xref: /openbmc/linux/drivers/opp/core.c (revision d1f56f31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	return 0;
703 
704 restore_freq:
705 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
706 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
707 			__func__, old_freq);
708 restore_voltage:
709 	/* This shouldn't harm even if the voltages weren't updated earlier */
710 	if (old_supply)
711 		_set_opp_voltage(dev, reg, old_supply);
712 
713 	return ret;
714 }
715 
716 static int _set_opp_custom(const struct opp_table *opp_table,
717 			   struct device *dev, unsigned long old_freq,
718 			   unsigned long freq,
719 			   struct dev_pm_opp_supply *old_supply,
720 			   struct dev_pm_opp_supply *new_supply)
721 {
722 	struct dev_pm_set_opp_data *data;
723 	int size;
724 
725 	data = opp_table->set_opp_data;
726 	data->regulators = opp_table->regulators;
727 	data->regulator_count = opp_table->regulator_count;
728 	data->clk = opp_table->clk;
729 	data->dev = dev;
730 
731 	data->old_opp.rate = old_freq;
732 	size = sizeof(*old_supply) * opp_table->regulator_count;
733 	if (!old_supply)
734 		memset(data->old_opp.supplies, 0, size);
735 	else
736 		memcpy(data->old_opp.supplies, old_supply, size);
737 
738 	data->new_opp.rate = freq;
739 	memcpy(data->new_opp.supplies, new_supply, size);
740 
741 	return opp_table->set_opp(data);
742 }
743 
744 /* This is only called for PM domain for now */
745 static int _set_required_opps(struct device *dev,
746 			      struct opp_table *opp_table,
747 			      struct dev_pm_opp *opp)
748 {
749 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
750 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
751 	unsigned int pstate;
752 	int i, ret = 0;
753 
754 	if (!required_opp_tables)
755 		return 0;
756 
757 	/* Single genpd case */
758 	if (!genpd_virt_devs) {
759 		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
760 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
761 		if (ret) {
762 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
763 				dev_name(dev), pstate, ret);
764 		}
765 		return ret;
766 	}
767 
768 	/* Multiple genpd case */
769 
770 	/*
771 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
772 	 * after it is freed from another thread.
773 	 */
774 	mutex_lock(&opp_table->genpd_virt_dev_lock);
775 
776 	for (i = 0; i < opp_table->required_opp_count; i++) {
777 		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
778 
779 		if (!genpd_virt_devs[i])
780 			continue;
781 
782 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
783 		if (ret) {
784 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
785 				dev_name(genpd_virt_devs[i]), pstate, ret);
786 			break;
787 		}
788 	}
789 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
790 
791 	return ret;
792 }
793 
794 /**
795  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
796  * @dev:	 device for which we do this operation
797  * @target_freq: frequency to achieve
798  *
799  * This configures the power-supplies to the levels specified by the OPP
800  * corresponding to the target_freq, and programs the clock to a value <=
801  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
802  * provided by the opp, should have already rounded to the target OPP's
803  * frequency.
804  */
805 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
806 {
807 	struct opp_table *opp_table;
808 	unsigned long freq, old_freq, temp_freq;
809 	struct dev_pm_opp *old_opp, *opp;
810 	struct clk *clk;
811 	int ret;
812 
813 	opp_table = _find_opp_table(dev);
814 	if (IS_ERR(opp_table)) {
815 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
816 		return PTR_ERR(opp_table);
817 	}
818 
819 	if (unlikely(!target_freq)) {
820 		if (opp_table->required_opp_tables) {
821 			ret = _set_required_opps(dev, opp_table, NULL);
822 		} else if (!_get_opp_count(opp_table)) {
823 			return 0;
824 		} else {
825 			dev_err(dev, "target frequency can't be 0\n");
826 			ret = -EINVAL;
827 		}
828 
829 		goto put_opp_table;
830 	}
831 
832 	clk = opp_table->clk;
833 	if (IS_ERR(clk)) {
834 		dev_err(dev, "%s: No clock available for the device\n",
835 			__func__);
836 		ret = PTR_ERR(clk);
837 		goto put_opp_table;
838 	}
839 
840 	freq = clk_round_rate(clk, target_freq);
841 	if ((long)freq <= 0)
842 		freq = target_freq;
843 
844 	old_freq = clk_get_rate(clk);
845 
846 	/* Return early if nothing to do */
847 	if (old_freq == freq) {
848 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
849 			__func__, freq);
850 		ret = 0;
851 		goto put_opp_table;
852 	}
853 
854 	/*
855 	 * For IO devices which require an OPP on some platforms/SoCs
856 	 * while just needing to scale the clock on some others
857 	 * we look for empty OPP tables with just a clock handle and
858 	 * scale only the clk. This makes dev_pm_opp_set_rate()
859 	 * equivalent to a clk_set_rate()
860 	 */
861 	if (!_get_opp_count(opp_table)) {
862 		ret = _generic_set_opp_clk_only(dev, clk, freq);
863 		goto put_opp_table;
864 	}
865 
866 	temp_freq = old_freq;
867 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
868 	if (IS_ERR(old_opp)) {
869 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
870 			__func__, old_freq, PTR_ERR(old_opp));
871 	}
872 
873 	temp_freq = freq;
874 	opp = _find_freq_ceil(opp_table, &temp_freq);
875 	if (IS_ERR(opp)) {
876 		ret = PTR_ERR(opp);
877 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
878 			__func__, freq, ret);
879 		goto put_old_opp;
880 	}
881 
882 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
883 		old_freq, freq);
884 
885 	/* Scaling up? Configure required OPPs before frequency */
886 	if (freq >= old_freq) {
887 		ret = _set_required_opps(dev, opp_table, opp);
888 		if (ret)
889 			goto put_opp;
890 	}
891 
892 	if (opp_table->set_opp) {
893 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
