1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp) || !opp->available) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 405 unsigned long *freq) 406 { 407 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 408 409 mutex_lock(&opp_table->lock); 410 411 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 412 if (temp_opp->available && temp_opp->rate >= *freq) { 413 opp = temp_opp; 414 *freq = opp->rate; 415 416 /* Increment the reference count of OPP */ 417 dev_pm_opp_get(opp); 418 break; 419 } 420 } 421 422 mutex_unlock(&opp_table->lock); 423 424 return opp; 425 } 426 427 /** 428 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 429 * @dev: device for which we do this operation 430 * @freq: Start frequency 431 * 432 * Search for the matching ceil *available* OPP from a starting freq 433 * for a device. 434 * 435 * Return: matching *opp and refreshes *freq accordingly, else returns 436 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 437 * values can be: 438 * EINVAL: for bad pointer 439 * ERANGE: no match found for search 440 * ENODEV: if device not found in list of registered devices 441 * 442 * The callers are required to call dev_pm_opp_put() for the returned OPP after 443 * use. 444 */ 445 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 446 unsigned long *freq) 447 { 448 struct opp_table *opp_table; 449 struct dev_pm_opp *opp; 450 451 if (!dev || !freq) { 452 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 453 return ERR_PTR(-EINVAL); 454 } 455 456 opp_table = _find_opp_table(dev); 457 if (IS_ERR(opp_table)) 458 return ERR_CAST(opp_table); 459 460 opp = _find_freq_ceil(opp_table, freq); 461 462 dev_pm_opp_put_opp_table(opp_table); 463 464 return opp; 465 } 466 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 467 468 /** 469 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 470 * @dev: device for which we do this operation 471 * @freq: Start frequency 472 * 473 * Search for the matching floor *available* OPP from a starting freq 474 * for a device. 475 * 476 * Return: matching *opp and refreshes *freq accordingly, else returns 477 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 478 * values can be: 479 * EINVAL: for bad pointer 480 * ERANGE: no match found for search 481 * ENODEV: if device not found in list of registered devices 482 * 483 * The callers are required to call dev_pm_opp_put() for the returned OPP after 484 * use. 485 */ 486 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 487 unsigned long *freq) 488 { 489 struct opp_table *opp_table; 490 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 491 492 if (!dev || !freq) { 493 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 494 return ERR_PTR(-EINVAL); 495 } 496 497 opp_table = _find_opp_table(dev); 498 if (IS_ERR(opp_table)) 499 return ERR_CAST(opp_table); 500 501 mutex_lock(&opp_table->lock); 502 503 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 504 if (temp_opp->available) { 505 /* go to the next node, before choosing prev */ 506 if (temp_opp->rate > *freq) 507 break; 508 else 509 opp = temp_opp; 510 } 511 } 512 513 /* Increment the reference count of OPP */ 514 if (!IS_ERR(opp)) 515 dev_pm_opp_get(opp); 516 mutex_unlock(&opp_table->lock); 517 dev_pm_opp_put_opp_table(opp_table); 518 519 if (!IS_ERR(opp)) 520 *freq = opp->rate; 521 522 return opp; 523 } 524 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 525 526 /** 527 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 528 * target voltage. 529 * @dev: Device for which we do this operation. 530 * @u_volt: Target voltage. 531 * 532 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 533 * 534 * Return: matching *opp, else returns ERR_PTR in case of error which should be 535 * handled using IS_ERR. 536 * 537 * Error return values can be: 538 * EINVAL: bad parameters 539 * 540 * The callers are required to call dev_pm_opp_put() for the returned OPP after 541 * use. 542 */ 543 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 544 unsigned long u_volt) 545 { 546 struct opp_table *opp_table; 547 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 548 549 if (!dev || !u_volt) { 550 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 551 u_volt); 552 return ERR_PTR(-EINVAL); 553 } 554 555 opp_table = _find_opp_table(dev); 556 if (IS_ERR(opp_table)) 557 return ERR_CAST(opp_table); 558 559 mutex_lock(&opp_table->lock); 560 561 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 562 if (temp_opp->available) { 563 if (temp_opp->supplies[0].u_volt > u_volt) 564 break; 565 opp = temp_opp; 566 } 567 } 568 569 /* Increment the reference count of OPP */ 570 if (!IS_ERR(opp)) 571 dev_pm_opp_get(opp); 572 573 mutex_unlock(&opp_table->lock); 574 dev_pm_opp_put_opp_table(opp_table); 575 576 return opp; 577 } 578 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 579 580 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 581 struct dev_pm_opp_supply *supply) 582 { 583 int ret; 584 585 /* Regulator not available for device */ 586 if (IS_ERR(reg)) { 587 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 588 PTR_ERR(reg)); 589 return 0; 590 } 591 592 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 593 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 594 595 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 596 supply->u_volt, supply->u_volt_max); 597 if (ret) 598 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 599 __func__, supply->u_volt_min, supply->u_volt, 600 supply->u_volt_max, ret); 601 602 return ret; 603 } 604 605 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 606 unsigned long freq) 607 { 608 int ret; 609 610 ret = clk_set_rate(clk, freq); 611 if (ret) { 612 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 613 ret); 614 } 615 616 return ret; 617 } 618 619 static int _generic_set_opp_regulator(const struct opp_table *opp_table, 620 struct device *dev, 621 unsigned long old_freq, 622 unsigned long freq, 623 struct dev_pm_opp_supply *old_supply, 624 struct dev_pm_opp_supply *new_supply) 625 { 626 struct regulator *reg = opp_table->regulators[0]; 627 int ret; 628 629 /* This function only supports single regulator per device */ 630 if (WARN_ON(opp_table->regulator_count > 1)) { 631 dev_err(dev, "multiple regulators are not supported\n"); 632 return -EINVAL; 633 } 634 635 /* Scaling up? Scale voltage before frequency */ 636 if (freq >= old_freq) { 637 ret = _set_opp_voltage(dev, reg, new_supply); 638 if (ret) 639 goto restore_voltage; 