xref: /openbmc/linux/drivers/opp/core.c (revision d6e0cbb1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
405 						   unsigned long *freq)
406 {
407 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
408 
409 	mutex_lock(&opp_table->lock);
410 
411 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
412 		if (temp_opp->available && temp_opp->rate >= *freq) {
413 			opp = temp_opp;
414 			*freq = opp->rate;
415 
416 			/* Increment the reference count of OPP */
417 			dev_pm_opp_get(opp);
418 			break;
419 		}
420 	}
421 
422 	mutex_unlock(&opp_table->lock);
423 
424 	return opp;
425 }
426 
427 /**
428  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
429  * @dev:	device for which we do this operation
430  * @freq:	Start frequency
431  *
432  * Search for the matching ceil *available* OPP from a starting freq
433  * for a device.
434  *
435  * Return: matching *opp and refreshes *freq accordingly, else returns
436  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
437  * values can be:
438  * EINVAL:	for bad pointer
439  * ERANGE:	no match found for search
440  * ENODEV:	if device not found in list of registered devices
441  *
442  * The callers are required to call dev_pm_opp_put() for the returned OPP after
443  * use.
444  */
445 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
446 					     unsigned long *freq)
447 {
448 	struct opp_table *opp_table;
449 	struct dev_pm_opp *opp;
450 
451 	if (!dev || !freq) {
452 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
453 		return ERR_PTR(-EINVAL);
454 	}
455 
456 	opp_table = _find_opp_table(dev);
457 	if (IS_ERR(opp_table))
458 		return ERR_CAST(opp_table);
459 
460 	opp = _find_freq_ceil(opp_table, freq);
461 
462 	dev_pm_opp_put_opp_table(opp_table);
463 
464 	return opp;
465 }
466 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
467 
468 /**
469  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
470  * @dev:	device for which we do this operation
471  * @freq:	Start frequency
472  *
473  * Search for the matching floor *available* OPP from a starting freq
474  * for a device.
475  *
476  * Return: matching *opp and refreshes *freq accordingly, else returns
477  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
478  * values can be:
479  * EINVAL:	for bad pointer
480  * ERANGE:	no match found for search
481  * ENODEV:	if device not found in list of registered devices
482  *
483  * The callers are required to call dev_pm_opp_put() for the returned OPP after
484  * use.
485  */
486 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
487 					      unsigned long *freq)
488 {
489 	struct opp_table *opp_table;
490 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
491 
492 	if (!dev || !freq) {
493 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
494 		return ERR_PTR(-EINVAL);
495 	}
496 
497 	opp_table = _find_opp_table(dev);
498 	if (IS_ERR(opp_table))
499 		return ERR_CAST(opp_table);
500 
501 	mutex_lock(&opp_table->lock);
502 
503 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
504 		if (temp_opp->available) {
505 			/* go to the next node, before choosing prev */
506 			if (temp_opp->rate > *freq)
507 				break;
508 			else
509 				opp = temp_opp;
510 		}
511 	}
512 
513 	/* Increment the reference count of OPP */
514 	if (!IS_ERR(opp))
515 		dev_pm_opp_get(opp);
516 	mutex_unlock(&opp_table->lock);
517 	dev_pm_opp_put_opp_table(opp_table);
518 
519 	if (!IS_ERR(opp))
520 		*freq = opp->rate;
521 
522 	return opp;
523 }
524 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
525 
526 /**
527  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
528  *					 target voltage.
529  * @dev:	Device for which we do this operation.
530  * @u_volt:	Target voltage.
531  *
532  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
533  *
534  * Return: matching *opp, else returns ERR_PTR in case of error which should be
535  * handled using IS_ERR.
536  *
537  * Error return values can be:
538  * EINVAL:	bad parameters
539  *
540  * The callers are required to call dev_pm_opp_put() for the returned OPP after
541  * use.
542  */
543 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
544 						     unsigned long u_volt)
545 {
546 	struct opp_table *opp_table;
547 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
548 
549 	if (!dev || !u_volt) {
550 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
551 			u_volt);
552 		return ERR_PTR(-EINVAL);
553 	}
554 
555 	opp_table = _find_opp_table(dev);
556 	if (IS_ERR(opp_table))
557 		return ERR_CAST(opp_table);
558 
559 	mutex_lock(&opp_table->lock);
560 
561 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
562 		if (temp_opp->available) {
563 			if (temp_opp->supplies[0].u_volt > u_volt)
564 				break;
565 			opp = temp_opp;
566 		}
567 	}
568 
569 	/* Increment the reference count of OPP */
570 	if (!IS_ERR(opp))
571 		dev_pm_opp_get(opp);
572 
573 	mutex_unlock(&opp_table->lock);
574 	dev_pm_opp_put_opp_table(opp_table);
575 
576 	return opp;
577 }
578 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
579 
580 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
581 			    struct dev_pm_opp_supply *supply)
582 {
583 	int ret;
584 
585 	/* Regulator not available for device */
586 	if (IS_ERR(reg)) {
587 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
588 			PTR_ERR(reg));
589 		return 0;
590 	}
591 
592 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
593 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
594 
595 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
596 					    supply->u_volt, supply->u_volt_max);
597 	if (ret)
598 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
599 			__func__, supply->u_volt_min, supply->u_volt,
600 			supply->u_volt_max, ret);
601 
602 	return ret;
603 }
604 
605 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
606 					    unsigned long freq)
607 {
608 	int ret;
609 
610 	ret = clk_set_rate(clk, freq);
611 	if (ret) {
612 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
613 			ret);
614 	}
615 
616 	return ret;
617 }
618 
619 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
620 				      struct device *dev,
621 				      unsigned long old_freq,
622 				      unsigned long freq,
623 				      struct dev_pm_opp_supply *old_supply,
624 				      struct dev_pm_opp_supply *new_supply)
625 {
626 	struct regulator *reg = opp_table->regulators[0];
627 	int ret;
628 
629 	/* This function only supports single regulator per device */
630 	if (WARN_ON(opp_table->regulator_count > 1)) {
631 		dev_err(dev, "multiple regulators are not supported\n");
632 		return -EINVAL;
633 	}
634 
635 	/* Scaling up? Scale voltage before frequency */
636 	if (freq >= old_freq) {
637 		ret = _set_opp_voltage(dev, reg, new_supply);
638 		if (ret)
639 			goto restore_voltage;
640 	}
641 
642 	/* Change frequency */
643 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
644 	if (ret)
645 		goto restore_voltage;
646 
647 	/* Scaling down? Scale voltage after frequency */
648 	if (freq < old_freq) {
649 		ret = _set_opp_voltage(dev, reg, new_supply);
650 		if (ret)
651 			goto restore_freq;
652 	}
653 
654 	return 0;
655 
656 restore_freq:
657 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
658 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
