xref: /openbmc/linux/drivers/opp/core.c (revision be709d48)
1 /*
2  * Generic OPP Interface
3  *
4  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
5  *	Nishanth Menon
6  *	Romit Dasgupta
7  *	Kevin Hilman
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/pm_domain.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include "opp.h"
26 
27 /*
28  * The root of the list of all opp-tables. All opp_table structures branch off
29  * from here, with each opp_table containing the list of opps it supports in
30  * various states of availability.
31  */
32 LIST_HEAD(opp_tables);
33 /* Lock to allow exclusive modification to the device and opp lists */
34 DEFINE_MUTEX(opp_table_lock);
35 
36 static struct opp_device *_find_opp_dev(const struct device *dev,
37 					struct opp_table *opp_table)
38 {
39 	struct opp_device *opp_dev;
40 
41 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 		if (opp_dev->dev == dev)
43 			return opp_dev;
44 
45 	return NULL;
46 }
47 
48 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
49 {
50 	struct opp_table *opp_table;
51 	bool found;
52 
53 	list_for_each_entry(opp_table, &opp_tables, node) {
54 		mutex_lock(&opp_table->lock);
55 		found = !!_find_opp_dev(dev, opp_table);
56 		mutex_unlock(&opp_table->lock);
57 
58 		if (found) {
59 			_get_opp_table_kref(opp_table);
60 
61 			return opp_table;
62 		}
63 	}
64 
65 	return ERR_PTR(-ENODEV);
66 }
67 
68 /**
69  * _find_opp_table() - find opp_table struct using device pointer
70  * @dev:	device pointer used to lookup OPP table
71  *
72  * Search OPP table for one containing matching device.
73  *
74  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
75  * -EINVAL based on type of error.
76  *
77  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
78  */
79 struct opp_table *_find_opp_table(struct device *dev)
80 {
81 	struct opp_table *opp_table;
82 
83 	if (IS_ERR_OR_NULL(dev)) {
84 		pr_err("%s: Invalid parameters\n", __func__);
85 		return ERR_PTR(-EINVAL);
86 	}
87 
88 	mutex_lock(&opp_table_lock);
89 	opp_table = _find_opp_table_unlocked(dev);
90 	mutex_unlock(&opp_table_lock);
91 
92 	return opp_table;
93 }
94 
95 /**
96  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
97  * @opp:	opp for which voltage has to be returned for
98  *
99  * Return: voltage in micro volt corresponding to the opp, else
100  * return 0
101  *
102  * This is useful only for devices with single power supply.
103  */
104 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
105 {
106 	if (IS_ERR_OR_NULL(opp)) {
107 		pr_err("%s: Invalid parameters\n", __func__);
108 		return 0;
109 	}
110 
111 	return opp->supplies[0].u_volt;
112 }
113 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
114 
115 /**
116  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
117  * @opp:	opp for which frequency has to be returned for
118  *
119  * Return: frequency in hertz corresponding to the opp, else
120  * return 0
121  */
122 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
123 {
124 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
125 		pr_err("%s: Invalid parameters\n", __func__);
126 		return 0;
127 	}
128 
129 	return opp->rate;
130 }
131 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
132 
133 /**
134  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
135  * @opp:	opp for which level value has to be returned for
136  *
137  * Return: level read from device tree corresponding to the opp, else
138  * return 0.
139  */
140 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
141 {
142 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
143 		pr_err("%s: Invalid parameters\n", __func__);
144 		return 0;
145 	}
146 
147 	return opp->level;
148 }
149 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
150 
151 /**
152  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
153  * @opp: opp for which turbo mode is being verified
154  *
155  * Turbo OPPs are not for normal use, and can be enabled (under certain
156  * conditions) for short duration of times to finish high throughput work
157  * quickly. Running on them for longer times may overheat the chip.
158  *
159  * Return: true if opp is turbo opp, else false.
160  */
161 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
162 {
163 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
164 		pr_err("%s: Invalid parameters\n", __func__);
165 		return false;
166 	}
167 
168 	return opp->turbo;
169 }
170 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
171 
172 /**
173  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
174  * @dev:	device for which we do this operation
175  *
176  * Return: This function returns the max clock latency in nanoseconds.
177  */
178 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
179 {
180 	struct opp_table *opp_table;
181 	unsigned long clock_latency_ns;
182 
183 	opp_table = _find_opp_table(dev);
184 	if (IS_ERR(opp_table))
185 		return 0;
186 
187 	clock_latency_ns = opp_table->clock_latency_ns_max;
188 
189 	dev_pm_opp_put_opp_table(opp_table);
190 
191 	return clock_latency_ns;
192 }
193 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
194 
195 /**
196  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
197  * @dev: device for which we do this operation
198  *
199  * Return: This function returns the max voltage latency in nanoseconds.
200  */
201 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
202 {
203 	struct opp_table *opp_table;
204 	struct dev_pm_opp *opp;
205 	struct regulator *reg;
206 	unsigned long latency_ns = 0;
207 	int ret, i, count;
208 	struct {
209 		unsigned long min;
210 		unsigned long max;
211 	} *uV;
212 
213 	opp_table = _find_opp_table(dev);
214 	if (IS_ERR(opp_table))
215 		return 0;
216 
217 	/* Regulator may not be required for the device */
218 	if (!opp_table->regulators)
219 		goto put_opp_table;
220 
221 	count = opp_table->regulator_count;
222 
223 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
224 	if (!uV)
225 		goto put_opp_table;
226 
227 	mutex_lock(&opp_table->lock);
228 
229 	for (i = 0; i < count; i++) {
230 		uV[i].min = ~0;
231 		uV[i].max = 0;
232 
233 		list_for_each_entry(opp, &opp_table->opp_list, node) {
234 			if (!opp->available)
235 				continue;
236 
237 			if (opp->supplies[i].u_volt_min < uV[i].min)
238 				uV[i].min = opp->supplies[i].u_volt_min;
239 			if (opp->supplies[i].u_volt_max > uV[i].max)
240 				uV[i].max = opp->supplies[i].u_volt_max;
241 		}
242 	}
243 
244 	mutex_unlock(&opp_table->lock);
245 
246 	/*
247 	 * The caller needs to ensure that opp_table (and hence the regulator)
248 	 * isn't freed, while we are executing this routine.
249 	 */
250 	for (i = 0; i < count; i++) {
251 		reg = opp_table->regulators[i];
252 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
253 		if (ret > 0)
254 			latency_ns += ret * 1000;
255 	}
256 
257 	kfree(uV);
258 put_opp_table:
259 	dev_pm_opp_put_opp_table(opp_table);
260 
261 	return latency_ns;
262 }
263 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
264 
265 /**
266  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
267  *					     nanoseconds
268  * @dev: device for which we do this operation
269  *
270  * Return: This function returns the max transition latency, in nanoseconds, to
271  * switch from one OPP to other.
272  */
273 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
274 {
275 	return dev_pm_opp_get_max_volt_latency(dev) +
276 		dev_pm_opp_get_max_clock_latency(dev);
277 }
278 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
279 
280 /**
281  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
282  * @dev:	device for which we do this operation
283  *
284  * Return: This function returns the frequency of the OPP marked as suspend_opp
285  * if one is available, else returns 0;
286  */
287 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
288 {
289 	struct opp_table *opp_table;
290 	unsigned long freq = 0;
291 
292 	opp_table = _find_opp_table(dev);
293 	if (IS_ERR(opp_table))
294 		return 0;
295 
296 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
297 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
298 
299 	dev_pm_opp_put_opp_table(opp_table);
300 
301 	return freq;
302 }
303 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
304 
305 int _get_opp_count(struct opp_table *opp_table)
306 {
307 	struct dev_pm_opp *opp;
308 	int count = 0;
309 
310 	mutex_lock(&opp_table->lock);
311 
312 	list_for_each_entry(opp, &opp_table->opp_list, node) {
313 		if (opp->available)
314 			count++;
315 	}
316 
317 	mutex_unlock(&opp_table->lock);
318 
319 	return count;
320 }
321 
322 /**
323  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
324  * @dev:	device for which we do this operation
325  *
326  * Return: This function returns the number of available opps if there are any,
327  * else returns 0 if none or the corresponding error value.