640 } 641 642 /* Change frequency */ 643 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 644 if (ret) 645 goto restore_voltage; 646 647 /* Scaling down? Scale voltage after frequency */ 648 if (freq < old_freq) { 649 ret = _set_opp_voltage(dev, reg, new_supply); 650 if (ret) 651 goto restore_freq; 652 } 653 654 return 0; 655 656 restore_freq: 657 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 658 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 659 __func__, old_freq); 660 restore_voltage: 661 /* This shouldn't harm even if the voltages weren't updated earlier */ 662 if (old_supply) 663 _set_opp_voltage(dev, reg, old_supply); 664 665 return ret; 666 } 667 668 static int _set_opp_custom(const struct opp_table *opp_table, 669 struct device *dev, unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct dev_pm_set_opp_data *data; 675 int size; 676 677 data = opp_table->set_opp_data; 678 data->regulators = opp_table->regulators; 679 data->regulator_count = opp_table->regulator_count; 680 data->clk = opp_table->clk; 681 data->dev = dev; 682 683 data->old_opp.rate = old_freq; 684 size = sizeof(*old_supply) * opp_table->regulator_count; 685 if (!old_supply) 686 memset(data->old_opp.supplies, 0, size); 687 else 688 memcpy(data->old_opp.supplies, old_supply, size); 689 690 data->new_opp.rate = freq; 691 memcpy(data->new_opp.supplies, new_supply, size); 692 693 return opp_table->set_opp(data); 694 } 695 696 /* This is only called for PM domain for now */ 697 static int _set_required_opps(struct device *dev, 698 struct opp_table *opp_table, 699 struct dev_pm_opp *opp) 700 { 701 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 702 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 703 unsigned int pstate; 704 int i, ret = 0; 705 706 if (!required_opp_tables) 707 return 0; 708 709 /* Single genpd case */ 710 if (!genpd_virt_devs) { 711 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0; 712 ret = dev_pm_genpd_set_performance_state(dev, pstate); 713 if (ret) { 714 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 715 dev_name(dev), pstate, ret); 716 } 717 return ret; 718 } 719 720 /* Multiple genpd case */ 721 722 /* 723 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 724 * after it is freed from another thread. 725 */ 726 mutex_lock(&opp_table->genpd_virt_dev_lock); 727 728 for (i = 0; i < opp_table->required_opp_count; i++) { 729 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 730 731 if (!genpd_virt_devs[i]) 732 continue; 733 734 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 735 if (ret) { 736 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 737 dev_name(genpd_virt_devs[i]), pstate, ret); 738 break; 739 } 740 } 741 mutex_unlock(&opp_table->genpd_virt_dev_lock); 742 743 return ret; 744 } 745 746 /** 747 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 748 * @dev: device for which we do this operation 749 * @target_freq: frequency to achieve 750 * 751 * This configures the power-supplies to the levels specified by the OPP 752 * corresponding to the target_freq, and programs the clock to a value <= 753 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 754 * provided by the opp, should have already rounded to the target OPP's 755 * frequency. 756 */ 757 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 758 { 759 struct opp_table *opp_table; 760 unsigned long freq, old_freq, temp_freq; 761 struct dev_pm_opp *old_opp, *opp; 762 struct clk *clk; 763 int ret; 764 765 opp_table = _find_opp_table(dev); 766 if (IS_ERR(opp_table)) { 767 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 768 return PTR_ERR(opp_table); 769 } 770 771 if (unlikely(!target_freq)) { 772 if (opp_table->required_opp_tables) { 773 ret = _set_required_opps(dev, opp_table, NULL); 774 } else { 775 dev_err(dev, "target frequency can't be 0\n"); 776 ret = -EINVAL; 777 } 778 779 goto put_opp_table; 780 } 781 782 clk = opp_table->clk; 783 if (IS_ERR(clk)) { 784 dev_err(dev, "%s: No clock available for the device\n", 785 __func__); 786 ret = PTR_ERR(clk); 787 goto put_opp_table; 788 } 789 790 freq = clk_round_rate(clk, target_freq); 791 if ((long)freq <= 0) 792 freq = target_freq; 793 794 old_freq = clk_get_rate(clk); 795 796 /* Return early if nothing to do */ 797 if (old_freq == freq) { 798 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 799 __func__, freq); 800 ret = 0; 801 goto put_opp_table; 802 } 803 804 temp_freq = old_freq; 805 old_opp = _find_freq_ceil(opp_table, &temp_freq); 806 if (IS_ERR(old_opp)) { 807 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 808 __func__, old_freq, PTR_ERR(old_opp)); 809 } 810 811 temp_freq = freq; 812 opp = _find_freq_ceil(opp_table, &temp_freq); 813 if (IS_ERR(opp)) { 814 ret = PTR_ERR(opp); 815 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 816 __func__, freq, ret); 817 goto put_old_opp; 818 } 819 820 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 821 old_freq, freq); 822 823 /* Scaling up? Configure required OPPs before frequency */ 824 if (freq >= old_freq) { 825 ret = _set_required_opps(dev, opp_table, opp); 826 if (ret) 827 goto put_opp; 828 } 829 830 if (opp_table->set_opp) { 831 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 832 IS_ERR(old_opp) ? NULL : old_opp->supplies, 833 opp->supplies); 834 } else if (opp_table->regulators) { 835 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 836 IS_ERR(old_opp) ? NULL : old_opp->supplies, 837 opp->supplies); 838 } else { 839 /* Only frequency scaling */ 840 ret = _generic_set_opp_clk_only(dev, clk, freq); 841 } 842 843 /* Scaling down? Configure required OPPs after frequency */ 844 if (!ret && freq < old_freq) { 845 ret = _set_required_opps(dev, opp_table, opp); 846 if (ret) 847 dev_err(dev, "Failed to set required opps: %d\n", ret); 848 } 849 850 put_opp: 851 dev_pm_opp_put(opp); 852 put_old_opp: 853 if (!IS_ERR(old_opp)) 854 dev_pm_opp_put(old_opp); 855 put_opp_table: 856 dev_pm_opp_put_opp_table(opp_table); 857 return ret; 858 } 859 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 860 861 /* OPP-dev Helpers */ 862 static void _remove_opp_dev(struct opp_device *opp_dev, 863 struct opp_table *opp_table) 864 { 865 opp_debug_unregister(opp_dev, opp_table); 866 list_del(&opp_dev->node); 867 kfree(opp_dev); 868 } 869 870 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 871 struct opp_table *opp_table) 872 { 873 struct opp_device *opp_dev; 874 875 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 876 if (!opp_dev) 877 return NULL; 878 879 /* Initialize opp-dev */ 880 opp_dev->dev = dev; 881 882 list_add(&opp_dev->node, &opp_table->dev_list); 883 884 /* Create debugfs entries for the opp_table */ 885 opp_debug_register(opp_dev, opp_table); 886 887 return opp_dev; 888 } 889 890 struct opp_device *_add_opp_dev(const struct device *dev, 891 struct opp_table *opp_table) 892 { 893 struct opp_device *opp_dev; 894 895 mutex_lock(&opp_table->lock); 896 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 897 mutex_unlock(&opp_table->lock); 898 899 return opp_dev; 900 } 901 902 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 903 { 904 struct opp_table *opp_table; 905 struct opp_device *opp_dev; 906 int ret; 907 908 /* 909 * Allocate a new OPP table. In the infrequent case where a new 910 * device is needed to be added, we pay this penalty. 