894 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
895 				      opp->supplies);
896 	} else if (opp_table->regulators) {
897 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
898 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
899 						 opp->supplies);
900 	} else {
901 		/* Only frequency scaling */
902 		ret = _generic_set_opp_clk_only(dev, clk, freq);
903 	}
904 
905 	/* Scaling down? Configure required OPPs after frequency */
906 	if (!ret && freq < old_freq) {
907 		ret = _set_required_opps(dev, opp_table, opp);
908 		if (ret)
909 			dev_err(dev, "Failed to set required opps: %d\n", ret);
910 	}
911 
912 put_opp:
913 	dev_pm_opp_put(opp);
914 put_old_opp:
915 	if (!IS_ERR(old_opp))
916 		dev_pm_opp_put(old_opp);
917 put_opp_table:
918 	dev_pm_opp_put_opp_table(opp_table);
919 	return ret;
920 }
921 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
922 
923 /* OPP-dev Helpers */
924 static void _remove_opp_dev(struct opp_device *opp_dev,
925 			    struct opp_table *opp_table)
926 {
927 	opp_debug_unregister(opp_dev, opp_table);
928 	list_del(&opp_dev->node);
929 	kfree(opp_dev);
930 }
931 
932 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
933 						struct opp_table *opp_table)
934 {
935 	struct opp_device *opp_dev;
936 
937 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
938 	if (!opp_dev)
939 		return NULL;
940 
941 	/* Initialize opp-dev */
942 	opp_dev->dev = dev;
943 
944 	list_add(&opp_dev->node, &opp_table->dev_list);
945 
946 	/* Create debugfs entries for the opp_table */
947 	opp_debug_register(opp_dev, opp_table);
948 
949 	return opp_dev;
950 }
951 
952 struct opp_device *_add_opp_dev(const struct device *dev,
953 				struct opp_table *opp_table)
954 {
955 	struct opp_device *opp_dev;
956 
957 	mutex_lock(&opp_table->lock);
958 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
959 	mutex_unlock(&opp_table->lock);
960 
961 	return opp_dev;
962 }
963 
964 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
965 {
966 	struct opp_table *opp_table;
967 	struct opp_device *opp_dev;
968 	int ret;
969 
970 	/*
971 	 * Allocate a new OPP table. In the infrequent case where a new
972 	 * device is needed to be added, we pay this penalty.
973 	 */
974 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
975 	if (!opp_table)
976 		return NULL;
977 
978 	mutex_init(&opp_table->lock);
979 	mutex_init(&opp_table->genpd_virt_dev_lock);
980 	INIT_LIST_HEAD(&opp_table->dev_list);
981 
982 	/* Mark regulator count uninitialized */
983 	opp_table->regulator_count = -1;
984 
985 	opp_dev = _add_opp_dev(dev, opp_table);
986 	if (!opp_dev) {
987 		kfree(opp_table);
988 		return NULL;
989 	}
990 
991 	_of_init_opp_table(opp_table, dev, index);
992 
993 	/* Find clk for the device */
994 	opp_table->clk = clk_get(dev, NULL);
995 	if (IS_ERR(opp_table->clk)) {
996 		ret = PTR_ERR(opp_table->clk);
997 		if (ret != -EPROBE_DEFER)
998 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
999 				ret);
1000 	}
1001 
1002 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1003 	INIT_LIST_HEAD(&opp_table->opp_list);
1004 	kref_init(&opp_table->kref);
1005 
1006 	/* Secure the device table modification */
1007 	list_add(&opp_table->node, &opp_tables);
1008 	return opp_table;
1009 }
1010 
1011 void _get_opp_table_kref(struct opp_table *opp_table)
1012 {
1013 	kref_get(&opp_table->kref);
1014 }
1015 
1016 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1017 {
1018 	struct opp_table *opp_table;
1019 
1020 	/* Hold our table modification lock here */
1021 	mutex_lock(&opp_table_lock);
1022 
1023 	opp_table = _find_opp_table_unlocked(dev);
1024 	if (!IS_ERR(opp_table))
1025 		goto unlock;
1026 
1027 	opp_table = _managed_opp(dev, index);
1028 	if (opp_table) {
1029 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1030 			dev_pm_opp_put_opp_table(opp_table);
1031 			opp_table = NULL;
1032 		}
1033 		goto unlock;
1034 	}
1035 
1036 	opp_table = _allocate_opp_table(dev, index);
1037 
1038 unlock:
1039 	mutex_unlock(&opp_table_lock);
1040 
1041 	return opp_table;
1042 }
1043 
1044 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1045 {
1046 	return _opp_get_opp_table(dev, 0);
1047 }
1048 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1049 
1050 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1051 						   int index)
1052 {
1053 	return _opp_get_opp_table(dev, index);
1054 }
1055 
1056 static void _opp_table_kref_release(struct kref *kref)
1057 {
1058 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1059 	struct opp_device *opp_dev, *temp;
1060 
1061 	_of_clear_opp_table(opp_table);
1062 
1063 	/* Release clk */
1064 	if (!IS_ERR(opp_table->clk))
1065 		clk_put(opp_table->clk);
1066 
1067 	WARN_ON(!list_empty(&opp_table->opp_list));
1068 
1069 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1070 		/*
1071 		 * The OPP table is getting removed, drop the performance state
1072 		 * constraints.
1073 		 */
1074 		if (opp_table->genpd_performance_state)
1075 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1076 
1077 		_remove_opp_dev(opp_dev, opp_table);
1078 	}
1079 
1080 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1081 	mutex_destroy(&opp_table->lock);
1082 	list_del(&opp_table->node);
1083 	kfree(opp_table);
1084 
1085 	mutex_unlock(&opp_table_lock);
1086 }
1087 
1088 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1089 {
1090 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1091 		       &opp_table_lock);
1092 }
1093 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1094 
1095 void _opp_free(struct dev_pm_opp *opp)
1096 {
1097 	kfree(opp);
1098 }
1099 
1100 static void _opp_kref_release(struct dev_pm_opp *opp,
1101 			      struct opp_table *opp_table)
1102 {
1103 	/*
1104 	 * Notify the changes in the availability of the operable
1105 	 * frequency/voltage list.