328  */
329 int dev_pm_opp_get_opp_count(struct device *dev)
330 {
331 	struct opp_table *opp_table;
332 	int count;
333 
334 	opp_table = _find_opp_table(dev);
335 	if (IS_ERR(opp_table)) {
336 		count = PTR_ERR(opp_table);
337 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
338 			__func__, count);
339 		return count;
340 	}
341 
342 	count = _get_opp_count(opp_table);
343 	dev_pm_opp_put_opp_table(opp_table);
344 
345 	return count;
346 }
347 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
348 
349 /**
350  * dev_pm_opp_find_freq_exact() - search for an exact frequency
351  * @dev:		device for which we do this operation
352  * @freq:		frequency to search for
353  * @available:		true/false - match for available opp
354  *
355  * Return: Searches for exact match in the opp table and returns pointer to the
356  * matching opp if found, else returns ERR_PTR in case of error and should
357  * be handled using IS_ERR. Error return values can be:
358  * EINVAL:	for bad pointer
359  * ERANGE:	no match found for search
360  * ENODEV:	if device not found in list of registered devices
361  *
362  * Note: available is a modifier for the search. if available=true, then the
363  * match is for exact matching frequency and is available in the stored OPP
364  * table. if false, the match is for exact frequency which is not available.
365  *
366  * This provides a mechanism to enable an opp which is not available currently
367  * or the opposite as well.
368  *
369  * The callers are required to call dev_pm_opp_put() for the returned OPP after
370  * use.
371  */
372 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
373 					      unsigned long freq,
374 					      bool available)
375 {
376 	struct opp_table *opp_table;
377 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
378 
379 	opp_table = _find_opp_table(dev);
380 	if (IS_ERR(opp_table)) {
381 		int r = PTR_ERR(opp_table);
382 
383 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
384 		return ERR_PTR(r);
385 	}
386 
387 	mutex_lock(&opp_table->lock);
388 
389 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
390 		if (temp_opp->available == available &&
391 				temp_opp->rate == freq) {
392 			opp = temp_opp;
393 
394 			/* Increment the reference count of OPP */
395 			dev_pm_opp_get(opp);
396 			break;
397 		}
398 	}
399 
400 	mutex_unlock(&opp_table->lock);
401 	dev_pm_opp_put_opp_table(opp_table);
402 
403 	return opp;
404 }
405 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
406 
407 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
408 						   unsigned long *freq)
409 {
410 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
411 
412 	mutex_lock(&opp_table->lock);
413 
414 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
415 		if (temp_opp->available && temp_opp->rate >= *freq) {
416 			opp = temp_opp;
417 			*freq = opp->rate;
418 
419 			/* Increment the reference count of OPP */
420 			dev_pm_opp_get(opp);
421 			break;
422 		}
423 	}
424 
425 	mutex_unlock(&opp_table->lock);
426 
427 	return opp;
428 }
429 
430 /**
431  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
432  * @dev:	device for which we do this operation
433  * @freq:	Start frequency
434  *
435  * Search for the matching ceil *available* OPP from a starting freq
436  * for a device.
437  *
438  * Return: matching *opp and refreshes *freq accordingly, else returns
439  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
440  * values can be:
441  * EINVAL:	for bad pointer
442  * ERANGE:	no match found for search
443  * ENODEV:	if device not found in list of registered devices
444  *
445  * The callers are required to call dev_pm_opp_put() for the returned OPP after
446  * use.
447  */
448 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
449 					     unsigned long *freq)
450 {
451 	struct opp_table *opp_table;
452 	struct dev_pm_opp *opp;
453 
454 	if (!dev || !freq) {
455 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
456 		return ERR_PTR(-EINVAL);
457 	}
458 
459 	opp_table = _find_opp_table(dev);
460 	if (IS_ERR(opp_table))
461 		return ERR_CAST(opp_table);
462 
463 	opp = _find_freq_ceil(opp_table, freq);
464 
465 	dev_pm_opp_put_opp_table(opp_table);
466 
467 	return opp;
468 }
469 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
470 
471 /**
472  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
473  * @dev:	device for which we do this operation
474  * @freq:	Start frequency
475  *
476  * Search for the matching floor *available* OPP from a starting freq
477  * for a device.
478  *
479  * Return: matching *opp and refreshes *freq accordingly, else returns
480  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
481  * values can be:
482  * EINVAL:	for bad pointer
483  * ERANGE:	no match found for search
484  * ENODEV:	if device not found in list of registered devices
485  *
486  * The callers are required to call dev_pm_opp_put() for the returned OPP after
487  * use.
488  */
489 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
490 					      unsigned long *freq)
491 {
492 	struct opp_table *opp_table;
493 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
494 
495 	if (!dev || !freq) {
496 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
497 		return ERR_PTR(-EINVAL);
498 	}
499 
500 	opp_table = _find_opp_table(dev);
501 	if (IS_ERR(opp_table))
502 		return ERR_CAST(opp_table);
503 
504 	mutex_lock(&opp_table->lock);
505 
506 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
507 		if (temp_opp->available) {
508 			/* go to the next node, before choosing prev */
509 			if (temp_opp->rate > *freq)
510 				break;
511 			else
512 				opp = temp_opp;
513 		}
514 	}
515 
516 	/* Increment the reference count of OPP */
517 	if (!IS_ERR(opp))
518 		dev_pm_opp_get(opp);
519 	mutex_unlock(&opp_table->lock);
520 	dev_pm_opp_put_opp_table(opp_table);
521 
522 	if (!IS_ERR(opp))
523 		*freq = opp->rate;
524 
525 	return opp;
526 }
527 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
528 
529 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
530 			    struct dev_pm_opp_supply *supply)
531 {
532 	int ret;
533 
534 	/* Regulator not available for device */
535 	if (IS_ERR(reg)) {
536 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
537 			PTR_ERR(reg));
538 		return 0;
539 	}
540 
541 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
542 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
543 
544 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
545 					    supply->u_volt, supply->u_volt_max);
546 	if (ret)
547 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
548 			__func__, supply->u_volt_min, supply->u_volt,
549 			supply->u_volt_max, ret);
550 
551 	return ret;
552 }
553 
554 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
555 					    unsigned long freq)
556 {
557 	int ret;
558 
559 	ret = clk_set_rate(clk, freq);
560 	if (ret) {
561 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
562 			ret);
563 	}
564 
565 	return ret;
566 }
567 
568 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
569 				      struct device *dev,
570 				      unsigned long old_freq,
571 				      unsigned long freq,
572 				      struct dev_pm_opp_supply *old_supply,
573 				      struct dev_pm_opp_supply *new_supply)
574 {
575 	struct regulator *reg = opp_table->regulators[0];
576 	int ret;
577 
578 	/* This function only supports single regulator per device */
579 	if (WARN_ON(opp_table->regulator_count > 1)) {
580 		dev_err(dev, "multiple regulators are not supported\n");
581 		return -EINVAL;
582 	}
583 
