xref: /openbmc/linux/drivers/opp/core.c (revision b868a02e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22 
23 #include "opp.h"
24 
25 /*
26  * The root of the list of all opp-tables. All opp_table structures branch off
27  * from here, with each opp_table containing the list of opps it supports in
28  * various states of availability.
29  */
30 LIST_HEAD(opp_tables);
31 
32 /* OPP tables with uninitialized required OPPs */
33 LIST_HEAD(lazy_opp_tables);
34 
35 /* Lock to allow exclusive modification to the device and opp lists */
36 DEFINE_MUTEX(opp_table_lock);
37 /* Flag indicating that opp_tables list is being updated at the moment */
38 static bool opp_tables_busy;
39 
40 /* OPP ID allocator */
41 static DEFINE_XARRAY_ALLOC1(opp_configs);
42 
43 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
44 {
45 	struct opp_device *opp_dev;
46 	bool found = false;
47 
48 	mutex_lock(&opp_table->lock);
49 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
50 		if (opp_dev->dev == dev) {
51 			found = true;
52 			break;
53 		}
54 
55 	mutex_unlock(&opp_table->lock);
56 	return found;
57 }
58 
59 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
60 {
61 	struct opp_table *opp_table;
62 
63 	list_for_each_entry(opp_table, &opp_tables, node) {
64 		if (_find_opp_dev(dev, opp_table)) {
65 			_get_opp_table_kref(opp_table);
66 			return opp_table;
67 		}
68 	}
69 
70 	return ERR_PTR(-ENODEV);
71 }
72 
73 /**
74  * _find_opp_table() - find opp_table struct using device pointer
75  * @dev:	device pointer used to lookup OPP table
76  *
77  * Search OPP table for one containing matching device.
78  *
79  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
80  * -EINVAL based on type of error.
81  *
82  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
83  */
84 struct opp_table *_find_opp_table(struct device *dev)
85 {
86 	struct opp_table *opp_table;
87 
88 	if (IS_ERR_OR_NULL(dev)) {
89 		pr_err("%s: Invalid parameters\n", __func__);
90 		return ERR_PTR(-EINVAL);
91 	}
92 
93 	mutex_lock(&opp_table_lock);
94 	opp_table = _find_opp_table_unlocked(dev);
95 	mutex_unlock(&opp_table_lock);
96 
97 	return opp_table;
98 }
99 
100 /*
101  * Returns true if multiple clocks aren't there, else returns false with WARN.
102  *
103  * We don't force clk_count == 1 here as there are users who don't have a clock
104  * representation in the OPP table and manage the clock configuration themselves
105  * in an platform specific way.
106  */
107 static bool assert_single_clk(struct opp_table *opp_table)
108 {
109 	return !WARN_ON(opp_table->clk_count > 1);
110 }
111 
112 /**
113  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
114  * @opp:	opp for which voltage has to be returned for
115  *
116  * Return: voltage in micro volt corresponding to the opp, else
117  * return 0
118  *
119  * This is useful only for devices with single power supply.
120  */
121 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
122 {
123 	if (IS_ERR_OR_NULL(opp)) {
124 		pr_err("%s: Invalid parameters\n", __func__);
125 		return 0;
126 	}
127 
128 	return opp->supplies[0].u_volt;
129 }
130 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
131 
132 /**
133  * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
134  * @opp:	opp for which voltage has to be returned for
135  * @supplies:	Placeholder for copying the supply information.
136  *
137  * Return: negative error number on failure, 0 otherwise on success after
138  * setting @supplies.
139  *
140  * This can be used for devices with any number of power supplies. The caller
141  * must ensure the @supplies array must contain space for each regulator.
142  */
143 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
144 			    struct dev_pm_opp_supply *supplies)
145 {
146 	if (IS_ERR_OR_NULL(opp) || !supplies) {
147 		pr_err("%s: Invalid parameters\n", __func__);
148 		return -EINVAL;
149 	}
150 
151 	memcpy(supplies, opp->supplies,
152 	       sizeof(*supplies) * opp->opp_table->regulator_count);
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
156 
157 /**
158  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
159  * @opp:	opp for which power has to be returned for
160  *
161  * Return: power in micro watt corresponding to the opp, else
162  * return 0
163  *
164  * This is useful only for devices with single power supply.
165  */
166 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
167 {
168 	unsigned long opp_power = 0;
169 	int i;
170 
171 	if (IS_ERR_OR_NULL(opp)) {
172 		pr_err("%s: Invalid parameters\n", __func__);
173 		return 0;
174 	}
175 	for (i = 0; i < opp->opp_table->regulator_count; i++)
176 		opp_power += opp->supplies[i].u_watt;
177 
178 	return opp_power;
179 }
180 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
181 
182 /**
183  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
184  * @opp:	opp for which frequency has to be returned for
185  *
186  * Return: frequency in hertz corresponding to the opp, else
187  * return 0
188  */
189 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
190 {
191 	if (IS_ERR_OR_NULL(opp)) {
192 		pr_err("%s: Invalid parameters\n", __func__);
193 		return 0;
194 	}
195 
196 	if (!assert_single_clk(opp->opp_table))
197 		return 0;
198 
199 	return opp->rates[0];
200 }
201 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
202 
203 /**
204  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
205  * @opp:	opp for which level value has to be returned for
206  *
207  * Return: level read from device tree corresponding to the opp, else
208  * return 0.
209  */
210 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
211 {
212 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
213 		pr_err("%s: Invalid parameters\n", __func__);
214 		return 0;
215 	}
216 
217 	return opp->level;
218 }
219 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
220 
221 /**
222  * dev_pm_opp_get_required_pstate() - Gets the required performance state
223  *                                    corresponding to an available opp
224  * @opp:	opp for which performance state has to be returned for
225  * @index:	index of the required opp
226  *
227  * Return: performance state read from device tree corresponding to the
228  * required opp, else return 0.
229  */
230 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
231 					    unsigned int index)
232 {
233 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
234 	    index >= opp->opp_table->required_opp_count) {
235 		pr_err("%s: Invalid parameters\n", __func__);
236 		return 0;
237 	}
238 
239 	/* required-opps not fully initialized yet */
240 	if (lazy_linking_pending(opp->opp_table))
241 		return 0;
242 
243 	return opp->required_opps[index]->pstate;
244 }
245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
246 
247 /**
248  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
249  * @opp: opp for which turbo mode is being verified
250  *
251  * Turbo OPPs are not for normal use, and can be enabled (under certain
252  * conditions) for short duration of times to finish high throughput work
253  * quickly. Running on them for longer times may overheat the chip.
254  *
255  * Return: true if opp is turbo opp, else false.
256  */
257 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
258 {
259 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
260 		pr_err("%s: Invalid parameters\n", __func__);
261 		return false;
262 	}
263 
264 	return opp->turbo;
265 }
266 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
267 
268 /**
269  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
270  * @dev:	device for which we do this operation
271  *
272  * Return: This function returns the max clock latency in nanoseconds.
273  */
274 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
275 {
276 	struct opp_table *opp_table;
277 	unsigned long clock_latency_ns;
278 
279 	opp_table = _find_opp_table(dev);
280 	if (IS_ERR(opp_table))
281 		return 0;
282 
283 	clock_latency_ns = opp_table->clock_latency_ns_max;
284 
285 	dev_pm_opp_put_opp_table(opp_table);
286 
287 	return clock_latency_ns;
288 }
289 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
290 
291 /**
292  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
293  * @dev: device for which we do this operation
294  *
295  * Return: This function returns the max voltage latency in nanoseconds.
296  */
297 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
298 {
299 	struct opp_table *opp_table;
300 	struct dev_pm_opp *opp;
301 	struct regulator *reg;
302 	unsigned long latency_ns = 0;
303 	int ret, i, count;
304 	struct {
305 		unsigned long min;
306 		unsigned long max;
307 	} *uV;
308 
309 	opp_table = _find_opp_table(dev);
310 	if (IS_ERR(opp_table))
311 		return 0;
312 
313 	/* Regulator may not be required for the device */
314 	if (!opp_table->regulators)
315 		goto put_opp_table;
316 
317 	count = opp_table->regulator_count;
318 
319 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
320 	if (!uV)
321 		goto put_opp_table;
322 
323 	mutex_lock(&opp_table->lock);
324 
325 	for (i = 0; i < count; i++) {
326 		uV[i].min = ~0;
327 		uV[i].max = 0;
328 
329 		list_for_each_entry(opp, &opp_table->opp_list, node) {
330 			if (!opp->available)
331 				continue;
332 
333 			if (opp->supplies[i].u_volt_min < uV[i].min)
334 				uV[i].min = opp->supplies[i].u_volt_min;
335 			if (opp->supplies[i].u_volt_max > uV[i].max)
336 				uV[i].max = opp->supplies[i].u_volt_max;
337 		}
338 	}
339 
340 	mutex_unlock(&opp_table->lock);
341 
342 	/*
343 	 * The caller needs to ensure that opp_table (and hence the regulator)
344 	 * isn't freed, while we are executing this routine.
345 	 */
346 	for (i = 0; i < count; i++) {
347 		reg = opp_table->regulators[i];
348 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
349 		if (ret > 0)
350 			latency_ns += ret * 1000;
351 	}
352 
353 	kfree(uV);
354 put_opp_table:
355 	dev_pm_opp_put_opp_table(opp_table);
356 
357 	return latency_ns;
358 }
359 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
360 
361 /**
362  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
363  *					     nanoseconds
364  * @dev: device for which we do this operation
365  *
366  * Return: This function returns the max transition latency, in nanoseconds, to
367  * switch from one OPP to other.
368  */
369 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
370 {
371 	return dev_pm_opp_get_max_volt_latency(dev) +
372 		dev_pm_opp_get_max_clock_latency(dev);
373 }
374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
375 
376 /**
377  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
378  * @dev:	device for which we do this operation
379  *
380  * Return: This function returns the frequency of the OPP marked as suspend_opp
381  * if one is available, else returns 0;
382  */
383 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
384 {
385 	struct opp_table *opp_table;
386 	unsigned long freq = 0;
387 
388 	opp_table = _find_opp_table(dev);
389 	if (IS_ERR(opp_table))
390 		return 0;
391 
392 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
393 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
394 
395 	dev_pm_opp_put_opp_table(opp_table);
396 
397 	return freq;
398 }
399 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
400 
401 int _get_opp_count(struct opp_table *opp_table)
402 {
403 	struct dev_pm_opp *opp;
404 	int count = 0;
405 
406 	mutex_lock(&opp_table->lock);
407 
408 	list_for_each_entry(opp, &opp_table->opp_list, node) {
409 		if (opp->available)
410 			count++;
411 	}
412 
413 	mutex_unlock(&opp_table->lock);
414 
415 	return count;
416 }
417 
418 /**
419  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
420  * @dev:	device for which we do this operation
421  *
422  * Return: This function returns the number of available opps if there are any,
423  * else returns 0 if none or the corresponding error value.
