xref: /openbmc/linux/drivers/opp/core.c (revision aeefc1a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 /* Flag indicating that opp_tables list is being updated at the moment */
33 static bool opp_tables_busy;
34 
35 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
36 {
37 	struct opp_device *opp_dev;
38 	bool found = false;
39 
40 	mutex_lock(&opp_table->lock);
41 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 		if (opp_dev->dev == dev) {
43 			found = true;
44 			break;
45 		}
46 
47 	mutex_unlock(&opp_table->lock);
48 	return found;
49 }
50 
51 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
52 {
53 	struct opp_table *opp_table;
54 
55 	list_for_each_entry(opp_table, &opp_tables, node) {
56 		if (_find_opp_dev(dev, opp_table)) {
57 			_get_opp_table_kref(opp_table);
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp)) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	/*
703 	 * Enable the regulator after setting its voltages, otherwise it breaks
704 	 * some boot-enabled regulators.
705 	 */
706 	if (unlikely(!opp_table->enabled)) {
707 		ret = regulator_enable(reg);
708 		if (ret < 0)
709 			dev_warn(dev, "Failed to enable regulator: %d", ret);
710 	}
711 
712 	return 0;
713 
714 restore_freq:
715 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717 			__func__, old_freq);
718 restore_voltage:
719 	/* This shouldn't harm even if the voltages weren't updated earlier */
720 	if (old_supply)
721 		_set_opp_voltage(dev, reg, old_supply);
722 
723 	return ret;
724 }
725 
726 static int _set_opp_bw(const struct opp_table *opp_table,
727 		       struct dev_pm_opp *opp, struct device *dev, bool remove)
728 {
729 	u32 avg, peak;
730 	int i, ret;
731 
732 	if (!opp_table->paths)
733 		return 0;
734 
735 	for (i = 0; i < opp_table->path_count; i++) {
736 		if (remove) {
737 			avg = 0;
738 			peak = 0;
739 		} else {
740 			avg = opp->bandwidth[i].avg;
741 			peak = opp->bandwidth[i].peak;
742 		}
743 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
744 		if (ret) {
745 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746 				remove ? "remove" : "set", i, ret);
747 			return ret;
748 		}
749 	}
750 
751 	return 0;
752 }
753 
754 static int _set_opp_custom(const struct opp_table *opp_table,
755 			   struct device *dev, unsigned long old_freq,
756 			   unsigned long freq,
757 			   struct dev_pm_opp_supply *old_supply,
758 			   struct dev_pm_opp_supply *new_supply)
759 {
760 	struct dev_pm_set_opp_data *data;
761 	int size;
762 
763 	data = opp_table->set_opp_data;
764 	data->regulators = opp_table->regulators;
765 	data->regulator_count = opp_table->regulator_count;
766 	data->clk = opp_table->clk;
767 	data->dev = dev;
768 
769 	data->old_opp.rate = old_freq;
770 	size = sizeof(*old_supply) * opp_table->regulator_count;
771 	if (!old_supply)
772 		memset(data->old_opp.supplies, 0, size);
773 	else
774 		memcpy(data->old_opp.supplies, old_supply, size);
775 
776 	data->new_opp.rate = freq;
777 	memcpy(data->new_opp.supplies, new_supply, size);
778 
779 	return opp_table->set_opp(data);
780 }
781 
782 static int _set_required_opp(struct device *dev, struct device *pd_dev,
783 			     struct dev_pm_opp *opp, int i)
784 {
785 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786 	int ret;
787 
788 	if (!pd_dev)
789 		return 0;
790 
791 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792 	if (ret) {
793 		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794 			dev_name(pd_dev), pstate, ret);
795 	}
796 
797 	return ret;
798 }
799 
800 /* This is only called for PM domain for now */
801 static int _set_required_opps(struct device *dev,
802 			      struct opp_table *opp_table,
803 			      struct dev_pm_opp *opp, bool up)
804 {
805 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807 	int i, ret = 0;
808 
809 	if (!required_opp_tables)
810 		return 0;
811 
812 	/* Single genpd case */
813 	if (!genpd_virt_devs)
814 		return _set_required_opp(dev, dev, opp, 0);
815 
816 	/* Multiple genpd case */
817 
818 	/*
819 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820 	 * after it is freed from another thread.
821 	 */
822 	mutex_lock(&opp_table->genpd_virt_dev_lock);
823 
824 	/* Scaling up? Set required OPPs in normal order, else reverse */
825 	if (up) {
826 		for (i = 0; i < opp_table->required_opp_count; i++) {
827 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828 			if (ret)
829 				break;
830 		}
831 	} else {
832 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834 			if (ret)
835 				break;
836 		}
837 	}
838 
839 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
840 
841 	return ret;
842 }
843 
844 /**
845  * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846  * @dev:	device for which we do this operation
847  * @opp:	opp based on which the bandwidth levels are to be configured
848  *
849  * This configures the bandwidth to the levels specified by the OPP. However
850  * if the OPP specified is NULL the bandwidth levels are cleared out.
851  *
852  * Return: 0 on success or a negative error value.
853  */
854 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
855 {
856 	struct opp_table *opp_table;
857 	int ret;
858 
859 	opp_table = _find_opp_table(dev);
860 	if (IS_ERR(opp_table)) {
861 		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862 		return PTR_ERR(opp_table);
863 	}
864 
865 	if (opp)
866 		ret = _set_opp_bw(opp_table, opp, dev, false);
867 	else
868 		ret = _set_opp_bw(opp_table, NULL, dev, true);
869 
870 	dev_pm_opp_put_opp_table(opp_table);
871 	return ret;
872 }
873 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
874 
875 static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
876 {
877 	int ret;
878 
879 	if (!opp_table->enabled)
880 		return 0;
881 
882 	/*
883 	 * Some drivers need to support cases where some platforms may
884 	 * have OPP table for the device, while others don't and
885 	 * opp_set_rate() just needs to behave like clk_set_rate().
886 	 */
887 	if (!_get_opp_count(opp_table))
888 		return 0;
889 
890 	ret = _set_opp_bw(opp_table, NULL, dev, true);
891 	if (ret)
892 		return ret;
893 
894 	if (opp_table->regulators)
895 		regulator_disable(opp_table->regulators[0]);
896 
897 	ret = _set_required_opps(dev, opp_table, NULL, false);
898 
899 	opp_table->enabled = false;
900 	return ret;
901 }
902 
903 /**
904  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905  * @dev:	 device for which we do this operation
906  * @target_freq: frequency to achieve
907  *
908  * This configures the power-supplies to the levels specified by the OPP
909  * corresponding to the target_freq, and programs the clock to a value <=
910  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911  * provided by the opp, should have already rounded to the target OPP's
912  * frequency.