584 	/* Scaling up? Scale voltage before frequency */
585 	if (freq >= old_freq) {
586 		ret = _set_opp_voltage(dev, reg, new_supply);
587 		if (ret)
588 			goto restore_voltage;
589 	}
590 
591 	/* Change frequency */
592 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
593 	if (ret)
594 		goto restore_voltage;
595 
596 	/* Scaling down? Scale voltage after frequency */
597 	if (freq < old_freq) {
598 		ret = _set_opp_voltage(dev, reg, new_supply);
599 		if (ret)
600 			goto restore_freq;
601 	}
602 
603 	return 0;
604 
605 restore_freq:
606 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
607 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
608 			__func__, old_freq);
609 restore_voltage:
610 	/* This shouldn't harm even if the voltages weren't updated earlier */
611 	if (old_supply)
612 		_set_opp_voltage(dev, reg, old_supply);
613 
614 	return ret;
615 }
616 
617 static int _set_opp_custom(const struct opp_table *opp_table,
618 			   struct device *dev, unsigned long old_freq,
619 			   unsigned long freq,
620 			   struct dev_pm_opp_supply *old_supply,
621 			   struct dev_pm_opp_supply *new_supply)
622 {
623 	struct dev_pm_set_opp_data *data;
624 	int size;
625 
626 	data = opp_table->set_opp_data;
627 	data->regulators = opp_table->regulators;
628 	data->regulator_count = opp_table->regulator_count;
629 	data->clk = opp_table->clk;
630 	data->dev = dev;
631 
632 	data->old_opp.rate = old_freq;
633 	size = sizeof(*old_supply) * opp_table->regulator_count;
634 	if (IS_ERR(old_supply))
635 		memset(data->old_opp.supplies, 0, size);
636 	else
637 		memcpy(data->old_opp.supplies, old_supply, size);
638 
639 	data->new_opp.rate = freq;
640 	memcpy(data->new_opp.supplies, new_supply, size);
641 
642 	return opp_table->set_opp(data);
643 }
644 
645 /* This is only called for PM domain for now */
646 static int _set_required_opps(struct device *dev,
647 			      struct opp_table *opp_table,
648 			      struct dev_pm_opp *opp)
649 {
650 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
651 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
652 	unsigned int pstate;
653 	int i, ret = 0;
654 
655 	if (!required_opp_tables)
656 		return 0;
657 
658 	/* Single genpd case */
659 	if (!genpd_virt_devs) {
660 		pstate = opp->required_opps[0]->pstate;
661 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
662 		if (ret) {
663 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
664 				dev_name(dev), pstate, ret);
665 		}
666 		return ret;
667 	}
668 
669 	/* Multiple genpd case */
670 
671 	/*
672 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
673 	 * after it is freed from another thread.
674 	 */
675 	mutex_lock(&opp_table->genpd_virt_dev_lock);
676 
677 	for (i = 0; i < opp_table->required_opp_count; i++) {
678 		pstate = opp->required_opps[i]->pstate;
679 
680 		if (!genpd_virt_devs[i])
681 			continue;
682 
683 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
684 		if (ret) {
685 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
686 				dev_name(genpd_virt_devs[i]), pstate, ret);
687 			break;
688 		}
689 	}
690 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
691 
692 	return ret;
693 }
694 
695 /**
696  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
697  * @dev:	 device for which we do this operation
698  * @target_freq: frequency to achieve
699  *
700  * This configures the power-supplies and clock source to the levels specified
701  * by the OPP corresponding to the target_freq.
702  */
703 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
704 {
705 	struct opp_table *opp_table;
706 	unsigned long freq, old_freq;
707 	struct dev_pm_opp *old_opp, *opp;
708 	struct clk *clk;
709 	int ret;
710 
711 	if (unlikely(!target_freq)) {
712 		dev_err(dev, "%s: Invalid target frequency %lu\n", __func__,
713 			target_freq);
714 		return -EINVAL;
715 	}
716 
717 	opp_table = _find_opp_table(dev);
718 	if (IS_ERR(opp_table)) {
719 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
720 		return PTR_ERR(opp_table);
721 	}
722 
723 	clk = opp_table->clk;
724 	if (IS_ERR(clk)) {
725 		dev_err(dev, "%s: No clock available for the device\n",
726 			__func__);
727 		ret = PTR_ERR(clk);
728 		goto put_opp_table;
729 	}
730 
731 	freq = clk_round_rate(clk, target_freq);
732 	if ((long)freq <= 0)
733 		freq = target_freq;
734 
735 	old_freq = clk_get_rate(clk);
736 
737 	/* Return early if nothing to do */
738 	if (old_freq == freq) {
739 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
740 			__func__, freq);
741 		ret = 0;
742 		goto put_opp_table;
743 	}
744 
745 	old_opp = _find_freq_ceil(opp_table, &old_freq);
746 	if (IS_ERR(old_opp)) {
747 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
748 			__func__, old_freq, PTR_ERR(old_opp));
749 	}
750 
751 	opp = _find_freq_ceil(opp_table, &freq);
752 	if (IS_ERR(opp)) {
753 		ret = PTR_ERR(opp);
754 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
755 			__func__, freq, ret);
756 		goto put_old_opp;
757 	}
758 
759 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
760 		old_freq, freq);
761 
762 	/* Scaling up? Configure required OPPs before frequency */
763 	if (freq >= old_freq) {
764 		ret = _set_required_opps(dev, opp_table, opp);
765 		if (ret)
766 			goto put_opp;
767 	}
768 
769 	if (opp_table->set_opp) {
770 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
771 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
772 				      opp->supplies);
773 	} else if (opp_table->regulators) {
774 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
775 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
776 						 opp->supplies);
777 	} else {
778 		/* Only frequency scaling */
779 		ret = _generic_set_opp_clk_only(dev, clk, freq);
780 	}
781 
782 	/* Scaling down? Configure required OPPs after frequency */
783 	if (!ret && freq < old_freq) {
784 		ret = _set_required_opps(dev, opp_table, opp);
785 		if (ret)
786 			dev_err(dev, "Failed to set required opps: %d\n", ret);
787 	}
788 
789 put_opp:
790 	dev_pm_opp_put(opp);
791 put_old_opp:
792 	if (!IS_ERR(old_opp))
793 		dev_pm_opp_put(old_opp);
794 put_opp_table:
795 	dev_pm_opp_put_opp_table(opp_table);
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
799 
800 /* OPP-dev Helpers */
801 static void _remove_opp_dev(struct opp_device *opp_dev,
802 			    struct opp_table *opp_table)
803 {
804 	opp_debug_unregister(opp_dev, opp_table);
805 	list_del(&opp_dev->node);
806 	kfree(opp_dev);
807 }
808 
809 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
810 						struct opp_table *opp_table)
811 {
812 	struct opp_device *opp_dev;
813 
814 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
815 	if (!opp_dev)
816 		return NULL;
817 
818 	/* Initialize opp-dev */
819 	opp_dev->dev = dev;
820 
821 	list_add(&opp_dev->node, &opp_table->dev_list);
822 
823 	/* Create debugfs entries for the opp_table */
824 	opp_debug_register(opp_dev, opp_table);
825 
826 	return opp_dev;
827 }
828 
829 struct opp_device *_add_opp_dev(const struct device *dev,
830 				struct opp_table *opp_table)
831 {
832 	struct opp_device *opp_dev;
833 
834 	mutex_lock(&opp_table->lock);
835 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
836 	mutex_unlock(&opp_table->lock);
837 
838 	return opp_dev;
839 }
840 
841 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
842 {
843 	struct opp_table *opp_table;
844 	struct opp_device *opp_dev;
845 	int ret;
846 
847 	/*
848 	 * Allocate a new OPP table. In the infrequent case where a new
849 	 * device is needed to be added, we pay this penalty.