911 */ 912 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 913 if (!opp_table) 914 return NULL; 915 916 mutex_init(&opp_table->lock); 917 mutex_init(&opp_table->genpd_virt_dev_lock); 918 INIT_LIST_HEAD(&opp_table->dev_list); 919 920 /* Mark regulator count uninitialized */ 921 opp_table->regulator_count = -1; 922 923 opp_dev = _add_opp_dev(dev, opp_table); 924 if (!opp_dev) { 925 kfree(opp_table); 926 return NULL; 927 } 928 929 _of_init_opp_table(opp_table, dev, index); 930 931 /* Find clk for the device */ 932 opp_table->clk = clk_get(dev, NULL); 933 if (IS_ERR(opp_table->clk)) { 934 ret = PTR_ERR(opp_table->clk); 935 if (ret != -EPROBE_DEFER) 936 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 937 ret); 938 } 939 940 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 941 INIT_LIST_HEAD(&opp_table->opp_list); 942 kref_init(&opp_table->kref); 943 944 /* Secure the device table modification */ 945 list_add(&opp_table->node, &opp_tables); 946 return opp_table; 947 } 948 949 void _get_opp_table_kref(struct opp_table *opp_table) 950 { 951 kref_get(&opp_table->kref); 952 } 953 954 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 955 { 956 struct opp_table *opp_table; 957 958 /* Hold our table modification lock here */ 959 mutex_lock(&opp_table_lock); 960 961 opp_table = _find_opp_table_unlocked(dev); 962 if (!IS_ERR(opp_table)) 963 goto unlock; 964 965 opp_table = _managed_opp(dev, index); 966 if (opp_table) { 967 if (!_add_opp_dev_unlocked(dev, opp_table)) { 968 dev_pm_opp_put_opp_table(opp_table); 969 opp_table = NULL; 970 } 971 goto unlock; 972 } 973 974 opp_table = _allocate_opp_table(dev, index); 975 976 unlock: 977 mutex_unlock(&opp_table_lock); 978 979 return opp_table; 980 } 981 982 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 983 { 984 return _opp_get_opp_table(dev, 0); 985 } 986 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 987 988 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 989 int index) 990 { 991 return _opp_get_opp_table(dev, index); 992 } 993 994 static void _opp_table_kref_release(struct kref *kref) 995 { 996 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 997 struct opp_device *opp_dev, *temp; 998 999 _of_clear_opp_table(opp_table); 1000 1001 /* Release clk */ 1002 if (!IS_ERR(opp_table->clk)) 1003 clk_put(opp_table->clk); 1004 1005 WARN_ON(!list_empty(&opp_table->opp_list)); 1006 1007 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1008 /* 1009 * The OPP table is getting removed, drop the performance state 1010 * constraints. 1011 */ 1012 if (opp_table->genpd_performance_state) 1013 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1014 1015 _remove_opp_dev(opp_dev, opp_table); 1016 } 1017 1018 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1019 mutex_destroy(&opp_table->lock); 1020 list_del(&opp_table->node); 1021 kfree(opp_table); 1022 1023 mutex_unlock(&opp_table_lock); 1024 } 1025 1026 void _opp_remove_all_static(struct opp_table *opp_table) 1027 { 1028 struct dev_pm_opp *opp, *tmp; 1029 1030 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1031 if (!opp->dynamic) 1032 dev_pm_opp_put(opp); 1033 } 1034 1035 opp_table->parsed_static_opps = false; 1036 } 1037 1038 static void _opp_table_list_kref_release(struct kref *kref) 1039 { 1040 struct opp_table *opp_table = container_of(kref, struct opp_table, 1041 list_kref); 1042 1043 _opp_remove_all_static(opp_table); 1044 mutex_unlock(&opp_table_lock); 1045 } 1046 1047 void _put_opp_list_kref(struct opp_table *opp_table) 1048 { 1049 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release, 1050 &opp_table_lock); 1051 } 1052 1053 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1054 { 1055 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1056 &opp_table_lock); 1057 } 1058 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1059 1060 void _opp_free(struct dev_pm_opp *opp) 1061 { 1062 kfree(opp); 1063 } 1064 1065 static void _opp_kref_release(struct dev_pm_opp *opp, 1066 struct opp_table *opp_table) 1067 { 1068 /* 1069 * Notify the changes in the availability of the operable 1070 * frequency/voltage list. 1071 */ 1072 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1073 _of_opp_free_required_opps(opp_table, opp); 1074 opp_debug_remove_one(opp); 1075 list_del(&opp->node); 1076 kfree(opp); 1077 } 1078 1079 static void _opp_kref_release_unlocked(struct kref *kref) 1080 { 1081 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1082 struct opp_table *opp_table = opp->opp_table; 1083 1084 _opp_kref_release(opp, opp_table); 1085 } 1086 1087 static void _opp_kref_release_locked(struct kref *kref) 1088 { 1089 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1090 struct opp_table *opp_table = opp->opp_table; 1091 1092 _opp_kref_release(opp, opp_table); 1093 mutex_unlock(&opp_table->lock); 1094 } 1095 1096 void dev_pm_opp_get(struct dev_pm_opp *opp) 1097 { 1098 kref_get(&opp->kref); 1099 } 1100 1101 void dev_pm_opp_put(struct dev_pm_opp *opp) 1102 { 1103 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1104 &opp->opp_table->lock); 1105 } 1106 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1107 1108 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1109 { 1110 kref_put(&opp->kref, _opp_kref_release_unlocked); 1111 } 1112 1113 /** 1114 * dev_pm_opp_remove() - Remove an OPP from OPP table 1115 * @dev: device for which we do this operation 1116 * @freq: OPP to remove with matching 'freq' 1117 * 1118 * This function removes an opp from the opp table. 