424  */
425 int dev_pm_opp_get_opp_count(struct device *dev)
426 {
427 	struct opp_table *opp_table;
428 	int count;
429 
430 	opp_table = _find_opp_table(dev);
431 	if (IS_ERR(opp_table)) {
432 		count = PTR_ERR(opp_table);
433 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
434 			__func__, count);
435 		return count;
436 	}
437 
438 	count = _get_opp_count(opp_table);
439 	dev_pm_opp_put_opp_table(opp_table);
440 
441 	return count;
442 }
443 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
444 
445 /* Helpers to read keys */
446 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
447 {
448 	return opp->rates[0];
449 }
450 
451 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
452 {
453 	return opp->level;
454 }
455 
456 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
457 {
458 	return opp->bandwidth[index].peak;
459 }
460 
461 /* Generic comparison helpers */
462 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
463 			   unsigned long opp_key, unsigned long key)
464 {
465 	if (opp_key == key) {
466 		*opp = temp_opp;
467 		return true;
468 	}
469 
470 	return false;
471 }
472 
473 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
474 			  unsigned long opp_key, unsigned long key)
475 {
476 	if (opp_key >= key) {
477 		*opp = temp_opp;
478 		return true;
479 	}
480 
481 	return false;
482 }
483 
484 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
485 			   unsigned long opp_key, unsigned long key)
486 {
487 	if (opp_key > key)
488 		return true;
489 
490 	*opp = temp_opp;
491 	return false;
492 }
493 
494 /* Generic key finding helpers */
495 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
496 		unsigned long *key, int index, bool available,
497 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
498 		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
499 				unsigned long opp_key, unsigned long key),
500 		bool (*assert)(struct opp_table *opp_table))
501 {
502 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
503 
504 	/* Assert that the requirement is met */
505 	if (assert && !assert(opp_table))
506 		return ERR_PTR(-EINVAL);
507 
508 	mutex_lock(&opp_table->lock);
509 
510 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
511 		if (temp_opp->available == available) {
512 			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
513 				break;
514 		}
515 	}
516 
517 	/* Increment the reference count of OPP */
518 	if (!IS_ERR(opp)) {
519 		*key = read(opp, index);
520 		dev_pm_opp_get(opp);
521 	}
522 
523 	mutex_unlock(&opp_table->lock);
524 
525 	return opp;
526 }
527 
528 static struct dev_pm_opp *
529 _find_key(struct device *dev, unsigned long *key, int index, bool available,
530 	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
531 	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
532 			  unsigned long opp_key, unsigned long key),
533 	  bool (*assert)(struct opp_table *opp_table))
534 {
535 	struct opp_table *opp_table;
536 	struct dev_pm_opp *opp;
537 
538 	opp_table = _find_opp_table(dev);
539 	if (IS_ERR(opp_table)) {
540 		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
541 			PTR_ERR(opp_table));
542 		return ERR_CAST(opp_table);
543 	}
544 
545 	opp = _opp_table_find_key(opp_table, key, index, available, read,
546 				  compare, assert);
547 
548 	dev_pm_opp_put_opp_table(opp_table);
549 
550 	return opp;
551 }
552 
553 static struct dev_pm_opp *_find_key_exact(struct device *dev,
554 		unsigned long key, int index, bool available,
555 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
556 		bool (*assert)(struct opp_table *opp_table))
557 {
558 	/*
559 	 * The value of key will be updated here, but will be ignored as the
560 	 * caller doesn't need it.
561 	 */
562 	return _find_key(dev, &key, index, available, read, _compare_exact,
563 			 assert);
564 }
565 
566 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
567 		unsigned long *key, int index, bool available,
568 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
569 		bool (*assert)(struct opp_table *opp_table))
570 {
571 	return _opp_table_find_key(opp_table, key, index, available, read,
572 				   _compare_ceil, assert);
573 }
574 
575 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
576 		int index, bool available,
577 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
578 		bool (*assert)(struct opp_table *opp_table))
579 {
580 	return _find_key(dev, key, index, available, read, _compare_ceil,
581 			 assert);
582 }
583 
584 static struct dev_pm_opp *_find_key_floor(struct device *dev,
585 		unsigned long *key, int index, bool available,
586 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
587 		bool (*assert)(struct opp_table *opp_table))
588 {
589 	return _find_key(dev, key, index, available, read, _compare_floor,
590 			 assert);
591 }
592 
593 /**
594  * dev_pm_opp_find_freq_exact() - search for an exact frequency
595  * @dev:		device for which we do this operation
596  * @freq:		frequency to search for
597  * @available:		true/false - match for available opp
598  *
599  * Return: Searches for exact match in the opp table and returns pointer to the
600  * matching opp if found, else returns ERR_PTR in case of error and should
601  * be handled using IS_ERR. Error return values can be:
602  * EINVAL:	for bad pointer
603  * ERANGE:	no match found for search
604  * ENODEV:	if device not found in list of registered devices
605  *
606  * Note: available is a modifier for the search. if available=true, then the
607  * match is for exact matching frequency and is available in the stored OPP
608  * table. if false, the match is for exact frequency which is not available.
609  *
610  * This provides a mechanism to enable an opp which is not available currently
611  * or the opposite as well.
612  *
613  * The callers are required to call dev_pm_opp_put() for the returned OPP after
614  * use.
615  */
616 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
617 		unsigned long freq, bool available)
618 {
619 	return _find_key_exact(dev, freq, 0, available, _read_freq,
620 			       assert_single_clk);
621 }
622 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
623 
624 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
625 						   unsigned long *freq)
626 {
627 	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
628 					assert_single_clk);
629 }
630 
631 /**
632  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
633  * @dev:	device for which we do this operation
634  * @freq:	Start frequency
635  *
636  * Search for the matching ceil *available* OPP from a starting freq
637  * for a device.
638  *
639  * Return: matching *opp and refreshes *freq accordingly, else returns
640  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
641  * values can be:
642  * EINVAL:	for bad pointer
643  * ERANGE:	no match found for search
644  * ENODEV:	if device not found in list of registered devices
645  *
646  * The callers are required to call dev_pm_opp_put() for the returned OPP after
647  * use.
648  */
649 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
650 					     unsigned long *freq)
651 {
652 	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
653 }
654 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
655 
656 /**
657  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
658  * @dev:	device for which we do this operation
659  * @freq:	Start frequency
660  *
661  * Search for the matching floor *available* OPP from a starting freq
662  * for a device.
663  *
664  * Return: matching *opp and refreshes *freq accordingly, else returns
665  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
666  * values can be:
667  * EINVAL:	for bad pointer
668  * ERANGE:	no match found for search
669  * ENODEV:	if device not found in list of registered devices
670  *
671  * The callers are required to call dev_pm_opp_put() for the returned OPP after
672  * use.
673  */
674 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
675 					      unsigned long *freq)
676 {
677 	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
678 }
679 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
680 
681 /**
682  * dev_pm_opp_find_level_exact() - search for an exact level
683  * @dev:		device for which we do this operation
684  * @level:		level to search for
685  *
686  * Return: Searches for exact match in the opp table and returns pointer to the
687  * matching opp if found, else returns ERR_PTR in case of error and should
688  * be handled using IS_ERR. Error return values can be:
689  * EINVAL:	for bad pointer
690  * ERANGE:	no match found for search
691  * ENODEV:	if device not found in list of registered devices
692  *
693  * The callers are required to call dev_pm_opp_put() for the returned OPP after
694  * use.
695  */
696 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
697 					       unsigned int level)
698 {
699 	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
700 }
701 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
702 
703 /**
704  * dev_pm_opp_find_level_ceil() - search for an rounded up level
705  * @dev:		device for which we do this operation
706  * @level:		level to search for
707  *
708  * Return: Searches for rounded up match in the opp table and returns pointer
709  * to the  matching opp if found, else returns ERR_PTR in case of error and
710  * should be handled using IS_ERR. Error return values can be:
711  * EINVAL:	for bad pointer
712  * ERANGE:	no match found for search
713  * ENODEV:	if device not found in list of registered devices
714  *
715  * The callers are required to call dev_pm_opp_put() for the returned OPP after
716  * use.
717  */
718 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
719 					      unsigned int *level)
720 {
721 	unsigned long temp = *level;
722 	struct dev_pm_opp *opp;
723 
724 	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
725 	*level = temp;
726 	return opp;
727 }
728 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
729 
730 /**
731  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
732  * @dev:	device for which we do this operation
733  * @bw:	start bandwidth
734  * @index:	which bandwidth to compare, in case of OPPs with several values
735  *
736  * Search for the matching floor *available* OPP from a starting bandwidth
737  * for a device.
738  *
739  * Return: matching *opp and refreshes *bw accordingly, else returns
740  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
741  * values can be:
742  * EINVAL:	for bad pointer
743  * ERANGE:	no match found for search
744  * ENODEV:	if device not found in list of registered devices
745  *
746  * The callers are required to call dev_pm_opp_put() for the returned OPP after
747  * use.
748  */
749 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
750 					   int index)
751 {
752 	unsigned long temp = *bw;
753 	struct dev_pm_opp *opp;
754 
755 	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
756 	*bw = temp;
757 	return opp;
758 }
759 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
760 
761 /**
762  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
763  * @dev:	device for which we do this operation
764  * @bw:	start bandwidth
765  * @index:	which bandwidth to compare, in case of OPPs with several values
766  *
767  * Search for the matching floor *available* OPP from a starting bandwidth
768  * for a device.
769  *
770  * Return: matching *opp and refreshes *bw accordingly, else returns
771  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772  * values can be:
773  * EINVAL:	for bad pointer
774  * ERANGE:	no match found for search
775  * ENODEV:	if device not found in list of registered devices
776  *
777  * The callers are required to call dev_pm_opp_put() for the returned OPP after
778  * use.
779  */
780 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
781 					    unsigned int *bw, int index)
782 {
783 	unsigned long temp = *bw;
784 	struct dev_pm_opp *opp;
785 
786 	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
787 	*bw = temp;
788 	return opp;
789 }
790 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
791 
792 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
793 			    struct dev_pm_opp_supply *supply)
794 {
795 	int ret;
796 
797 	/* Regulator not available for device */
798 	if (IS_ERR(reg)) {
799 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
800 			PTR_ERR(reg));
801 		return 0;
802 	}
803 
804 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
805 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
806 
807 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
808 					    supply->u_volt, supply->u_volt_max);
809 	if (ret)
810 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
811 			__func__, supply->u_volt_min, supply->u_volt,
812 			supply->u_volt_max, ret);
813 
814 	return ret;
815 }
816 
817 static int
818 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
819 		       struct dev_pm_opp *opp, void *data, bool scaling_down)
820 {
821 	unsigned long *target = data;
822 	unsigned long freq;
823 	int ret;
824 
825 	/* One of target and opp must be available */
826 	if (target) {
827 		freq = *target;
828 	} else if (opp) {
829 		freq = opp->rates[0];
830 	} else {
831 		WARN_ON(1);
832 		return -EINVAL;
833 	}
834 
835 	ret = clk_set_rate(opp_table->clk, freq);
836 	if (ret) {
837 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
838 			ret);
839 	} else {
840 		opp_table->rate_clk_single = freq;
841 	}
842 
843 	return ret;
844 }
845 
846 /*
847  * Simple implementation for configuring multiple clocks. Configure clocks in
848  * the order in which they are present in the array while scaling up.