1106 	 */
1107 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1108 	_of_opp_free_required_opps(opp_table, opp);
1109 	opp_debug_remove_one(opp);
1110 	list_del(&opp->node);
1111 	kfree(opp);
1112 }
1113 
1114 static void _opp_kref_release_unlocked(struct kref *kref)
1115 {
1116 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1117 	struct opp_table *opp_table = opp->opp_table;
1118 
1119 	_opp_kref_release(opp, opp_table);
1120 }
1121 
1122 static void _opp_kref_release_locked(struct kref *kref)
1123 {
1124 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1125 	struct opp_table *opp_table = opp->opp_table;
1126 
1127 	_opp_kref_release(opp, opp_table);
1128 	mutex_unlock(&opp_table->lock);
1129 }
1130 
1131 void dev_pm_opp_get(struct dev_pm_opp *opp)
1132 {
1133 	kref_get(&opp->kref);
1134 }
1135 
1136 void dev_pm_opp_put(struct dev_pm_opp *opp)
1137 {
1138 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1139 		       &opp->opp_table->lock);
1140 }
1141 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1142 
1143 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1144 {
1145 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1146 }
1147 
1148 /**
1149  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1150  * @dev:	device for which we do this operation
1151  * @freq:	OPP to remove with matching 'freq'
1152  *
1153  * This function removes an opp from the opp table.
1154  */
1155 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1156 {
1157 	struct dev_pm_opp *opp;
1158 	struct opp_table *opp_table;
1159 	bool found = false;
1160 
1161 	opp_table = _find_opp_table(dev);
1162 	if (IS_ERR(opp_table))
1163 		return;
1164 
1165 	mutex_lock(&opp_table->lock);
1166 
1167 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1168 		if (opp->rate == freq) {
1169 			found = true;
1170 			break;
1171 		}
1172 	}
1173 
1174 	mutex_unlock(&opp_table->lock);
1175 
1176 	if (found) {
1177 		dev_pm_opp_put(opp);
1178 
1179 		/* Drop the reference taken by dev_pm_opp_add() */
1180 		dev_pm_opp_put_opp_table(opp_table);
1181 	} else {
1182 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1183 			 __func__, freq);
1184 	}
1185 
1186 	/* Drop the reference taken by _find_opp_table() */
1187 	dev_pm_opp_put_opp_table(opp_table);
1188 }
1189 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1190 
1191 void _opp_remove_all_static(struct opp_table *opp_table)
1192 {
1193 	struct dev_pm_opp *opp, *tmp;
1194 
1195 	mutex_lock(&opp_table->lock);
1196 
1197 	if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1198 		goto unlock;
1199 
1200 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1201 		if (!opp->dynamic)
1202 			dev_pm_opp_put_unlocked(opp);
1203 	}
1204 
1205 unlock:
1206 	mutex_unlock(&opp_table->lock);
1207 }
1208 
1209 /**
1210  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1211  * @dev:	device for which we do this operation
1212  *
1213  * This function removes all dynamically created OPPs from the opp table.
1214  */
1215 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1216 {
1217 	struct opp_table *opp_table;
1218 	struct dev_pm_opp *opp, *temp;
1219 	int count = 0;
1220 
1221 	opp_table = _find_opp_table(dev);
1222 	if (IS_ERR(opp_table))
1223 		return;
1224 
1225 	mutex_lock(&opp_table->lock);
1226 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1227 		if (opp->dynamic) {
1228 			dev_pm_opp_put_unlocked(opp);
1229 			count++;
1230 		}
1231 	}
1232 	mutex_unlock(&opp_table->lock);
1233 
1234 	/* Drop the references taken by dev_pm_opp_add() */
1235 	while (count--)
1236 		dev_pm_opp_put_opp_table(opp_table);
1237 
1238 	/* Drop the reference taken by _find_opp_table() */
1239 	dev_pm_opp_put_opp_table(opp_table);
1240 }
1241 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1242 
1243 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1244 {
1245 	struct dev_pm_opp *opp;
1246 	int count, supply_size;
1247 
1248 	/* Allocate space for at least one supply */
1249 	count = table->regulator_count > 0 ? table->regulator_count : 1;
1250 	supply_size = sizeof(*opp->supplies) * count;
1251 
1252 	/* allocate new OPP node and supplies structures */
1253 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1254 	if (!opp)
1255 		return NULL;
1256 
1257 	/* Put the supplies at the end of the OPP structure as an empty array */
1258 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1259 	INIT_LIST_HEAD(&opp->node);
1260 
1261 	return opp;
1262 }
1263 
1264 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1265 					 struct opp_table *opp_table)
1266 {
1267 	struct regulator *reg;
1268 	int i;
1269 
1270 	if (!opp_table->regulators)
1271 		return true;
1272 
1273 	for (i = 0; i < opp_table->regulator_count; i++) {
1274 		reg = opp_table->regulators[i];
1275 
1276 		if (!regulator_is_supported_voltage(reg,
1277 					opp->supplies[i].u_volt_min,
1278 					opp->supplies[i].u_volt_max)) {
1279 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1280 				__func__, opp->supplies[i].u_volt_min,
1281 				opp->supplies[i].u_volt_max);
1282 			return false;
1283 		}
1284 	}
1285 
1286 	return true;
1287 }
1288 
1289 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1290 			     struct opp_table *opp_table,
1291 			     struct list_head **head)
1292 {
1293 	struct dev_pm_opp *opp;
1294 
1295 	/*
1296 	 * Insert new OPP in order of increasing frequency and discard if
1297 	 * already present.
1298 	 *
1299 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1300 	 * loop, don't replace it with head otherwise it will become an infinite
1301 	 * loop.
1302 	 */
1303 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1304 		if (new_opp->rate > opp->rate) {
1305 			*head = &opp->node;
1306 			continue;
1307 		}
1308 
1309 		if (new_opp->rate < opp->rate)
1310 			return 0;
1311 
1312 		/* Duplicate OPPs */
1313 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1314 			 __func__, opp->rate, opp->supplies[0].u_volt,
1315 			 opp->available, new_opp->rate,
1316 			 new_opp->supplies[0].u_volt, new_opp->available);
1317 
1318 		/* Should we compare voltages for all regulators here ? */
1319 		return opp->available &&
1320 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 /*
1327  * Returns:
1328  * 0: On success. And appropriate error message for duplicate OPPs.