1119 */ 1120 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1121 { 1122 struct dev_pm_opp *opp; 1123 struct opp_table *opp_table; 1124 bool found = false; 1125 1126 opp_table = _find_opp_table(dev); 1127 if (IS_ERR(opp_table)) 1128 return; 1129 1130 mutex_lock(&opp_table->lock); 1131 1132 list_for_each_entry(opp, &opp_table->opp_list, node) { 1133 if (opp->rate == freq) { 1134 found = true; 1135 break; 1136 } 1137 } 1138 1139 mutex_unlock(&opp_table->lock); 1140 1141 if (found) { 1142 dev_pm_opp_put(opp); 1143 1144 /* Drop the reference taken by dev_pm_opp_add() */ 1145 dev_pm_opp_put_opp_table(opp_table); 1146 } else { 1147 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1148 __func__, freq); 1149 } 1150 1151 /* Drop the reference taken by _find_opp_table() */ 1152 dev_pm_opp_put_opp_table(opp_table); 1153 } 1154 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1155 1156 /** 1157 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1158 * @dev: device for which we do this operation 1159 * 1160 * This function removes all dynamically created OPPs from the opp table. 1161 */ 1162 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1163 { 1164 struct opp_table *opp_table; 1165 struct dev_pm_opp *opp, *temp; 1166 int count = 0; 1167 1168 opp_table = _find_opp_table(dev); 1169 if (IS_ERR(opp_table)) 1170 return; 1171 1172 mutex_lock(&opp_table->lock); 1173 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1174 if (opp->dynamic) { 1175 dev_pm_opp_put_unlocked(opp); 1176 count++; 1177 } 1178 } 1179 mutex_unlock(&opp_table->lock); 1180 1181 /* Drop the references taken by dev_pm_opp_add() */ 1182 while (count--) 1183 dev_pm_opp_put_opp_table(opp_table); 1184 1185 /* Drop the reference taken by _find_opp_table() */ 1186 dev_pm_opp_put_opp_table(opp_table); 1187 } 1188 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1189 1190 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1191 { 1192 struct dev_pm_opp *opp; 1193 int count, supply_size; 1194 1195 /* Allocate space for at least one supply */ 1196 count = table->regulator_count > 0 ? table->regulator_count : 1; 1197 supply_size = sizeof(*opp->supplies) * count; 1198 1199 /* allocate new OPP node and supplies structures */ 1200 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); 1201 if (!opp) 1202 return NULL; 1203 1204 /* Put the supplies at the end of the OPP structure as an empty array */ 1205 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1206 INIT_LIST_HEAD(&opp->node); 1207 1208 return opp; 1209 } 1210 1211 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1212 struct opp_table *opp_table) 1213 { 1214 struct regulator *reg; 1215 int i; 1216 1217 if (!opp_table->regulators) 1218 return true; 1219 1220 for (i = 0; i < opp_table->regulator_count; i++) { 1221 reg = opp_table->regulators[i]; 1222 1223 if (!regulator_is_supported_voltage(reg, 1224 opp->supplies[i].u_volt_min, 1225 opp->supplies[i].u_volt_max)) { 1226 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1227 __func__, opp->supplies[i].u_volt_min, 1228 opp->supplies[i].u_volt_max); 1229 return false; 1230 } 1231 } 1232 1233 return true; 1234 } 1235 1236 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1237 struct opp_table *opp_table, 1238 struct list_head **head) 1239 { 1240 struct dev_pm_opp *opp; 1241 1242 /* 1243 * Insert new OPP in order of increasing frequency and discard if 1244 * already present. 1245 * 1246 * Need to use &opp_table->opp_list in the condition part of the 'for' 1247 * loop, don't replace it with head otherwise it will become an infinite 1248 * loop. 1249 */ 1250 list_for_each_entry(opp, &opp_table->opp_list, node) { 1251 if (new_opp->rate > opp->rate) { 1252 *head = &opp->node; 1253 continue; 1254 } 1255 1256 if (new_opp->rate < opp->rate) 1257 return 0; 1258 1259 /* Duplicate OPPs */ 1260 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1261 __func__, opp->rate, opp->supplies[0].u_volt, 1262 opp->available, new_opp->rate, 1263 new_opp->supplies[0].u_volt, new_opp->available); 1264 1265 /* Should we compare voltages for all regulators here ? */ 1266 return opp->available && 1267 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1268 } 1269 1270 return 0; 1271 } 1272 1273 /* 1274 * Returns: 1275 * 0: On success. And appropriate error message for duplicate OPPs. 1276 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1277 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1278 * sure we don't print error messages unnecessarily if different parts of 1279 * kernel try to initialize the OPP table. 1280 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1281 * should be considered an error by the callers of _opp_add(). 1282 */ 1283 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1284 struct opp_table *opp_table, bool rate_not_available) 1285 { 1286 struct list_head *head; 1287 int ret; 1288 1289 mutex_lock(&opp_table->lock); 1290 head = &opp_table->opp_list; 1291 1292 if (likely(!rate_not_available)) { 1293 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1294 if (ret) { 1295 mutex_unlock(&opp_table->lock); 1296 return ret; 1297 } 1298 } 1299 1300 list_add(&new_opp->node, head); 1301 mutex_unlock(&opp_table->lock); 1302 1303 new_opp->opp_table = opp_table; 1304 kref_init(&new_opp->kref); 1305 1306 opp_debug_create_one(new_opp, opp_table); 1307 1308 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1309 new_opp->available = false; 1310 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1311 __func__, new_opp->rate); 1312 } 1313 1314 return 0; 1315 } 1316 1317 /** 1318 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1319 * @opp_table: OPP table 1320 * @dev: device for which we do this operation 1321 * @freq: Frequency in Hz for this OPP 1322 * @u_volt: Voltage in uVolts for this OPP 1323 * @dynamic: Dynamically added OPPs. 1324 * 1325 * This function adds an opp definition to the opp table and returns status. 1326 * The opp is made available by default and it can be controlled using 1327 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1328 * 1329 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1330 * and freed by dev_pm_opp_of_remove_table. 