850 	 */
851 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
852 	if (!opp_table)
853 		return NULL;
854 
855 	mutex_init(&opp_table->lock);
856 	mutex_init(&opp_table->genpd_virt_dev_lock);
857 	INIT_LIST_HEAD(&opp_table->dev_list);
858 
859 	/* Mark regulator count uninitialized */
860 	opp_table->regulator_count = -1;
861 
862 	opp_dev = _add_opp_dev(dev, opp_table);
863 	if (!opp_dev) {
864 		kfree(opp_table);
865 		return NULL;
866 	}
867 
868 	_of_init_opp_table(opp_table, dev, index);
869 
870 	/* Find clk for the device */
871 	opp_table->clk = clk_get(dev, NULL);
872 	if (IS_ERR(opp_table->clk)) {
873 		ret = PTR_ERR(opp_table->clk);
874 		if (ret != -EPROBE_DEFER)
875 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
876 				ret);
877 	}
878 
879 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
880 	INIT_LIST_HEAD(&opp_table->opp_list);
881 	kref_init(&opp_table->kref);
882 
883 	/* Secure the device table modification */
884 	list_add(&opp_table->node, &opp_tables);
885 	return opp_table;
886 }
887 
888 void _get_opp_table_kref(struct opp_table *opp_table)
889 {
890 	kref_get(&opp_table->kref);
891 }
892 
893 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
894 {
895 	struct opp_table *opp_table;
896 
897 	/* Hold our table modification lock here */
898 	mutex_lock(&opp_table_lock);
899 
900 	opp_table = _find_opp_table_unlocked(dev);
901 	if (!IS_ERR(opp_table))
902 		goto unlock;
903 
904 	opp_table = _managed_opp(dev, index);
905 	if (opp_table) {
906 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
907 			dev_pm_opp_put_opp_table(opp_table);
908 			opp_table = NULL;
909 		}
910 		goto unlock;
911 	}
912 
913 	opp_table = _allocate_opp_table(dev, index);
914 
915 unlock:
916 	mutex_unlock(&opp_table_lock);
917 
918 	return opp_table;
919 }
920 
921 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
922 {
923 	return _opp_get_opp_table(dev, 0);
924 }
925 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
926 
927 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
928 						   int index)
929 {
930 	return _opp_get_opp_table(dev, index);
931 }
932 
933 static void _opp_table_kref_release(struct kref *kref)
934 {
935 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
936 	struct opp_device *opp_dev, *temp;
937 
938 	_of_clear_opp_table(opp_table);
939 
940 	/* Release clk */
941 	if (!IS_ERR(opp_table->clk))
942 		clk_put(opp_table->clk);
943 
944 	WARN_ON(!list_empty(&opp_table->opp_list));
945 
946 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
947 		/*
948 		 * The OPP table is getting removed, drop the performance state
949 		 * constraints.
950 		 */
951 		if (opp_table->genpd_performance_state)
952 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
953 
954 		_remove_opp_dev(opp_dev, opp_table);
955 	}
956 
957 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
958 	mutex_destroy(&opp_table->lock);
959 	list_del(&opp_table->node);
960 	kfree(opp_table);
961 
962 	mutex_unlock(&opp_table_lock);
963 }
964 
965 void _opp_remove_all_static(struct opp_table *opp_table)
966 {
967 	struct dev_pm_opp *opp, *tmp;
968 
969 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
970 		if (!opp->dynamic)
971 			dev_pm_opp_put(opp);
972 	}
973 
974 	opp_table->parsed_static_opps = false;
975 }
976 
977 static void _opp_table_list_kref_release(struct kref *kref)
978 {
979 	struct opp_table *opp_table = container_of(kref, struct opp_table,
980 						   list_kref);
981 
982 	_opp_remove_all_static(opp_table);
983 	mutex_unlock(&opp_table_lock);
984 }
985 
986 void _put_opp_list_kref(struct opp_table *opp_table)
987 {
988 	kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
989 		       &opp_table_lock);
990 }
991 
992 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
993 {
994 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
995 		       &opp_table_lock);
996 }
997 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
998 
999 void _opp_free(struct dev_pm_opp *opp)
1000 {
1001 	kfree(opp);
1002 }
1003 
1004 static void _opp_kref_release(struct dev_pm_opp *opp,
1005 			      struct opp_table *opp_table)
1006 {
1007 	/*
1008 	 * Notify the changes in the availability of the operable
1009 	 * frequency/voltage list.
1010 	 */
1011 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1012 	_of_opp_free_required_opps(opp_table, opp);
1013 	opp_debug_remove_one(opp);
1014 	list_del(&opp->node);
1015 	kfree(opp);
1016 }
1017 
1018 static void _opp_kref_release_unlocked(struct kref *kref)
1019 {
1020 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1021 	struct opp_table *opp_table = opp->opp_table;
1022 
1023 	_opp_kref_release(opp, opp_table);
1024 }
1025 
1026 static void _opp_kref_release_locked(struct kref *kref)
1027 {
1028 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1029 	struct opp_table *opp_table = opp->opp_table;
1030 
1031 	_opp_kref_release(opp, opp_table);
1032 	mutex_unlock(&opp_table->lock);
1033 }
1034 
1035 void dev_pm_opp_get(struct dev_pm_opp *opp)
1036 {
1037 	kref_get(&opp->kref);
1038 }
1039 
1040 void dev_pm_opp_put(struct dev_pm_opp *opp)
1041 {
1042 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1043 		       &opp->opp_table->lock);
1044 }
1045 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1046 
1047 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1048 {
1049 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1050 }
1051 
1052 /**
1053  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1054  * @dev:	device for which we do this operation
1055  * @freq:	OPP to remove with matching 'freq'
1056  *
1057  * This function removes an opp from the opp table.
1058  */
1059 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1060 {
1061 	struct dev_pm_opp *opp;
1062 	struct opp_table *opp_table;
1063 	bool found = false;
1064 
1065 	opp_table = _find_opp_table(dev);
1066 	if (IS_ERR(opp_table))
1067 		return;
1068 
1069 	mutex_lock(&opp_table->lock);
1070 
1071 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1072 		if (opp->rate == freq) {
1073 			found = true;
1074 			break;
1075 		}
1076 	}
1077 
1078 	mutex_unlock(&opp_table->lock);
1079 
1080 	if (found) {
1081 		dev_pm_opp_put(opp);
1082 
1083 		/* Drop the reference taken by dev_pm_opp_add() */
1084 		dev_pm_opp_put_opp_table(opp_table);
1085 	} else {
1086 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1087 			 __func__, freq);
1088 	}
1089 
1090 	/* Drop the reference taken by _find_opp_table() */
1091 	dev_pm_opp_put_opp_table(opp_table);
1092 }
1093 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1094 
1095 /**
1096  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1097  * @dev:	device for which we do this operation
1098  *
1099  * This function removes all dynamically created OPPs from the opp table.