913  */
914 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
915 {
916 	struct opp_table *opp_table;
917 	unsigned long freq, old_freq, temp_freq;
918 	struct dev_pm_opp *old_opp, *opp;
919 	struct clk *clk;
920 	int ret;
921 
922 	opp_table = _find_opp_table(dev);
923 	if (IS_ERR(opp_table)) {
924 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925 		return PTR_ERR(opp_table);
926 	}
927 
928 	if (unlikely(!target_freq)) {
929 		ret = _opp_set_rate_zero(dev, opp_table);
930 		goto put_opp_table;
931 	}
932 
933 	clk = opp_table->clk;
934 	if (IS_ERR(clk)) {
935 		dev_err(dev, "%s: No clock available for the device\n",
936 			__func__);
937 		ret = PTR_ERR(clk);
938 		goto put_opp_table;
939 	}
940 
941 	freq = clk_round_rate(clk, target_freq);
942 	if ((long)freq <= 0)
943 		freq = target_freq;
944 
945 	old_freq = clk_get_rate(clk);
946 
947 	/* Return early if nothing to do */
948 	if (opp_table->enabled && old_freq == freq) {
949 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950 			__func__, freq);
951 		ret = 0;
952 		goto put_opp_table;
953 	}
954 
955 	/*
956 	 * For IO devices which require an OPP on some platforms/SoCs
957 	 * while just needing to scale the clock on some others
958 	 * we look for empty OPP tables with just a clock handle and
959 	 * scale only the clk. This makes dev_pm_opp_set_rate()
960 	 * equivalent to a clk_set_rate()
961 	 */
962 	if (!_get_opp_count(opp_table)) {
963 		ret = _generic_set_opp_clk_only(dev, clk, freq);
964 		goto put_opp_table;
965 	}
966 
967 	temp_freq = old_freq;
968 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
969 	if (IS_ERR(old_opp)) {
970 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971 			__func__, old_freq, PTR_ERR(old_opp));
972 	}
973 
974 	temp_freq = freq;
975 	opp = _find_freq_ceil(opp_table, &temp_freq);
976 	if (IS_ERR(opp)) {
977 		ret = PTR_ERR(opp);
978 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979 			__func__, freq, ret);
980 		goto put_old_opp;
981 	}
982 
983 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984 		old_freq, freq);
985 
986 	/* Scaling up? Configure required OPPs before frequency */
987 	if (freq >= old_freq) {
988 		ret = _set_required_opps(dev, opp_table, opp, true);
989 		if (ret)
990 			goto put_opp;
991 	}
992 
993 	if (opp_table->set_opp) {
994 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
996 				      opp->supplies);
997 	} else if (opp_table->regulators) {
998 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000 						 opp->supplies);
1001 	} else {
1002 		/* Only frequency scaling */
1003 		ret = _generic_set_opp_clk_only(dev, clk, freq);
1004 	}
1005 
1006 	/* Scaling down? Configure required OPPs after frequency */
1007 	if (!ret && freq < old_freq) {
1008 		ret = _set_required_opps(dev, opp_table, opp, false);
1009 		if (ret)
1010 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1011 	}
1012 
1013 	if (!ret) {
1014 		ret = _set_opp_bw(opp_table, opp, dev, false);
1015 		if (!ret)
1016 			opp_table->enabled = true;
1017 	}
1018 
1019 put_opp:
1020 	dev_pm_opp_put(opp);
1021 put_old_opp:
1022 	if (!IS_ERR(old_opp))
1023 		dev_pm_opp_put(old_opp);
1024 put_opp_table:
1025 	dev_pm_opp_put_opp_table(opp_table);
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1029 
1030 /* OPP-dev Helpers */
1031 static void _remove_opp_dev(struct opp_device *opp_dev,
1032 			    struct opp_table *opp_table)
1033 {
1034 	opp_debug_unregister(opp_dev, opp_table);
1035 	list_del(&opp_dev->node);
1036 	kfree(opp_dev);
1037 }
1038 
1039 struct opp_device *_add_opp_dev(const struct device *dev,
1040 				struct opp_table *opp_table)
1041 {
1042 	struct opp_device *opp_dev;
1043 
1044 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045 	if (!opp_dev)
1046 		return NULL;
1047 
1048 	/* Initialize opp-dev */
1049 	opp_dev->dev = dev;
1050 
1051 	mutex_lock(&opp_table->lock);
1052 	list_add(&opp_dev->node, &opp_table->dev_list);
1053 	mutex_unlock(&opp_table->lock);
1054 
1055 	/* Create debugfs entries for the opp_table */
1056 	opp_debug_register(opp_dev, opp_table);
1057 
1058 	return opp_dev;
1059 }
1060 
1061 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1062 {
1063 	struct opp_table *opp_table;
1064 	struct opp_device *opp_dev;
1065 	int ret;
1066 
1067 	/*
1068 	 * Allocate a new OPP table. In the infrequent case where a new
1069 	 * device is needed to be added, we pay this penalty.
1070 	 */
1071 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1072 	if (!opp_table)
1073 		return ERR_PTR(-ENOMEM);
1074 
1075 	mutex_init(&opp_table->lock);
1076 	mutex_init(&opp_table->genpd_virt_dev_lock);
1077 	INIT_LIST_HEAD(&opp_table->dev_list);
1078 
1079 	/* Mark regulator count uninitialized */
1080 	opp_table->regulator_count = -1;
1081 
1082 	opp_dev = _add_opp_dev(dev, opp_table);
1083 	if (!opp_dev) {
1084 		ret = -ENOMEM;
1085 		goto err;
1086 	}
1087 
1088 	_of_init_opp_table(opp_table, dev, index);
1089 
1090 	/* Find clk for the device */
1091 	opp_table->clk = clk_get(dev, NULL);
1092 	if (IS_ERR(opp_table->clk)) {
1093 		ret = PTR_ERR(opp_table->clk);
1094 		if (ret == -EPROBE_DEFER)
1095 			goto err;
1096 
1097 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1098 	}
1099 
1100 	/* Find interconnect path(s) for the device */
1101 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1102 	if (ret) {
1103 		if (ret == -EPROBE_DEFER)
1104 			goto err;
1105 
1106 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1107 			 __func__, ret);
1108 	}
1109 
1110 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1111 	INIT_LIST_HEAD(&opp_table->opp_list);
1112 	kref_init(&opp_table->kref);
1113 
1114 	return opp_table;
1115 
1116 err:
1117 	kfree(opp_table);
1118 	return ERR_PTR(ret);
1119 }
1120 
1121 void _get_opp_table_kref(struct opp_table *opp_table)
1122 {
1123 	kref_get(&opp_table->kref);
1124 }
1125 
1126 /*
1127  * We need to make sure that the OPP table for a device doesn't get added twice,
1128  * if this routine gets called in parallel with the same device pointer.
1129  *
1130  * The simplest way to enforce that is to perform everything (find existing
1131  * table and if not found, create a new one) under the opp_table_lock, so only
1132  * one creator gets access to the same. But that expands the critical section
1133  * under the lock and may end up causing circular dependencies with frameworks
1134  * like debugfs, interconnect or clock framework as they may be direct or
1135  * indirect users of OPP core.