1331 * 1332 * Return: 1333 * 0 On success OR 1334 * Duplicate OPPs (both freq and volt are same) and opp->available 1335 * -EEXIST Freq are same and volt are different OR 1336 * Duplicate OPPs (both freq and volt are same) and !opp->available 1337 * -ENOMEM Memory allocation failure 1338 */ 1339 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1340 unsigned long freq, long u_volt, bool dynamic) 1341 { 1342 struct dev_pm_opp *new_opp; 1343 unsigned long tol; 1344 int ret; 1345 1346 new_opp = _opp_allocate(opp_table); 1347 if (!new_opp) 1348 return -ENOMEM; 1349 1350 /* populate the opp table */ 1351 new_opp->rate = freq; 1352 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1353 new_opp->supplies[0].u_volt = u_volt; 1354 new_opp->supplies[0].u_volt_min = u_volt - tol; 1355 new_opp->supplies[0].u_volt_max = u_volt + tol; 1356 new_opp->available = true; 1357 new_opp->dynamic = dynamic; 1358 1359 ret = _opp_add(dev, new_opp, opp_table, false); 1360 if (ret) { 1361 /* Don't return error for duplicate OPPs */ 1362 if (ret == -EBUSY) 1363 ret = 0; 1364 goto free_opp; 1365 } 1366 1367 /* 1368 * Notify the changes in the availability of the operable 1369 * frequency/voltage list. 1370 */ 1371 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1372 return 0; 1373 1374 free_opp: 1375 _opp_free(new_opp); 1376 1377 return ret; 1378 } 1379 1380 /** 1381 * dev_pm_opp_set_supported_hw() - Set supported platforms 1382 * @dev: Device for which supported-hw has to be set. 1383 * @versions: Array of hierarchy of versions to match. 1384 * @count: Number of elements in the array. 1385 * 1386 * This is required only for the V2 bindings, and it enables a platform to 1387 * specify the hierarchy of versions it supports. OPP layer will then enable 1388 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1389 * property. 1390 */ 1391 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1392 const u32 *versions, unsigned int count) 1393 { 1394 struct opp_table *opp_table; 1395 1396 opp_table = dev_pm_opp_get_opp_table(dev); 1397 if (!opp_table) 1398 return ERR_PTR(-ENOMEM); 1399 1400 /* Make sure there are no concurrent readers while updating opp_table */ 1401 WARN_ON(!list_empty(&opp_table->opp_list)); 1402 1403 /* Another CPU that shares the OPP table has set the property ? */ 1404 if (opp_table->supported_hw) 1405 return opp_table; 1406 1407 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1408 GFP_KERNEL); 1409 if (!opp_table->supported_hw) { 1410 dev_pm_opp_put_opp_table(opp_table); 1411 return ERR_PTR(-ENOMEM); 1412 } 1413 1414 opp_table->supported_hw_count = count; 1415 1416 return opp_table; 1417 } 1418 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1419 1420 /** 1421 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1422 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1423 * 1424 * This is required only for the V2 bindings, and is called for a matching 1425 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1426 * will not be freed. 1427 */ 1428 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1429 { 1430 /* Make sure there are no concurrent readers while updating opp_table */ 1431 WARN_ON(!list_empty(&opp_table->opp_list)); 1432 1433 kfree(opp_table->supported_hw); 1434 opp_table->supported_hw = NULL; 1435 opp_table->supported_hw_count = 0; 1436 1437 dev_pm_opp_put_opp_table(opp_table); 1438 } 1439 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1440 1441 /** 1442 * dev_pm_opp_set_prop_name() - Set prop-extn name 1443 * @dev: Device for which the prop-name has to be set. 1444 * @name: name to postfix to properties. 1445 * 1446 * This is required only for the V2 bindings, and it enables a platform to 1447 * specify the extn to be used for certain property names. The properties to 1448 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1449 * should postfix the property name with -<name> while looking for them. 1450 */ 1451 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1452 { 1453 struct opp_table *opp_table; 1454 1455 opp_table = dev_pm_opp_get_opp_table(dev); 1456 if (!opp_table) 1457 return ERR_PTR(-ENOMEM); 1458 1459 /* Make sure there are no concurrent readers while updating opp_table */ 1460 WARN_ON(!list_empty(&opp_table->opp_list)); 1461 1462 /* Another CPU that shares the OPP table has set the property ? */ 1463 if (opp_table->prop_name) 1464 return opp_table; 1465 1466 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1467 if (!opp_table->prop_name) { 1468 dev_pm_opp_put_opp_table(opp_table); 1469 return ERR_PTR(-ENOMEM); 1470 } 1471 1472 return opp_table; 1473 } 1474 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1475 1476 /** 1477 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1478 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1479 * 1480 * This is required only for the V2 bindings, and is called for a matching 1481 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1482 * will not be freed. 1483 */ 1484 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1485 { 1486 /* Make sure there are no concurrent readers while updating opp_table */ 1487 WARN_ON(!list_empty(&opp_table->opp_list)); 1488 1489 kfree(opp_table->prop_name); 1490 opp_table->prop_name = NULL; 1491 1492 dev_pm_opp_put_opp_table(opp_table); 1493 } 1494 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1495 1496 static int _allocate_set_opp_data(struct opp_table *opp_table) 1497 { 1498 struct dev_pm_set_opp_data *data; 1499 int len, count = opp_table->regulator_count; 1500 1501 if (WARN_ON(!opp_table->regulators)) 1502 return -EINVAL; 1503 1504 /* space for set_opp_data */ 1505 len = sizeof(*data); 1506 1507 /* space for old_opp.supplies and new_opp.supplies */ 1508 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1509 1510 data = kzalloc(len, GFP_KERNEL); 1511 if (!data) 1512 return -ENOMEM; 1513 1514 data->old_opp.supplies = (void *)(data + 1); 1515 data->new_opp.supplies = data->old_opp.supplies + count; 1516 1517 opp_table->set_opp_data = data; 1518 1519 return 0; 1520 } 1521 1522 static void _free_set_opp_data(struct opp_table *opp_table) 1523 { 1524 kfree(opp_table->set_opp_data); 1525 opp_table->set_opp_data = NULL; 1526 } 1527 1528 /** 1529 * dev_pm_opp_set_regulators() - Set regulator names for the device 1530 * @dev: Device for which regulator name is being set. 1531 * @names: Array of pointers to the names of the regulator. 1532 * @count: Number of regulators. 1533 * 1534 * In order to support OPP switching, OPP layer needs to know the name of the 1535 * device's regulators, as the core would be required to switch voltages as 1536 * well. 1537 * 1538 * This must be called before any OPPs are initialized for the device. 