659 			__func__, old_freq);
660 restore_voltage:
661 	/* This shouldn't harm even if the voltages weren't updated earlier */
662 	if (old_supply)
663 		_set_opp_voltage(dev, reg, old_supply);
664 
665 	return ret;
666 }
667 
668 static int _set_opp_custom(const struct opp_table *opp_table,
669 			   struct device *dev, unsigned long old_freq,
670 			   unsigned long freq,
671 			   struct dev_pm_opp_supply *old_supply,
672 			   struct dev_pm_opp_supply *new_supply)
673 {
674 	struct dev_pm_set_opp_data *data;
675 	int size;
676 
677 	data = opp_table->set_opp_data;
678 	data->regulators = opp_table->regulators;
679 	data->regulator_count = opp_table->regulator_count;
680 	data->clk = opp_table->clk;
681 	data->dev = dev;
682 
683 	data->old_opp.rate = old_freq;
684 	size = sizeof(*old_supply) * opp_table->regulator_count;
685 	if (!old_supply)
686 		memset(data->old_opp.supplies, 0, size);
687 	else
688 		memcpy(data->old_opp.supplies, old_supply, size);
689 
690 	data->new_opp.rate = freq;
691 	memcpy(data->new_opp.supplies, new_supply, size);
692 
693 	return opp_table->set_opp(data);
694 }
695 
696 /* This is only called for PM domain for now */
697 static int _set_required_opps(struct device *dev,
698 			      struct opp_table *opp_table,
699 			      struct dev_pm_opp *opp)
700 {
701 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
702 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
703 	unsigned int pstate;
704 	int i, ret = 0;
705 
706 	if (!required_opp_tables)
707 		return 0;
708 
709 	/* Single genpd case */
710 	if (!genpd_virt_devs) {
711 		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
712 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
713 		if (ret) {
714 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
715 				dev_name(dev), pstate, ret);
716 		}
717 		return ret;
718 	}
719 
720 	/* Multiple genpd case */
721 
722 	/*
723 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
724 	 * after it is freed from another thread.
725 	 */
726 	mutex_lock(&opp_table->genpd_virt_dev_lock);
727 
728 	for (i = 0; i < opp_table->required_opp_count; i++) {
729 		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
730 
731 		if (!genpd_virt_devs[i])
732 			continue;
733 
734 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
735 		if (ret) {
736 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
737 				dev_name(genpd_virt_devs[i]), pstate, ret);
738 			break;
739 		}
740 	}
741 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
742 
743 	return ret;
744 }
745 
746 /**
747  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
748  * @dev:	 device for which we do this operation
749  * @target_freq: frequency to achieve
750  *
751  * This configures the power-supplies to the levels specified by the OPP
752  * corresponding to the target_freq, and programs the clock to a value <=
753  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
754  * provided by the opp, should have already rounded to the target OPP's
755  * frequency.
756  */
757 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
758 {
759 	struct opp_table *opp_table;
760 	unsigned long freq, old_freq, temp_freq;
761 	struct dev_pm_opp *old_opp, *opp;
762 	struct clk *clk;
763 	int ret;
764 
765 	opp_table = _find_opp_table(dev);
766 	if (IS_ERR(opp_table)) {
767 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
768 		return PTR_ERR(opp_table);
769 	}
770 
771 	if (unlikely(!target_freq)) {
772 		if (opp_table->required_opp_tables) {
773 			ret = _set_required_opps(dev, opp_table, NULL);
774 		} else {
775 			dev_err(dev, "target frequency can't be 0\n");
776 			ret = -EINVAL;
777 		}
778 
779 		goto put_opp_table;
780 	}
781 
782 	clk = opp_table->clk;
783 	if (IS_ERR(clk)) {
784 		dev_err(dev, "%s: No clock available for the device\n",
785 			__func__);
786 		ret = PTR_ERR(clk);
787 		goto put_opp_table;
788 	}
789 
790 	freq = clk_round_rate(clk, target_freq);
791 	if ((long)freq <= 0)
792 		freq = target_freq;
793 
794 	old_freq = clk_get_rate(clk);
795 
796 	/* Return early if nothing to do */
797 	if (old_freq == freq) {
798 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
799 			__func__, freq);
800 		ret = 0;
801 		goto put_opp_table;
802 	}
803 
804 	temp_freq = old_freq;
805 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
806 	if (IS_ERR(old_opp)) {
807 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
808 			__func__, old_freq, PTR_ERR(old_opp));
809 	}
810 
811 	temp_freq = freq;
812 	opp = _find_freq_ceil(opp_table, &temp_freq);
813 	if (IS_ERR(opp)) {
814 		ret = PTR_ERR(opp);
815 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
816 			__func__, freq, ret);
817 		goto put_old_opp;
818 	}
819 
820 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
821 		old_freq, freq);
822 
823 	/* Scaling up? Configure required OPPs before frequency */
824 	if (freq >= old_freq) {
825 		ret = _set_required_opps(dev, opp_table, opp);
826 		if (ret)
827 			goto put_opp;
828 	}
829 
830 	if (opp_table->set_opp) {
831 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
832 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
833 				      opp->supplies);
834 	} else if (opp_table->regulators) {
835 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
836 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
837 						 opp->supplies);
838 	} else {
839 		/* Only frequency scaling */
840 		ret = _generic_set_opp_clk_only(dev, clk, freq);
841 	}
842 
843 	/* Scaling down? Configure required OPPs after frequency */
844 	if (!ret && freq < old_freq) {
845 		ret = _set_required_opps(dev, opp_table, opp);
846 		if (ret)
847 			dev_err(dev, "Failed to set required opps: %d\n", ret);
848 	}
849 
850 put_opp:
851 	dev_pm_opp_put(opp);
852 put_old_opp:
853 	if (!IS_ERR(old_opp))
854 		dev_pm_opp_put(old_opp);
855 put_opp_table:
856 	dev_pm_opp_put_opp_table(opp_table);
857 	return ret;
858 }
859 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
860 
861 /* OPP-dev Helpers */
862 static void _remove_opp_dev(struct opp_device *opp_dev,
863 			    struct opp_table *opp_table)
864 {
865 	opp_debug_unregister(opp_dev, opp_table);
866 	list_del(&opp_dev->node);
867 	kfree(opp_dev);
868 }
869 
870 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
871 						struct opp_table *opp_table)
872 {
873 	struct opp_device *opp_dev;
874 
875 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
876 	if (!opp_dev)
877 		return NULL;
878 
879 	/* Initialize opp-dev */
880 	opp_dev->dev = dev;
881 
882 	list_add(&opp_dev->node, &opp_table->dev_list);
883 
884 	/* Create debugfs entries for the opp_table */
885 	opp_debug_register(opp_dev, opp_table);
886 
887 	return opp_dev;
888 }
889 
890 struct opp_device *_add_opp_dev(const struct device *dev,
891 				struct opp_table *opp_table)
892 {
893 	struct opp_device *opp_dev;
894 
895 	mutex_lock(&opp_table->lock);
896 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
897 	mutex_unlock(&opp_table->lock);
898 
899 	return opp_dev;
900 }
901 
902 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
903 {
904 	struct opp_table *opp_table;
905 	struct opp_device *opp_dev;
906 	int ret;
907 
908 	/*
909 	 * Allocate a new OPP table. In the infrequent case where a new
910 	 * device is needed to be added, we pay this penalty.