1136  *
1137  * And for that reason we have to go for a bit tricky implementation here, which
1138  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1139  * of adding an OPP table and others should wait for it to finish.
1140  */
1141 struct opp_table *_add_opp_table_indexed(struct device *dev, int index)
1142 {
1143 	struct opp_table *opp_table;
1144 
1145 again:
1146 	mutex_lock(&opp_table_lock);
1147 
1148 	opp_table = _find_opp_table_unlocked(dev);
1149 	if (!IS_ERR(opp_table))
1150 		goto unlock;
1151 
1152 	/*
1153 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1154 	 * another user, wait for it to finish.
1155 	 */
1156 	if (unlikely(opp_tables_busy)) {
1157 		mutex_unlock(&opp_table_lock);
1158 		cpu_relax();
1159 		goto again;
1160 	}
1161 
1162 	opp_tables_busy = true;
1163 	opp_table = _managed_opp(dev, index);
1164 
1165 	/* Drop the lock to reduce the size of critical section */
1166 	mutex_unlock(&opp_table_lock);
1167 
1168 	if (opp_table) {
1169 		if (!_add_opp_dev(dev, opp_table)) {
1170 			dev_pm_opp_put_opp_table(opp_table);
1171 			opp_table = ERR_PTR(-ENOMEM);
1172 		}
1173 
1174 		mutex_lock(&opp_table_lock);
1175 	} else {
1176 		opp_table = _allocate_opp_table(dev, index);
1177 
1178 		mutex_lock(&opp_table_lock);
1179 		if (!IS_ERR(opp_table))
1180 			list_add(&opp_table->node, &opp_tables);
1181 	}
1182 
1183 	opp_tables_busy = false;
1184 
1185 unlock:
1186 	mutex_unlock(&opp_table_lock);
1187 
1188 	return opp_table;
1189 }
1190 
1191 struct opp_table *_add_opp_table(struct device *dev)
1192 {
1193 	return _add_opp_table_indexed(dev, 0);
1194 }
1195 
1196 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1197 {
1198 	return _find_opp_table(dev);
1199 }
1200 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1201 
1202 static void _opp_table_kref_release(struct kref *kref)
1203 {
1204 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1205 	struct opp_device *opp_dev, *temp;
1206 	int i;
1207 
1208 	/* Drop the lock as soon as we can */
1209 	list_del(&opp_table->node);
1210 	mutex_unlock(&opp_table_lock);
1211 
1212 	_of_clear_opp_table(opp_table);
1213 
1214 	/* Release clk */
1215 	if (!IS_ERR(opp_table->clk))
1216 		clk_put(opp_table->clk);
1217 
1218 	if (opp_table->paths) {
1219 		for (i = 0; i < opp_table->path_count; i++)
1220 			icc_put(opp_table->paths[i]);
1221 		kfree(opp_table->paths);
1222 	}
1223 
1224 	WARN_ON(!list_empty(&opp_table->opp_list));
1225 
1226 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1227 		/*
1228 		 * The OPP table is getting removed, drop the performance state
1229 		 * constraints.
1230 		 */
1231 		if (opp_table->genpd_performance_state)
1232 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1233 
1234 		_remove_opp_dev(opp_dev, opp_table);
1235 	}
1236 
1237 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1238 	mutex_destroy(&opp_table->lock);
1239 	kfree(opp_table);
1240 }
1241 
1242 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1243 {
1244 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1245 		       &opp_table_lock);
1246 }
1247 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1248 
1249 void _opp_free(struct dev_pm_opp *opp)
1250 {
1251 	kfree(opp);
1252 }
1253 
1254 static void _opp_kref_release(struct kref *kref)
1255 {
1256 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1257 	struct opp_table *opp_table = opp->opp_table;
1258 
1259 	list_del(&opp->node);
1260 	mutex_unlock(&opp_table->lock);
1261 
1262 	/*
1263 	 * Notify the changes in the availability of the operable
1264 	 * frequency/voltage list.
1265 	 */
1266 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1267 	_of_opp_free_required_opps(opp_table, opp);
1268 	opp_debug_remove_one(opp);
1269 	kfree(opp);
1270 }
1271 
1272 void dev_pm_opp_get(struct dev_pm_opp *opp)
1273 {
1274 	kref_get(&opp->kref);
1275 }
1276 
1277 void dev_pm_opp_put(struct dev_pm_opp *opp)
1278 {
1279 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1280 }
1281 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1282 
1283 /**
1284  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1285  * @dev:	device for which we do this operation
1286  * @freq:	OPP to remove with matching 'freq'
1287  *
1288  * This function removes an opp from the opp table.
1289  */
1290 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1291 {
1292 	struct dev_pm_opp *opp;
1293 	struct opp_table *opp_table;
1294 	bool found = false;
1295 
1296 	opp_table = _find_opp_table(dev);
1297 	if (IS_ERR(opp_table))
1298 		return;
1299 
1300 	mutex_lock(&opp_table->lock);
1301 
1302 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1303 		if (opp->rate == freq) {
1304 			found = true;
1305 			break;
1306 		}
1307 	}
1308 
1309 	mutex_unlock(&opp_table->lock);
1310 
1311 	if (found) {
1312 		dev_pm_opp_put(opp);
1313 
1314 		/* Drop the reference taken by dev_pm_opp_add() */
1315 		dev_pm_opp_put_opp_table(opp_table);
1316 	} else {
1317 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1318 			 __func__, freq);
1319 	}
1320 
1321 	/* Drop the reference taken by _find_opp_table() */
1322 	dev_pm_opp_put_opp_table(opp_table);
1323 }
1324 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1325 
1326 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1327 					bool dynamic)
1328 {
1329 	struct dev_pm_opp *opp = NULL, *temp;
1330 
1331 	mutex_lock(&opp_table->lock);
1332 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1333 		if (dynamic == temp->dynamic) {
1334 			opp = temp;
1335 			break;
1336 		}
1337 	}
1338 
1339 	mutex_unlock(&opp_table->lock);
1340 	return opp;
1341 }
1342 
1343 bool _opp_remove_all_static(struct opp_table *opp_table)
1344 {
1345 	struct dev_pm_opp *opp;
1346 
1347 	mutex_lock(&opp_table->lock);
1348 
1349 	if (!opp_table->parsed_static_opps) {
1350 		mutex_unlock(&opp_table->lock);
1351 		return false;
1352 	}
1353 
1354 	if (--opp_table->parsed_static_opps) {
1355 		mutex_unlock(&opp_table->lock);
1356 		return true;
1357 	}
1358 
1359 	mutex_unlock(&opp_table->lock);
1360 
1361 	/*
1362 	 * Can't remove the OPP from under the lock, debugfs removal needs to
1363 	 * happen lock less to avoid circular dependency issues.