1539 */ 1540 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1541 const char * const names[], 1542 unsigned int count) 1543 { 1544 struct opp_table *opp_table; 1545 struct regulator *reg; 1546 int ret, i; 1547 1548 opp_table = dev_pm_opp_get_opp_table(dev); 1549 if (!opp_table) 1550 return ERR_PTR(-ENOMEM); 1551 1552 /* This should be called before OPPs are initialized */ 1553 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1554 ret = -EBUSY; 1555 goto err; 1556 } 1557 1558 /* Another CPU that shares the OPP table has set the regulators ? */ 1559 if (opp_table->regulators) 1560 return opp_table; 1561 1562 opp_table->regulators = kmalloc_array(count, 1563 sizeof(*opp_table->regulators), 1564 GFP_KERNEL); 1565 if (!opp_table->regulators) { 1566 ret = -ENOMEM; 1567 goto err; 1568 } 1569 1570 for (i = 0; i < count; i++) { 1571 reg = regulator_get_optional(dev, names[i]); 1572 if (IS_ERR(reg)) { 1573 ret = PTR_ERR(reg); 1574 if (ret != -EPROBE_DEFER) 1575 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1576 __func__, names[i], ret); 1577 goto free_regulators; 1578 } 1579 1580 opp_table->regulators[i] = reg; 1581 } 1582 1583 opp_table->regulator_count = count; 1584 1585 /* Allocate block only once to pass to set_opp() routines */ 1586 ret = _allocate_set_opp_data(opp_table); 1587 if (ret) 1588 goto free_regulators; 1589 1590 return opp_table; 1591 1592 free_regulators: 1593 while (i != 0) 1594 regulator_put(opp_table->regulators[--i]); 1595 1596 kfree(opp_table->regulators); 1597 opp_table->regulators = NULL; 1598 opp_table->regulator_count = -1; 1599 err: 1600 dev_pm_opp_put_opp_table(opp_table); 1601 1602 return ERR_PTR(ret); 1603 } 1604 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1605 1606 /** 1607 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1608 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1609 */ 1610 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1611 { 1612 int i; 1613 1614 if (!opp_table->regulators) 1615 goto put_opp_table; 1616 1617 /* Make sure there are no concurrent readers while updating opp_table */ 1618 WARN_ON(!list_empty(&opp_table->opp_list)); 1619 1620 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1621 regulator_put(opp_table->regulators[i]); 1622 1623 _free_set_opp_data(opp_table); 1624 1625 kfree(opp_table->regulators); 1626 opp_table->regulators = NULL; 1627 opp_table->regulator_count = -1; 1628 1629 put_opp_table: 1630 dev_pm_opp_put_opp_table(opp_table); 1631 } 1632 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1633 1634 /** 1635 * dev_pm_opp_set_clkname() - Set clk name for the device 1636 * @dev: Device for which clk name is being set. 1637 * @name: Clk name. 1638 * 1639 * In order to support OPP switching, OPP layer needs to get pointer to the 1640 * clock for the device. Simple cases work fine without using this routine (i.e. 1641 * by passing connection-id as NULL), but for a device with multiple clocks 1642 * available, the OPP core needs to know the exact name of the clk to use. 1643 * 1644 * This must be called before any OPPs are initialized for the device. 1645 */ 1646 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1647 { 1648 struct opp_table *opp_table; 1649 int ret; 1650 1651 opp_table = dev_pm_opp_get_opp_table(dev); 1652 if (!opp_table) 1653 return ERR_PTR(-ENOMEM); 1654 1655 /* This should be called before OPPs are initialized */ 1656 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1657 ret = -EBUSY; 1658 goto err; 1659 } 1660 1661 /* Already have default clk set, free it */ 1662 if (!IS_ERR(opp_table->clk)) 1663 clk_put(opp_table->clk); 1664 1665 /* Find clk for the device */ 1666 opp_table->clk = clk_get(dev, name); 1667 if (IS_ERR(opp_table->clk)) { 1668 ret = PTR_ERR(opp_table->clk); 1669 if (ret != -EPROBE_DEFER) { 1670 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1671 ret); 1672 } 1673 goto err; 1674 } 1675 1676 return opp_table; 1677 1678 err: 1679 dev_pm_opp_put_opp_table(opp_table); 1680 1681 return ERR_PTR(ret); 1682 } 1683 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1684 1685 /** 1686 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1687 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1688 */ 1689 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1690 { 1691 /* Make sure there are no concurrent readers while updating opp_table */ 1692 WARN_ON(!list_empty(&opp_table->opp_list)); 1693 1694 clk_put(opp_table->clk); 1695 opp_table->clk = ERR_PTR(-EINVAL); 1696 1697 dev_pm_opp_put_opp_table(opp_table); 1698 } 1699 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1700 1701 /** 1702 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1703 * @dev: Device for which the helper is getting registered. 1704 * @set_opp: Custom set OPP helper. 1705 * 1706 * This is useful to support complex platforms (like platforms with multiple 1707 * regulators per device), instead of the generic OPP set rate helper. 1708 * 1709 * This must be called before any OPPs are initialized for the device. 1710 */ 1711 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1712 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1713 { 1714 struct opp_table *opp_table; 1715 1716 if (!set_opp) 1717 return ERR_PTR(-EINVAL); 1718 1719 opp_table = dev_pm_opp_get_opp_table(dev); 1720 if (!opp_table) 1721 return ERR_PTR(-ENOMEM); 1722 1723 /* This should be called before OPPs are initialized */ 1724 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1725 dev_pm_opp_put_opp_table(opp_table); 1726 return ERR_PTR(-EBUSY); 1727 } 1728 1729 /* Another CPU that shares the OPP table has set the helper ? */ 1730 if (!opp_table->set_opp) 1731 opp_table->set_opp = set_opp; 1732 1733 return opp_table; 1734 } 1735 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1736 1737 /** 1738 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1739 * set_opp helper 1740 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1741 * 1742 * Release resources blocked for platform specific set_opp helper. 1743 */ 1744 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1745 { 1746 /* Make sure there are no concurrent readers while updating opp_table */ 1747 WARN_ON(!list_empty(&opp_table->opp_list)); 1748 1749 opp_table->set_opp = NULL; 1750 dev_pm_opp_put_opp_table(opp_table); 1751 } 1752 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1753 1754 static void _opp_detach_genpd(struct opp_table *opp_table) 1755 { 1756 int index; 1757 1758 for (index = 0; index < opp_table->required_opp_count; index++) { 1759 if (!opp_table->genpd_virt_devs[index]) 1760 continue; 1761 1762 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1763 opp_table->genpd_virt_devs[index] = NULL; 1764 } 1765 1766 kfree(opp_table->genpd_virt_devs); 1767 opp_table->genpd_virt_devs = NULL; 1768 } 1769 1770 /** 1771 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1772 * @dev: Consumer device for which the genpd is getting attached. 