911 	 */
912 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
913 	if (!opp_table)
914 		return NULL;
915 
916 	mutex_init(&opp_table->lock);
917 	mutex_init(&opp_table->genpd_virt_dev_lock);
918 	INIT_LIST_HEAD(&opp_table->dev_list);
919 
920 	/* Mark regulator count uninitialized */
921 	opp_table->regulator_count = -1;
922 
923 	opp_dev = _add_opp_dev(dev, opp_table);
924 	if (!opp_dev) {
925 		kfree(opp_table);
926 		return NULL;
927 	}
928 
929 	_of_init_opp_table(opp_table, dev, index);
930 
931 	/* Find clk for the device */
932 	opp_table->clk = clk_get(dev, NULL);
933 	if (IS_ERR(opp_table->clk)) {
934 		ret = PTR_ERR(opp_table->clk);
935 		if (ret != -EPROBE_DEFER)
936 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
937 				ret);
938 	}
939 
940 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
941 	INIT_LIST_HEAD(&opp_table->opp_list);
942 	kref_init(&opp_table->kref);
943 
944 	/* Secure the device table modification */
945 	list_add(&opp_table->node, &opp_tables);
946 	return opp_table;
947 }
948 
949 void _get_opp_table_kref(struct opp_table *opp_table)
950 {
951 	kref_get(&opp_table->kref);
952 }
953 
954 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
955 {
956 	struct opp_table *opp_table;
957 
958 	/* Hold our table modification lock here */
959 	mutex_lock(&opp_table_lock);
960 
961 	opp_table = _find_opp_table_unlocked(dev);
962 	if (!IS_ERR(opp_table))
963 		goto unlock;
964 
965 	opp_table = _managed_opp(dev, index);
966 	if (opp_table) {
967 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
968 			dev_pm_opp_put_opp_table(opp_table);
969 			opp_table = NULL;
970 		}
971 		goto unlock;
972 	}
973 
974 	opp_table = _allocate_opp_table(dev, index);
975 
976 unlock:
977 	mutex_unlock(&opp_table_lock);
978 
979 	return opp_table;
980 }
981 
982 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
983 {
984 	return _opp_get_opp_table(dev, 0);
985 }
986 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
987 
988 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
989 						   int index)
990 {
991 	return _opp_get_opp_table(dev, index);
992 }
993 
994 static void _opp_table_kref_release(struct kref *kref)
995 {
996 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
997 	struct opp_device *opp_dev, *temp;
998 
999 	_of_clear_opp_table(opp_table);
1000 
1001 	/* Release clk */
1002 	if (!IS_ERR(opp_table->clk))
1003 		clk_put(opp_table->clk);
1004 
1005 	WARN_ON(!list_empty(&opp_table->opp_list));
1006 
1007 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1008 		/*
1009 		 * The OPP table is getting removed, drop the performance state
1010 		 * constraints.
1011 		 */
1012 		if (opp_table->genpd_performance_state)
1013 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1014 
1015 		_remove_opp_dev(opp_dev, opp_table);
1016 	}
1017 
1018 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1019 	mutex_destroy(&opp_table->lock);
1020 	list_del(&opp_table->node);
1021 	kfree(opp_table);
1022 
1023 	mutex_unlock(&opp_table_lock);
1024 }
1025 
1026 void _opp_remove_all_static(struct opp_table *opp_table)
1027 {
1028 	struct dev_pm_opp *opp, *tmp;
1029 
1030 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1031 		if (!opp->dynamic)
1032 			dev_pm_opp_put(opp);
1033 	}
1034 
1035 	opp_table->parsed_static_opps = false;
1036 }
1037 
1038 static void _opp_table_list_kref_release(struct kref *kref)
1039 {
1040 	struct opp_table *opp_table = container_of(kref, struct opp_table,
1041 						   list_kref);
1042 
1043 	_opp_remove_all_static(opp_table);
1044 	mutex_unlock(&opp_table_lock);
1045 }
1046 
1047 void _put_opp_list_kref(struct opp_table *opp_table)
1048 {
1049 	kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1050 		       &opp_table_lock);
1051 }
1052 
1053 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1054 {
1055 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1056 		       &opp_table_lock);
1057 }
1058 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1059 
1060 void _opp_free(struct dev_pm_opp *opp)
1061 {
1062 	kfree(opp);
1063 }
1064 
1065 static void _opp_kref_release(struct dev_pm_opp *opp,
1066 			      struct opp_table *opp_table)
1067 {
1068 	/*
1069 	 * Notify the changes in the availability of the operable
1070 	 * frequency/voltage list.
1071 	 */
1072 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1073 	_of_opp_free_required_opps(opp_table, opp);
1074 	opp_debug_remove_one(opp);
1075 	list_del(&opp->node);
1076 	kfree(opp);
1077 }
1078 
1079 static void _opp_kref_release_unlocked(struct kref *kref)
1080 {
1081 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1082 	struct opp_table *opp_table = opp->opp_table;
1083 
1084 	_opp_kref_release(opp, opp_table);
1085 }
1086 
1087 static void _opp_kref_release_locked(struct kref *kref)
1088 {
1089 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1090 	struct opp_table *opp_table = opp->opp_table;
1091 
1092 	_opp_kref_release(opp, opp_table);
1093 	mutex_unlock(&opp_table->lock);
1094 }
1095 
1096 void dev_pm_opp_get(struct dev_pm_opp *opp)
1097 {
1098 	kref_get(&opp->kref);
1099 }
1100 
1101 void dev_pm_opp_put(struct dev_pm_opp *opp)
1102 {
1103 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1104 		       &opp->opp_table->lock);
1105 }
1106 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1107 
1108 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1109 {
1110 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1111 }
1112 
1113 /**
1114  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1115  * @dev:	device for which we do this operation
1116  * @freq:	OPP to remove with matching 'freq'
1117  *
1118  * This function removes an opp from the opp table.