1364 	 */
1365 	while ((opp = _opp_get_next(opp_table, false)))
1366 		dev_pm_opp_put(opp);
1367 
1368 	return true;
1369 }
1370 
1371 /**
1372  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1373  * @dev:	device for which we do this operation
1374  *
1375  * This function removes all dynamically created OPPs from the opp table.
1376  */
1377 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1378 {
1379 	struct opp_table *opp_table;
1380 	struct dev_pm_opp *opp;
1381 	int count = 0;
1382 
1383 	opp_table = _find_opp_table(dev);
1384 	if (IS_ERR(opp_table))
1385 		return;
1386 
1387 	/*
1388 	 * Can't remove the OPP from under the lock, debugfs removal needs to
1389 	 * happen lock less to avoid circular dependency issues.
1390 	 */
1391 	while ((opp = _opp_get_next(opp_table, true))) {
1392 		dev_pm_opp_put(opp);
1393 		count++;
1394 	}
1395 
1396 	/* Drop the references taken by dev_pm_opp_add() */
1397 	while (count--)
1398 		dev_pm_opp_put_opp_table(opp_table);
1399 
1400 	/* Drop the reference taken by _find_opp_table() */
1401 	dev_pm_opp_put_opp_table(opp_table);
1402 }
1403 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1404 
1405 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1406 {
1407 	struct dev_pm_opp *opp;
1408 	int supply_count, supply_size, icc_size;
1409 
1410 	/* Allocate space for at least one supply */
1411 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1412 	supply_size = sizeof(*opp->supplies) * supply_count;
1413 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1414 
1415 	/* allocate new OPP node and supplies structures */
1416 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1417 
1418 	if (!opp)
1419 		return NULL;
1420 
1421 	/* Put the supplies at the end of the OPP structure as an empty array */
1422 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1423 	if (icc_size)
1424 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1425 	INIT_LIST_HEAD(&opp->node);
1426 
1427 	return opp;
1428 }
1429 
1430 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1431 					 struct opp_table *opp_table)
1432 {
1433 	struct regulator *reg;
1434 	int i;
1435 
1436 	if (!opp_table->regulators)
1437 		return true;
1438 
1439 	for (i = 0; i < opp_table->regulator_count; i++) {
1440 		reg = opp_table->regulators[i];
1441 
1442 		if (!regulator_is_supported_voltage(reg,
1443 					opp->supplies[i].u_volt_min,
1444 					opp->supplies[i].u_volt_max)) {
1445 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1446 				__func__, opp->supplies[i].u_volt_min,
1447 				opp->supplies[i].u_volt_max);
1448 			return false;
1449 		}
1450 	}
1451 
1452 	return true;
1453 }
1454 
1455 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1456 {
1457 	if (opp1->rate != opp2->rate)
1458 		return opp1->rate < opp2->rate ? -1 : 1;
1459 	if (opp1->bandwidth && opp2->bandwidth &&
1460 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1461 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1462 	if (opp1->level != opp2->level)
1463 		return opp1->level < opp2->level ? -1 : 1;
1464 	return 0;
1465 }
1466 
1467 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1468 			     struct opp_table *opp_table,
1469 			     struct list_head **head)
1470 {
1471 	struct dev_pm_opp *opp;
1472 	int opp_cmp;
1473 
1474 	/*
1475 	 * Insert new OPP in order of increasing frequency and discard if
1476 	 * already present.
1477 	 *
1478 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1479 	 * loop, don't replace it with head otherwise it will become an infinite
1480 	 * loop.
1481 	 */
1482 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1483 		opp_cmp = _opp_compare_key(new_opp, opp);
1484 		if (opp_cmp > 0) {
1485 			*head = &opp->node;
1486 			continue;
1487 		}
1488 
1489 		if (opp_cmp < 0)
1490 			return 0;
1491 
1492 		/* Duplicate OPPs */
1493 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1494 			 __func__, opp->rate, opp->supplies[0].u_volt,
1495 			 opp->available, new_opp->rate,
1496 			 new_opp->supplies[0].u_volt, new_opp->available);
1497 
1498 		/* Should we compare voltages for all regulators here ? */
1499 		return opp->available &&
1500 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Returns:
1508  * 0: On success. And appropriate error message for duplicate OPPs.
1509  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1510  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1511  *  sure we don't print error messages unnecessarily if different parts of
1512  *  kernel try to initialize the OPP table.
1513  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1514  *  should be considered an error by the callers of _opp_add().
1515  */
1516 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1517 	     struct opp_table *opp_table, bool rate_not_available)
1518 {
1519 	struct list_head *head;
1520 	int ret;
1521 
1522 	mutex_lock(&opp_table->lock);
1523 	head = &opp_table->opp_list;
1524 
1525 	if (likely(!rate_not_available)) {
1526 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1527 		if (ret) {
1528 			mutex_unlock(&opp_table->lock);
1529 			return ret;
1530 		}
1531 	}
1532 
1533 	list_add(&new_opp->node, head);
1534 	mutex_unlock(&opp_table->lock);
1535 
1536 	new_opp->opp_table = opp_table;
1537 	kref_init(&new_opp->kref);
1538 
1539 	opp_debug_create_one(new_opp, opp_table);
1540 
1541 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1542 		new_opp->available = false;
1543 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1544 			 __func__, new_opp->rate);
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 /**
1551  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1552  * @opp_table:	OPP table
1553  * @dev:	device for which we do this operation
1554  * @freq:	Frequency in Hz for this OPP
1555  * @u_volt:	Voltage in uVolts for this OPP
1556  * @dynamic:	Dynamically added OPPs.
1557  *
1558  * This function adds an opp definition to the opp table and returns status.
1559  * The opp is made available by default and it can be controlled using
1560  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1561  *
1562  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1563  * and freed by dev_pm_opp_of_remove_table.
1564  *
1565  * Return:
1566  * 0		On success OR
1567  *		Duplicate OPPs (both freq and volt are same) and opp->available
1568  * -EEXIST	Freq are same and volt are different OR
1569  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1570  * -ENOMEM	Memory allocation failure
1571  */
1572 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1573 		unsigned long freq, long u_volt, bool dynamic)
1574 {
1575 	struct dev_pm_opp *new_opp;
1576 	unsigned long tol;
1577 	int ret;
1578 
1579 	new_opp = _opp_allocate(opp_table);
1580 	if (!new_opp)
1581 		return -ENOMEM;
1582 
1583 	/* populate the opp table */
1584 	new_opp->rate = freq;
1585 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1586 	new_opp->supplies[0].u_volt = u_volt;
1587 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1588 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1589 	new_opp->available = true;
1590 	new_opp->dynamic = dynamic;
1591 
1592 	ret = _opp_add(dev, new_opp, opp_table, false);
1593 	if (ret) {
1594 		/* Don't return error for duplicate OPPs */
1595 		if (ret == -EBUSY)
1596 			ret = 0;
1597 		goto free_opp;
1598 	}
1599 
1600 	/*
1601 	 * Notify the changes in the availability of the operable
1602 	 * frequency/voltage list.