1100  */
1101 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1102 {
1103 	struct opp_table *opp_table;
1104 	struct dev_pm_opp *opp, *temp;
1105 	int count = 0;
1106 
1107 	opp_table = _find_opp_table(dev);
1108 	if (IS_ERR(opp_table))
1109 		return;
1110 
1111 	mutex_lock(&opp_table->lock);
1112 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1113 		if (opp->dynamic) {
1114 			dev_pm_opp_put_unlocked(opp);
1115 			count++;
1116 		}
1117 	}
1118 	mutex_unlock(&opp_table->lock);
1119 
1120 	/* Drop the references taken by dev_pm_opp_add() */
1121 	while (count--)
1122 		dev_pm_opp_put_opp_table(opp_table);
1123 
1124 	/* Drop the reference taken by _find_opp_table() */
1125 	dev_pm_opp_put_opp_table(opp_table);
1126 }
1127 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1128 
1129 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1130 {
1131 	struct dev_pm_opp *opp;
1132 	int count, supply_size;
1133 
1134 	/* Allocate space for at least one supply */
1135 	count = table->regulator_count > 0 ? table->regulator_count : 1;
1136 	supply_size = sizeof(*opp->supplies) * count;
1137 
1138 	/* allocate new OPP node and supplies structures */
1139 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1140 	if (!opp)
1141 		return NULL;
1142 
1143 	/* Put the supplies at the end of the OPP structure as an empty array */
1144 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1145 	INIT_LIST_HEAD(&opp->node);
1146 
1147 	return opp;
1148 }
1149 
1150 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1151 					 struct opp_table *opp_table)
1152 {
1153 	struct regulator *reg;
1154 	int i;
1155 
1156 	if (!opp_table->regulators)
1157 		return true;
1158 
1159 	for (i = 0; i < opp_table->regulator_count; i++) {
1160 		reg = opp_table->regulators[i];
1161 
1162 		if (!regulator_is_supported_voltage(reg,
1163 					opp->supplies[i].u_volt_min,
1164 					opp->supplies[i].u_volt_max)) {
1165 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1166 				__func__, opp->supplies[i].u_volt_min,
1167 				opp->supplies[i].u_volt_max);
1168 			return false;
1169 		}
1170 	}
1171 
1172 	return true;
1173 }
1174 
1175 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1176 			     struct opp_table *opp_table,
1177 			     struct list_head **head)
1178 {
1179 	struct dev_pm_opp *opp;
1180 
1181 	/*
1182 	 * Insert new OPP in order of increasing frequency and discard if
1183 	 * already present.
1184 	 *
1185 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1186 	 * loop, don't replace it with head otherwise it will become an infinite
1187 	 * loop.
1188 	 */
1189 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1190 		if (new_opp->rate > opp->rate) {
1191 			*head = &opp->node;
1192 			continue;
1193 		}
1194 
1195 		if (new_opp->rate < opp->rate)
1196 			return 0;
1197 
1198 		/* Duplicate OPPs */
1199 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1200 			 __func__, opp->rate, opp->supplies[0].u_volt,
1201 			 opp->available, new_opp->rate,
1202 			 new_opp->supplies[0].u_volt, new_opp->available);
1203 
1204 		/* Should we compare voltages for all regulators here ? */
1205 		return opp->available &&
1206 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 /*
1213  * Returns:
1214  * 0: On success. And appropriate error message for duplicate OPPs.
1215  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1216  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1217  *  sure we don't print error messages unnecessarily if different parts of
1218  *  kernel try to initialize the OPP table.
1219  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1220  *  should be considered an error by the callers of _opp_add().
1221  */
1222 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1223 	     struct opp_table *opp_table, bool rate_not_available)
1224 {
1225 	struct list_head *head;
1226 	int ret;
1227 
1228 	mutex_lock(&opp_table->lock);
1229 	head = &opp_table->opp_list;
1230 
1231 	if (likely(!rate_not_available)) {
1232 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1233 		if (ret) {
1234 			mutex_unlock(&opp_table->lock);
1235 			return ret;
1236 		}
1237 	}
1238 
1239 	list_add(&new_opp->node, head);
1240 	mutex_unlock(&opp_table->lock);
1241 
1242 	new_opp->opp_table = opp_table;
1243 	kref_init(&new_opp->kref);
1244 
1245 	opp_debug_create_one(new_opp, opp_table);
1246 
1247 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1248 		new_opp->available = false;
1249 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1250 			 __func__, new_opp->rate);
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 /**
1257  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1258  * @opp_table:	OPP table
1259  * @dev:	device for which we do this operation
1260  * @freq:	Frequency in Hz for this OPP
1261  * @u_volt:	Voltage in uVolts for this OPP
1262  * @dynamic:	Dynamically added OPPs.
1263  *
1264  * This function adds an opp definition to the opp table and returns status.
1265  * The opp is made available by default and it can be controlled using
1266  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1267  *
1268  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1269  * and freed by dev_pm_opp_of_remove_table.
1270  *
1271  * Return:
1272  * 0		On success OR
1273  *		Duplicate OPPs (both freq and volt are same) and opp->available
1274  * -EEXIST	Freq are same and volt are different OR
1275  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1276  * -ENOMEM	Memory allocation failure
1277  */
1278 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1279 		unsigned long freq, long u_volt, bool dynamic)
1280 {
1281 	struct dev_pm_opp *new_opp;
1282 	unsigned long tol;
1283 	int ret;
1284 
1285 	new_opp = _opp_allocate(opp_table);
1286 	if (!new_opp)
1287 		return -ENOMEM;
1288 
1289 	/* populate the opp table */
1290 	new_opp->rate = freq;
1291 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1292 	new_opp->supplies[0].u_volt = u_volt;
1293 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1294 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1295 	new_opp->available = true;
1296 	new_opp->dynamic = dynamic;
1297 
1298 	ret = _opp_add(dev, new_opp, opp_table, false);
1299 	if (ret) {
1300 		/* Don't return error for duplicate OPPs */
1301 		if (ret == -EBUSY)
1302 			ret = 0;
1303 		goto free_opp;
1304 	}
1305 
1306 	/*
1307 	 * Notify the changes in the availability of the operable
1308 	 * frequency/voltage list.
1309 	 */
1310 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1311 	return 0;
1312 
1313 free_opp:
1314 	_opp_free(new_opp);
1315 
1316 	return ret;
1317 }
1318 
1319 /**
1320  * dev_pm_opp_set_supported_hw() - Set supported platforms
1321  * @dev: Device for which supported-hw has to be set.
1322  * @versions: Array of hierarchy of versions to match.
1323  * @count: Number of elements in the array.
1324  *
1325  * This is required only for the V2 bindings, and it enables a platform to
1326  * specify the hierarchy of versions it supports. OPP layer will then enable
1327  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1328  * property.
1329  */
1330 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1331 			const u32 *versions, unsigned int count)
1332 {
1333 	struct opp_table *opp_table;
1334 
1335 	opp_table = dev_pm_opp_get_opp_table(dev);
1336 	if (!opp_table)
1337 		return ERR_PTR(-ENOMEM);
1338 
1339 	/* Make sure there are no concurrent readers while updating opp_table */
1340 	WARN_ON(!list_empty(&opp_table->opp_list));
1341 
1342 	/* Another CPU that shares the OPP table has set the property ? */
1343 	if (opp_table->supported_hw)
1344 		return opp_table;
1345 
1346 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1347 					GFP_KERNEL);
1348 	if (!opp_table->supported_hw) {
1349 		dev_pm_opp_put_opp_table(opp_table);
1350 		return ERR_PTR(-ENOMEM);
1351 	}
1352 
1353 	opp_table->supported_hw_count = count;
1354 
1355 	return opp_table;
1356 }
1357 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1358 
1359 /**
1360  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1361  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1362  *
1363  * This is required only for the V2 bindings, and is called for a matching
1364  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1365  * will not be freed.