1119  */
1120 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1121 {
1122 	struct dev_pm_opp *opp;
1123 	struct opp_table *opp_table;
1124 	bool found = false;
1125 
1126 	opp_table = _find_opp_table(dev);
1127 	if (IS_ERR(opp_table))
1128 		return;
1129 
1130 	mutex_lock(&opp_table->lock);
1131 
1132 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1133 		if (opp->rate == freq) {
1134 			found = true;
1135 			break;
1136 		}
1137 	}
1138 
1139 	mutex_unlock(&opp_table->lock);
1140 
1141 	if (found) {
1142 		dev_pm_opp_put(opp);
1143 
1144 		/* Drop the reference taken by dev_pm_opp_add() */
1145 		dev_pm_opp_put_opp_table(opp_table);
1146 	} else {
1147 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1148 			 __func__, freq);
1149 	}
1150 
1151 	/* Drop the reference taken by _find_opp_table() */
1152 	dev_pm_opp_put_opp_table(opp_table);
1153 }
1154 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1155 
1156 /**
1157  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1158  * @dev:	device for which we do this operation
1159  *
1160  * This function removes all dynamically created OPPs from the opp table.
1161  */
1162 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1163 {
1164 	struct opp_table *opp_table;
1165 	struct dev_pm_opp *opp, *temp;
1166 	int count = 0;
1167 
1168 	opp_table = _find_opp_table(dev);
1169 	if (IS_ERR(opp_table))
1170 		return;
1171 
1172 	mutex_lock(&opp_table->lock);
1173 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1174 		if (opp->dynamic) {
1175 			dev_pm_opp_put_unlocked(opp);
1176 			count++;
1177 		}
1178 	}
1179 	mutex_unlock(&opp_table->lock);
1180 
1181 	/* Drop the references taken by dev_pm_opp_add() */
1182 	while (count--)
1183 		dev_pm_opp_put_opp_table(opp_table);
1184 
1185 	/* Drop the reference taken by _find_opp_table() */
1186 	dev_pm_opp_put_opp_table(opp_table);
1187 }
1188 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1189 
1190 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1191 {
1192 	struct dev_pm_opp *opp;
1193 	int count, supply_size;
1194 
1195 	/* Allocate space for at least one supply */
1196 	count = table->regulator_count > 0 ? table->regulator_count : 1;
1197 	supply_size = sizeof(*opp->supplies) * count;
1198 
1199 	/* allocate new OPP node and supplies structures */
1200 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1201 	if (!opp)
1202 		return NULL;
1203 
1204 	/* Put the supplies at the end of the OPP structure as an empty array */
1205 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1206 	INIT_LIST_HEAD(&opp->node);
1207 
1208 	return opp;
1209 }
1210 
1211 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1212 					 struct opp_table *opp_table)
1213 {
1214 	struct regulator *reg;
1215 	int i;
1216 
1217 	if (!opp_table->regulators)
1218 		return true;
1219 
1220 	for (i = 0; i < opp_table->regulator_count; i++) {
1221 		reg = opp_table->regulators[i];
1222 
1223 		if (!regulator_is_supported_voltage(reg,
1224 					opp->supplies[i].u_volt_min,
1225 					opp->supplies[i].u_volt_max)) {
1226 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1227 				__func__, opp->supplies[i].u_volt_min,
1228 				opp->supplies[i].u_volt_max);
1229 			return false;
1230 		}
1231 	}
1232 
1233 	return true;
1234 }
1235 
1236 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1237 			     struct opp_table *opp_table,
1238 			     struct list_head **head)
1239 {
1240 	struct dev_pm_opp *opp;
1241 
1242 	/*
1243 	 * Insert new OPP in order of increasing frequency and discard if
1244 	 * already present.
1245 	 *
1246 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1247 	 * loop, don't replace it with head otherwise it will become an infinite
1248 	 * loop.
1249 	 */
1250 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1251 		if (new_opp->rate > opp->rate) {
1252 			*head = &opp->node;
1253 			continue;
1254 		}
1255 
1256 		if (new_opp->rate < opp->rate)
1257 			return 0;
1258 
1259 		/* Duplicate OPPs */
1260 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1261 			 __func__, opp->rate, opp->supplies[0].u_volt,
1262 			 opp->available, new_opp->rate,
1263 			 new_opp->supplies[0].u_volt, new_opp->available);
1264 
1265 		/* Should we compare voltages for all regulators here ? */
1266 		return opp->available &&
1267 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /*
1274  * Returns:
1275  * 0: On success. And appropriate error message for duplicate OPPs.
1276  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1277  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1278  *  sure we don't print error messages unnecessarily if different parts of
1279  *  kernel try to initialize the OPP table.
1280  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1281  *  should be considered an error by the callers of _opp_add().
1282  */
1283 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1284 	     struct opp_table *opp_table, bool rate_not_available)
1285 {
1286 	struct list_head *head;
1287 	int ret;
1288 
1289 	mutex_lock(&opp_table->lock);
1290 	head = &opp_table->opp_list;
1291 
1292 	if (likely(!rate_not_available)) {
1293 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1294 		if (ret) {
1295 			mutex_unlock(&opp_table->lock);
1296 			return ret;
1297 		}
1298 	}
1299 
1300 	list_add(&new_opp->node, head);
1301 	mutex_unlock(&opp_table->lock);
1302 
1303 	new_opp->opp_table = opp_table;
1304 	kref_init(&new_opp->kref);
1305 
1306 	opp_debug_create_one(new_opp, opp_table);
1307 
1308 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1309 		new_opp->available = false;
1310 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1311 			 __func__, new_opp->rate);
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 /**
1318  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1319  * @opp_table:	OPP table
1320  * @dev:	device for which we do this operation
1321  * @freq:	Frequency in Hz for this OPP
1322  * @u_volt:	Voltage in uVolts for this OPP
1323  * @dynamic:	Dynamically added OPPs.
1324  *
1325  * This function adds an opp definition to the opp table and returns status.
1326  * The opp is made available by default and it can be controlled using
1327  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1328  *
1329  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1330  * and freed by dev_pm_opp_of_remove_table.