1603 	 */
1604 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1605 	return 0;
1606 
1607 free_opp:
1608 	_opp_free(new_opp);
1609 
1610 	return ret;
1611 }
1612 
1613 /**
1614  * dev_pm_opp_set_supported_hw() - Set supported platforms
1615  * @dev: Device for which supported-hw has to be set.
1616  * @versions: Array of hierarchy of versions to match.
1617  * @count: Number of elements in the array.
1618  *
1619  * This is required only for the V2 bindings, and it enables a platform to
1620  * specify the hierarchy of versions it supports. OPP layer will then enable
1621  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1622  * property.
1623  */
1624 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1625 			const u32 *versions, unsigned int count)
1626 {
1627 	struct opp_table *opp_table;
1628 
1629 	opp_table = _add_opp_table(dev);
1630 	if (IS_ERR(opp_table))
1631 		return opp_table;
1632 
1633 	/* Make sure there are no concurrent readers while updating opp_table */
1634 	WARN_ON(!list_empty(&opp_table->opp_list));
1635 
1636 	/* Another CPU that shares the OPP table has set the property ? */
1637 	if (opp_table->supported_hw)
1638 		return opp_table;
1639 
1640 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1641 					GFP_KERNEL);
1642 	if (!opp_table->supported_hw) {
1643 		dev_pm_opp_put_opp_table(opp_table);
1644 		return ERR_PTR(-ENOMEM);
1645 	}
1646 
1647 	opp_table->supported_hw_count = count;
1648 
1649 	return opp_table;
1650 }
1651 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1652 
1653 /**
1654  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1655  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1656  *
1657  * This is required only for the V2 bindings, and is called for a matching
1658  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1659  * will not be freed.
1660  */
1661 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1662 {
1663 	if (unlikely(!opp_table))
1664 		return;
1665 
1666 	/* Make sure there are no concurrent readers while updating opp_table */
1667 	WARN_ON(!list_empty(&opp_table->opp_list));
1668 
1669 	kfree(opp_table->supported_hw);
1670 	opp_table->supported_hw = NULL;
1671 	opp_table->supported_hw_count = 0;
1672 
1673 	dev_pm_opp_put_opp_table(opp_table);
1674 }
1675 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1676 
1677 /**
1678  * dev_pm_opp_set_prop_name() - Set prop-extn name
1679  * @dev: Device for which the prop-name has to be set.
1680  * @name: name to postfix to properties.
1681  *
1682  * This is required only for the V2 bindings, and it enables a platform to
1683  * specify the extn to be used for certain property names. The properties to
1684  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1685  * should postfix the property name with -<name> while looking for them.
1686  */
1687 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1688 {
1689 	struct opp_table *opp_table;
1690 
1691 	opp_table = _add_opp_table(dev);
1692 	if (IS_ERR(opp_table))
1693 		return opp_table;
1694 
1695 	/* Make sure there are no concurrent readers while updating opp_table */
1696 	WARN_ON(!list_empty(&opp_table->opp_list));
1697 
1698 	/* Another CPU that shares the OPP table has set the property ? */
1699 	if (opp_table->prop_name)
1700 		return opp_table;
1701 
1702 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1703 	if (!opp_table->prop_name) {
1704 		dev_pm_opp_put_opp_table(opp_table);
1705 		return ERR_PTR(-ENOMEM);
1706 	}
1707 
1708 	return opp_table;
1709 }
1710 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1711 
1712 /**
1713  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1714  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1715  *
1716  * This is required only for the V2 bindings, and is called for a matching
1717  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1718  * will not be freed.
1719  */
1720 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1721 {
1722 	if (unlikely(!opp_table))
1723 		return;
1724 
1725 	/* Make sure there are no concurrent readers while updating opp_table */
1726 	WARN_ON(!list_empty(&opp_table->opp_list));
1727 
1728 	kfree(opp_table->prop_name);
1729 	opp_table->prop_name = NULL;
1730 
1731 	dev_pm_opp_put_opp_table(opp_table);
1732 }
1733 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1734 
1735 static int _allocate_set_opp_data(struct opp_table *opp_table)
1736 {
1737 	struct dev_pm_set_opp_data *data;
1738 	int len, count = opp_table->regulator_count;
1739 
1740 	if (WARN_ON(!opp_table->regulators))
1741 		return -EINVAL;
1742 
1743 	/* space for set_opp_data */
1744 	len = sizeof(*data);
1745 
1746 	/* space for old_opp.supplies and new_opp.supplies */
1747 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1748 
1749 	data = kzalloc(len, GFP_KERNEL);
1750 	if (!data)
1751 		return -ENOMEM;
1752 
1753 	data->old_opp.supplies = (void *)(data + 1);
1754 	data->new_opp.supplies = data->old_opp.supplies + count;
1755 
1756 	opp_table->set_opp_data = data;
1757 
1758 	return 0;
1759 }
1760 
1761 static void _free_set_opp_data(struct opp_table *opp_table)
1762 {
1763 	kfree(opp_table->set_opp_data);
1764 	opp_table->set_opp_data = NULL;
1765 }
1766 
1767 /**
1768  * dev_pm_opp_set_regulators() - Set regulator names for the device
1769  * @dev: Device for which regulator name is being set.
1770  * @names: Array of pointers to the names of the regulator.
1771  * @count: Number of regulators.
1772  *
1773  * In order to support OPP switching, OPP layer needs to know the name of the
1774  * device's regulators, as the core would be required to switch voltages as
1775  * well.
1776  *
1777  * This must be called before any OPPs are initialized for the device.