1329  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1330  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1331  *  sure we don't print error messages unnecessarily if different parts of
1332  *  kernel try to initialize the OPP table.
1333  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1334  *  should be considered an error by the callers of _opp_add().
1335  */
1336 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1337 	     struct opp_table *opp_table, bool rate_not_available)
1338 {
1339 	struct list_head *head;
1340 	int ret;
1341 
1342 	mutex_lock(&opp_table->lock);
1343 	head = &opp_table->opp_list;
1344 
1345 	if (likely(!rate_not_available)) {
1346 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1347 		if (ret) {
1348 			mutex_unlock(&opp_table->lock);
1349 			return ret;
1350 		}
1351 	}
1352 
1353 	list_add(&new_opp->node, head);
1354 	mutex_unlock(&opp_table->lock);
1355 
1356 	new_opp->opp_table = opp_table;
1357 	kref_init(&new_opp->kref);
1358 
1359 	opp_debug_create_one(new_opp, opp_table);
1360 
1361 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1362 		new_opp->available = false;
1363 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1364 			 __func__, new_opp->rate);
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 /**
1371  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1372  * @opp_table:	OPP table
1373  * @dev:	device for which we do this operation
1374  * @freq:	Frequency in Hz for this OPP
1375  * @u_volt:	Voltage in uVolts for this OPP
1376  * @dynamic:	Dynamically added OPPs.
1377  *
1378  * This function adds an opp definition to the opp table and returns status.
1379  * The opp is made available by default and it can be controlled using
1380  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1381  *
1382  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1383  * and freed by dev_pm_opp_of_remove_table.
1384  *
1385  * Return:
1386  * 0		On success OR
1387  *		Duplicate OPPs (both freq and volt are same) and opp->available
1388  * -EEXIST	Freq are same and volt are different OR
1389  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1390  * -ENOMEM	Memory allocation failure
1391  */
1392 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1393 		unsigned long freq, long u_volt, bool dynamic)
1394 {
1395 	struct dev_pm_opp *new_opp;
1396 	unsigned long tol;
1397 	int ret;
1398 
1399 	new_opp = _opp_allocate(opp_table);
1400 	if (!new_opp)
1401 		return -ENOMEM;
1402 
1403 	/* populate the opp table */
1404 	new_opp->rate = freq;
1405 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1406 	new_opp->supplies[0].u_volt = u_volt;
1407 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1408 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1409 	new_opp->available = true;
1410 	new_opp->dynamic = dynamic;
1411 
1412 	ret = _opp_add(dev, new_opp, opp_table, false);
1413 	if (ret) {
1414 		/* Don't return error for duplicate OPPs */
1415 		if (ret == -EBUSY)
1416 			ret = 0;
1417 		goto free_opp;
1418 	}
1419 
1420 	/*
1421 	 * Notify the changes in the availability of the operable
1422 	 * frequency/voltage list.
1423 	 */
1424 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1425 	return 0;
1426 
1427 free_opp:
1428 	_opp_free(new_opp);
1429 
1430 	return ret;
1431 }
1432 
1433 /**
1434  * dev_pm_opp_set_supported_hw() - Set supported platforms
1435  * @dev: Device for which supported-hw has to be set.
1436  * @versions: Array of hierarchy of versions to match.
1437  * @count: Number of elements in the array.
1438  *
1439  * This is required only for the V2 bindings, and it enables a platform to
1440  * specify the hierarchy of versions it supports. OPP layer will then enable
1441  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1442  * property.
1443  */
1444 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1445 			const u32 *versions, unsigned int count)
1446 {
1447 	struct opp_table *opp_table;
1448 
1449 	opp_table = dev_pm_opp_get_opp_table(dev);
1450 	if (!opp_table)
1451 		return ERR_PTR(-ENOMEM);
1452 
1453 	/* Make sure there are no concurrent readers while updating opp_table */
1454 	WARN_ON(!list_empty(&opp_table->opp_list));
1455 
1456 	/* Another CPU that shares the OPP table has set the property ? */
1457 	if (opp_table->supported_hw)
1458 		return opp_table;
1459 
1460 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1461 					GFP_KERNEL);
1462 	if (!opp_table->supported_hw) {
1463 		dev_pm_opp_put_opp_table(opp_table);
1464 		return ERR_PTR(-ENOMEM);
1465 	}
1466 
1467 	opp_table->supported_hw_count = count;
1468 
1469 	return opp_table;
1470 }
1471 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1472 
1473 /**
1474  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1475  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1476  *
1477  * This is required only for the V2 bindings, and is called for a matching
1478  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1479  * will not be freed.
1480  */
1481 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1482 {
1483 	/* Make sure there are no concurrent readers while updating opp_table */
1484 	WARN_ON(!list_empty(&opp_table->opp_list));
1485 
1486 	kfree(opp_table->supported_hw);
1487 	opp_table->supported_hw = NULL;
1488 	opp_table->supported_hw_count = 0;
1489 
1490 	dev_pm_opp_put_opp_table(opp_table);
1491 }
1492 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1493 
1494 /**
1495  * dev_pm_opp_set_prop_name() - Set prop-extn name
1496  * @dev: Device for which the prop-name has to be set.
1497  * @name: name to postfix to properties.
1498  *
1499  * This is required only for the V2 bindings, and it enables a platform to
1500  * specify the extn to be used for certain property names. The properties to
1501  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1502  * should postfix the property name with -<name> while looking for them.
1503  */
1504 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1505 {
1506 	struct opp_table *opp_table;
1507 
1508 	opp_table = dev_pm_opp_get_opp_table(dev);
1509 	if (!opp_table)
1510 		return ERR_PTR(-ENOMEM);
1511 
1512 	/* Make sure there are no concurrent readers while updating opp_table */
1513 	WARN_ON(!list_empty(&opp_table->opp_list));
1514 
1515 	/* Another CPU that shares the OPP table has set the property ? */
1516 	if (opp_table->prop_name)
1517 		return opp_table;
1518 
1519 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1520 	if (!opp_table->prop_name) {
1521 		dev_pm_opp_put_opp_table(opp_table);
1522 		return ERR_PTR(-ENOMEM);
1523 	}
1524 
1525 	return opp_table;
1526 }
1527 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1528 
1529 /**
1530  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1531  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1532  *
1533  * This is required only for the V2 bindings, and is called for a matching
1534  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1535  * will not be freed.