849  */
850 int dev_pm_opp_config_clks_simple(struct device *dev,
851 		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
852 		bool scaling_down)
853 {
854 	int ret, i;
855 
856 	if (scaling_down) {
857 		for (i = opp_table->clk_count - 1; i >= 0; i--) {
858 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
859 			if (ret) {
860 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
861 					ret);
862 				return ret;
863 			}
864 		}
865 	} else {
866 		for (i = 0; i < opp_table->clk_count; i++) {
867 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
868 			if (ret) {
869 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
870 					ret);
871 				return ret;
872 			}
873 		}
874 	}
875 
876 	return 0;
877 }
878 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
879 
880 static int _opp_config_regulator_single(struct device *dev,
881 			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
882 			struct regulator **regulators, unsigned int count)
883 {
884 	struct regulator *reg = regulators[0];
885 	int ret;
886 
887 	/* This function only supports single regulator per device */
888 	if (WARN_ON(count > 1)) {
889 		dev_err(dev, "multiple regulators are not supported\n");
890 		return -EINVAL;
891 	}
892 
893 	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
894 	if (ret)
895 		return ret;
896 
897 	/*
898 	 * Enable the regulator after setting its voltages, otherwise it breaks
899 	 * some boot-enabled regulators.
900 	 */
901 	if (unlikely(!new_opp->opp_table->enabled)) {
902 		ret = regulator_enable(reg);
903 		if (ret < 0)
904 			dev_warn(dev, "Failed to enable regulator: %d", ret);
905 	}
906 
907 	return 0;
908 }
909 
910 static int _set_opp_bw(const struct opp_table *opp_table,
911 		       struct dev_pm_opp *opp, struct device *dev)
912 {
913 	u32 avg, peak;
914 	int i, ret;
915 
916 	if (!opp_table->paths)
917 		return 0;
918 
919 	for (i = 0; i < opp_table->path_count; i++) {
920 		if (!opp) {
921 			avg = 0;
922 			peak = 0;
923 		} else {
924 			avg = opp->bandwidth[i].avg;
925 			peak = opp->bandwidth[i].peak;
926 		}
927 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
928 		if (ret) {
929 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
930 				opp ? "set" : "remove", i, ret);
931 			return ret;
932 		}
933 	}
934 
935 	return 0;
936 }
937 
938 static int _set_required_opp(struct device *dev, struct device *pd_dev,
939 			     struct dev_pm_opp *opp, int i)
940 {
941 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
942 	int ret;
943 
944 	if (!pd_dev)
945 		return 0;
946 
947 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
948 	if (ret) {
949 		dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
950 			dev_name(pd_dev), pstate, ret);
951 	}
952 
953 	return ret;
954 }
955 
956 /* This is only called for PM domain for now */
957 static int _set_required_opps(struct device *dev,
958 			      struct opp_table *opp_table,
959 			      struct dev_pm_opp *opp, bool up)
960 {
961 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
962 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
963 	int i, ret = 0;
964 
965 	if (!required_opp_tables)
966 		return 0;
967 
968 	/* required-opps not fully initialized yet */
969 	if (lazy_linking_pending(opp_table))
970 		return -EBUSY;
971 
972 	/*
973 	 * We only support genpd's OPPs in the "required-opps" for now, as we
974 	 * don't know much about other use cases. Error out if the required OPP
975 	 * doesn't belong to a genpd.
976 	 */
977 	if (unlikely(!required_opp_tables[0]->is_genpd)) {
978 		dev_err(dev, "required-opps don't belong to a genpd\n");
979 		return -ENOENT;
980 	}
981 
982 	/* Single genpd case */
983 	if (!genpd_virt_devs)
984 		return _set_required_opp(dev, dev, opp, 0);
985 
986 	/* Multiple genpd case */
987 
988 	/*
989 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
990 	 * after it is freed from another thread.
991 	 */
992 	mutex_lock(&opp_table->genpd_virt_dev_lock);
993 
994 	/* Scaling up? Set required OPPs in normal order, else reverse */
995 	if (up) {
996 		for (i = 0; i < opp_table->required_opp_count; i++) {
997 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
998 			if (ret)
999 				break;
1000 		}
1001 	} else {
1002 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1004 			if (ret)
1005 				break;
1006 		}
1007 	}
1008 
1009 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1010 
1011 	return ret;
1012 }
1013 
1014 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1015 {
1016 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1017 	unsigned long freq;
1018 
1019 	if (!IS_ERR(opp_table->clk)) {
1020 		freq = clk_get_rate(opp_table->clk);
1021 		opp = _find_freq_ceil(opp_table, &freq);
1022 	}
1023 
1024 	/*
1025 	 * Unable to find the current OPP ? Pick the first from the list since
1026 	 * it is in ascending order, otherwise rest of the code will need to
1027 	 * make special checks to validate current_opp.
1028 	 */
1029 	if (IS_ERR(opp)) {
1030 		mutex_lock(&opp_table->lock);
1031 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032 		dev_pm_opp_get(opp);
1033 		mutex_unlock(&opp_table->lock);
1034 	}
1035 
1036 	opp_table->current_opp = opp;
1037 }
1038 
1039 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1040 {
1041 	int ret;
1042 
1043 	if (!opp_table->enabled)
1044 		return 0;
1045 
1046 	/*
1047 	 * Some drivers need to support cases where some platforms may
1048 	 * have OPP table for the device, while others don't and
1049 	 * opp_set_rate() just needs to behave like clk_set_rate().
1050 	 */
1051 	if (!_get_opp_count(opp_table))
1052 		return 0;
1053 
1054 	ret = _set_opp_bw(opp_table, NULL, dev);
1055 	if (ret)
1056 		return ret;
1057 
1058 	if (opp_table->regulators)
1059 		regulator_disable(opp_table->regulators[0]);
1060 
1061 	ret = _set_required_opps(dev, opp_table, NULL, false);
1062 
1063 	opp_table->enabled = false;
1064 	return ret;
1065 }
1066 
1067 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068 		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1069 {
1070 	struct dev_pm_opp *old_opp;
1071 	int scaling_down, ret;
1072 
1073 	if (unlikely(!opp))
1074 		return _disable_opp_table(dev, opp_table);
1075 
1076 	/* Find the currently set OPP if we don't know already */
1077 	if (unlikely(!opp_table->current_opp))
1078 		_find_current_opp(dev, opp_table);
1079 
1080 	old_opp = opp_table->current_opp;
1081 
1082 	/* Return early if nothing to do */
1083 	if (!forced && old_opp == opp && opp_table->enabled) {
1084 		dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1085 		return 0;
1086 	}
1087 
1088 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089 		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1092 
1093 	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094 	if (scaling_down == -1)
1095 		scaling_down = 0;
1096 
1097 	/* Scaling up? Configure required OPPs before frequency */
1098 	if (!scaling_down) {
1099 		ret = _set_required_opps(dev, opp_table, opp, true);
1100 		if (ret) {
1101 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1102 			return ret;
1103 		}
1104 
1105 		ret = _set_opp_bw(opp_table, opp, dev);
1106 		if (ret) {
1107 			dev_err(dev, "Failed to set bw: %d\n", ret);
1108 			return ret;
1109 		}
1110 
1111 		if (opp_table->config_regulators) {
1112 			ret = opp_table->config_regulators(dev, old_opp, opp,
1113 							   opp_table->regulators,
1114 							   opp_table->regulator_count);
1115 			if (ret) {
1116 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1117 					ret);
1118 				return ret;
1119 			}
1120 		}
1121 	}
1122 
1123 	if (opp_table->config_clks) {
1124 		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1125 		if (ret)
1126 			return ret;
1127 	}
1128 
1129 	/* Scaling down? Configure required OPPs after frequency */
1130 	if (scaling_down) {
1131 		if (opp_table->config_regulators) {
1132 			ret = opp_table->config_regulators(dev, old_opp, opp,
1133 							   opp_table->regulators,
1134 							   opp_table->regulator_count);
1135 			if (ret) {
1136 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1137 					ret);
1138 				return ret;
1139 			}
1140 		}
1141 
1142 		ret = _set_opp_bw(opp_table, opp, dev);
1143 		if (ret) {
1144 			dev_err(dev, "Failed to set bw: %d\n", ret);
1145 			return ret;
1146 		}
1147 
1148 		ret = _set_required_opps(dev, opp_table, opp, false);
1149 		if (ret) {
1150 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1151 			return ret;
1152 		}
1153 	}
1154 
1155 	opp_table->enabled = true;
1156 	dev_pm_opp_put(old_opp);
1157 
1158 	/* Make sure current_opp doesn't get freed */
1159 	dev_pm_opp_get(opp);
1160 	opp_table->current_opp = opp;
1161 
1162 	return ret;
1163 }
1164 
1165 /**
1166  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167  * @dev:	 device for which we do this operation
1168  * @target_freq: frequency to achieve
1169  *
1170  * This configures the power-supplies to the levels specified by the OPP
1171  * corresponding to the target_freq, and programs the clock to a value <=
1172  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173  * provided by the opp, should have already rounded to the target OPP's
1174  * frequency.
1175  */
1176 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1177 {
1178 	struct opp_table *opp_table;
1179 	unsigned long freq = 0, temp_freq;
1180 	struct dev_pm_opp *opp = NULL;
1181 	bool forced = false;
1182 	int ret;
1183 
1184 	opp_table = _find_opp_table(dev);
1185 	if (IS_ERR(opp_table)) {
1186 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187 		return PTR_ERR(opp_table);
1188 	}
1189 
1190 	if (target_freq) {
1191 		/*
1192 		 * For IO devices which require an OPP on some platforms/SoCs
1193 		 * while just needing to scale the clock on some others
1194 		 * we look for empty OPP tables with just a clock handle and
1195 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1196 		 * equivalent to a clk_set_rate()
1197 		 */
1198 		if (!_get_opp_count(opp_table)) {
1199 			ret = opp_table->config_clks(dev, opp_table, NULL,
1200 						     &target_freq, false);
1201 			goto put_opp_table;
1202 		}
1203 
1204 		freq = clk_round_rate(opp_table->clk, target_freq);
1205 		if ((long)freq <= 0)
1206 			freq = target_freq;
1207 
1208 		/*
1209 		 * The clock driver may support finer resolution of the
1210 		 * frequencies than the OPP table, don't update the frequency we
1211 		 * pass to clk_set_rate() here.
1212 		 */
1213 		temp_freq = freq;
1214 		opp = _find_freq_ceil(opp_table, &temp_freq);
1215 		if (IS_ERR(opp)) {
1216 			ret = PTR_ERR(opp);
1217 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218 				__func__, freq, ret);
1219 			goto put_opp_table;
1220 		}
1221 
1222 		/*
1223 		 * An OPP entry specifies the highest frequency at which other
1224 		 * properties of the OPP entry apply. Even if the new OPP is
1225 		 * same as the old one, we may still reach here for a different
1226 		 * value of the frequency. In such a case, do not abort but
1227 		 * configure the hardware to the desired frequency forcefully.
1228 		 */
1229 		forced = opp_table->rate_clk_single != target_freq;
1230 	}
1231 
1232 	ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1233 
1234 	if (target_freq)
1235 		dev_pm_opp_put(opp);
1236 
1237 put_opp_table:
1238 	dev_pm_opp_put_opp_table(opp_table);
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1242 
1243 /**
1244  * dev_pm_opp_set_opp() - Configure device for OPP
1245  * @dev: device for which we do this operation
1246  * @opp: OPP to set to
1247  *
1248  * This configures the device based on the properties of the OPP passed to this
1249  * routine.
