goto adjust_unlock;
2142 
2143 	opp->supplies->u_volt = u_volt;
2144 	opp->supplies->u_volt_min = u_volt_min;
2145 	opp->supplies->u_volt_max = u_volt_max;
2146 
2147 	dev_pm_opp_get(opp);
2148 	mutex_unlock(&opp_table->lock);
2149 
2150 	/* Notify the voltage change of the OPP */
2151 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2152 				     opp);
2153 
2154 	dev_pm_opp_put(opp);
2155 	goto adjust_put_table;
2156 
2157 adjust_unlock:
2158 	mutex_unlock(&opp_table->lock);
2159 adjust_put_table:
2160 	dev_pm_opp_put_opp_table(opp_table);
2161 	return r;
2162 }
2163 
2164 /**
2165  * dev_pm_opp_enable() - Enable a specific OPP
2166  * @dev:	device for which we do this operation
2167  * @freq:	OPP frequency to enable
2168  *
2169  * Enables a provided opp. If the operation is valid, this returns 0, else the
2170  * corresponding error value. It is meant to be used for users an OPP available
2171  * after being temporarily made unavailable with dev_pm_opp_disable.
2172  *
2173  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2174  * copy operation, returns 0 if no modification was done OR modification was
2175  * successful.
2176  */
2177 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2178 {
2179 	return _opp_set_availability(dev, freq, true);
2180 }
2181 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2182 
2183 /**
2184  * dev_pm_opp_disable() - Disable a specific OPP
2185  * @dev:	device for which we do this operation
2186  * @freq:	OPP frequency to disable
2187  *
2188  * Disables a provided opp. If the operation is valid, this returns
2189  * 0, else the corresponding error value. It is meant to be a temporary
2190  * control by users to make this OPP not available until the circumstances are
2191  * right to make it available again (with a call to dev_pm_opp_enable).
2192  *
2193  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2194  * copy operation, returns 0 if no modification was done OR modification was
2195  * successful.
2196  */
2197 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2198 {
2199 	return _opp_set_availability(dev, freq, false);
2200 }
2201 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2202 
2203 /**
2204  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2205  * @dev:	Device for which notifier needs to be registered
2206  * @nb:		Notifier block to be registered
2207  *
2208  * Return: 0 on success or a negative error value.
2209  */
2210 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2211 {
2212 	struct opp_table *opp_table;
2213 	int ret;
2214 
2215 	opp_table = _find_opp_table(dev);
2216 	if (IS_ERR(opp_table))
2217 		return PTR_ERR(opp_table);
2218 
2219 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2220 
2221 	dev_pm_opp_put_opp_table(opp_table);
2222 
2223 	return ret;
2224 }
2225 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2226 
2227 /**
2228  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2229  * @dev:	Device for which notifier needs to be unregistered
2230  * @nb:		Notifier block to be unregistered
2231  *
2232  * Return: 0 on success or a negative error value.
2233  */
2234 int dev_pm_opp_unregister_notifier(struct device *dev,
2235 				   struct notifier_block *nb)
2236 {
2237 	struct opp_table *opp_table;
2238 	int ret;
2239 
2240 	opp_table = _find_opp_table(dev);
2241 	if (IS_ERR(opp_table))
2242 		return PTR_ERR(opp_table);
2243 
2244 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2245 
2246 	dev_pm_opp_put_opp_table(opp_table);
2247 
2248 	return ret;
2249 }
2250 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2251 
2252 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2253 {
2254 	struct opp_table *opp_table;
2255 
2256 	/* Check for existing table for 'dev' */
2257 	opp_table = _find_opp_table(dev);
2258 	if (IS_ERR(opp_table)) {
2259 		int error = PTR_ERR(opp_table);
2260 
2261 		if (error != -ENODEV)
2262 			WARN(1, "%s: opp_table: %d\n",
2263 			     IS_ERR_OR_NULL(dev) ?
2264 					"Invalid device" : dev_name(dev),
2265 			     error);
2266 		return;
2267 	}
2268 
2269 	_opp_remove_all_static(opp_table);
2270 
2271 	/* Drop reference taken by _find_opp_table() */
2272 	dev_pm_opp_put_opp_table(opp_table);
2273 
2274 	/* Drop reference taken while the OPP table was added */
2275 	dev_pm_opp_put_opp_table(opp_table);
2276 }
2277 
2278 /**
2279  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2280  * @dev:	device pointer used to lookup OPP table.
2281  *
2282  * Free both OPPs created using static entries present in DT and the
2283  * dynamically added entries.
2284  */
2285 void dev_pm_opp_remove_table(struct device *dev)
2286 {
2287 	_dev_pm_opp_find_and_remove_table(dev);
2288 }
2289 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2290