1331  *
1332  * Return:
1333  * 0		On success OR
1334  *		Duplicate OPPs (both freq and volt are same) and opp->available
1335  * -EEXIST	Freq are same and volt are different OR
1336  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1337  * -ENOMEM	Memory allocation failure
1338  */
1339 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1340 		unsigned long freq, long u_volt, bool dynamic)
1341 {
1342 	struct dev_pm_opp *new_opp;
1343 	unsigned long tol;
1344 	int ret;
1345 
1346 	new_opp = _opp_allocate(opp_table);
1347 	if (!new_opp)
1348 		return -ENOMEM;
1349 
1350 	/* populate the opp table */
1351 	new_opp->rate = freq;
1352 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1353 	new_opp->supplies[0].u_volt = u_volt;
1354 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1355 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1356 	new_opp->available = true;
1357 	new_opp->dynamic = dynamic;
1358 
1359 	ret = _opp_add(dev, new_opp, opp_table, false);
1360 	if (ret) {
1361 		/* Don't return error for duplicate OPPs */
1362 		if (ret == -EBUSY)
1363 			ret = 0;
1364 		goto free_opp;
1365 	}
1366 
1367 	/*
1368 	 * Notify the changes in the availability of the operable
1369 	 * frequency/voltage list.
1370 	 */
1371 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1372 	return 0;
1373 
1374 free_opp:
1375 	_opp_free(new_opp);
1376 
1377 	return ret;
1378 }
1379 
1380 /**
1381  * dev_pm_opp_set_supported_hw() - Set supported platforms
1382  * @dev: Device for which supported-hw has to be set.
1383  * @versions: Array of hierarchy of versions to match.
1384  * @count: Number of elements in the array.
1385  *
1386  * This is required only for the V2 bindings, and it enables a platform to
1387  * specify the hierarchy of versions it supports. OPP layer will then enable
1388  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1389  * property.
1390  */
1391 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1392 			const u32 *versions, unsigned int count)
1393 {
1394 	struct opp_table *opp_table;
1395 
1396 	opp_table = dev_pm_opp_get_opp_table(dev);
1397 	if (!opp_table)
1398 		return ERR_PTR(-ENOMEM);
1399 
1400 	/* Make sure there are no concurrent readers while updating opp_table */
1401 	WARN_ON(!list_empty(&opp_table->opp_list));
1402 
1403 	/* Another CPU that shares the OPP table has set the property ? */
1404 	if (opp_table->supported_hw)
1405 		return opp_table;
1406 
1407 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1408 					GFP_KERNEL);
1409 	if (!opp_table->supported_hw) {
1410 		dev_pm_opp_put_opp_table(opp_table);
1411 		return ERR_PTR(-ENOMEM);
1412 	}
1413 
1414 	opp_table->supported_hw_count = count;
1415 
1416 	return opp_table;
1417 }
1418 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1419 
1420 /**
1421  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1422  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1423  *
1424  * This is required only for the V2 bindings, and is called for a matching
1425  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1426  * will not be freed.
1427  */
1428 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1429 {
1430 	/* Make sure there are no concurrent readers while updating opp_table */
1431 	WARN_ON(!list_empty(&opp_table->opp_list));
1432 
1433 	kfree(opp_table->supported_hw);
1434 	opp_table->supported_hw = NULL;
1435 	opp_table->supported_hw_count = 0;
1436 
1437 	dev_pm_opp_put_opp_table(opp_table);
1438 }
1439 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1440 
1441 /**
1442  * dev_pm_opp_set_prop_name() - Set prop-extn name
1443  * @dev: Device for which the prop-name has to be set.
1444  * @name: name to postfix to properties.
1445  *
1446  * This is required only for the V2 bindings, and it enables a platform to
1447  * specify the extn to be used for certain property names. The properties to
1448  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1449  * should postfix the property name with -<name> while looking for them.
1450  */
1451 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1452 {
1453 	struct opp_table *opp_table;
1454 
1455 	opp_table = dev_pm_opp_get_opp_table(dev);
1456 	if (!opp_table)
1457 		return ERR_PTR(-ENOMEM);
1458 
1459 	/* Make sure there are no concurrent readers while updating opp_table */
1460 	WARN_ON(!list_empty(&opp_table->opp_list));
1461 
1462 	/* Another CPU that shares the OPP table has set the property ? */
1463 	if (opp_table->prop_name)
1464 		return opp_table;
1465 
1466 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1467 	if (!opp_table->prop_name) {
1468 		dev_pm_opp_put_opp_table(opp_table);
1469 		return ERR_PTR(-ENOMEM);
1470 	}
1471 
1472 	return opp_table;
1473 }
1474 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1475 
1476 /**
1477  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1478  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1479  *
1480  * This is required only for the V2 bindings, and is called for a matching
1481  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1482  * will not be freed.
1483  */
1484 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1485 {
1486 	/* Make sure there are no concurrent readers while updating opp_table */
1487 	WARN_ON(!list_empty(&opp_table->opp_list));
1488 
1489 	kfree(opp_table->prop_name);
1490 	opp_table->prop_name = NULL;
1491 
1492 	dev_pm_opp_put_opp_table(opp_table);
1493 }
1494 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1495 
1496 static int _allocate_set_opp_data(struct opp_table *opp_table)
1497 {
1498 	struct dev_pm_set_opp_data *data;
1499 	int len, count = opp_table->regulator_count;
1500 
1501 	if (WARN_ON(!opp_table->regulators))
1502 		return -EINVAL;
1503 
1504 	/* space for set_opp_data */
1505 	len = sizeof(*data);
1506 
1507 	/* space for old_opp.supplies and new_opp.supplies */
1508 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1509 
1510 	data = kzalloc(len, GFP_KERNEL);
1511 	if (!data)
1512 		return -ENOMEM;
1513 
1514 	data->old_opp.supplies = (void *)(data + 1);
1515 	data->new_opp.supplies = data->old_opp.supplies + count;
1516 
1517 	opp_table->set_opp_data = data;
1518 
1519 	return 0;
1520 }
1521 
1522 static void _free_set_opp_data(struct opp_table *opp_table)
1523 {
1524 	kfree(opp_table->set_opp_data);
1525 	opp_table->set_opp_data = NULL;
1526 }
1527 
1528 /**
1529  * dev_pm_opp_set_regulators() - Set regulator names for the device
1530  * @dev: Device for which regulator name is being set.
1531  * @names: Array of pointers to the names of the regulator.
1532  * @count: Number of regulators.
1533  *
1534  * In order to support OPP switching, OPP layer needs to know the name of the
1535  * device's regulators, as the core would be required to switch voltages as
1536  * well.
1537  *
1538  * This must be called before any OPPs are initialized for the device.