1250  *
1251  * Return: 0 on success, a negative error number otherwise.
1252  */
1253 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1254 {
1255 	struct opp_table *opp_table;
1256 	int ret;
1257 
1258 	opp_table = _find_opp_table(dev);
1259 	if (IS_ERR(opp_table)) {
1260 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261 		return PTR_ERR(opp_table);
1262 	}
1263 
1264 	ret = _set_opp(dev, opp_table, opp, NULL, false);
1265 	dev_pm_opp_put_opp_table(opp_table);
1266 
1267 	return ret;
1268 }
1269 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1270 
1271 /* OPP-dev Helpers */
1272 static void _remove_opp_dev(struct opp_device *opp_dev,
1273 			    struct opp_table *opp_table)
1274 {
1275 	opp_debug_unregister(opp_dev, opp_table);
1276 	list_del(&opp_dev->node);
1277 	kfree(opp_dev);
1278 }
1279 
1280 struct opp_device *_add_opp_dev(const struct device *dev,
1281 				struct opp_table *opp_table)
1282 {
1283 	struct opp_device *opp_dev;
1284 
1285 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1286 	if (!opp_dev)
1287 		return NULL;
1288 
1289 	/* Initialize opp-dev */
1290 	opp_dev->dev = dev;
1291 
1292 	mutex_lock(&opp_table->lock);
1293 	list_add(&opp_dev->node, &opp_table->dev_list);
1294 	mutex_unlock(&opp_table->lock);
1295 
1296 	/* Create debugfs entries for the opp_table */
1297 	opp_debug_register(opp_dev, opp_table);
1298 
1299 	return opp_dev;
1300 }
1301 
1302 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1303 {
1304 	struct opp_table *opp_table;
1305 	struct opp_device *opp_dev;
1306 	int ret;
1307 
1308 	/*
1309 	 * Allocate a new OPP table. In the infrequent case where a new
1310 	 * device is needed to be added, we pay this penalty.
1311 	 */
1312 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1313 	if (!opp_table)
1314 		return ERR_PTR(-ENOMEM);
1315 
1316 	mutex_init(&opp_table->lock);
1317 	mutex_init(&opp_table->genpd_virt_dev_lock);
1318 	INIT_LIST_HEAD(&opp_table->dev_list);
1319 	INIT_LIST_HEAD(&opp_table->lazy);
1320 
1321 	opp_table->clk = ERR_PTR(-ENODEV);
1322 
1323 	/* Mark regulator count uninitialized */
1324 	opp_table->regulator_count = -1;
1325 
1326 	opp_dev = _add_opp_dev(dev, opp_table);
1327 	if (!opp_dev) {
1328 		ret = -ENOMEM;
1329 		goto err;
1330 	}
1331 
1332 	_of_init_opp_table(opp_table, dev, index);
1333 
1334 	/* Find interconnect path(s) for the device */
1335 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1336 	if (ret) {
1337 		if (ret == -EPROBE_DEFER)
1338 			goto remove_opp_dev;
1339 
1340 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1341 			 __func__, ret);
1342 	}
1343 
1344 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345 	INIT_LIST_HEAD(&opp_table->opp_list);
1346 	kref_init(&opp_table->kref);
1347 
1348 	return opp_table;
1349 
1350 remove_opp_dev:
1351 	_remove_opp_dev(opp_dev, opp_table);
1352 err:
1353 	kfree(opp_table);
1354 	return ERR_PTR(ret);
1355 }
1356 
1357 void _get_opp_table_kref(struct opp_table *opp_table)
1358 {
1359 	kref_get(&opp_table->kref);
1360 }
1361 
1362 static struct opp_table *_update_opp_table_clk(struct device *dev,
1363 					       struct opp_table *opp_table,
1364 					       bool getclk)
1365 {
1366 	int ret;
1367 
1368 	/*
1369 	 * Return early if we don't need to get clk or we have already done it
1370 	 * earlier.
1371 	 */
1372 	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1373 	    opp_table->clks)
1374 		return opp_table;
1375 
1376 	/* Find clk for the device */
1377 	opp_table->clk = clk_get(dev, NULL);
1378 
1379 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1380 	if (!ret) {
1381 		opp_table->config_clks = _opp_config_clk_single;
1382 		opp_table->clk_count = 1;
1383 		return opp_table;
1384 	}
1385 
1386 	if (ret == -ENOENT) {
1387 		/*
1388 		 * There are few platforms which don't want the OPP core to
1389 		 * manage device's clock settings. In such cases neither the
1390 		 * platform provides the clks explicitly to us, nor the DT
1391 		 * contains a valid clk entry. The OPP nodes in DT may still
1392 		 * contain "opp-hz" property though, which we need to parse and
1393 		 * allow the platform to find an OPP based on freq later on.
1394 		 *
1395 		 * This is a simple solution to take care of such corner cases,
1396 		 * i.e. make the clk_count 1, which lets us allocate space for
1397 		 * frequency in opp->rates and also parse the entries in DT.
1398 		 */
1399 		opp_table->clk_count = 1;
1400 
1401 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1402 		return opp_table;
1403 	}
1404 
1405 	dev_pm_opp_put_opp_table(opp_table);
1406 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1407 
1408 	return ERR_PTR(ret);
1409 }
1410 
1411 /*
1412  * We need to make sure that the OPP table for a device doesn't get added twice,
1413  * if this routine gets called in parallel with the same device pointer.
1414  *
1415  * The simplest way to enforce that is to perform everything (find existing
1416  * table and if not found, create a new one) under the opp_table_lock, so only
1417  * one creator gets access to the same. But that expands the critical section
1418  * under the lock and may end up causing circular dependencies with frameworks
1419  * like debugfs, interconnect or clock framework as they may be direct or
1420  * indirect users of OPP core.
1421  *
1422  * And for that reason we have to go for a bit tricky implementation here, which
1423  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1424  * of adding an OPP table and others should wait for it to finish.
1425  */
1426 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1427 					 bool getclk)
1428 {
1429 	struct opp_table *opp_table;
1430 
1431 again:
1432 	mutex_lock(&opp_table_lock);
1433 
1434 	opp_table = _find_opp_table_unlocked(dev);
1435 	if (!IS_ERR(opp_table))
1436 		goto unlock;
1437 
1438 	/*
1439 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1440 	 * another user, wait for it to finish.
1441 	 */
1442 	if (unlikely(opp_tables_busy)) {
1443 		mutex_unlock(&opp_table_lock);
1444 		cpu_relax();
1445 		goto again;
1446 	}
1447 
1448 	opp_tables_busy = true;
1449 	opp_table = _managed_opp(dev, index);
1450 
1451 	/* Drop the lock to reduce the size of critical section */
1452 	mutex_unlock(&opp_table_lock);
1453 
1454 	if (opp_table) {
1455 		if (!_add_opp_dev(dev, opp_table)) {
1456 			dev_pm_opp_put_opp_table(opp_table);
1457 			opp_table = ERR_PTR(-ENOMEM);
1458 		}
1459 
1460 		mutex_lock(&opp_table_lock);
1461 	} else {
1462 		opp_table = _allocate_opp_table(dev, index);
1463 
1464 		mutex_lock(&opp_table_lock);
1465 		if (!IS_ERR(opp_table))
1466 			list_add(&opp_table->node, &opp_tables);
1467 	}
1468 
1469 	opp_tables_busy = false;
1470 
1471 unlock:
1472 	mutex_unlock(&opp_table_lock);
1473 
1474 	return _update_opp_table_clk(dev, opp_table, getclk);
1475 }
1476 
1477 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1478 {
1479 	return _add_opp_table_indexed(dev, 0, getclk);
1480 }
1481 
1482 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1483 {
1484 	return _find_opp_table(dev);
1485 }
1486 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1487 
1488 static void _opp_table_kref_release(struct kref *kref)
1489 {
1490 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1491 	struct opp_device *opp_dev, *temp;
1492 	int i;
1493 
1494 	/* Drop the lock as soon as we can */
1495 	list_del(&opp_table->node);
1496 	mutex_unlock(&opp_table_lock);
1497 
1498 	if (opp_table->current_opp)
1499 		dev_pm_opp_put(opp_table->current_opp);
1500 
1501 	_of_clear_opp_table(opp_table);
1502 
1503 	/* Release automatically acquired single clk */
1504 	if (!IS_ERR(opp_table->clk))
1505 		clk_put(opp_table->clk);
1506 
1507 	if (opp_table->paths) {
1508 		for (i = 0; i < opp_table->path_count; i++)
1509 			icc_put(opp_table->paths[i]);
1510 		kfree(opp_table->paths);
1511 	}
1512 
1513 	WARN_ON(!list_empty(&opp_table->opp_list));
1514 
1515 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1516 		/*
1517 		 * The OPP table is getting removed, drop the performance state
1518 		 * constraints.
1519 		 */
1520 		if (opp_table->genpd_performance_state)
1521 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1522 
1523 		_remove_opp_dev(opp_dev, opp_table);
1524 	}
1525 
1526 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1527 	mutex_destroy(&opp_table->lock);
1528 	kfree(opp_table);
1529 }
1530 
1531 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1532 {
1533 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1534 		       &opp_table_lock);
1535 }
1536 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1537 
1538 void _opp_free(struct dev_pm_opp *opp)
1539 {
1540 	kfree(opp);
1541 }
1542 
1543 static void _opp_kref_release(struct kref *kref)
1544 {
1545 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1546 	struct opp_table *opp_table = opp->opp_table;
1547 
1548 	list_del(&opp->node);
1549 	mutex_unlock(&opp_table->lock);
1550 
1551 	/*
1552 	 * Notify the changes in the availability of the operable
1553 	 * frequency/voltage list.
1554 	 */
1555 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1556 	_of_clear_opp(opp_table, opp);
1557 	opp_debug_remove_one(opp);
1558 	kfree(opp);
1559 }
1560 
1561 void dev_pm_opp_get(struct dev_pm_opp *opp)
1562 {
1563 	kref_get(&opp->kref);
1564 }
1565 
1566 void dev_pm_opp_put(struct dev_pm_opp *opp)
1567 {
1568 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1569 }
1570 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1571 
1572 /**
1573  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1574  * @dev:	device for which we do this operation
1575  * @freq:	OPP to remove with matching 'freq'
1576  *
1577  * This function removes an opp from the opp table.
1578  */
1579 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1580 {
1581 	struct dev_pm_opp *opp = NULL, *iter;
1582 	struct opp_table *opp_table;
1583 
1584 	opp_table = _find_opp_table(dev);
1585 	if (IS_ERR(opp_table))
1586 		return;
1587 
1588 	if (!assert_single_clk(opp_table))
1589 		goto put_table;
1590 
1591 	mutex_lock(&opp_table->lock);
1592 
1593 	list_for_each_entry(iter, &opp_table->opp_list, node) {
1594 		if (iter->rates[0] == freq) {
1595 			opp = iter;
1596 			break;
1597 		}
1598 	}
1599 
1600 	mutex_unlock(&opp_table->lock);
1601 
1602 	if (opp) {
1603 		dev_pm_opp_put(opp);
1604 
1605 		/* Drop the reference taken by dev_pm_opp_add() */
1606 		dev_pm_opp_put_opp_table(opp_table);
1607 	} else {
1608 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1609 			 __func__, freq);
1610 	}
1611 
1612 put_table:
1613 	/* Drop the reference taken by _find_opp_table() */
1614 	dev_pm_opp_put_opp_table(opp_table);
1615 }
1616 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1617 
1618 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1619 					bool dynamic)
1620 {
1621 	struct dev_pm_opp *opp = NULL, *temp;
1622 
1623 	mutex_lock(&opp_table->lock);
1624 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1625 		/*
1626 		 * Refcount must be dropped only once for each OPP by OPP core,
1627 		 * do that with help of "removed" flag.