1773 * @names: Null terminated array of pointers containing names of genpd to attach. 1774 * 1775 * Multiple generic power domains for a device are supported with the help of 1776 * virtual genpd devices, which are created for each consumer device - genpd 1777 * pair. These are the device structures which are attached to the power domain 1778 * and are required by the OPP core to set the performance state of the genpd. 1779 * The same API also works for the case where single genpd is available and so 1780 * we don't need to support that separately. 1781 * 1782 * This helper will normally be called by the consumer driver of the device 1783 * "dev", as only that has details of the genpd names. 1784 * 1785 * This helper needs to be called once with a list of all genpd to attach. 1786 * Otherwise the original device structure will be used instead by the OPP core. 1787 */ 1788 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, const char **names) 1789 { 1790 struct opp_table *opp_table; 1791 struct device *virt_dev; 1792 int index, ret = -EINVAL; 1793 const char **name = names; 1794 1795 opp_table = dev_pm_opp_get_opp_table(dev); 1796 if (!opp_table) 1797 return ERR_PTR(-ENOMEM); 1798 1799 /* 1800 * If the genpd's OPP table isn't already initialized, parsing of the 1801 * required-opps fail for dev. We should retry this after genpd's OPP 1802 * table is added. 1803 */ 1804 if (!opp_table->required_opp_count) { 1805 ret = -EPROBE_DEFER; 1806 goto put_table; 1807 } 1808 1809 mutex_lock(&opp_table->genpd_virt_dev_lock); 1810 1811 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 1812 sizeof(*opp_table->genpd_virt_devs), 1813 GFP_KERNEL); 1814 if (!opp_table->genpd_virt_devs) 1815 goto unlock; 1816 1817 while (*name) { 1818 index = of_property_match_string(dev->of_node, 1819 "power-domain-names", *name); 1820 if (index < 0) { 1821 dev_err(dev, "Failed to find power domain: %s (%d)\n", 1822 *name, index); 1823 goto err; 1824 } 1825 1826 if (index >= opp_table->required_opp_count) { 1827 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 1828 *name, opp_table->required_opp_count, index); 1829 goto err; 1830 } 1831 1832 if (opp_table->genpd_virt_devs[index]) { 1833 dev_err(dev, "Genpd virtual device already set %s\n", 1834 *name); 1835 goto err; 1836 } 1837 1838 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 1839 if (IS_ERR(virt_dev)) { 1840 ret = PTR_ERR(virt_dev); 1841 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 1842 goto err; 1843 } 1844 1845 opp_table->genpd_virt_devs[index] = virt_dev; 1846 name++; 1847 } 1848 1849 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1850 1851 return opp_table; 1852 1853 err: 1854 _opp_detach_genpd(opp_table); 1855 unlock: 1856 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1857 1858 put_table: 1859 dev_pm_opp_put_opp_table(opp_table); 1860 1861 return ERR_PTR(ret); 1862 } 1863 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 1864 1865 /** 1866 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 1867 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 1868 * 1869 * This detaches the genpd(s), resets the virtual device pointers, and puts the 1870 * OPP table. 1871 */ 1872 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 1873 { 1874 /* 1875 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 1876 * used in parallel. 1877 */ 1878 mutex_lock(&opp_table->genpd_virt_dev_lock); 1879 _opp_detach_genpd(opp_table); 1880 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1881 1882 dev_pm_opp_put_opp_table(opp_table); 1883 } 1884 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 1885 1886 /** 1887 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 1888 * @src_table: OPP table which has dst_table as one of its required OPP table. 1889 * @dst_table: Required OPP table of the src_table. 1890 * @pstate: Current performance state of the src_table. 1891 * 1892 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 1893 * "required-opps" property of the OPP (present in @src_table) which has 1894 * performance state set to @pstate. 1895 * 1896 * Return: Zero or positive performance state on success, otherwise negative 1897 * value on errors. 1898 */ 1899 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 1900 struct opp_table *dst_table, 1901 unsigned int pstate) 1902 { 1903 struct dev_pm_opp *opp; 1904 int dest_pstate = -EINVAL; 1905 int i; 1906 1907 if (!pstate) 1908 return 0; 1909 1910 /* 1911 * Normally the src_table will have the "required_opps" property set to 1912 * point to one of the OPPs in the dst_table, but in some cases the 1913 * genpd and its master have one to one mapping of performance states 1914 * and so none of them have the "required-opps" property set. Return the 1915 * pstate of the src_table as it is in such cases. 1916 */ 1917 if (!src_table->required_opp_count) 1918 return pstate; 1919 1920 for (i = 0; i < src_table->required_opp_count; i++) { 1921 if (src_table->required_opp_tables[i]->np == dst_table->np) 1922 break; 1923 } 1924 1925 if (unlikely(i == src_table->required_opp_count)) { 1926 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 1927 __func__, src_table, dst_table); 1928 return -EINVAL; 1929 } 1930 1931 mutex_lock(&src_table->lock); 1932 1933 list_for_each_entry(opp, &src_table->opp_list, node) { 1934 if (opp->pstate == pstate) { 1935 dest_pstate = opp->required_opps[i]->pstate; 1936 goto unlock; 1937 } 1938 } 1939 1940 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 1941 dst_table); 1942 1943 unlock: 1944 mutex_unlock(&src_table->lock); 1945 1946 return dest_pstate; 1947 } 1948 1949 /** 1950 * dev_pm_opp_add() - Add an OPP table from a table definitions 1951 * @dev: device for which we do this operation 1952 * @freq: Frequency in Hz for this OPP 1953 * @u_volt: Voltage in uVolts for this OPP 1954 * 1955 * This function adds an opp definition to the opp table and returns status. 1956 * The opp is made available by default and it can be controlled using 1957 * dev_pm_opp_enable/disable functions. 