1536  */
1537 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1538 {
1539 	/* Make sure there are no concurrent readers while updating opp_table */
1540 	WARN_ON(!list_empty(&opp_table->opp_list));
1541 
1542 	kfree(opp_table->prop_name);
1543 	opp_table->prop_name = NULL;
1544 
1545 	dev_pm_opp_put_opp_table(opp_table);
1546 }
1547 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1548 
1549 static int _allocate_set_opp_data(struct opp_table *opp_table)
1550 {
1551 	struct dev_pm_set_opp_data *data;
1552 	int len, count = opp_table->regulator_count;
1553 
1554 	if (WARN_ON(!opp_table->regulators))
1555 		return -EINVAL;
1556 
1557 	/* space for set_opp_data */
1558 	len = sizeof(*data);
1559 
1560 	/* space for old_opp.supplies and new_opp.supplies */
1561 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1562 
1563 	data = kzalloc(len, GFP_KERNEL);
1564 	if (!data)
1565 		return -ENOMEM;
1566 
1567 	data->old_opp.supplies = (void *)(data + 1);
1568 	data->new_opp.supplies = data->old_opp.supplies + count;
1569 
1570 	opp_table->set_opp_data = data;
1571 
1572 	return 0;
1573 }
1574 
1575 static void _free_set_opp_data(struct opp_table *opp_table)
1576 {
1577 	kfree(opp_table->set_opp_data);
1578 	opp_table->set_opp_data = NULL;
1579 }
1580 
1581 /**
1582  * dev_pm_opp_set_regulators() - Set regulator names for the device
1583  * @dev: Device for which regulator name is being set.
1584  * @names: Array of pointers to the names of the regulator.
1585  * @count: Number of regulators.
1586  *
1587  * In order to support OPP switching, OPP layer needs to know the name of the
1588  * device's regulators, as the core would be required to switch voltages as
1589  * well.
1590  *
1591  * This must be called before any OPPs are initialized for the device.
1592  */
1593 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1594 					    const char * const names[],
1595 					    unsigned int count)
1596 {
1597 	struct opp_table *opp_table;
1598 	struct regulator *reg;
1599 	int ret, i;
1600 
1601 	opp_table = dev_pm_opp_get_opp_table(dev);
1602 	if (!opp_table)
1603 		return ERR_PTR(-ENOMEM);
1604 
1605 	/* This should be called before OPPs are initialized */
1606 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1607 		ret = -EBUSY;
1608 		goto err;
1609 	}
1610 
1611 	/* Another CPU that shares the OPP table has set the regulators ? */
1612 	if (opp_table->regulators)
1613 		return opp_table;
1614 
1615 	opp_table->regulators = kmalloc_array(count,
1616 					      sizeof(*opp_table->regulators),
1617 					      GFP_KERNEL);
1618 	if (!opp_table->regulators) {
1619 		ret = -ENOMEM;
1620 		goto err;
1621 	}
1622 
1623 	for (i = 0; i < count; i++) {
1624 		reg = regulator_get_optional(dev, names[i]);
1625 		if (IS_ERR(reg)) {
1626 			ret = PTR_ERR(reg);
1627 			if (ret != -EPROBE_DEFER)
1628 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1629 					__func__, names[i], ret);
1630 			goto free_regulators;
1631 		}
1632 
1633 		opp_table->regulators[i] = reg;
1634 	}
1635 
1636 	opp_table->regulator_count = count;
1637 
1638 	/* Allocate block only once to pass to set_opp() routines */
1639 	ret = _allocate_set_opp_data(opp_table);
1640 	if (ret)
1641 		goto free_regulators;
1642 
1643 	return opp_table;
1644 
1645 free_regulators:
1646 	while (i != 0)
1647 		regulator_put(opp_table->regulators[--i]);
1648 
1649 	kfree(opp_table->regulators);
1650 	opp_table->regulators = NULL;
1651 	opp_table->regulator_count = -1;
1652 err:
1653 	dev_pm_opp_put_opp_table(opp_table);
1654 
1655 	return ERR_PTR(ret);
1656 }
1657 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1658 
1659 /**
1660  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1661  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1662  */
1663 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1664 {
1665 	int i;
1666 
1667 	if (!opp_table->regulators)
1668 		goto put_opp_table;
1669 
1670 	/* Make sure there are no concurrent readers while updating opp_table */
1671 	WARN_ON(!list_empty(&opp_table->opp_list));
1672 
1673 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1674 		regulator_put(opp_table->regulators[i]);
1675 
1676 	_free_set_opp_data(opp_table);
1677 
1678 	kfree(opp_table->regulators);
1679 	opp_table->regulators = NULL;
1680 	opp_table->regulator_count = -1;
1681 
1682 put_opp_table:
1683 	dev_pm_opp_put_opp_table(opp_table);
1684 }
1685 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1686 
1687 /**
1688  * dev_pm_opp_set_clkname() - Set clk name for the device
1689  * @dev: Device for which clk name is being set.
1690  * @name: Clk name.
1691  *
1692  * In order to support OPP switching, OPP layer needs to get pointer to the
1693  * clock for the device. Simple cases work fine without using this routine (i.e.
1694  * by passing connection-id as NULL), but for a device with multiple clocks
1695  * available, the OPP core needs to know the exact name of the clk to use.
1696  *
1697  * This must be called before any OPPs are initialized for the device.