1628 		 */
1629 		if (!temp->removed && dynamic == temp->dynamic) {
1630 			opp = temp;
1631 			break;
1632 		}
1633 	}
1634 
1635 	mutex_unlock(&opp_table->lock);
1636 	return opp;
1637 }
1638 
1639 /*
1640  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1641  * happen lock less to avoid circular dependency issues. This routine must be
1642  * called without the opp_table->lock held.
1643  */
1644 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1645 {
1646 	struct dev_pm_opp *opp;
1647 
1648 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1649 		opp->removed = true;
1650 		dev_pm_opp_put(opp);
1651 
1652 		/* Drop the references taken by dev_pm_opp_add() */
1653 		if (dynamic)
1654 			dev_pm_opp_put_opp_table(opp_table);
1655 	}
1656 }
1657 
1658 bool _opp_remove_all_static(struct opp_table *opp_table)
1659 {
1660 	mutex_lock(&opp_table->lock);
1661 
1662 	if (!opp_table->parsed_static_opps) {
1663 		mutex_unlock(&opp_table->lock);
1664 		return false;
1665 	}
1666 
1667 	if (--opp_table->parsed_static_opps) {
1668 		mutex_unlock(&opp_table->lock);
1669 		return true;
1670 	}
1671 
1672 	mutex_unlock(&opp_table->lock);
1673 
1674 	_opp_remove_all(opp_table, false);
1675 	return true;
1676 }
1677 
1678 /**
1679  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1680  * @dev:	device for which we do this operation
1681  *
1682  * This function removes all dynamically created OPPs from the opp table.
1683  */
1684 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1685 {
1686 	struct opp_table *opp_table;
1687 
1688 	opp_table = _find_opp_table(dev);
1689 	if (IS_ERR(opp_table))
1690 		return;
1691 
1692 	_opp_remove_all(opp_table, true);
1693 
1694 	/* Drop the reference taken by _find_opp_table() */
1695 	dev_pm_opp_put_opp_table(opp_table);
1696 }
1697 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1698 
1699 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1700 {
1701 	struct dev_pm_opp *opp;
1702 	int supply_count, supply_size, icc_size, clk_size;
1703 
1704 	/* Allocate space for at least one supply */
1705 	supply_count = opp_table->regulator_count > 0 ?
1706 			opp_table->regulator_count : 1;
1707 	supply_size = sizeof(*opp->supplies) * supply_count;
1708 	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1709 	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1710 
1711 	/* allocate new OPP node and supplies structures */
1712 	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1713 	if (!opp)
1714 		return NULL;
1715 
1716 	/* Put the supplies, bw and clock at the end of the OPP structure */
1717 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1718 
1719 	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1720 
1721 	if (icc_size)
1722 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1723 
1724 	INIT_LIST_HEAD(&opp->node);
1725 
1726 	return opp;
1727 }
1728 
1729 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1730 					 struct opp_table *opp_table)
1731 {
1732 	struct regulator *reg;
1733 	int i;
1734 
1735 	if (!opp_table->regulators)
1736 		return true;
1737 
1738 	for (i = 0; i < opp_table->regulator_count; i++) {
1739 		reg = opp_table->regulators[i];
1740 
1741 		if (!regulator_is_supported_voltage(reg,
1742 					opp->supplies[i].u_volt_min,
1743 					opp->supplies[i].u_volt_max)) {
1744 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1745 				__func__, opp->supplies[i].u_volt_min,
1746 				opp->supplies[i].u_volt_max);
1747 			return false;
1748 		}
1749 	}
1750 
1751 	return true;
1752 }
1753 
1754 static int _opp_compare_rate(struct opp_table *opp_table,
1755 			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1756 {
1757 	int i;
1758 
1759 	for (i = 0; i < opp_table->clk_count; i++) {
1760 		if (opp1->rates[i] != opp2->rates[i])
1761 			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1762 	}
1763 
1764 	/* Same rates for both OPPs */
1765 	return 0;
1766 }
1767 
1768 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1769 			   struct dev_pm_opp *opp2)
1770 {
1771 	int i;
1772 
1773 	for (i = 0; i < opp_table->path_count; i++) {
1774 		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1775 			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1776 	}
1777 
1778 	/* Same bw for both OPPs */
1779 	return 0;
1780 }
1781 
1782 /*
1783  * Returns
1784  * 0: opp1 == opp2
1785  * 1: opp1 > opp2
1786  * -1: opp1 < opp2
1787  */
1788 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1789 		     struct dev_pm_opp *opp2)
1790 {
1791 	int ret;
1792 
1793 	ret = _opp_compare_rate(opp_table, opp1, opp2);
1794 	if (ret)
1795 		return ret;
1796 
1797 	ret = _opp_compare_bw(opp_table, opp1, opp2);
1798 	if (ret)
1799 		return ret;
1800 
1801 	if (opp1->level != opp2->level)
1802 		return opp1->level < opp2->level ? -1 : 1;
1803 
1804 	/* Duplicate OPPs */
1805 	return 0;
1806 }
1807 
1808 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1809 			     struct opp_table *opp_table,
1810 			     struct list_head **head)
1811 {
1812 	struct dev_pm_opp *opp;
1813 	int opp_cmp;
1814 
1815 	/*
1816 	 * Insert new OPP in order of increasing frequency and discard if
1817 	 * already present.
1818 	 *
1819 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1820 	 * loop, don't replace it with head otherwise it will become an infinite
1821 	 * loop.
1822 	 */
1823 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1824 		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1825 		if (opp_cmp > 0) {
1826 			*head = &opp->node;
1827 			continue;
1828 		}
1829 
1830 		if (opp_cmp < 0)
1831 			return 0;
1832 
1833 		/* Duplicate OPPs */
1834 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1835 			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1836 			 opp->available, new_opp->rates[0],
1837 			 new_opp->supplies[0].u_volt, new_opp->available);
1838 
1839 		/* Should we compare voltages for all regulators here ? */
1840 		return opp->available &&
1841 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 void _required_opps_available(struct dev_pm_opp *opp, int count)
1848 {
1849 	int i;
1850 
1851 	for (i = 0; i < count; i++) {
1852 		if (opp->required_opps[i]->available)
1853 			continue;
1854 
1855 		opp->available = false;
1856 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1857 			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1858 		return;
1859 	}
1860 }
1861 
1862 /*
1863  * Returns:
1864  * 0: On success. And appropriate error message for duplicate OPPs.
1865  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1866  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1867  *  sure we don't print error messages unnecessarily if different parts of
1868  *  kernel try to initialize the OPP table.
1869  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1870  *  should be considered an error by the callers of _opp_add().
1871  */
1872 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1873 	     struct opp_table *opp_table)
1874 {
1875 	struct list_head *head;
1876 	int ret;
1877 
1878 	mutex_lock(&opp_table->lock);
1879 	head = &opp_table->opp_list;
1880 
1881 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1882 	if (ret) {
1883 		mutex_unlock(&opp_table->lock);
1884 		return ret;
1885 	}
1886 
1887 	list_add(&new_opp->node, head);
1888 	mutex_unlock(&opp_table->lock);
1889 
1890 	new_opp->opp_table = opp_table;
1891 	kref_init(&new_opp->kref);
1892 
1893 	opp_debug_create_one(new_opp, opp_table);
1894 
1895 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1896 		new_opp->available = false;
1897 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1898 			 __func__, new_opp->rates[0]);
1899 	}
1900 
1901 	/* required-opps not fully initialized yet */
1902 	if (lazy_linking_pending(opp_table))
1903 		return 0;
1904 
1905 	_required_opps_available(new_opp, opp_table->required_opp_count);
1906 
1907 	return 0;
1908 }
1909 
1910 /**
1911  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1912  * @opp_table:	OPP table
1913  * @dev:	device for which we do this operation
1914  * @freq:	Frequency in Hz for this OPP
1915  * @u_volt:	Voltage in uVolts for this OPP
1916  * @dynamic:	Dynamically added OPPs.
1917  *
1918  * This function adds an opp definition to the opp table and returns status.
1919  * The opp is made available by default and it can be controlled using
1920  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1921  *
1922  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1923  * and freed by dev_pm_opp_of_remove_table.
1924  *
1925  * Return:
1926  * 0		On success OR
1927  *		Duplicate OPPs (both freq and volt are same) and opp->available
1928  * -EEXIST	Freq are same and volt are different OR
1929  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1930  * -ENOMEM	Memory allocation failure
1931  */
1932 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1933 		unsigned long freq, long u_volt, bool dynamic)
1934 {
1935 	struct dev_pm_opp *new_opp;
1936 	unsigned long tol;
1937 	int ret;
1938 
1939 	if (!assert_single_clk(opp_table))
1940 		return -EINVAL;
1941 
1942 	new_opp = _opp_allocate(opp_table);
1943 	if (!new_opp)
1944 		return -ENOMEM;
1945 
1946 	/* populate the opp table */
1947 	new_opp->rates[0] = freq;
1948 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1949 	new_opp->supplies[0].u_volt = u_volt;
1950 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1951 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1952 	new_opp->available = true;
1953 	new_opp->dynamic = dynamic;
1954 
1955 	ret = _opp_add(dev, new_opp, opp_table);
1956 	if (ret) {
1957 		/* Don't return error for duplicate OPPs */
1958 		if (ret == -EBUSY)
1959 			ret = 0;
1960 		goto free_opp;
1961 	}
1962 
1963 	/*
1964 	 * Notify the changes in the availability of the operable
1965 	 * frequency/voltage list.
1966 	 */
1967 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1968 	return 0;
1969 
1970 free_opp:
1971 	_opp_free(new_opp);
1972 
1973 	return ret;
1974 }
1975 
1976 /**
1977  * _opp_set_supported_hw() - Set supported platforms
1978  * @dev: Device for which supported-hw has to be set.
1979  * @versions: Array of hierarchy of versions to match.
1980  * @count: Number of elements in the array.
1981  *
1982  * This is required only for the V2 bindings, and it enables a platform to
1983  * specify the hierarchy of versions it supports. OPP layer will then enable
1984  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1985  * property.
1986  */
1987 static int _opp_set_supported_hw(struct opp_table *opp_table,
1988 				 const u32 *versions, unsigned int count)
1989 {
1990 	/* Another CPU that shares the OPP table has set the property ? */
1991 	if (opp_table->supported_hw)
1992 		return 0;
1993 
1994 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1995 					GFP_KERNEL);
1996 	if (!opp_table->supported_hw)
1997 		return -ENOMEM;
1998 
1999 	opp_table->supported_hw_count = count;
2000 
2001 	return 0;
2002 }
2003 
2004 /**
2005  * _opp_put_supported_hw() - Releases resources blocked for supported hw
2006  * @opp_table: OPP table returned by _opp_set_supported_hw().