1539  */
1540 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1541 					    const char * const names[],
1542 					    unsigned int count)
1543 {
1544 	struct opp_table *opp_table;
1545 	struct regulator *reg;
1546 	int ret, i;
1547 
1548 	opp_table = dev_pm_opp_get_opp_table(dev);
1549 	if (!opp_table)
1550 		return ERR_PTR(-ENOMEM);
1551 
1552 	/* This should be called before OPPs are initialized */
1553 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1554 		ret = -EBUSY;
1555 		goto err;
1556 	}
1557 
1558 	/* Another CPU that shares the OPP table has set the regulators ? */
1559 	if (opp_table->regulators)
1560 		return opp_table;
1561 
1562 	opp_table->regulators = kmalloc_array(count,
1563 					      sizeof(*opp_table->regulators),
1564 					      GFP_KERNEL);
1565 	if (!opp_table->regulators) {
1566 		ret = -ENOMEM;
1567 		goto err;
1568 	}
1569 
1570 	for (i = 0; i < count; i++) {
1571 		reg = regulator_get_optional(dev, names[i]);
1572 		if (IS_ERR(reg)) {
1573 			ret = PTR_ERR(reg);
1574 			if (ret != -EPROBE_DEFER)
1575 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1576 					__func__, names[i], ret);
1577 			goto free_regulators;
1578 		}
1579 
1580 		opp_table->regulators[i] = reg;
1581 	}
1582 
1583 	opp_table->regulator_count = count;
1584 
1585 	/* Allocate block only once to pass to set_opp() routines */
1586 	ret = _allocate_set_opp_data(opp_table);
1587 	if (ret)
1588 		goto free_regulators;
1589 
1590 	return opp_table;
1591 
1592 free_regulators:
1593 	while (i != 0)
1594 		regulator_put(opp_table->regulators[--i]);
1595 
1596 	kfree(opp_table->regulators);
1597 	opp_table->regulators = NULL;
1598 	opp_table->regulator_count = -1;
1599 err:
1600 	dev_pm_opp_put_opp_table(opp_table);
1601 
1602 	return ERR_PTR(ret);
1603 }
1604 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1605 
1606 /**
1607  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1608  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1609  */
1610 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1611 {
1612 	int i;
1613 
1614 	if (!opp_table->regulators)
1615 		goto put_opp_table;
1616 
1617 	/* Make sure there are no concurrent readers while updating opp_table */
1618 	WARN_ON(!list_empty(&opp_table->opp_list));
1619 
1620 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1621 		regulator_put(opp_table->regulators[i]);
1622 
1623 	_free_set_opp_data(opp_table);
1624 
1625 	kfree(opp_table->regulators);
1626 	opp_table->regulators = NULL;
1627 	opp_table->regulator_count = -1;
1628 
1629 put_opp_table:
1630 	dev_pm_opp_put_opp_table(opp_table);
1631 }
1632 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1633 
1634 /**
1635  * dev_pm_opp_set_clkname() - Set clk name for the device
1636  * @dev: Device for which clk name is being set.
1637  * @name: Clk name.
1638  *
1639  * In order to support OPP switching, OPP layer needs to get pointer to the
1640  * clock for the device. Simple cases work fine without using this routine (i.e.
1641  * by passing connection-id as NULL), but for a device with multiple clocks
1642  * available, the OPP core needs to know the exact name of the clk to use.
1643  *
1644  * This must be called before any OPPs are initialized for the device.
1645  */
1646 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1647 {
1648 	struct opp_table *opp_table;
1649 	int ret;
1650 
1651 	opp_table = dev_pm_opp_get_opp_table(dev);
1652 	if (!opp_table)
1653 		return ERR_PTR(-ENOMEM);
1654 
1655 	/* This should be called before OPPs are initialized */
1656 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1657 		ret = -EBUSY;
1658 		goto err;
1659 	}
1660 
1661 	/* Already have default clk set, free it */
1662 	if (!IS_ERR(opp_table->clk))
1663 		clk_put(opp_table->clk);
1664 
1665 	/* Find clk for the device */
1666 	opp_table->clk = clk_get(dev, name);
1667 	if (IS_ERR(opp_table->clk)) {
1668 		ret = PTR_ERR(opp_table->clk);
1669 		if (ret != -EPROBE_DEFER) {
1670 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1671 				ret);
1672 		}
1673 		goto err;
1674 	}
1675 
1676 	return opp_table;
1677 
1678 err:
1679 	dev_pm_opp_put_opp_table(opp_table);
1680 
1681 	return ERR_PTR(ret);
1682 }
1683 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1684 
1685 /**
1686  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1687  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1688  */
1689 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1690 {
1691 	/* Make sure there are no concurrent readers while updating opp_table */
1692 	WARN_ON(!list_empty(&opp_table->opp_list));
1693 
1694 	clk_put(opp_table->clk);
1695 	opp_table->clk = ERR_PTR(-EINVAL);
1696 
1697 	dev_pm_opp_put_opp_table(opp_table);
1698 }
1699 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1700 
1701 /**
1702  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1703  * @dev: Device for which the helper is getting registered.
1704  * @set_opp: Custom set OPP helper.
1705  *
1706  * This is useful to support complex platforms (like platforms with multiple
1707  * regulators per device), instead of the generic OPP set rate helper.
1708  *
1709  * This must be called before any OPPs are initialized for the device.
1710  */
1711 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1712 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1713 {
1714 	struct opp_table *opp_table;
1715 
1716 	if (!set_opp)
1717 		return ERR_PTR(-EINVAL);
1718 
1719 	opp_table = dev_pm_opp_get_opp_table(dev);
1720 	if (!opp_table)
1721 		return ERR_PTR(-ENOMEM);
1722 
1723 	/* This should be called before OPPs are initialized */
1724 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1725 		dev_pm_opp_put_opp_table(opp_table);
1726 		return ERR_PTR(-EBUSY);
1727 	}
1728 
1729 	/* Another CPU that shares the OPP table has set the helper ? */
1730 	if (!opp_table->set_opp)
1731 		opp_table->set_opp = set_opp;
1732 
1733 	return opp_table;
1734 }
1735 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1736 
1737 /**
1738  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1739  *					   set_opp helper
1740  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1741  *
1742  * Release resources blocked for platform specific set_opp helper.
1743  */
1744 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1745 {
1746 	/* Make sure there are no concurrent readers while updating opp_table */
1747 	WARN_ON(!list_empty(&opp_table->opp_list));
1748 
1749 	opp_table->set_opp = NULL;
1750 	dev_pm_opp_put_opp_table(opp_table);
1751 }
1752 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1753 
1754 static void _opp_detach_genpd(struct opp_table *opp_table)
1755 {
1756 	int index;
1757 
1758 	for (index = 0; index < opp_table->required_opp_count; index++) {
1759 		if (!opp_table->genpd_virt_devs[index])
1760 			continue;
1761 
1762 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1763 		opp_table->genpd_virt_devs[index] = NULL;
1764 	}
1765 
1766 	kfree(opp_table->genpd_virt_devs);
1767 	opp_table->genpd_virt_devs = NULL;
1768 }
1769 
1770 /**
1771  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1772  * @dev: Consumer device for which the genpd is getting attached.