1698  */
1699 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1700 {
1701 	struct opp_table *opp_table;
1702 	int ret;
1703 
1704 	opp_table = dev_pm_opp_get_opp_table(dev);
1705 	if (!opp_table)
1706 		return ERR_PTR(-ENOMEM);
1707 
1708 	/* This should be called before OPPs are initialized */
1709 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1710 		ret = -EBUSY;
1711 		goto err;
1712 	}
1713 
1714 	/* Already have default clk set, free it */
1715 	if (!IS_ERR(opp_table->clk))
1716 		clk_put(opp_table->clk);
1717 
1718 	/* Find clk for the device */
1719 	opp_table->clk = clk_get(dev, name);
1720 	if (IS_ERR(opp_table->clk)) {
1721 		ret = PTR_ERR(opp_table->clk);
1722 		if (ret != -EPROBE_DEFER) {
1723 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1724 				ret);
1725 		}
1726 		goto err;
1727 	}
1728 
1729 	return opp_table;
1730 
1731 err:
1732 	dev_pm_opp_put_opp_table(opp_table);
1733 
1734 	return ERR_PTR(ret);
1735 }
1736 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1737 
1738 /**
1739  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1740  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1741  */
1742 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1743 {
1744 	/* Make sure there are no concurrent readers while updating opp_table */
1745 	WARN_ON(!list_empty(&opp_table->opp_list));
1746 
1747 	clk_put(opp_table->clk);
1748 	opp_table->clk = ERR_PTR(-EINVAL);
1749 
1750 	dev_pm_opp_put_opp_table(opp_table);
1751 }
1752 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1753 
1754 /**
1755  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1756  * @dev: Device for which the helper is getting registered.
1757  * @set_opp: Custom set OPP helper.
1758  *
1759  * This is useful to support complex platforms (like platforms with multiple
1760  * regulators per device), instead of the generic OPP set rate helper.
1761  *
1762  * This must be called before any OPPs are initialized for the device.
1763  */
1764 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1765 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1766 {
1767 	struct opp_table *opp_table;
1768 
1769 	if (!set_opp)
1770 		return ERR_PTR(-EINVAL);
1771 
1772 	opp_table = dev_pm_opp_get_opp_table(dev);
1773 	if (!opp_table)
1774 		return ERR_PTR(-ENOMEM);
1775 
1776 	/* This should be called before OPPs are initialized */
1777 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1778 		dev_pm_opp_put_opp_table(opp_table);
1779 		return ERR_PTR(-EBUSY);
1780 	}
1781 
1782 	/* Another CPU that shares the OPP table has set the helper ? */
1783 	if (!opp_table->set_opp)
1784 		opp_table->set_opp = set_opp;
1785 
1786 	return opp_table;
1787 }
1788 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1789 
1790 /**
1791  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1792  *					   set_opp helper
1793  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1794  *
1795  * Release resources blocked for platform specific set_opp helper.
1796  */
1797 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1798 {
1799 	/* Make sure there are no concurrent readers while updating opp_table */
1800 	WARN_ON(!list_empty(&opp_table->opp_list));
1801 
1802 	opp_table->set_opp = NULL;
1803 	dev_pm_opp_put_opp_table(opp_table);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1806 
1807 static void _opp_detach_genpd(struct opp_table *opp_table)
1808 {
1809 	int index;
1810 
1811 	for (index = 0; index < opp_table->required_opp_count; index++) {
1812 		if (!opp_table->genpd_virt_devs[index])
1813 			continue;
1814 
1815 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1816 		opp_table->genpd_virt_devs[index] = NULL;
1817 	}
1818 
1819 	kfree(opp_table->genpd_virt_devs);
1820 	opp_table->genpd_virt_devs = NULL;
1821 }
1822 
1823 /**
1824  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1825  * @dev: Consumer device for which the genpd is getting attached.
1826  * @names: Null terminated array of pointers containing names of genpd to attach.
1827  * @virt_devs: Pointer to return the array of virtual devices.
1828  *
1829  * Multiple generic power domains for a device are supported with the help of
1830  * virtual genpd devices, which are created for each consumer device - genpd
1831  * pair. These are the device structures which are attached to the power domain
1832  * and are required by the OPP core to set the performance state of the genpd.
1833  * The same API also works for the case where single genpd is available and so
1834  * we don't need to support that separately.
1835  *
1836  * This helper will normally be called by the consumer driver of the device
1837  * "dev", as only that has details of the genpd names.
1838  *
1839  * This helper needs to be called once with a list of all genpd to attach.
1840  * Otherwise the original device structure will be used instead by the OPP core.
1841  *
1842  * The order of entries in the names array must match the order in which
1843  * "required-opps" are added in DT.
1844  */
1845 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1846 		const char **names, struct device ***virt_devs)
1847 {
1848 	struct opp_table *opp_table;
1849 	struct device *virt_dev;
1850 	int index = 0, ret = -EINVAL;
1851 	const char **name = names;
1852 
1853 	opp_table = dev_pm_opp_get_opp_table(dev);
1854 	if (!opp_table)
1855 		return ERR_PTR(-ENOMEM);
1856 
1857 	/*
1858 	 * If the genpd's OPP table isn't already initialized, parsing of the
1859 	 * required-opps fail for dev. We should retry this after genpd's OPP
1860 	 * table is added.
1861 	 */
1862 	if (!opp_table->required_opp_count) {
1863 		ret = -EPROBE_DEFER;
1864 		goto put_table;
1865 	}
1866 
1867 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1868 
1869 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1870 					     sizeof(*opp_table->genpd_virt_devs),
1871 					     GFP_KERNEL);
1872 	if (!opp_table->genpd_virt_devs)
1873 		goto unlock;
1874 
1875 	while (*name) {
1876 		if (index >= opp_table->required_opp_count) {
1877 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1878 				*name, opp_table->required_opp_count, index);
1879 			goto err;
1880 		}
1881 
1882 		if (opp_table->genpd_virt_devs[index]) {
1883 			dev_err(dev, "Genpd virtual device already set %s\n",
1884 				*name);
1885 			goto err;
1886 		}
1887 
1888 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1889 		if (IS_ERR(virt_dev)) {
1890 			ret = PTR_ERR(virt_dev);
1891 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1892 			goto err;
1893 		}
1894 
1895 		opp_table->genpd_virt_devs[index] = virt_dev;
1896 		index++;
1897 		name++;
1898 	}
1899 
1900 	if (virt_devs)
1901 		*virt_devs = opp_table->genpd_virt_devs;
1902 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1903 
1904 	return opp_table;
1905 
1906 err:
1907 	_opp_detach_genpd(opp_table);
1908 unlock:
1909 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1910 
1911 put_table:
1912 	dev_pm_opp_put_opp_table(opp_table);
1913 
1914 	return ERR_PTR(ret);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1917 
1918 /**
1919  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1920  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1921  *
1922  * This detaches the genpd(s), resets the virtual device pointers, and puts the
1923  * OPP table.