2007  *
2008  * This is required only for the V2 bindings, and is called for a matching
2009  * _opp_set_supported_hw(). Until this is called, the opp_table structure
2010  * will not be freed.
2011  */
2012 static void _opp_put_supported_hw(struct opp_table *opp_table)
2013 {
2014 	if (opp_table->supported_hw) {
2015 		kfree(opp_table->supported_hw);
2016 		opp_table->supported_hw = NULL;
2017 		opp_table->supported_hw_count = 0;
2018 	}
2019 }
2020 
2021 /**
2022  * _opp_set_prop_name() - Set prop-extn name
2023  * @dev: Device for which the prop-name has to be set.
2024  * @name: name to postfix to properties.
2025  *
2026  * This is required only for the V2 bindings, and it enables a platform to
2027  * specify the extn to be used for certain property names. The properties to
2028  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2029  * should postfix the property name with -<name> while looking for them.
2030  */
2031 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2032 {
2033 	/* Another CPU that shares the OPP table has set the property ? */
2034 	if (!opp_table->prop_name) {
2035 		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2036 		if (!opp_table->prop_name)
2037 			return -ENOMEM;
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 /**
2044  * _opp_put_prop_name() - Releases resources blocked for prop-name
2045  * @opp_table: OPP table returned by _opp_set_prop_name().
2046  *
2047  * This is required only for the V2 bindings, and is called for a matching
2048  * _opp_set_prop_name(). Until this is called, the opp_table structure
2049  * will not be freed.
2050  */
2051 static void _opp_put_prop_name(struct opp_table *opp_table)
2052 {
2053 	if (opp_table->prop_name) {
2054 		kfree(opp_table->prop_name);
2055 		opp_table->prop_name = NULL;
2056 	}
2057 }
2058 
2059 /**
2060  * _opp_set_regulators() - Set regulator names for the device
2061  * @dev: Device for which regulator name is being set.
2062  * @names: Array of pointers to the names of the regulator.
2063  * @count: Number of regulators.
2064  *
2065  * In order to support OPP switching, OPP layer needs to know the name of the
2066  * device's regulators, as the core would be required to switch voltages as
2067  * well.
2068  *
2069  * This must be called before any OPPs are initialized for the device.
2070  */
2071 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2072 			       const char * const names[])
2073 {
2074 	const char * const *temp = names;
2075 	struct regulator *reg;
2076 	int count = 0, ret, i;
2077 
2078 	/* Count number of regulators */
2079 	while (*temp++)
2080 		count++;
2081 
2082 	if (!count)
2083 		return -EINVAL;
2084 
2085 	/* Another CPU that shares the OPP table has set the regulators ? */
2086 	if (opp_table->regulators)
2087 		return 0;
2088 
2089 	opp_table->regulators = kmalloc_array(count,
2090 					      sizeof(*opp_table->regulators),
2091 					      GFP_KERNEL);
2092 	if (!opp_table->regulators)
2093 		return -ENOMEM;
2094 
2095 	for (i = 0; i < count; i++) {
2096 		reg = regulator_get_optional(dev, names[i]);
2097 		if (IS_ERR(reg)) {
2098 			ret = dev_err_probe(dev, PTR_ERR(reg),
2099 					    "%s: no regulator (%s) found\n",
2100 					    __func__, names[i]);
2101 			goto free_regulators;
2102 		}
2103 
2104 		opp_table->regulators[i] = reg;
2105 	}
2106 
2107 	opp_table->regulator_count = count;
2108 
2109 	/* Set generic config_regulators() for single regulators here */
2110 	if (count == 1)
2111 		opp_table->config_regulators = _opp_config_regulator_single;
2112 
2113 	return 0;
2114 
2115 free_regulators:
2116 	while (i != 0)
2117 		regulator_put(opp_table->regulators[--i]);
2118 
2119 	kfree(opp_table->regulators);
2120 	opp_table->regulators = NULL;
2121 	opp_table->regulator_count = -1;
2122 
2123 	return ret;
2124 }
2125 
2126 /**
2127  * _opp_put_regulators() - Releases resources blocked for regulator
2128  * @opp_table: OPP table returned from _opp_set_regulators().
2129  */
2130 static void _opp_put_regulators(struct opp_table *opp_table)
2131 {
2132 	int i;
2133 
2134 	if (!opp_table->regulators)
2135 		return;
2136 
2137 	if (opp_table->enabled) {
2138 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2139 			regulator_disable(opp_table->regulators[i]);
2140 	}
2141 
2142 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2143 		regulator_put(opp_table->regulators[i]);
2144 
2145 	kfree(opp_table->regulators);
2146 	opp_table->regulators = NULL;
2147 	opp_table->regulator_count = -1;
2148 }
2149 
2150 static void _put_clks(struct opp_table *opp_table, int count)
2151 {
2152 	int i;
2153 
2154 	for (i = count - 1; i >= 0; i--)
2155 		clk_put(opp_table->clks[i]);
2156 
2157 	kfree(opp_table->clks);
2158 	opp_table->clks = NULL;
2159 }
2160 
2161 /**
2162  * _opp_set_clknames() - Set clk names for the device
2163  * @dev: Device for which clk names is being set.
2164  * @names: Clk names.
2165  *
2166  * In order to support OPP switching, OPP layer needs to get pointers to the
2167  * clocks for the device. Simple cases work fine without using this routine
2168  * (i.e. by passing connection-id as NULL), but for a device with multiple
2169  * clocks available, the OPP core needs to know the exact names of the clks to
2170  * use.
2171  *
2172  * This must be called before any OPPs are initialized for the device.
2173  */
2174 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2175 			     const char * const names[],
2176 			     config_clks_t config_clks)
2177 {
2178 	const char * const *temp = names;
2179 	int count = 0, ret, i;
2180 	struct clk *clk;
2181 
2182 	/* Count number of clks */
2183 	while (*temp++)
2184 		count++;
2185 
2186 	/*
2187 	 * This is a special case where we have a single clock, whose connection
2188 	 * id name is NULL, i.e. first two entries are NULL in the array.
2189 	 */
2190 	if (!count && !names[1])
2191 		count = 1;
2192 
2193 	/* Fail early for invalid configurations */
2194 	if (!count || (!config_clks && count > 1))
2195 		return -EINVAL;
2196 
2197 	/* Another CPU that shares the OPP table has set the clkname ? */
2198 	if (opp_table->clks)
2199 		return 0;
2200 
2201 	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2202 					GFP_KERNEL);
2203 	if (!opp_table->clks)
2204 		return -ENOMEM;
2205 
2206 	/* Find clks for the device */
2207 	for (i = 0; i < count; i++) {
2208 		clk = clk_get(dev, names[i]);
2209 		if (IS_ERR(clk)) {
2210 			ret = dev_err_probe(dev, PTR_ERR(clk),
2211 					    "%s: Couldn't find clock with name: %s\n",
2212 					    __func__, names[i]);
2213 			goto free_clks;
2214 		}
2215 
2216 		opp_table->clks[i] = clk;
2217 	}
2218 
2219 	opp_table->clk_count = count;
2220 	opp_table->config_clks = config_clks;
2221 
2222 	/* Set generic single clk set here */
2223 	if (count == 1) {
2224 		if (!opp_table->config_clks)
2225 			opp_table->config_clks = _opp_config_clk_single;
2226 
2227 		/*
2228 		 * We could have just dropped the "clk" field and used "clks"
2229 		 * everywhere. Instead we kept the "clk" field around for
2230 		 * following reasons:
2231 		 *
2232 		 * - avoiding clks[0] everywhere else.
2233 		 * - not running single clk helpers for multiple clk usecase by
2234 		 *   mistake.
2235 		 *
2236 		 * Since this is single-clk case, just update the clk pointer
2237 		 * too.
2238 		 */
2239 		opp_table->clk = opp_table->clks[0];
2240 	}
2241 
2242 	return 0;
2243 
2244 free_clks:
2245 	_put_clks(opp_table, i);
2246 	return ret;
2247 }
2248 
2249 /**
2250  * _opp_put_clknames() - Releases resources blocked for clks.
2251  * @opp_table: OPP table returned from _opp_set_clknames().
2252  */
2253 static void _opp_put_clknames(struct opp_table *opp_table)
2254 {
2255 	if (!opp_table->clks)
2256 		return;
2257 
2258 	opp_table->config_clks = NULL;
2259 	opp_table->clk = ERR_PTR(-ENODEV);
2260 
2261 	_put_clks(opp_table, opp_table->clk_count);
2262 }
2263 
2264 /**
2265  * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2266  * @dev: Device for which the helper is getting registered.
2267  * @config_regulators: Custom set regulator helper.
2268  *
2269  * This is useful to support platforms with multiple regulators per device.
2270  *
2271  * This must be called before any OPPs are initialized for the device.
2272  */
2273 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2274 		struct device *dev, config_regulators_t config_regulators)
2275 {
2276 	/* Another CPU that shares the OPP table has set the helper ? */
2277 	if (!opp_table->config_regulators)
2278 		opp_table->config_regulators = config_regulators;
2279 
2280 	return 0;
2281 }
2282 
2283 /**
2284  * _opp_put_config_regulators_helper() - Releases resources blocked for
2285  *					 config_regulators helper.
2286  * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2287  *
2288  * Release resources blocked for platform specific config_regulators helper.
2289  */
2290 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2291 {
2292 	if (opp_table->config_regulators)
2293 		opp_table->config_regulators = NULL;
2294 }
2295 
2296 static void _detach_genpd(struct opp_table *opp_table)
2297 {
2298 	int index;
2299 
2300 	if (!opp_table->genpd_virt_devs)
2301 		return;
2302 
2303 	for (index = 0; index < opp_table->required_opp_count; index++) {
2304 		if (!opp_table->genpd_virt_devs[index])
2305 			continue;
2306 
2307 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2308 		opp_table->genpd_virt_devs[index] = NULL;
2309 	}
2310 
2311 	kfree(opp_table->genpd_virt_devs);
2312 	opp_table->genpd_virt_devs = NULL;
2313 }
2314 
2315 /**
2316  * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2317  * @dev: Consumer device for which the genpd is getting attached.
2318  * @names: Null terminated array of pointers containing names of genpd to attach.
2319  * @virt_devs: Pointer to return the array of virtual devices.
2320  *
2321  * Multiple generic power domains for a device are supported with the help of
2322  * virtual genpd devices, which are created for each consumer device - genpd
2323  * pair. These are the device structures which are attached to the power domain
2324  * and are required by the OPP core to set the performance state of the genpd.
2325  * The same API also works for the case where single genpd is available and so
2326  * we don't need to support that separately.
2327  *
2328  * This helper will normally be called by the consumer driver of the device
2329  * "dev", as only that has details of the genpd names.
2330  *
2331  * This helper needs to be called once with a list of all genpd to attach.
2332  * Otherwise the original device structure will be used instead by the OPP core.
2333  *
2334  * The order of entries in the names array must match the order in which
2335  * "required-opps" are added in DT.
2336  */
2337 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2338 			const char * const *names, struct device ***virt_devs)
2339 {
2340 	struct device *virt_dev;
2341 	int index = 0, ret = -EINVAL;
2342 	const char * const *name = names;
2343 
2344 	if (opp_table->genpd_virt_devs)
2345 		return 0;
2346 
2347 	/*
2348 	 * If the genpd's OPP table isn't already initialized, parsing of the
2349 	 * required-opps fail for dev. We should retry this after genpd's OPP
2350 	 * table is added.