1366  */
1367 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1368 {
1369 	/* Make sure there are no concurrent readers while updating opp_table */
1370 	WARN_ON(!list_empty(&opp_table->opp_list));
1371 
1372 	kfree(opp_table->supported_hw);
1373 	opp_table->supported_hw = NULL;
1374 	opp_table->supported_hw_count = 0;
1375 
1376 	dev_pm_opp_put_opp_table(opp_table);
1377 }
1378 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1379 
1380 /**
1381  * dev_pm_opp_set_prop_name() - Set prop-extn name
1382  * @dev: Device for which the prop-name has to be set.
1383  * @name: name to postfix to properties.
1384  *
1385  * This is required only for the V2 bindings, and it enables a platform to
1386  * specify the extn to be used for certain property names. The properties to
1387  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1388  * should postfix the property name with -<name> while looking for them.
1389  */
1390 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1391 {
1392 	struct opp_table *opp_table;
1393 
1394 	opp_table = dev_pm_opp_get_opp_table(dev);
1395 	if (!opp_table)
1396 		return ERR_PTR(-ENOMEM);
1397 
1398 	/* Make sure there are no concurrent readers while updating opp_table */
1399 	WARN_ON(!list_empty(&opp_table->opp_list));
1400 
1401 	/* Another CPU that shares the OPP table has set the property ? */
1402 	if (opp_table->prop_name)
1403 		return opp_table;
1404 
1405 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1406 	if (!opp_table->prop_name) {
1407 		dev_pm_opp_put_opp_table(opp_table);
1408 		return ERR_PTR(-ENOMEM);
1409 	}
1410 
1411 	return opp_table;
1412 }
1413 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1414 
1415 /**
1416  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1417  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1418  *
1419  * This is required only for the V2 bindings, and is called for a matching
1420  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1421  * will not be freed.
1422  */
1423 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1424 {
1425 	/* Make sure there are no concurrent readers while updating opp_table */
1426 	WARN_ON(!list_empty(&opp_table->opp_list));
1427 
1428 	kfree(opp_table->prop_name);
1429 	opp_table->prop_name = NULL;
1430 
1431 	dev_pm_opp_put_opp_table(opp_table);
1432 }
1433 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1434 
1435 static int _allocate_set_opp_data(struct opp_table *opp_table)
1436 {
1437 	struct dev_pm_set_opp_data *data;
1438 	int len, count = opp_table->regulator_count;
1439 
1440 	if (WARN_ON(!opp_table->regulators))
1441 		return -EINVAL;
1442 
1443 	/* space for set_opp_data */
1444 	len = sizeof(*data);
1445 
1446 	/* space for old_opp.supplies and new_opp.supplies */
1447 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1448 
1449 	data = kzalloc(len, GFP_KERNEL);
1450 	if (!data)
1451 		return -ENOMEM;
1452 
1453 	data->old_opp.supplies = (void *)(data + 1);
1454 	data->new_opp.supplies = data->old_opp.supplies + count;
1455 
1456 	opp_table->set_opp_data = data;
1457 
1458 	return 0;
1459 }
1460 
1461 static void _free_set_opp_data(struct opp_table *opp_table)
1462 {
1463 	kfree(opp_table->set_opp_data);
1464 	opp_table->set_opp_data = NULL;
1465 }
1466 
1467 /**
1468  * dev_pm_opp_set_regulators() - Set regulator names for the device
1469  * @dev: Device for which regulator name is being set.
1470  * @names: Array of pointers to the names of the regulator.
1471  * @count: Number of regulators.
1472  *
1473  * In order to support OPP switching, OPP layer needs to know the name of the
1474  * device's regulators, as the core would be required to switch voltages as
1475  * well.
1476  *
1477  * This must be called before any OPPs are initialized for the device.
1478  */
1479 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1480 					    const char * const names[],
1481 					    unsigned int count)
1482 {
1483 	struct opp_table *opp_table;
1484 	struct regulator *reg;
1485 	int ret, i;
1486 
1487 	opp_table = dev_pm_opp_get_opp_table(dev);
1488 	if (!opp_table)
1489 		return ERR_PTR(-ENOMEM);
1490 
1491 	/* This should be called before OPPs are initialized */
1492 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1493 		ret = -EBUSY;
1494 		goto err;
1495 	}
1496 
1497 	/* Another CPU that shares the OPP table has set the regulators ? */
1498 	if (opp_table->regulators)
1499 		return opp_table;
1500 
1501 	opp_table->regulators = kmalloc_array(count,
1502 					      sizeof(*opp_table->regulators),
1503 					      GFP_KERNEL);
1504 	if (!opp_table->regulators) {
1505 		ret = -ENOMEM;
1506 		goto err;
1507 	}
1508 
1509 	for (i = 0; i < count; i++) {
1510 		reg = regulator_get_optional(dev, names[i]);
1511 		if (IS_ERR(reg)) {
1512 			ret = PTR_ERR(reg);
1513 			if (ret != -EPROBE_DEFER)
1514 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1515 					__func__, names[i], ret);
1516 			goto free_regulators;
1517 		}
1518 
1519 		opp_table->regulators[i] = reg;
1520 	}
1521 
1522 	opp_table->regulator_count = count;
1523 
1524 	/* Allocate block only once to pass to set_opp() routines */
1525 	ret = _allocate_set_opp_data(opp_table);
1526 	if (ret)
1527 		goto free_regulators;
1528 
1529 	return opp_table;
1530 
1531 free_regulators:
1532 	while (i != 0)
1533 		regulator_put(opp_table->regulators[--i]);
1534 
1535 	kfree(opp_table->regulators);
1536 	opp_table->regulators = NULL;
1537 	opp_table->regulator_count = -1;
1538 err:
1539 	dev_pm_opp_put_opp_table(opp_table);
1540 
1541 	return ERR_PTR(ret);
1542 }
1543 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1544 
1545 /**
1546  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1547  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1548  */
1549 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1550 {
1551 	int i;
1552 
1553 	if (!opp_table->regulators)
1554 		goto put_opp_table;
1555 
1556 	/* Make sure there are no concurrent readers while updating opp_table */
1557 	WARN_ON(!list_empty(&opp_table->opp_list));
1558 
1559 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1560 		regulator_put(opp_table->regulators[i]);
1561 
1562 	_free_set_opp_data(opp_table);
1563 
1564 	kfree(opp_table->regulators);
1565 	opp_table->regulators = NULL;
1566 	opp_table->regulator_count = -1;
1567 
1568 put_opp_table:
1569 	dev_pm_opp_put_opp_table(opp_table);
1570 }
1571 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1572 
1573 /**
1574  * dev_pm_opp_set_clkname() - Set clk name for the device
1575  * @dev: Device for which clk name is being set.
1576  * @name: Clk name.
1577  *
1578  * In order to support OPP switching, OPP layer needs to get pointer to the
1579  * clock for the device. Simple cases work fine without using this routine (i.e.
1580  * by passing connection-id as NULL), but for a device with multiple clocks
1581  * available, the OPP core needs to know the exact name of the clk to use.
1582  *
1583  * This must be called before any OPPs are initialized for the device.