1924  */
1925 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1926 {
1927 	/*
1928 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1929 	 * used in parallel.
1930 	 */
1931 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1932 	_opp_detach_genpd(opp_table);
1933 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1934 
1935 	dev_pm_opp_put_opp_table(opp_table);
1936 }
1937 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1938 
1939 /**
1940  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1941  * @src_table: OPP table which has dst_table as one of its required OPP table.
1942  * @dst_table: Required OPP table of the src_table.
1943  * @pstate: Current performance state of the src_table.
1944  *
1945  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1946  * "required-opps" property of the OPP (present in @src_table) which has
1947  * performance state set to @pstate.
1948  *
1949  * Return: Zero or positive performance state on success, otherwise negative
1950  * value on errors.
1951  */
1952 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1953 				       struct opp_table *dst_table,
1954 				       unsigned int pstate)
1955 {
1956 	struct dev_pm_opp *opp;
1957 	int dest_pstate = -EINVAL;
1958 	int i;
1959 
1960 	if (!pstate)
1961 		return 0;
1962 
1963 	/*
1964 	 * Normally the src_table will have the "required_opps" property set to
1965 	 * point to one of the OPPs in the dst_table, but in some cases the
1966 	 * genpd and its master have one to one mapping of performance states
1967 	 * and so none of them have the "required-opps" property set. Return the
1968 	 * pstate of the src_table as it is in such cases.
1969 	 */
1970 	if (!src_table->required_opp_count)
1971 		return pstate;
1972 
1973 	for (i = 0; i < src_table->required_opp_count; i++) {
1974 		if (src_table->required_opp_tables[i]->np == dst_table->np)
1975 			break;
1976 	}
1977 
1978 	if (unlikely(i == src_table->required_opp_count)) {
1979 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1980 		       __func__, src_table, dst_table);
1981 		return -EINVAL;
1982 	}
1983 
1984 	mutex_lock(&src_table->lock);
1985 
1986 	list_for_each_entry(opp, &src_table->opp_list, node) {
1987 		if (opp->pstate == pstate) {
1988 			dest_pstate = opp->required_opps[i]->pstate;
1989 			goto unlock;
1990 		}
1991 	}
1992 
1993 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1994 	       dst_table);
1995 
1996 unlock:
1997 	mutex_unlock(&src_table->lock);
1998 
1999 	return dest_pstate;
2000 }
2001 
2002 /**
2003  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2004  * @dev:	device for which we do this operation
2005  * @freq:	Frequency in Hz for this OPP
2006  * @u_volt:	Voltage in uVolts for this OPP
2007  *
2008  * This function adds an opp definition to the opp table and returns status.
2009  * The opp is made available by default and it can be controlled using
2010  * dev_pm_opp_enable/disable functions.
2011  *
2012  * Return:
2013  * 0		On success OR
2014  *		Duplicate OPPs (both freq and volt are same) and opp->available
2015  * -EEXIST	Freq are same and volt are different OR
2016  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2017  * -ENOMEM	Memory allocation failure
2018  */
2019 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2020 {
2021 	struct opp_table *opp_table;
2022 	int ret;
2023 
2024 	opp_table = dev_pm_opp_get_opp_table(dev);
2025 	if (!opp_table)
2026 		return -ENOMEM;
2027 
2028 	/* Fix regulator count for dynamic OPPs */
2029 	opp_table->regulator_count = 1;
2030 
2031 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2032 	if (ret)
2033 		dev_pm_opp_put_opp_table(opp_table);
2034 
2035 	return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2038 
2039 /**
2040  * _opp_set_availability() - helper to set the availability of an opp
2041  * @dev:		device for which we do this operation
2042  * @freq:		OPP frequency to modify availability
2043  * @availability_req:	availability status requested for this opp
2044  *
2045  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2046  * which is isolated here.
2047  *
2048  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2049  * copy operation, returns 0 if no modification was done OR modification was
2050  * successful.
2051  */
2052 static int _opp_set_availability(struct device *dev, unsigned long freq,
2053 				 bool availability_req)
2054 {
2055 	struct opp_table *opp_table;
2056 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2057 	int r = 0;
2058 
2059 	/* Find the opp_table */
2060 	opp_table = _find_opp_table(dev);
2061 	if (IS_ERR(opp_table)) {
2062 		r = PTR_ERR(opp_table);
2063 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2064 		return r;
2065 	}
2066 
2067 	mutex_lock(&opp_table->lock);
2068 
2069 	/* Do we have the frequency? */
2070 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2071 		if (tmp_opp->rate == freq) {
2072 			opp = tmp_opp;
2073 			break;
2074 		}
2075 	}
2076 
2077 	if (IS_ERR(opp)) {
2078 		r = PTR_ERR(opp);
2079 		goto unlock;
2080 	}
2081 
2082 	/* Is update really needed? */
2083 	if (opp->available == availability_req)
2084 		goto unlock;
2085 
2086 	opp->available = availability_req;
2087 
2088 	dev_pm_opp_get(opp);
2089 	mutex_unlock(&opp_table->lock);
2090 
2091 	/* Notify the change of the OPP availability */
2092 	if (availability_req)
2093 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2094 					     opp);
2095 	else
2096 		blocking_notifier_call_chain(&opp_table->head,
2097 					     OPP_EVENT_DISABLE, opp);
2098 
2099 	dev_pm_opp_put(opp);
2100 	goto put_table;
2101 
2102 unlock:
2103 	mutex_unlock(&opp_table->lock);
2104 put_table:
2105 	dev_pm_opp_put_opp_table(opp_table);
2106 	return r;
2107 }
2108 
2109 /**
2110  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2111  * @dev:		device for which we do this operation
2112  * @freq:		OPP frequency to adjust voltage of
2113  * @u_volt:		new OPP target voltage
2114  * @u_volt_min:		new OPP min voltage
2115  * @u_volt_max:		new OPP max voltage
2116  *
2117  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2118  * copy operation, returns 0 if no modifcation was done OR modification was
2119  * successful.