1958 * 1959 * Return: 1960 * 0 On success OR 1961 * Duplicate OPPs (both freq and volt are same) and opp->available 1962 * -EEXIST Freq are same and volt are different OR 1963 * Duplicate OPPs (both freq and volt are same) and !opp->available 1964 * -ENOMEM Memory allocation failure 1965 */ 1966 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 1967 { 1968 struct opp_table *opp_table; 1969 int ret; 1970 1971 opp_table = dev_pm_opp_get_opp_table(dev); 1972 if (!opp_table) 1973 return -ENOMEM; 1974 1975 /* Fix regulator count for dynamic OPPs */ 1976 opp_table->regulator_count = 1; 1977 1978 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 1979 if (ret) 1980 dev_pm_opp_put_opp_table(opp_table); 1981 1982 return ret; 1983 } 1984 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 1985 1986 /** 1987 * _opp_set_availability() - helper to set the availability of an opp 1988 * @dev: device for which we do this operation 1989 * @freq: OPP frequency to modify availability 1990 * @availability_req: availability status requested for this opp 1991 * 1992 * Set the availability of an OPP, opp_{enable,disable} share a common logic 1993 * which is isolated here. 1994 * 1995 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1996 * copy operation, returns 0 if no modification was done OR modification was 1997 * successful. 1998 */ 1999 static int _opp_set_availability(struct device *dev, unsigned long freq, 2000 bool availability_req) 2001 { 2002 struct opp_table *opp_table; 2003 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2004 int r = 0; 2005 2006 /* Find the opp_table */ 2007 opp_table = _find_opp_table(dev); 2008 if (IS_ERR(opp_table)) { 2009 r = PTR_ERR(opp_table); 2010 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2011 return r; 2012 } 2013 2014 mutex_lock(&opp_table->lock); 2015 2016 /* Do we have the frequency? */ 2017 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2018 if (tmp_opp->rate == freq) { 2019 opp = tmp_opp; 2020 break; 2021 } 2022 } 2023 2024 if (IS_ERR(opp)) { 2025 r = PTR_ERR(opp); 2026 goto unlock; 2027 } 2028 2029 /* Is update really needed? */ 2030 if (opp->available == availability_req) 2031 goto unlock; 2032 2033 opp->available = availability_req; 2034 2035 dev_pm_opp_get(opp); 2036 mutex_unlock(&opp_table->lock); 2037 2038 /* Notify the change of the OPP availability */ 2039 if (availability_req) 2040 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2041 opp); 2042 else 2043 blocking_notifier_call_chain(&opp_table->head, 2044 OPP_EVENT_DISABLE, opp); 2045 2046 dev_pm_opp_put(opp); 2047 goto put_table; 2048 2049 unlock: 2050 mutex_unlock(&opp_table->lock); 2051 put_table: 2052 dev_pm_opp_put_opp_table(opp_table); 2053 return r; 2054 } 2055 2056 /** 2057 * dev_pm_opp_enable() - Enable a specific OPP 2058 * @dev: device for which we do this operation 2059 * @freq: OPP frequency to enable 2060 * 2061 * Enables a provided opp. If the operation is valid, this returns 0, else the 2062 * corresponding error value. It is meant to be used for users an OPP available 2063 * after being temporarily made unavailable with dev_pm_opp_disable. 2064 * 2065 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2066 * copy operation, returns 0 if no modification was done OR modification was 2067 * successful. 2068 */ 2069 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2070 { 2071 return _opp_set_availability(dev, freq, true); 2072 } 2073 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2074 2075 /** 2076 * dev_pm_opp_disable() - Disable a specific OPP 2077 * @dev: device for which we do this operation 2078 * @freq: OPP frequency to disable 2079 * 2080 * Disables a provided opp. If the operation is valid, this returns 2081 * 0, else the corresponding error value. It is meant to be a temporary 2082 * control by users to make this OPP not available until the circumstances are 2083 * right to make it available again (with a call to dev_pm_opp_enable). 2084 * 2085 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2086 * copy operation, returns 0 if no modification was done OR modification was 2087 * successful. 2088 */ 2089 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2090 { 2091 return _opp_set_availability(dev, freq, false); 2092 } 2093 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2094 2095 /** 2096 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2097 * @dev: Device for which notifier needs to be registered 2098 * @nb: Notifier block to be registered 2099 * 2100 * Return: 0 on success or a negative error value. 2101 */ 2102 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2103 { 2104 struct opp_table *opp_table; 2105 int ret; 2106 2107 opp_table = _find_opp_table(dev); 2108 if (IS_ERR(opp_table)) 2109 return PTR_ERR(opp_table); 2110 2111 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2112 2113 dev_pm_opp_put_opp_table(opp_table); 2114 2115 return ret; 2116 } 2117 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2118 2119 /** 2120 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2121 * @dev: Device for which notifier needs to be unregistered 2122 * @nb: Notifier block to be unregistered 2123 * 2124 * Return: 0 on success or a negative error value. 2125 */ 2126 int dev_pm_opp_unregister_notifier(struct device *dev, 2127 struct notifier_block *nb) 2128 { 2129 struct opp_table *opp_table; 2130 int ret; 2131 2132 opp_table = _find_opp_table(dev); 2133 if (IS_ERR(opp_table)) 2134 return PTR_ERR(opp_table); 2135 2136 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2137 2138 dev_pm_opp_put_opp_table(opp_table); 2139 2140 return ret; 2141 } 2142 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2143 2144 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2145 { 2146 struct opp_table *opp_table; 2147 2148 /* Check for existing table for 'dev' */ 2149 opp_table = _find_opp_table(dev); 2150 if (IS_ERR(opp_table)) { 2151 int error = PTR_ERR(opp_table); 2152 2153 if (error != -ENODEV) 2154 WARN(1, "%s: opp_table: %d\n", 2155 IS_ERR_OR_NULL(dev) ? 2156 "Invalid device" : dev_name(dev), 2157 error); 2158 return; 2159 } 2160 2161 _put_opp_list_kref(opp_table); 2162 2163 /* Drop reference taken by _find_opp_table() */ 2164 dev_pm_opp_put_opp_table(opp_table); 2165 2166 /* Drop reference taken while the OPP table was added */ 2167 dev_pm_opp_put_opp_table(opp_table); 2168 } 2169 2170 /** 2171 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2172 * @dev: device pointer used to lookup OPP table. 2173 * 2174 * Free both OPPs created using static entries present in DT and the 2175 * dynamically added entries. 2176 */ 2177 void dev_pm_opp_remove_table(struct device *dev) 2178 { 2179 _dev_pm_opp_find_and_remove_table(dev); 2180 } 2181 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2182