1584  */
1585 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1586 {
1587 	struct opp_table *opp_table;
1588 	int ret;
1589 
1590 	opp_table = dev_pm_opp_get_opp_table(dev);
1591 	if (!opp_table)
1592 		return ERR_PTR(-ENOMEM);
1593 
1594 	/* This should be called before OPPs are initialized */
1595 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1596 		ret = -EBUSY;
1597 		goto err;
1598 	}
1599 
1600 	/* Already have default clk set, free it */
1601 	if (!IS_ERR(opp_table->clk))
1602 		clk_put(opp_table->clk);
1603 
1604 	/* Find clk for the device */
1605 	opp_table->clk = clk_get(dev, name);
1606 	if (IS_ERR(opp_table->clk)) {
1607 		ret = PTR_ERR(opp_table->clk);
1608 		if (ret != -EPROBE_DEFER) {
1609 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1610 				ret);
1611 		}
1612 		goto err;
1613 	}
1614 
1615 	return opp_table;
1616 
1617 err:
1618 	dev_pm_opp_put_opp_table(opp_table);
1619 
1620 	return ERR_PTR(ret);
1621 }
1622 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1623 
1624 /**
1625  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1626  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1627  */
1628 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1629 {
1630 	/* Make sure there are no concurrent readers while updating opp_table */
1631 	WARN_ON(!list_empty(&opp_table->opp_list));
1632 
1633 	clk_put(opp_table->clk);
1634 	opp_table->clk = ERR_PTR(-EINVAL);
1635 
1636 	dev_pm_opp_put_opp_table(opp_table);
1637 }
1638 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1639 
1640 /**
1641  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1642  * @dev: Device for which the helper is getting registered.
1643  * @set_opp: Custom set OPP helper.
1644  *
1645  * This is useful to support complex platforms (like platforms with multiple
1646  * regulators per device), instead of the generic OPP set rate helper.
1647  *
1648  * This must be called before any OPPs are initialized for the device.
1649  */
1650 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1651 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1652 {
1653 	struct opp_table *opp_table;
1654 
1655 	if (!set_opp)
1656 		return ERR_PTR(-EINVAL);
1657 
1658 	opp_table = dev_pm_opp_get_opp_table(dev);
1659 	if (!opp_table)
1660 		return ERR_PTR(-ENOMEM);
1661 
1662 	/* This should be called before OPPs are initialized */
1663 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1664 		dev_pm_opp_put_opp_table(opp_table);
1665 		return ERR_PTR(-EBUSY);
1666 	}
1667 
1668 	/* Another CPU that shares the OPP table has set the helper ? */
1669 	if (!opp_table->set_opp)
1670 		opp_table->set_opp = set_opp;
1671 
1672 	return opp_table;
1673 }
1674 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1675 
1676 /**
1677  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1678  *					   set_opp helper
1679  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1680  *
1681  * Release resources blocked for platform specific set_opp helper.
1682  */
1683 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1684 {
1685 	/* Make sure there are no concurrent readers while updating opp_table */
1686 	WARN_ON(!list_empty(&opp_table->opp_list));
1687 
1688 	opp_table->set_opp = NULL;
1689 	dev_pm_opp_put_opp_table(opp_table);
1690 }
1691 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1692 
1693 /**
1694  * dev_pm_opp_set_genpd_virt_dev - Set virtual genpd device for an index
1695  * @dev: Consumer device for which the genpd device is getting set.
1696  * @virt_dev: virtual genpd device.
1697  * @index: index.
1698  *
1699  * Multiple generic power domains for a device are supported with the help of
1700  * virtual genpd devices, which are created for each consumer device - genpd
1701  * pair. These are the device structures which are attached to the power domain
1702  * and are required by the OPP core to set the performance state of the genpd.
1703  *
1704  * This helper will normally be called by the consumer driver of the device
1705  * "dev", as only that has details of the genpd devices.
1706  *
1707  * This helper needs to be called once for each of those virtual devices, but
1708  * only if multiple domains are available for a device. Otherwise the original
1709  * device structure will be used instead by the OPP core.
1710  */
1711 struct opp_table *dev_pm_opp_set_genpd_virt_dev(struct device *dev,
1712 						struct device *virt_dev,
1713 						int index)
1714 {
1715 	struct opp_table *opp_table;
1716 
1717 	opp_table = dev_pm_opp_get_opp_table(dev);
1718 	if (!opp_table)
1719 		return ERR_PTR(-ENOMEM);
1720 
1721 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1722 
1723 	if (unlikely(!opp_table->genpd_virt_devs ||
1724 		     index >= opp_table->required_opp_count ||
1725 		     opp_table->genpd_virt_devs[index])) {
1726 
1727 		dev_err(dev, "Invalid request to set required device\n");
1728 		dev_pm_opp_put_opp_table(opp_table);
1729 		mutex_unlock(&opp_table->genpd_virt_dev_lock);
1730 
1731 		return ERR_PTR(-EINVAL);
1732 	}
1733 
1734 	opp_table->genpd_virt_devs[index] = virt_dev;
1735 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1736 
1737 	return opp_table;
1738 }
1739 
1740 /**
1741  * dev_pm_opp_put_genpd_virt_dev() - Releases resources blocked for genpd device.
1742  * @opp_table: OPP table returned by dev_pm_opp_set_genpd_virt_dev().
1743  * @virt_dev: virtual genpd device.
1744  *
1745  * This releases the resource previously acquired with a call to
1746  * dev_pm_opp_set_genpd_virt_dev(). The consumer driver shall call this helper
1747  * if it doesn't want OPP core to update performance state of a power domain
1748  * anymore.
1749  */
1750 void dev_pm_opp_put_genpd_virt_dev(struct opp_table *opp_table,
1751 				   struct device *virt_dev)
1752 {
1753 	int i;
1754 
1755 	/*
1756 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1757 	 * used in parallel.
1758 	 */
1759 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1760 
1761 	for (i = 0; i < opp_table->required_opp_count; i++) {
1762 		if (opp_table->genpd_virt_devs[i] != virt_dev)
1763 			continue;
1764 
1765 		opp_table->genpd_virt_devs[i] = NULL;
1766 		dev_pm_opp_put_opp_table(opp_table);
1767 
1768 		/* Drop the vote */
1769 		dev_pm_genpd_set_performance_state(virt_dev, 0);
1770 		break;
1771 	}
1772 
1773 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1774 
1775 	if (unlikely(i == opp_table->required_opp_count))
1776 		dev_err(virt_dev, "Failed to find required device entry\n");
1777 }
1778 
1779 /**
1780  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1781  * @src_table: OPP table which has dst_table as one of its required OPP table.
1782  * @dst_table: Required OPP table of the src_table.
1783  * @pstate: Current performance state of the src_table.
1784  *
1785  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1786  * "required-opps" property of the OPP (present in @src_table) which has
1787  * performance state set to @pstate.
1788  *
1789  * Return: Zero or positive performance state on success, otherwise negative
1790  * value on errors.
1791  */
1792 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1793 				       struct opp_table *dst_table,
1794 				       unsigned int pstate)
1795 {
1796 	struct dev_pm_opp *opp;
1797 	int dest_pstate = -EINVAL;
1798 	int i;
1799 
1800 	if (!pstate)
1801 		return 0;
1802 
1803 	/*
1804 	 * Normally the src_table will have the "required_opps" property set to
1805 	 * point to one of the OPPs in the dst_table, but in some cases the
1806 	 * genpd and its master have one to one mapping of performance states
1807 	 * and so none of them have the "required-opps" property set. Return the
1808 	 * pstate of the src_table as it is in such cases.
1809 	 */
1810 	if (!src_table->required_opp_count)
1811 		return pstate;
1812 
1813 	for (i = 0; i < src_table->required_opp_count; i++) {
1814 		if (src_table->required_opp_tables[i]->np == dst_table->np)
1815 			break;
1816 	}
1817 
1818 	if (unlikely(i == src_table->required_opp_count)) {
1819 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1820 		       __func__, src_table, dst_table);
1821 		return -EINVAL;
1822 	}
1823 
1824 	mutex_lock(&src_table->lock);
1825 
1826 	list_for_each_entry(opp, &src_table->opp_list, node) {
1827 		if (opp->pstate == pstate) {
1828 			dest_pstate = opp->required_opps[i]->pstate;
1829 			goto unlock;
1830 		}
1831 	}
1832 
1833 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1834 	       dst_table);
1835 
1836 unlock:
1837 	mutex_unlock(&src_table->lock);
1838 
1839 	return dest_pstate;
1840 }
1841 
1842 /**
1843  * dev_pm_opp_add()  - Add an OPP table from a table definitions
1844  * @dev:	device for which we do this operation
1845  * @freq:	Frequency in Hz for this OPP
1846  * @u_volt:	Voltage in uVolts for this OPP
1847  *
1848  * This function adds an opp definition to the opp table and returns status.