2351 	 */
2352 	if (!opp_table->required_opp_count)
2353 		return -EPROBE_DEFER;
2354 
2355 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2356 
2357 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2358 					     sizeof(*opp_table->genpd_virt_devs),
2359 					     GFP_KERNEL);
2360 	if (!opp_table->genpd_virt_devs)
2361 		goto unlock;
2362 
2363 	while (*name) {
2364 		if (index >= opp_table->required_opp_count) {
2365 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2366 				*name, opp_table->required_opp_count, index);
2367 			goto err;
2368 		}
2369 
2370 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2371 		if (IS_ERR_OR_NULL(virt_dev)) {
2372 			ret = PTR_ERR(virt_dev) ? : -ENODEV;
2373 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2374 			goto err;
2375 		}
2376 
2377 		opp_table->genpd_virt_devs[index] = virt_dev;
2378 		index++;
2379 		name++;
2380 	}
2381 
2382 	if (virt_devs)
2383 		*virt_devs = opp_table->genpd_virt_devs;
2384 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2385 
2386 	return 0;
2387 
2388 err:
2389 	_detach_genpd(opp_table);
2390 unlock:
2391 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2392 	return ret;
2393 
2394 }
2395 
2396 /**
2397  * _opp_detach_genpd() - Detach genpd(s) from the device.
2398  * @opp_table: OPP table returned by _opp_attach_genpd().
2399  *
2400  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2401  * OPP table.
2402  */
2403 static void _opp_detach_genpd(struct opp_table *opp_table)
2404 {
2405 	/*
2406 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2407 	 * used in parallel.
2408 	 */
2409 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2410 	_detach_genpd(opp_table);
2411 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412 }
2413 
2414 static void _opp_clear_config(struct opp_config_data *data)
2415 {
2416 	if (data->flags & OPP_CONFIG_GENPD)
2417 		_opp_detach_genpd(data->opp_table);
2418 	if (data->flags & OPP_CONFIG_REGULATOR)
2419 		_opp_put_regulators(data->opp_table);
2420 	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2421 		_opp_put_supported_hw(data->opp_table);
2422 	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2423 		_opp_put_config_regulators_helper(data->opp_table);
2424 	if (data->flags & OPP_CONFIG_PROP_NAME)
2425 		_opp_put_prop_name(data->opp_table);
2426 	if (data->flags & OPP_CONFIG_CLK)
2427 		_opp_put_clknames(data->opp_table);
2428 
2429 	dev_pm_opp_put_opp_table(data->opp_table);
2430 	kfree(data);
2431 }
2432 
2433 /**
2434  * dev_pm_opp_set_config() - Set OPP configuration for the device.
2435  * @dev: Device for which configuration is being set.
2436  * @config: OPP configuration.
2437  *
2438  * This allows all device OPP configurations to be performed at once.
2439  *
2440  * This must be called before any OPPs are initialized for the device. This may
2441  * be called multiple times for the same OPP table, for example once for each
2442  * CPU that share the same table. This must be balanced by the same number of
2443  * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2444  *
2445  * This returns a token to the caller, which must be passed to
2446  * dev_pm_opp_clear_config() to free the resources later. The value of the
2447  * returned token will be >= 1 for success and negative for errors. The minimum
2448  * value of 1 is chosen here to make it easy for callers to manage the resource.
2449  */
2450 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2451 {
2452 	struct opp_table *opp_table;
2453 	struct opp_config_data *data;
2454 	unsigned int id;
2455 	int ret;
2456 
2457 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2458 	if (!data)
2459 		return -ENOMEM;
2460 
2461 	opp_table = _add_opp_table(dev, false);
2462 	if (IS_ERR(opp_table)) {
2463 		kfree(data);
2464 		return PTR_ERR(opp_table);
2465 	}
2466 
2467 	data->opp_table = opp_table;
2468 	data->flags = 0;
2469 
2470 	/* This should be called before OPPs are initialized */
2471 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2472 		ret = -EBUSY;
2473 		goto err;
2474 	}
2475 
2476 	/* Configure clocks */
2477 	if (config->clk_names) {
2478 		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2479 					config->config_clks);
2480 		if (ret)
2481 			goto err;
2482 
2483 		data->flags |= OPP_CONFIG_CLK;
2484 	} else if (config->config_clks) {
2485 		/* Don't allow config callback without clocks */
2486 		ret = -EINVAL;
2487 		goto err;
2488 	}
2489 
2490 	/* Configure property names */
2491 	if (config->prop_name) {
2492 		ret = _opp_set_prop_name(opp_table, config->prop_name);
2493 		if (ret)
2494 			goto err;
2495 
2496 		data->flags |= OPP_CONFIG_PROP_NAME;
2497 	}
2498 
2499 	/* Configure config_regulators helper */
2500 	if (config->config_regulators) {
2501 		ret = _opp_set_config_regulators_helper(opp_table, dev,
2502 						config->config_regulators);
2503 		if (ret)
2504 			goto err;
2505 
2506 		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2507 	}
2508 
2509 	/* Configure supported hardware */
2510 	if (config->supported_hw) {
2511 		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2512 					    config->supported_hw_count);
2513 		if (ret)
2514 			goto err;
2515 
2516 		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2517 	}
2518 
2519 	/* Configure supplies */
2520 	if (config->regulator_names) {
2521 		ret = _opp_set_regulators(opp_table, dev,
2522 					  config->regulator_names);
2523 		if (ret)
2524 			goto err;
2525 
2526 		data->flags |= OPP_CONFIG_REGULATOR;
2527 	}
2528 
2529 	/* Attach genpds */
2530 	if (config->genpd_names) {
2531 		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2532 					config->virt_devs);
2533 		if (ret)
2534 			goto err;
2535 
2536 		data->flags |= OPP_CONFIG_GENPD;
2537 	}
2538 
2539 	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2540 		       GFP_KERNEL);
2541 	if (ret)
2542 		goto err;
2543 
2544 	return id;
2545 
2546 err:
2547 	_opp_clear_config(data);
2548 	return ret;
2549 }
2550 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2551 
2552 /**
2553  * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2554  * @opp_table: OPP table returned from dev_pm_opp_set_config().
2555  *
2556  * This allows all device OPP configurations to be cleared at once. This must be
2557  * called once for each call made to dev_pm_opp_set_config(), in order to free
2558  * the OPPs properly.
2559  *
2560  * Currently the first call itself ends up freeing all the OPP configurations,
2561  * while the later ones only drop the OPP table reference. This works well for
2562  * now as we would never want to use an half initialized OPP table and want to
2563  * remove the configurations together.
2564  */
2565 void dev_pm_opp_clear_config(int token)
2566 {
2567 	struct opp_config_data *data;
2568 
2569 	/*
2570 	 * This lets the callers call this unconditionally and keep their code
2571 	 * simple.
2572 	 */
2573 	if (unlikely(token <= 0))
2574 		return;
2575 
2576 	data = xa_erase(&opp_configs, token);
2577 	if (WARN_ON(!data))
2578 		return;
2579 
2580 	_opp_clear_config(data);
2581 }
2582 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2583 
2584 static void devm_pm_opp_config_release(void *token)
2585 {
2586 	dev_pm_opp_clear_config((unsigned long)token);
2587 }
2588 
2589 /**
2590  * devm_pm_opp_set_config() - Set OPP configuration for the device.
2591  * @dev: Device for which configuration is being set.
2592  * @config: OPP configuration.
2593  *
2594  * This allows all device OPP configurations to be performed at once.
2595  * This is a resource-managed variant of dev_pm_opp_set_config().
2596  *
2597  * Return: 0 on success and errorno otherwise.
2598  */
2599 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2600 {
2601 	int token = dev_pm_opp_set_config(dev, config);
2602 
2603 	if (token < 0)
2604 		return token;
2605 
2606 	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2607 					(void *) ((unsigned long) token));
2608 }
2609 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2610 
2611 /**
2612  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2613  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2614  * @dst_table: Required OPP table of the @src_table.
2615  * @src_opp: OPP from the @src_table.
2616  *
2617  * This function returns the OPP (present in @dst_table) pointed out by the
2618  * "required-opps" property of the @src_opp (present in @src_table).
2619  *
2620  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2621  * use.
2622  *
2623  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2624  */
2625 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2626 						 struct opp_table *dst_table,
2627 						 struct dev_pm_opp *src_opp)
2628 {
2629 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2630 	int i;
2631 
2632 	if (!src_table || !dst_table || !src_opp ||
2633 	    !src_table->required_opp_tables)
2634 		return ERR_PTR(-EINVAL);
2635 
2636 	/* required-opps not fully initialized yet */
2637 	if (lazy_linking_pending(src_table))
2638 		return ERR_PTR(-EBUSY);
2639 
2640 	for (i = 0; i < src_table->required_opp_count; i++) {
2641 		if (src_table->required_opp_tables[i] == dst_table) {
2642 			mutex_lock(&src_table->lock);
2643 
2644 			list_for_each_entry(opp, &src_table->opp_list, node) {
2645 				if (opp == src_opp) {
2646 					dest_opp = opp->required_opps[i];
2647 					dev_pm_opp_get(dest_opp);
2648 					break;
2649 				}
2650 			}
2651 
2652 			mutex_unlock(&src_table->lock);
2653 			break;
2654 		}
2655 	}
2656 
2657 	if (IS_ERR(dest_opp)) {
2658 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2659 		       src_table, dst_table);
2660 	}
2661 
2662 	return dest_opp;
2663 }
2664 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2665 
2666 /**
2667  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2668  * @src_table: OPP table which has dst_table as one of its required OPP table.
2669  * @dst_table: Required OPP table of the src_table.
2670  * @pstate: Current performance state of the src_table.
2671  *
2672  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2673  * "required-opps" property of the OPP (present in @src_table) which has
2674  * performance state set to @pstate.
2675  *
2676  * Return: Zero or positive performance state on success, otherwise negative
2677  * value on errors.
2678  */
2679 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2680 				       struct opp_table *dst_table,
2681 				       unsigned int pstate)
2682 {
2683 	struct dev_pm_opp *opp;
2684 	int dest_pstate = -EINVAL;
2685 	int i;
2686 
2687 	/*
2688 	 * Normally the src_table will have the "required_opps" property set to
2689 	 * point to one of the OPPs in the dst_table, but in some cases the
2690 	 * genpd and its master have one to one mapping of performance states
2691 	 * and so none of them have the "required-opps" property set. Return the
2692 	 * pstate of the src_table as it is in such cases.