1778  */
1779 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1780 					    const char * const names[],
1781 					    unsigned int count)
1782 {
1783 	struct opp_table *opp_table;
1784 	struct regulator *reg;
1785 	int ret, i;
1786 
1787 	opp_table = _add_opp_table(dev);
1788 	if (IS_ERR(opp_table))
1789 		return opp_table;
1790 
1791 	/* This should be called before OPPs are initialized */
1792 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1793 		ret = -EBUSY;
1794 		goto err;
1795 	}
1796 
1797 	/* Another CPU that shares the OPP table has set the regulators ? */
1798 	if (opp_table->regulators)
1799 		return opp_table;
1800 
1801 	opp_table->regulators = kmalloc_array(count,
1802 					      sizeof(*opp_table->regulators),
1803 					      GFP_KERNEL);
1804 	if (!opp_table->regulators) {
1805 		ret = -ENOMEM;
1806 		goto err;
1807 	}
1808 
1809 	for (i = 0; i < count; i++) {
1810 		reg = regulator_get_optional(dev, names[i]);
1811 		if (IS_ERR(reg)) {
1812 			ret = PTR_ERR(reg);
1813 			if (ret != -EPROBE_DEFER)
1814 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1815 					__func__, names[i], ret);
1816 			goto free_regulators;
1817 		}
1818 
1819 		opp_table->regulators[i] = reg;
1820 	}
1821 
1822 	opp_table->regulator_count = count;
1823 
1824 	/* Allocate block only once to pass to set_opp() routines */
1825 	ret = _allocate_set_opp_data(opp_table);
1826 	if (ret)
1827 		goto free_regulators;
1828 
1829 	return opp_table;
1830 
1831 free_regulators:
1832 	while (i != 0)
1833 		regulator_put(opp_table->regulators[--i]);
1834 
1835 	kfree(opp_table->regulators);
1836 	opp_table->regulators = NULL;
1837 	opp_table->regulator_count = -1;
1838 err:
1839 	dev_pm_opp_put_opp_table(opp_table);
1840 
1841 	return ERR_PTR(ret);
1842 }
1843 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1844 
1845 /**
1846  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1847  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1848  */
1849 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1850 {
1851 	int i;
1852 
1853 	if (unlikely(!opp_table))
1854 		return;
1855 
1856 	if (!opp_table->regulators)
1857 		goto put_opp_table;
1858 
1859 	/* Make sure there are no concurrent readers while updating opp_table */
1860 	WARN_ON(!list_empty(&opp_table->opp_list));
1861 
1862 	if (opp_table->enabled) {
1863 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1864 			regulator_disable(opp_table->regulators[i]);
1865 	}
1866 
1867 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1868 		regulator_put(opp_table->regulators[i]);
1869 
1870 	_free_set_opp_data(opp_table);
1871 
1872 	kfree(opp_table->regulators);
1873 	opp_table->regulators = NULL;
1874 	opp_table->regulator_count = -1;
1875 
1876 put_opp_table:
1877 	dev_pm_opp_put_opp_table(opp_table);
1878 }
1879 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1880 
1881 /**
1882  * dev_pm_opp_set_clkname() - Set clk name for the device
1883  * @dev: Device for which clk name is being set.
1884  * @name: Clk name.
1885  *
1886  * In order to support OPP switching, OPP layer needs to get pointer to the
1887  * clock for the device. Simple cases work fine without using this routine (i.e.
1888  * by passing connection-id as NULL), but for a device with multiple clocks
1889  * available, the OPP core needs to know the exact name of the clk to use.
1890  *
1891  * This must be called before any OPPs are initialized for the device.
1892  */
1893 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1894 {
1895 	struct opp_table *opp_table;
1896 	int ret;
1897 
1898 	opp_table = _add_opp_table(dev);
1899 	if (IS_ERR(opp_table))
1900 		return opp_table;
1901 
1902 	/* This should be called before OPPs are initialized */
1903 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1904 		ret = -EBUSY;
1905 		goto err;
1906 	}
1907 
1908 	/* Already have default clk set, free it */
1909 	if (!IS_ERR(opp_table->clk))
1910 		clk_put(opp_table->clk);
1911 
1912 	/* Find clk for the device */
1913 	opp_table->clk = clk_get(dev, name);
1914 	if (IS_ERR(opp_table->clk)) {
1915 		ret = PTR_ERR(opp_table->clk);
1916 		if (ret != -EPROBE_DEFER) {
1917 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1918 				ret);
1919 		}
1920 		goto err;
1921 	}
1922 
1923 	return opp_table;
1924 
1925 err:
1926 	dev_pm_opp_put_opp_table(opp_table);
1927 
1928 	return ERR_PTR(ret);
1929 }
1930 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1931 
1932 /**
1933  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1934  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1935  */
1936 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1937 {
1938 	if (unlikely(!opp_table))
1939 		return;
1940 
1941 	/* Make sure there are no concurrent readers while updating opp_table */
1942 	WARN_ON(!list_empty(&opp_table->opp_list));
1943 
1944 	clk_put(opp_table->clk);
1945 	opp_table->clk = ERR_PTR(-EINVAL);
1946 
1947 	dev_pm_opp_put_opp_table(opp_table);
1948 }
1949 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1950 
1951 /**
1952  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1953  * @dev: Device for which the helper is getting registered.
1954  * @set_opp: Custom set OPP helper.
1955  *
1956  * This is useful to support complex platforms (like platforms with multiple
1957  * regulators per device), instead of the generic OPP set rate helper.
1958  *
1959  * This must be called before any OPPs are initialized for the device.
1960  */
1961 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1962 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1963 {
1964 	struct opp_table *opp_table;
1965 
1966 	if (!set_opp)
1967 		return ERR_PTR(-EINVAL);
1968 
1969 	opp_table = _add_opp_table(dev);
1970 	if (IS_ERR(opp_table))
1971 		return opp_table;
1972 
1973 	/* This should be called before OPPs are initialized */
1974 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1975 		dev_pm_opp_put_opp_table(opp_table);
1976 		return ERR_PTR(-EBUSY);
1977 	}
1978 
1979 	/* Another CPU that shares the OPP table has set the helper ? */
1980 	if (!opp_table->set_opp)
1981 		opp_table->set_opp = set_opp;
1982 
1983 	return opp_table;
1984 }
1985 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1986 
1987 /**
1988  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1989  *					   set_opp helper
1990  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1991  *
1992  * Release resources blocked for platform specific set_opp helper.
1993  */
1994 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1995 {
1996 	if (unlikely(!opp_table))
1997 		return;
1998 
1999 	/* Make sure there are no concurrent readers while updating opp_table */
2000 	WARN_ON(!list_empty(&opp_table->opp_list));
2001 
2002 	opp_table->set_opp = NULL;
2003 	dev_pm_opp_put_opp_table(opp_table);
2004 }
2005 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2006 
2007 static void _opp_detach_genpd(struct opp_table *opp_table)
2008 {
2009 	int index;
2010 
2011 	if (!opp_table->genpd_virt_devs)
2012 		return;
2013 
2014 	for (index = 0; index < opp_table->required_opp_count; index++) {
2015 		if (!opp_table->genpd_virt_devs[index])
2016 			continue;
2017 
2018 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2019 		opp_table->genpd_virt_devs[index] = NULL;
2020 	}
2021 
2022 	kfree(opp_table->genpd_virt_devs);
2023 	opp_table->genpd_virt_devs = NULL;
2024 }
2025 
2026 /**
2027  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2028  * @dev: Consumer device for which the genpd is getting attached.
2029  * @names: Null terminated array of pointers containing names of genpd to attach.
2030  * @virt_devs: Pointer to return the array of virtual devices.
2031  *
2032  * Multiple generic power domains for a device are supported with the help of
2033  * virtual genpd devices, which are created for each consumer device - genpd
2034  * pair. These are the device structures which are attached to the power domain
2035  * and are required by the OPP core to set the performance state of the genpd.
2036  * The same API also works for the case where single genpd is available and so
2037  * we don't need to support that separately.
2038  *
2039  * This helper will normally be called by the consumer driver of the device
2040  * "dev", as only that has details of the genpd names.
2041  *
2042  * This helper needs to be called once with a list of all genpd to attach.
2043  * Otherwise the original device structure will be used instead by the OPP core.