1773  * @names: Null terminated array of pointers containing names of genpd to attach.
1774  *
1775  * Multiple generic power domains for a device are supported with the help of
1776  * virtual genpd devices, which are created for each consumer device - genpd
1777  * pair. These are the device structures which are attached to the power domain
1778  * and are required by the OPP core to set the performance state of the genpd.
1779  * The same API also works for the case where single genpd is available and so
1780  * we don't need to support that separately.
1781  *
1782  * This helper will normally be called by the consumer driver of the device
1783  * "dev", as only that has details of the genpd names.
1784  *
1785  * This helper needs to be called once with a list of all genpd to attach.
1786  * Otherwise the original device structure will be used instead by the OPP core.
1787  */
1788 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, const char **names)
1789 {
1790 	struct opp_table *opp_table;
1791 	struct device *virt_dev;
1792 	int index, ret = -EINVAL;
1793 	const char **name = names;
1794 
1795 	opp_table = dev_pm_opp_get_opp_table(dev);
1796 	if (!opp_table)
1797 		return ERR_PTR(-ENOMEM);
1798 
1799 	/*
1800 	 * If the genpd's OPP table isn't already initialized, parsing of the
1801 	 * required-opps fail for dev. We should retry this after genpd's OPP
1802 	 * table is added.
1803 	 */
1804 	if (!opp_table->required_opp_count) {
1805 		ret = -EPROBE_DEFER;
1806 		goto put_table;
1807 	}
1808 
1809 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1810 
1811 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1812 					     sizeof(*opp_table->genpd_virt_devs),
1813 					     GFP_KERNEL);
1814 	if (!opp_table->genpd_virt_devs)
1815 		goto unlock;
1816 
1817 	while (*name) {
1818 		index = of_property_match_string(dev->of_node,
1819 						 "power-domain-names", *name);
1820 		if (index < 0) {
1821 			dev_err(dev, "Failed to find power domain: %s (%d)\n",
1822 				*name, index);
1823 			goto err;
1824 		}
1825 
1826 		if (index >= opp_table->required_opp_count) {
1827 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1828 				*name, opp_table->required_opp_count, index);
1829 			goto err;
1830 		}
1831 
1832 		if (opp_table->genpd_virt_devs[index]) {
1833 			dev_err(dev, "Genpd virtual device already set %s\n",
1834 				*name);
1835 			goto err;
1836 		}
1837 
1838 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1839 		if (IS_ERR(virt_dev)) {
1840 			ret = PTR_ERR(virt_dev);
1841 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1842 			goto err;
1843 		}
1844 
1845 		opp_table->genpd_virt_devs[index] = virt_dev;
1846 		name++;
1847 	}
1848 
1849 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1850 
1851 	return opp_table;
1852 
1853 err:
1854 	_opp_detach_genpd(opp_table);
1855 unlock:
1856 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1857 
1858 put_table:
1859 	dev_pm_opp_put_opp_table(opp_table);
1860 
1861 	return ERR_PTR(ret);
1862 }
1863 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1864 
1865 /**
1866  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1867  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1868  *
1869  * This detaches the genpd(s), resets the virtual device pointers, and puts the
1870  * OPP table.
1871  */
1872 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1873 {
1874 	/*
1875 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1876 	 * used in parallel.
1877 	 */
1878 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1879 	_opp_detach_genpd(opp_table);
1880 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1881 
1882 	dev_pm_opp_put_opp_table(opp_table);
1883 }
1884 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1885 
1886 /**
1887  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1888  * @src_table: OPP table which has dst_table as one of its required OPP table.
1889  * @dst_table: Required OPP table of the src_table.
1890  * @pstate: Current performance state of the src_table.
1891  *
1892  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1893  * "required-opps" property of the OPP (present in @src_table) which has
1894  * performance state set to @pstate.
1895  *
1896  * Return: Zero or positive performance state on success, otherwise negative
1897  * value on errors.
1898  */
1899 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1900 				       struct opp_table *dst_table,
1901 				       unsigned int pstate)
1902 {
1903 	struct dev_pm_opp *opp;
1904 	int dest_pstate = -EINVAL;
1905 	int i;
1906 
1907 	if (!pstate)
1908 		return 0;
1909 
1910 	/*
1911 	 * Normally the src_table will have the "required_opps" property set to
1912 	 * point to one of the OPPs in the dst_table, but in some cases the
1913 	 * genpd and its master have one to one mapping of performance states
1914 	 * and so none of them have the "required-opps" property set. Return the
1915 	 * pstate of the src_table as it is in such cases.
1916 	 */
1917 	if (!src_table->required_opp_count)
1918 		return pstate;
1919 
1920 	for (i = 0; i < src_table->required_opp_count; i++) {
1921 		if (src_table->required_opp_tables[i]->np == dst_table->np)
1922 			break;
1923 	}
1924 
1925 	if (unlikely(i == src_table->required_opp_count)) {
1926 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1927 		       __func__, src_table, dst_table);
1928 		return -EINVAL;
1929 	}
1930 
1931 	mutex_lock(&src_table->lock);
1932 
1933 	list_for_each_entry(opp, &src_table->opp_list, node) {
1934 		if (opp->pstate == pstate) {
1935 			dest_pstate = opp->required_opps[i]->pstate;
1936 			goto unlock;
1937 		}
1938 	}
1939 
1940 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1941 	       dst_table);
1942 
1943 unlock:
1944 	mutex_unlock(&src_table->lock);
1945 
1946 	return dest_pstate;
1947 }
1948 
1949 /**
1950  * dev_pm_opp_add()  - Add an OPP table from a table definitions
1951  * @dev:	device for which we do this operation
1952  * @freq:	Frequency in Hz for this OPP
1953  * @u_volt:	Voltage in uVolts for this OPP
1954  *
1955  * This function adds an opp definition to the opp table and returns status.
1956  * The opp is made available by default and it can be controlled using
1957  * dev_pm_opp_enable/disable functions.