2693 	 */
2694 	if (!src_table || !src_table->required_opp_count)
2695 		return pstate;
2696 
2697 	/* required-opps not fully initialized yet */
2698 	if (lazy_linking_pending(src_table))
2699 		return -EBUSY;
2700 
2701 	for (i = 0; i < src_table->required_opp_count; i++) {
2702 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2703 			break;
2704 	}
2705 
2706 	if (unlikely(i == src_table->required_opp_count)) {
2707 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2708 		       __func__, src_table, dst_table);
2709 		return -EINVAL;
2710 	}
2711 
2712 	mutex_lock(&src_table->lock);
2713 
2714 	list_for_each_entry(opp, &src_table->opp_list, node) {
2715 		if (opp->pstate == pstate) {
2716 			dest_pstate = opp->required_opps[i]->pstate;
2717 			goto unlock;
2718 		}
2719 	}
2720 
2721 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2722 	       dst_table);
2723 
2724 unlock:
2725 	mutex_unlock(&src_table->lock);
2726 
2727 	return dest_pstate;
2728 }
2729 
2730 /**
2731  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2732  * @dev:	device for which we do this operation
2733  * @freq:	Frequency in Hz for this OPP
2734  * @u_volt:	Voltage in uVolts for this OPP
2735  *
2736  * This function adds an opp definition to the opp table and returns status.
2737  * The opp is made available by default and it can be controlled using
2738  * dev_pm_opp_enable/disable functions.
2739  *
2740  * Return:
2741  * 0		On success OR
2742  *		Duplicate OPPs (both freq and volt are same) and opp->available
2743  * -EEXIST	Freq are same and volt are different OR
2744  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2745  * -ENOMEM	Memory allocation failure
2746  */
2747 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2748 {
2749 	struct opp_table *opp_table;
2750 	int ret;
2751 
2752 	opp_table = _add_opp_table(dev, true);
2753 	if (IS_ERR(opp_table))
2754 		return PTR_ERR(opp_table);
2755 
2756 	/* Fix regulator count for dynamic OPPs */
2757 	opp_table->regulator_count = 1;
2758 
2759 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2760 	if (ret)
2761 		dev_pm_opp_put_opp_table(opp_table);
2762 
2763 	return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2766 
2767 /**
2768  * _opp_set_availability() - helper to set the availability of an opp
2769  * @dev:		device for which we do this operation
2770  * @freq:		OPP frequency to modify availability
2771  * @availability_req:	availability status requested for this opp
2772  *
2773  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2774  * which is isolated here.
2775  *
2776  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2777  * copy operation, returns 0 if no modification was done OR modification was
2778  * successful.
2779  */
2780 static int _opp_set_availability(struct device *dev, unsigned long freq,
2781 				 bool availability_req)
2782 {
2783 	struct opp_table *opp_table;
2784 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2785 	int r = 0;
2786 
2787 	/* Find the opp_table */
2788 	opp_table = _find_opp_table(dev);
2789 	if (IS_ERR(opp_table)) {
2790 		r = PTR_ERR(opp_table);
2791 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2792 		return r;
2793 	}
2794 
2795 	if (!assert_single_clk(opp_table)) {
2796 		r = -EINVAL;
2797 		goto put_table;
2798 	}
2799 
2800 	mutex_lock(&opp_table->lock);
2801 
2802 	/* Do we have the frequency? */
2803 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2804 		if (tmp_opp->rates[0] == freq) {
2805 			opp = tmp_opp;
2806 			break;
2807 		}
2808 	}
2809 
2810 	if (IS_ERR(opp)) {
2811 		r = PTR_ERR(opp);
2812 		goto unlock;
2813 	}
2814 
2815 	/* Is update really needed? */
2816 	if (opp->available == availability_req)
2817 		goto unlock;
2818 
2819 	opp->available = availability_req;
2820 
2821 	dev_pm_opp_get(opp);
2822 	mutex_unlock(&opp_table->lock);
2823 
2824 	/* Notify the change of the OPP availability */
2825 	if (availability_req)
2826 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2827 					     opp);
2828 	else
2829 		blocking_notifier_call_chain(&opp_table->head,
2830 					     OPP_EVENT_DISABLE, opp);
2831 
2832 	dev_pm_opp_put(opp);
2833 	goto put_table;
2834 
2835 unlock:
2836 	mutex_unlock(&opp_table->lock);
2837 put_table:
2838 	dev_pm_opp_put_opp_table(opp_table);
2839 	return r;
2840 }
2841 
2842 /**
2843  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2844  * @dev:		device for which we do this operation
2845  * @freq:		OPP frequency to adjust voltage of
2846  * @u_volt:		new OPP target voltage
2847  * @u_volt_min:		new OPP min voltage
2848  * @u_volt_max:		new OPP max voltage
2849  *
2850  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2851  * copy operation, returns 0 if no modifcation was done OR modification was
2852  * successful.
2853  */
2854 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2855 			      unsigned long u_volt, unsigned long u_volt_min,
2856 			      unsigned long u_volt_max)
2857 
2858 {
2859 	struct opp_table *opp_table;
2860 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2861 	int r = 0;
2862 
2863 	/* Find the opp_table */
2864 	opp_table = _find_opp_table(dev);
2865 	if (IS_ERR(opp_table)) {
2866 		r = PTR_ERR(opp_table);
2867 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2868 		return r;
2869 	}
2870 
2871 	if (!assert_single_clk(opp_table)) {
2872 		r = -EINVAL;
2873 		goto put_table;
2874 	}
2875 
2876 	mutex_lock(&opp_table->lock);
2877 
2878 	/* Do we have the frequency? */
2879 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2880 		if (tmp_opp->rates[0] == freq) {
2881 			opp = tmp_opp;
2882 			break;
2883 		}
2884 	}
2885 
2886 	if (IS_ERR(opp)) {
2887 		r = PTR_ERR(opp);
2888 		goto adjust_unlock;
2889 	}
2890 
2891 	/* Is update really needed? */
2892 	if (opp->supplies->u_volt == u_volt)
2893 		goto adjust_unlock;
2894 
2895 	opp->supplies->u_volt = u_volt;
2896 	opp->supplies->u_volt_min = u_volt_min;
2897 	opp->supplies->u_volt_max = u_volt_max;
2898 
2899 	dev_pm_opp_get(opp);
2900 	mutex_unlock(&opp_table->lock);
2901 
2902 	/* Notify the voltage change of the OPP */
2903 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2904 				     opp);
2905 
2906 	dev_pm_opp_put(opp);
2907 	goto put_table;
2908 
2909 adjust_unlock:
2910 	mutex_unlock(&opp_table->lock);
2911 put_table:
2912 	dev_pm_opp_put_opp_table(opp_table);
2913 	return r;
2914 }
2915 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2916 
2917 /**
2918  * dev_pm_opp_enable() - Enable a specific OPP
2919  * @dev:	device for which we do this operation
2920  * @freq:	OPP frequency to enable
2921  *
2922  * Enables a provided opp. If the operation is valid, this returns 0, else the
2923  * corresponding error value. It is meant to be used for users an OPP available
2924  * after being temporarily made unavailable with dev_pm_opp_disable.
2925  *
2926  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2927  * copy operation, returns 0 if no modification was done OR modification was
2928  * successful.
2929  */
2930 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2931 {
2932 	return _opp_set_availability(dev, freq, true);
2933 }
2934 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2935 
2936 /**
2937  * dev_pm_opp_disable() - Disable a specific OPP
2938  * @dev:	device for which we do this operation
2939  * @freq:	OPP frequency to disable
2940  *
2941  * Disables a provided opp. If the operation is valid, this returns
2942  * 0, else the corresponding error value. It is meant to be a temporary
2943  * control by users to make this OPP not available until the circumstances are
2944  * right to make it available again (with a call to dev_pm_opp_enable).
2945  *
2946  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2947  * copy operation, returns 0 if no modification was done OR modification was
2948  * successful.
2949  */
2950 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2951 {
2952 	return _opp_set_availability(dev, freq, false);
2953 }
2954 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2955 
2956 /**
2957  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2958  * @dev:	Device for which notifier needs to be registered
2959  * @nb:		Notifier block to be registered
2960  *
2961  * Return: 0 on success or a negative error value.
2962  */
2963 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2964 {
2965 	struct opp_table *opp_table;
2966 	int ret;
2967 
2968 	opp_table = _find_opp_table(dev);
2969 	if (IS_ERR(opp_table))
2970 		return PTR_ERR(opp_table);
2971 
2972 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2973 
2974 	dev_pm_opp_put_opp_table(opp_table);
2975 
2976 	return ret;
2977 }
2978 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2979 
2980 /**
2981  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2982  * @dev:	Device for which notifier needs to be unregistered
2983  * @nb:		Notifier block to be unregistered
2984  *
2985  * Return: 0 on success or a negative error value.
2986  */
2987 int dev_pm_opp_unregister_notifier(struct device *dev,
2988 				   struct notifier_block *nb)
2989 {
2990 	struct opp_table *opp_table;
2991 	int ret;
2992 
2993 	opp_table = _find_opp_table(dev);
2994 	if (IS_ERR(opp_table))
2995 		return PTR_ERR(opp_table);
2996 
2997 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2998 
2999 	dev_pm_opp_put_opp_table(opp_table);
3000 
3001 	return ret;
3002 }
3003 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3004 
3005 /**
3006  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3007  * @dev:	device pointer used to lookup OPP table.
3008  *
3009  * Free both OPPs created using static entries present in DT and the
3010  * dynamically added entries.
3011  */
3012 void dev_pm_opp_remove_table(struct device *dev)
3013 {
3014 	struct opp_table *opp_table;
3015 
3016 	/* Check for existing table for 'dev' */
3017 	opp_table = _find_opp_table(dev);
3018 	if (IS_ERR(opp_table)) {
3019 		int error = PTR_ERR(opp_table);
3020 
3021 		if (error != -ENODEV)
3022 			WARN(1, "%s: opp_table: %d\n",
3023 			     IS_ERR_OR_NULL(dev) ?
3024 					"Invalid device" : dev_name(dev),
3025 			     error);
3026 		return;
3027 	}
3028 
3029 	/*
3030 	 * Drop the extra reference only if the OPP table was successfully added
3031 	 * with dev_pm_opp_of_add_table() earlier.
3032 	 **/
3033 	if (_opp_remove_all_static(opp_table))
3034 		dev_pm_opp_put_opp_table(opp_table);
3035 
3036 	/* Drop reference taken by _find_opp_table() */
3037 	dev_pm_opp_put_opp_table(opp_table);
3038 }
3039 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3040 
3041 /**
3042  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3043  * @dev:	device for which we do this operation
3044  *
3045  * Sync voltage state of the OPP table regulators.
3046  *
3047  * Return: 0 on success or a negative error value.
3048  */
3049 int dev_pm_opp_sync_regulators(struct device *dev)
3050 {
3051 	struct opp_table *opp_table;
3052 	struct regulator *reg;
3053 	int i, ret = 0;
3054 
3055 	/* Device may not have OPP table */
3056 	opp_table = _find_opp_table(dev);
3057 	if (IS_ERR(opp_table))
3058 		return 0;
3059 
3060 	/* Regulator may not be required for the device */
3061 	if (unlikely(!opp_table->regulators))
3062 		goto put_table;
3063 
3064 	/* Nothing to sync if voltage wasn't changed */
3065 	if (!opp_table->enabled)
3066 		goto put_table;
3067 
3068 	for (i = 0; i < opp_table->regulator_count; i++) {
3069 		reg = opp_table->regulators[i];
3070 		ret = regulator_sync_voltage(reg);
3071 		if (ret)
3072 			break;
3073 	}
3074 put_table:
3075 	/* Drop reference taken by _find_opp_table() */
3076 	dev_pm_opp_put_opp_table(opp_table);
3077 
3078 	return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3081