2044  *
2045  * The order of entries in the names array must match the order in which
2046  * "required-opps" are added in DT.
2047  */
2048 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2049 		const char **names, struct device ***virt_devs)
2050 {
2051 	struct opp_table *opp_table;
2052 	struct device *virt_dev;
2053 	int index = 0, ret = -EINVAL;
2054 	const char **name = names;
2055 
2056 	opp_table = _add_opp_table(dev);
2057 	if (IS_ERR(opp_table))
2058 		return opp_table;
2059 
2060 	if (opp_table->genpd_virt_devs)
2061 		return opp_table;
2062 
2063 	/*
2064 	 * If the genpd's OPP table isn't already initialized, parsing of the
2065 	 * required-opps fail for dev. We should retry this after genpd's OPP
2066 	 * table is added.
2067 	 */
2068 	if (!opp_table->required_opp_count) {
2069 		ret = -EPROBE_DEFER;
2070 		goto put_table;
2071 	}
2072 
2073 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2074 
2075 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2076 					     sizeof(*opp_table->genpd_virt_devs),
2077 					     GFP_KERNEL);
2078 	if (!opp_table->genpd_virt_devs)
2079 		goto unlock;
2080 
2081 	while (*name) {
2082 		if (index >= opp_table->required_opp_count) {
2083 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2084 				*name, opp_table->required_opp_count, index);
2085 			goto err;
2086 		}
2087 
2088 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2089 		if (IS_ERR(virt_dev)) {
2090 			ret = PTR_ERR(virt_dev);
2091 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2092 			goto err;
2093 		}
2094 
2095 		opp_table->genpd_virt_devs[index] = virt_dev;
2096 		index++;
2097 		name++;
2098 	}
2099 
2100 	if (virt_devs)
2101 		*virt_devs = opp_table->genpd_virt_devs;
2102 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2103 
2104 	return opp_table;
2105 
2106 err:
2107 	_opp_detach_genpd(opp_table);
2108 unlock:
2109 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2110 
2111 put_table:
2112 	dev_pm_opp_put_opp_table(opp_table);
2113 
2114 	return ERR_PTR(ret);
2115 }
2116 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2117 
2118 /**
2119  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2120  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2121  *
2122  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2123  * OPP table.
2124  */
2125 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2126 {
2127 	if (unlikely(!opp_table))
2128 		return;
2129 
2130 	/*
2131 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2132 	 * used in parallel.
2133 	 */
2134 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2135 	_opp_detach_genpd(opp_table);
2136 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2137 
2138 	dev_pm_opp_put_opp_table(opp_table);
2139 }
2140 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2141 
2142 /**
2143  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2144  * @src_table: OPP table which has dst_table as one of its required OPP table.
2145  * @dst_table: Required OPP table of the src_table.
2146  * @pstate: Current performance state of the src_table.
2147  *
2148  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2149  * "required-opps" property of the OPP (present in @src_table) which has
2150  * performance state set to @pstate.
2151  *
2152  * Return: Zero or positive performance state on success, otherwise negative
2153  * value on errors.
2154  */
2155 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2156 				       struct opp_table *dst_table,
2157 				       unsigned int pstate)
2158 {
2159 	struct dev_pm_opp *opp;
2160 	int dest_pstate = -EINVAL;
2161 	int i;
2162 
2163 	/*
2164 	 * Normally the src_table will have the "required_opps" property set to
2165 	 * point to one of the OPPs in the dst_table, but in some cases the
2166 	 * genpd and its master have one to one mapping of performance states
2167 	 * and so none of them have the "required-opps" property set. Return the
2168 	 * pstate of the src_table as it is in such cases.
2169 	 */
2170 	if (!src_table->required_opp_count)
2171 		return pstate;
2172 
2173 	for (i = 0; i < src_table->required_opp_count; i++) {
2174 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2175 			break;
2176 	}
2177 
2178 	if (unlikely(i == src_table->required_opp_count)) {
2179 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2180 		       __func__, src_table, dst_table);
2181 		return -EINVAL;
2182 	}
2183 
2184 	mutex_lock(&src_table->lock);
2185 
2186 	list_for_each_entry(opp, &src_table->opp_list, node) {
2187 		if (opp->pstate == pstate) {
2188 			dest_pstate = opp->required_opps[i]->pstate;
2189 			goto unlock;
2190 		}
2191 	}
2192 
2193 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2194 	       dst_table);
2195 
2196 unlock:
2197 	mutex_unlock(&src_table->lock);
2198 
2199 	return dest_pstate;
2200 }
2201 
2202 /**
2203  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2204  * @dev:	device for which we do this operation
2205  * @freq:	Frequency in Hz for this OPP
2206  * @u_volt:	Voltage in uVolts for this OPP
2207  *
2208  * This function adds an opp definition to the opp table and returns status.
2209  * The opp is made available by default and it can be controlled using
2210  * dev_pm_opp_enable/disable functions.
2211  *
2212  * Return:
2213  * 0		On success OR
2214  *		Duplicate OPPs (both freq and volt are same) and opp->available
2215  * -EEXIST	Freq are same and volt are different OR
2216  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2217  * -ENOMEM	Memory allocation failure
2218  */
2219 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2220 {
2221 	struct opp_table *opp_table;
2222 	int ret;
2223 
2224 	opp_table = _add_opp_table(dev);
2225 	if (IS_ERR(opp_table))
2226 		return PTR_ERR(opp_table);
2227 
2228 	/* Fix regulator count for dynamic OPPs */
2229 	opp_table->regulator_count = 1;
2230 
2231 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2232 	if (ret)
2233 		dev_pm_opp_put_opp_table(opp_table);
2234 
2235 	return ret;
2236 }
2237 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2238 
2239 /**
2240  * _opp_set_availability() - helper to set the availability of an opp
2241  * @dev:		device for which we do this operation
2242  * @freq:		OPP frequency to modify availability
2243  * @availability_req:	availability status requested for this opp
2244  *
2245  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2246  * which is isolated here.
2247  *
2248  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2249  * copy operation, returns 0 if no modification was done OR modification was
2250  * successful.