1958  *
1959  * Return:
1960  * 0		On success OR
1961  *		Duplicate OPPs (both freq and volt are same) and opp->available
1962  * -EEXIST	Freq are same and volt are different OR
1963  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1964  * -ENOMEM	Memory allocation failure
1965  */
1966 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1967 {
1968 	struct opp_table *opp_table;
1969 	int ret;
1970 
1971 	opp_table = dev_pm_opp_get_opp_table(dev);
1972 	if (!opp_table)
1973 		return -ENOMEM;
1974 
1975 	/* Fix regulator count for dynamic OPPs */
1976 	opp_table->regulator_count = 1;
1977 
1978 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1979 	if (ret)
1980 		dev_pm_opp_put_opp_table(opp_table);
1981 
1982 	return ret;
1983 }
1984 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1985 
1986 /**
1987  * _opp_set_availability() - helper to set the availability of an opp
1988  * @dev:		device for which we do this operation
1989  * @freq:		OPP frequency to modify availability
1990  * @availability_req:	availability status requested for this opp
1991  *
1992  * Set the availability of an OPP, opp_{enable,disable} share a common logic
1993  * which is isolated here.
1994  *
1995  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1996  * copy operation, returns 0 if no modification was done OR modification was
1997  * successful.
1998  */
1999 static int _opp_set_availability(struct device *dev, unsigned long freq,
2000 				 bool availability_req)
2001 {
2002 	struct opp_table *opp_table;
2003 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2004 	int r = 0;
2005 
2006 	/* Find the opp_table */
2007 	opp_table = _find_opp_table(dev);
2008 	if (IS_ERR(opp_table)) {
2009 		r = PTR_ERR(opp_table);
2010 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2011 		return r;
2012 	}
2013 
2014 	mutex_lock(&opp_table->lock);
2015 
2016 	/* Do we have the frequency? */
2017 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2018 		if (tmp_opp->rate == freq) {
2019 			opp = tmp_opp;
2020 			break;
2021 		}
2022 	}
2023 
2024 	if (IS_ERR(opp)) {
2025 		r = PTR_ERR(opp);
2026 		goto unlock;
2027 	}
2028 
2029 	/* Is update really needed? */
2030 	if (opp->available == availability_req)
2031 		goto unlock;
2032 
2033 	opp->available = availability_req;
2034 
2035 	dev_pm_opp_get(opp);
2036 	mutex_unlock(&opp_table->lock);
2037 
2038 	/* Notify the change of the OPP availability */
2039 	if (availability_req)
2040 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2041 					     opp);
2042 	else
2043 		blocking_notifier_call_chain(&opp_table->head,
2044 					     OPP_EVENT_DISABLE, opp);
2045 
2046 	dev_pm_opp_put(opp);
2047 	goto put_table;
2048 
2049 unlock:
2050 	mutex_unlock(&opp_table->lock);
2051 put_table:
2052 	dev_pm_opp_put_opp_table(opp_table);
2053 	return r;
2054 }
2055 
2056 /**
2057  * dev_pm_opp_enable() - Enable a specific OPP
2058  * @dev:	device for which we do this operation
2059  * @freq:	OPP frequency to enable
2060  *
2061  * Enables a provided opp. If the operation is valid, this returns 0, else the
2062  * corresponding error value. It is meant to be used for users an OPP available
2063  * after being temporarily made unavailable with dev_pm_opp_disable.
2064  *
2065  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2066  * copy operation, returns 0 if no modification was done OR modification was
2067  * successful.
2068  */
2069 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2070 {
2071 	return _opp_set_availability(dev, freq, true);
2072 }
2073 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2074 
2075 /**
2076  * dev_pm_opp_disable() - Disable a specific OPP
2077  * @dev:	device for which we do this operation
2078  * @freq:	OPP frequency to disable
2079  *
2080  * Disables a provided opp. If the operation is valid, this returns
2081  * 0, else the corresponding error value. It is meant to be a temporary
2082  * control by users to make this OPP not available until the circumstances are
2083  * right to make it available again (with a call to dev_pm_opp_enable).
2084  *
2085  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2086  * copy operation, returns 0 if no modification was done OR modification was
2087  * successful.
2088  */
2089 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2090 {
2091 	return _opp_set_availability(dev, freq, false);
2092 }
2093 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2094 
2095 /**
2096  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2097  * @dev:	Device for which notifier needs to be registered
2098  * @nb:		Notifier block to be registered
2099  *
2100  * Return: 0 on success or a negative error value.
2101  */
2102 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2103 {
2104 	struct opp_table *opp_table;
2105 	int ret;
2106 
2107 	opp_table = _find_opp_table(dev);
2108 	if (IS_ERR(opp_table))
2109 		return PTR_ERR(opp_table);
2110 
2111 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2112 
2113 	dev_pm_opp_put_opp_table(opp_table);
2114 
2115 	return ret;
2116 }
2117 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2118 
2119 /**
2120  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2121  * @dev:	Device for which notifier needs to be unregistered
2122  * @nb:		Notifier block to be unregistered
2123  *
2124  * Return: 0 on success or a negative error value.
2125  */
2126 int dev_pm_opp_unregister_notifier(struct device *dev,
2127 				   struct notifier_block *nb)
2128 {
2129 	struct opp_table *opp_table;
2130 	int ret;
2131 
2132 	opp_table = _find_opp_table(dev);
2133 	if (IS_ERR(opp_table))
2134 		return PTR_ERR(opp_table);
2135 
2136 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2137 
2138 	dev_pm_opp_put_opp_table(opp_table);
2139 
2140 	return ret;
2141 }
2142 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2143 
2144 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2145 {
2146 	struct opp_table *opp_table;
2147 
2148 	/* Check for existing table for 'dev' */
2149 	opp_table = _find_opp_table(dev);
2150 	if (IS_ERR(opp_table)) {
2151 		int error = PTR_ERR(opp_table);
2152 
2153 		if (error != -ENODEV)
2154 			WARN(1, "%s: opp_table: %d\n",
2155 			     IS_ERR_OR_NULL(dev) ?
2156 					"Invalid device" : dev_name(dev),
2157 			     error);
2158 		return;
2159 	}
2160 
2161 	_put_opp_list_kref(opp_table);
2162 
2163 	/* Drop reference taken by _find_opp_table() */
2164 	dev_pm_opp_put_opp_table(opp_table);
2165 
2166 	/* Drop reference taken while the OPP table was added */
2167 	dev_pm_opp_put_opp_table(opp_table);
2168 }
2169 
2170 /**
2171  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2172  * @dev:	device pointer used to lookup OPP table.
2173  *
2174  * Free both OPPs created using static entries present in DT and the
2175  * dynamically added entries.
2176  */
2177 void dev_pm_opp_remove_table(struct device *dev)
2178 {
2179 	_dev_pm_opp_find_and_remove_table(dev);
2180 }
2181 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2182