2120  */
2121 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2122 			      unsigned long u_volt, unsigned long u_volt_min,
2123 			      unsigned long u_volt_max)
2124 
2125 {
2126 	struct opp_table *opp_table;
2127 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2128 	int r = 0;
2129 
2130 	/* Find the opp_table */
2131 	opp_table = _find_opp_table(dev);
2132 	if (IS_ERR(opp_table)) {
2133 		r = PTR_ERR(opp_table);
2134 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2135 		return r;
2136 	}
2137 
2138 	mutex_lock(&opp_table->lock);
2139 
2140 	/* Do we have the frequency? */
2141 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2142 		if (tmp_opp->rate == freq) {
2143 			opp = tmp_opp;
2144 			break;
2145 		}
2146 	}
2147 
2148 	if (IS_ERR(opp)) {
2149 		r = PTR_ERR(opp);
2150 		goto adjust_unlock;
2151 	}
2152 
2153 	/* Is update really needed? */
2154 	if (opp->supplies->u_volt == u_volt)
2155 		goto adjust_unlock;
2156 
2157 	opp->supplies->u_volt = u_volt;
2158 	opp->supplies->u_volt_min = u_volt_min;
2159 	opp->supplies->u_volt_max = u_volt_max;
2160 
2161 	dev_pm_opp_get(opp);
2162 	mutex_unlock(&opp_table->lock);
2163 
2164 	/* Notify the voltage change of the OPP */
2165 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2166 				     opp);
2167 
2168 	dev_pm_opp_put(opp);
2169 	goto adjust_put_table;
2170 
2171 adjust_unlock:
2172 	mutex_unlock(&opp_table->lock);
2173 adjust_put_table:
2174 	dev_pm_opp_put_opp_table(opp_table);
2175 	return r;
2176 }
2177 
2178 /**
2179  * dev_pm_opp_enable() - Enable a specific OPP
2180  * @dev:	device for which we do this operation
2181  * @freq:	OPP frequency to enable
2182  *
2183  * Enables a provided opp. If the operation is valid, this returns 0, else the
2184  * corresponding error value. It is meant to be used for users an OPP available
2185  * after being temporarily made unavailable with dev_pm_opp_disable.
2186  *
2187  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2188  * copy operation, returns 0 if no modification was done OR modification was
2189  * successful.
2190  */
2191 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2192 {
2193 	return _opp_set_availability(dev, freq, true);
2194 }
2195 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2196 
2197 /**
2198  * dev_pm_opp_disable() - Disable a specific OPP
2199  * @dev:	device for which we do this operation
2200  * @freq:	OPP frequency to disable
2201  *
2202  * Disables a provided opp. If the operation is valid, this returns
2203  * 0, else the corresponding error value. It is meant to be a temporary
2204  * control by users to make this OPP not available until the circumstances are
2205  * right to make it available again (with a call to dev_pm_opp_enable).
2206  *
2207  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2208  * copy operation, returns 0 if no modification was done OR modification was
2209  * successful.
2210  */
2211 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2212 {
2213 	return _opp_set_availability(dev, freq, false);
2214 }
2215 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2216 
2217 /**
2218  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2219  * @dev:	Device for which notifier needs to be registered
2220  * @nb:		Notifier block to be registered
2221  *
2222  * Return: 0 on success or a negative error value.
2223  */
2224 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2225 {
2226 	struct opp_table *opp_table;
2227 	int ret;
2228 
2229 	opp_table = _find_opp_table(dev);
2230 	if (IS_ERR(opp_table))
2231 		return PTR_ERR(opp_table);
2232 
2233 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2234 
2235 	dev_pm_opp_put_opp_table(opp_table);
2236 
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2240 
2241 /**
2242  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2243  * @dev:	Device for which notifier needs to be unregistered
2244  * @nb:		Notifier block to be unregistered
2245  *
2246  * Return: 0 on success or a negative error value.
2247  */
2248 int dev_pm_opp_unregister_notifier(struct device *dev,
2249 				   struct notifier_block *nb)
2250 {
2251 	struct opp_table *opp_table;
2252 	int ret;
2253 
2254 	opp_table = _find_opp_table(dev);
2255 	if (IS_ERR(opp_table))
2256 		return PTR_ERR(opp_table);
2257 
2258 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2259 
2260 	dev_pm_opp_put_opp_table(opp_table);
2261 
2262 	return ret;
2263 }
2264 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2265 
2266 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2267 {
2268 	struct opp_table *opp_table;
2269 
2270 	/* Check for existing table for 'dev' */
2271 	opp_table = _find_opp_table(dev);
2272 	if (IS_ERR(opp_table)) {
2273 		int error = PTR_ERR(opp_table);
2274 
2275 		if (error != -ENODEV)
2276 			WARN(1, "%s: opp_table: %d\n",
2277 			     IS_ERR_OR_NULL(dev) ?
2278 					"Invalid device" : dev_name(dev),
2279 			     error);
2280 		return;
2281 	}
2282 
2283 	_opp_remove_all_static(opp_table);
2284 
2285 	/* Drop reference taken by _find_opp_table() */
2286 	dev_pm_opp_put_opp_table(opp_table);
2287 
2288 	/* Drop reference taken while the OPP table was added */
2289 	dev_pm_opp_put_opp_table(opp_table);
2290 }
2291 
2292 /**
2293  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2294  * @dev:	device pointer used to lookup OPP table.
2295  *
2296  * Free both OPPs created using static entries present in DT and the
2297  * dynamically added entries.
2298  */
2299 void dev_pm_opp_remove_table(struct device *dev)
2300 {
2301 	_dev_pm_opp_find_and_remove_table(dev);
2302 }
2303 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2304