2251  */
2252 static int _opp_set_availability(struct device *dev, unsigned long freq,
2253 				 bool availability_req)
2254 {
2255 	struct opp_table *opp_table;
2256 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2257 	int r = 0;
2258 
2259 	/* Find the opp_table */
2260 	opp_table = _find_opp_table(dev);
2261 	if (IS_ERR(opp_table)) {
2262 		r = PTR_ERR(opp_table);
2263 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2264 		return r;
2265 	}
2266 
2267 	mutex_lock(&opp_table->lock);
2268 
2269 	/* Do we have the frequency? */
2270 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2271 		if (tmp_opp->rate == freq) {
2272 			opp = tmp_opp;
2273 			break;
2274 		}
2275 	}
2276 
2277 	if (IS_ERR(opp)) {
2278 		r = PTR_ERR(opp);
2279 		goto unlock;
2280 	}
2281 
2282 	/* Is update really needed? */
2283 	if (opp->available == availability_req)
2284 		goto unlock;
2285 
2286 	opp->available = availability_req;
2287 
2288 	dev_pm_opp_get(opp);
2289 	mutex_unlock(&opp_table->lock);
2290 
2291 	/* Notify the change of the OPP availability */
2292 	if (availability_req)
2293 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2294 					     opp);
2295 	else
2296 		blocking_notifier_call_chain(&opp_table->head,
2297 					     OPP_EVENT_DISABLE, opp);
2298 
2299 	dev_pm_opp_put(opp);
2300 	goto put_table;
2301 
2302 unlock:
2303 	mutex_unlock(&opp_table->lock);
2304 put_table:
2305 	dev_pm_opp_put_opp_table(opp_table);
2306 	return r;
2307 }
2308 
2309 /**
2310  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2311  * @dev:		device for which we do this operation
2312  * @freq:		OPP frequency to adjust voltage of
2313  * @u_volt:		new OPP target voltage
2314  * @u_volt_min:		new OPP min voltage
2315  * @u_volt_max:		new OPP max voltage
2316  *
2317  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2318  * copy operation, returns 0 if no modifcation was done OR modification was
2319  * successful.
2320  */
2321 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2322 			      unsigned long u_volt, unsigned long u_volt_min,
2323 			      unsigned long u_volt_max)
2324 
2325 {
2326 	struct opp_table *opp_table;
2327 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2328 	int r = 0;
2329 
2330 	/* Find the opp_table */
2331 	opp_table = _find_opp_table(dev);
2332 	if (IS_ERR(opp_table)) {
2333 		r = PTR_ERR(opp_table);
2334 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2335 		return r;
2336 	}
2337 
2338 	mutex_lock(&opp_table->lock);
2339 
2340 	/* Do we have the frequency? */
2341 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2342 		if (tmp_opp->rate == freq) {
2343 			opp = tmp_opp;
2344 			break;
2345 		}
2346 	}
2347 
2348 	if (IS_ERR(opp)) {
2349 		r = PTR_ERR(opp);
2350 		goto adjust_unlock;
2351 	}
2352 
2353 	/* Is update really needed? */
2354 	if (opp->supplies->u_volt == u_volt)
2355 		goto adjust_unlock;
2356 
2357 	opp->supplies->u_volt = u_volt;
2358 	opp->supplies->u_volt_min = u_volt_min;
2359 	opp->supplies->u_volt_max = u_volt_max;
2360 
2361 	dev_pm_opp_get(opp);
2362 	mutex_unlock(&opp_table->lock);
2363 
2364 	/* Notify the voltage change of the OPP */
2365 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2366 				     opp);
2367 
2368 	dev_pm_opp_put(opp);
2369 	goto adjust_put_table;
2370 
2371 adjust_unlock:
2372 	mutex_unlock(&opp_table->lock);
2373 adjust_put_table:
2374 	dev_pm_opp_put_opp_table(opp_table);
2375 	return r;
2376 }
2377 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2378 
2379 /**
2380  * dev_pm_opp_enable() - Enable a specific OPP
2381  * @dev:	device for which we do this operation
2382  * @freq:	OPP frequency to enable
2383  *
2384  * Enables a provided opp. If the operation is valid, this returns 0, else the
2385  * corresponding error value. It is meant to be used for users an OPP available
2386  * after being temporarily made unavailable with dev_pm_opp_disable.
2387  *
2388  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2389  * copy operation, returns 0 if no modification was done OR modification was
2390  * successful.
2391  */
2392 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2393 {
2394 	return _opp_set_availability(dev, freq, true);
2395 }
2396 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2397 
2398 /**
2399  * dev_pm_opp_disable() - Disable a specific OPP
2400  * @dev:	device for which we do this operation
2401  * @freq:	OPP frequency to disable
2402  *
2403  * Disables a provided opp. If the operation is valid, this returns
2404  * 0, else the corresponding error value. It is meant to be a temporary
2405  * control by users to make this OPP not available until the circumstances are
2406  * right to make it available again (with a call to dev_pm_opp_enable).
2407  *
2408  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2409  * copy operation, returns 0 if no modification was done OR modification was
2410  * successful.
2411  */
2412 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2413 {
2414 	return _opp_set_availability(dev, freq, false);
2415 }
2416 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2417 
2418 /**
2419  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2420  * @dev:	Device for which notifier needs to be registered
2421  * @nb:		Notifier block to be registered
2422  *
2423  * Return: 0 on success or a negative error value.
2424  */
2425 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2426 {
2427 	struct opp_table *opp_table;
2428 	int ret;
2429 
2430 	opp_table = _find_opp_table(dev);
2431 	if (IS_ERR(opp_table))
2432 		return PTR_ERR(opp_table);
2433 
2434 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2435 
2436 	dev_pm_opp_put_opp_table(opp_table);
2437 
2438 	return ret;
2439 }
2440 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2441 
2442 /**
2443  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2444  * @dev:	Device for which notifier needs to be unregistered
2445  * @nb:		Notifier block to be unregistered
2446  *
2447  * Return: 0 on success or a negative error value.
2448  */
2449 int dev_pm_opp_unregister_notifier(struct device *dev,
2450 				   struct notifier_block *nb)
2451 {
2452 	struct opp_table *opp_table;
2453 	int ret;
2454 
2455 	opp_table = _find_opp_table(dev);
2456 	if (IS_ERR(opp_table))
2457 		return PTR_ERR(opp_table);
2458 
2459 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2460 
2461 	dev_pm_opp_put_opp_table(opp_table);
2462 
2463 	return ret;
2464 }
2465 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2466 
2467 /**
2468  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2469  * @dev:	device pointer used to lookup OPP table.
2470  *
2471  * Free both OPPs created using static entries present in DT and the
2472  * dynamically added entries.
2473  */
2474 void dev_pm_opp_remove_table(struct device *dev)
2475 {
2476 	struct opp_table *opp_table;
2477 
2478 	/* Check for existing table for 'dev' */
2479 	opp_table = _find_opp_table(dev);
2480 	if (IS_ERR(opp_table)) {
2481 		int error = PTR_ERR(opp_table);
2482 
2483 		if (error != -ENODEV)
2484 			WARN(1, "%s: opp_table: %d\n",
2485 			     IS_ERR_OR_NULL(dev) ?
2486 					"Invalid device" : dev_name(dev),
2487 			     error);
2488 		return;
2489 	}
2490 
2491 	/*
2492 	 * Drop the extra reference only if the OPP table was successfully added
2493 	 * with dev_pm_opp_of_add_table() earlier.
2494 	 **/
2495 	if (_opp_remove_all_static(opp_table))
2496 		dev_pm_opp_put_opp_table(opp_table);
2497 
2498 	/* Drop reference taken by _find_opp_table() */
2499 	dev_pm_opp_put_opp_table(opp_table);
2500 }
2501 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2502