1849  * The opp is made available by default and it can be controlled using
1850  * dev_pm_opp_enable/disable functions.
1851  *
1852  * Return:
1853  * 0		On success OR
1854  *		Duplicate OPPs (both freq and volt are same) and opp->available
1855  * -EEXIST	Freq are same and volt are different OR
1856  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1857  * -ENOMEM	Memory allocation failure
1858  */
1859 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1860 {
1861 	struct opp_table *opp_table;
1862 	int ret;
1863 
1864 	opp_table = dev_pm_opp_get_opp_table(dev);
1865 	if (!opp_table)
1866 		return -ENOMEM;
1867 
1868 	/* Fix regulator count for dynamic OPPs */
1869 	opp_table->regulator_count = 1;
1870 
1871 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1872 	if (ret)
1873 		dev_pm_opp_put_opp_table(opp_table);
1874 
1875 	return ret;
1876 }
1877 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1878 
1879 /**
1880  * _opp_set_availability() - helper to set the availability of an opp
1881  * @dev:		device for which we do this operation
1882  * @freq:		OPP frequency to modify availability
1883  * @availability_req:	availability status requested for this opp
1884  *
1885  * Set the availability of an OPP, opp_{enable,disable} share a common logic
1886  * which is isolated here.
1887  *
1888  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1889  * copy operation, returns 0 if no modification was done OR modification was
1890  * successful.
1891  */
1892 static int _opp_set_availability(struct device *dev, unsigned long freq,
1893 				 bool availability_req)
1894 {
1895 	struct opp_table *opp_table;
1896 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
1897 	int r = 0;
1898 
1899 	/* Find the opp_table */
1900 	opp_table = _find_opp_table(dev);
1901 	if (IS_ERR(opp_table)) {
1902 		r = PTR_ERR(opp_table);
1903 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
1904 		return r;
1905 	}
1906 
1907 	mutex_lock(&opp_table->lock);
1908 
1909 	/* Do we have the frequency? */
1910 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
1911 		if (tmp_opp->rate == freq) {
1912 			opp = tmp_opp;
1913 			break;
1914 		}
1915 	}
1916 
1917 	if (IS_ERR(opp)) {
1918 		r = PTR_ERR(opp);
1919 		goto unlock;
1920 	}
1921 
1922 	/* Is update really needed? */
1923 	if (opp->available == availability_req)
1924 		goto unlock;
1925 
1926 	opp->available = availability_req;
1927 
1928 	dev_pm_opp_get(opp);
1929 	mutex_unlock(&opp_table->lock);
1930 
1931 	/* Notify the change of the OPP availability */
1932 	if (availability_req)
1933 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
1934 					     opp);
1935 	else
1936 		blocking_notifier_call_chain(&opp_table->head,
1937 					     OPP_EVENT_DISABLE, opp);
1938 
1939 	dev_pm_opp_put(opp);
1940 	goto put_table;
1941 
1942 unlock:
1943 	mutex_unlock(&opp_table->lock);
1944 put_table:
1945 	dev_pm_opp_put_opp_table(opp_table);
1946 	return r;
1947 }
1948 
1949 /**
1950  * dev_pm_opp_enable() - Enable a specific OPP
1951  * @dev:	device for which we do this operation
1952  * @freq:	OPP frequency to enable
1953  *
1954  * Enables a provided opp. If the operation is valid, this returns 0, else the
1955  * corresponding error value. It is meant to be used for users an OPP available
1956  * after being temporarily made unavailable with dev_pm_opp_disable.
1957  *
1958  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1959  * copy operation, returns 0 if no modification was done OR modification was
1960  * successful.
1961  */
1962 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
1963 {
1964 	return _opp_set_availability(dev, freq, true);
1965 }
1966 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
1967 
1968 /**
1969  * dev_pm_opp_disable() - Disable a specific OPP
1970  * @dev:	device for which we do this operation
1971  * @freq:	OPP frequency to disable
1972  *
1973  * Disables a provided opp. If the operation is valid, this returns
1974  * 0, else the corresponding error value. It is meant to be a temporary
1975  * control by users to make this OPP not available until the circumstances are
1976  * right to make it available again (with a call to dev_pm_opp_enable).
1977  *
1978  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1979  * copy operation, returns 0 if no modification was done OR modification was
1980  * successful.
1981  */
1982 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
1983 {
1984 	return _opp_set_availability(dev, freq, false);
1985 }
1986 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
1987 
1988 /**
1989  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
1990  * @dev:	Device for which notifier needs to be registered
1991  * @nb:		Notifier block to be registered
1992  *
1993  * Return: 0 on success or a negative error value.
1994  */
1995 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
1996 {
1997 	struct opp_table *opp_table;
1998 	int ret;
1999 
2000 	opp_table = _find_opp_table(dev);
2001 	if (IS_ERR(opp_table))
2002 		return PTR_ERR(opp_table);
2003 
2004 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2005 
2006 	dev_pm_opp_put_opp_table(opp_table);
2007 
2008 	return ret;
2009 }
2010 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2011 
2012 /**
2013  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2014  * @dev:	Device for which notifier needs to be unregistered
2015  * @nb:		Notifier block to be unregistered
2016  *
2017  * Return: 0 on success or a negative error value.
2018  */
2019 int dev_pm_opp_unregister_notifier(struct device *dev,
2020 				   struct notifier_block *nb)
2021 {
2022 	struct opp_table *opp_table;
2023 	int ret;
2024 
2025 	opp_table = _find_opp_table(dev);
2026 	if (IS_ERR(opp_table))
2027 		return PTR_ERR(opp_table);
2028 
2029 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2030 
2031 	dev_pm_opp_put_opp_table(opp_table);
2032 
2033 	return ret;
2034 }
2035 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2036 
2037 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2038 {
2039 	struct opp_table *opp_table;
2040 
2041 	/* Check for existing table for 'dev' */
2042 	opp_table = _find_opp_table(dev);
2043 	if (IS_ERR(opp_table)) {
2044 		int error = PTR_ERR(opp_table);
2045 
2046 		if (error != -ENODEV)
2047 			WARN(1, "%s: opp_table: %d\n",
2048 			     IS_ERR_OR_NULL(dev) ?
2049 					"Invalid device" : dev_name(dev),
2050 			     error);
2051 		return;
2052 	}
2053 
2054 	_put_opp_list_kref(opp_table);
2055 
2056 	/* Drop reference taken by _find_opp_table() */
2057 	dev_pm_opp_put_opp_table(opp_table);
2058 
2059 	/* Drop reference taken while the OPP table was added */
2060 	dev_pm_opp_put_opp_table(opp_table);
2061 }
2062 
2063 /**
2064  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2065  * @dev:	device pointer used to lookup OPP table.
2066  *
2067  * Free both OPPs created using static entries present in DT and the
2068  * dynamically added entries.
2069  */
2070 void dev_pm_opp_remove_table(struct device *dev)
2071 {
2072 	_dev_pm_opp_find_and_remove_table(dev);
2073 }
2074 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2075