1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/export.h> 18 #include <linux/pm_domain.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include <linux/xarray.h> 22 23 #include "opp.h" 24 25 /* 26 * The root of the list of all opp-tables. All opp_table structures branch off 27 * from here, with each opp_table containing the list of opps it supports in 28 * various states of availability. 29 */ 30 LIST_HEAD(opp_tables); 31 32 /* Lock to allow exclusive modification to the device and opp lists */ 33 DEFINE_MUTEX(opp_table_lock); 34 /* Flag indicating that opp_tables list is being updated at the moment */ 35 static bool opp_tables_busy; 36 37 /* OPP ID allocator */ 38 static DEFINE_XARRAY_ALLOC1(opp_configs); 39 40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 41 { 42 struct opp_device *opp_dev; 43 bool found = false; 44 45 mutex_lock(&opp_table->lock); 46 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 47 if (opp_dev->dev == dev) { 48 found = true; 49 break; 50 } 51 52 mutex_unlock(&opp_table->lock); 53 return found; 54 } 55 56 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 57 { 58 struct opp_table *opp_table; 59 60 list_for_each_entry(opp_table, &opp_tables, node) { 61 if (_find_opp_dev(dev, opp_table)) { 62 _get_opp_table_kref(opp_table); 63 return opp_table; 64 } 65 } 66 67 return ERR_PTR(-ENODEV); 68 } 69 70 /** 71 * _find_opp_table() - find opp_table struct using device pointer 72 * @dev: device pointer used to lookup OPP table 73 * 74 * Search OPP table for one containing matching device. 75 * 76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 77 * -EINVAL based on type of error. 78 * 79 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 80 */ 81 struct opp_table *_find_opp_table(struct device *dev) 82 { 83 struct opp_table *opp_table; 84 85 if (IS_ERR_OR_NULL(dev)) { 86 pr_err("%s: Invalid parameters\n", __func__); 87 return ERR_PTR(-EINVAL); 88 } 89 90 mutex_lock(&opp_table_lock); 91 opp_table = _find_opp_table_unlocked(dev); 92 mutex_unlock(&opp_table_lock); 93 94 return opp_table; 95 } 96 97 /* 98 * Returns true if multiple clocks aren't there, else returns false with WARN. 99 * 100 * We don't force clk_count == 1 here as there are users who don't have a clock 101 * representation in the OPP table and manage the clock configuration themselves 102 * in an platform specific way. 103 */ 104 static bool assert_single_clk(struct opp_table *opp_table) 105 { 106 return !WARN_ON(opp_table->clk_count > 1); 107 } 108 109 /** 110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 111 * @opp: opp for which voltage has to be returned for 112 * 113 * Return: voltage in micro volt corresponding to the opp, else 114 * return 0 115 * 116 * This is useful only for devices with single power supply. 117 */ 118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 119 { 120 if (IS_ERR_OR_NULL(opp)) { 121 pr_err("%s: Invalid parameters\n", __func__); 122 return 0; 123 } 124 125 return opp->supplies[0].u_volt; 126 } 127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 128 129 /** 130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp 131 * @opp: opp for which voltage has to be returned for 132 * @supplies: Placeholder for copying the supply information. 133 * 134 * Return: negative error number on failure, 0 otherwise on success after 135 * setting @supplies. 136 * 137 * This can be used for devices with any number of power supplies. The caller 138 * must ensure the @supplies array must contain space for each regulator. 139 */ 140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, 141 struct dev_pm_opp_supply *supplies) 142 { 143 if (IS_ERR_OR_NULL(opp) || !supplies) { 144 pr_err("%s: Invalid parameters\n", __func__); 145 return -EINVAL; 146 } 147 148 memcpy(supplies, opp->supplies, 149 sizeof(*supplies) * opp->opp_table->regulator_count); 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); 153 154 /** 155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 156 * @opp: opp for which power has to be returned for 157 * 158 * Return: power in micro watt corresponding to the opp, else 159 * return 0 160 * 161 * This is useful only for devices with single power supply. 162 */ 163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 164 { 165 unsigned long opp_power = 0; 166 int i; 167 168 if (IS_ERR_OR_NULL(opp)) { 169 pr_err("%s: Invalid parameters\n", __func__); 170 return 0; 171 } 172 for (i = 0; i < opp->opp_table->regulator_count; i++) 173 opp_power += opp->supplies[i].u_watt; 174 175 return opp_power; 176 } 177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 178 179 /** 180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an 181 * available opp with specified index 182 * @opp: opp for which frequency has to be returned for 183 * @index: index of the frequency within the required opp 184 * 185 * Return: frequency in hertz corresponding to the opp with specified index, 186 * else return 0 187 */ 188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index) 189 { 190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) { 191 pr_err("%s: Invalid parameters\n", __func__); 192 return 0; 193 } 194 195 return opp->rates[index]; 196 } 197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed); 198 199 /** 200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 201 * @opp: opp for which level value has to be returned for 202 * 203 * Return: level read from device tree corresponding to the opp, else 204 * return 0. 205 */ 206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 207 { 208 if (IS_ERR_OR_NULL(opp) || !opp->available) { 209 pr_err("%s: Invalid parameters\n", __func__); 210 return 0; 211 } 212 213 return opp->level; 214 } 215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 216 217 /** 218 * dev_pm_opp_get_required_pstate() - Gets the required performance state 219 * corresponding to an available opp 220 * @opp: opp for which performance state has to be returned for 221 * @index: index of the required opp 222 * 223 * Return: performance state read from device tree corresponding to the 224 * required opp, else return 0. 225 */ 226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 227 unsigned int index) 228 { 229 if (IS_ERR_OR_NULL(opp) || !opp->available || 230 index >= opp->opp_table->required_opp_count) { 231 pr_err("%s: Invalid parameters\n", __func__); 232 return 0; 233 } 234 235 /* required-opps not fully initialized yet */ 236 if (lazy_linking_pending(opp->opp_table)) 237 return 0; 238 239 /* The required OPP table must belong to a genpd */ 240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) { 241 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 242 return 0; 243 } 244 245 return opp->required_opps[index]->level; 246 } 247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 248 249 /** 250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 251 * @opp: opp for which turbo mode is being verified 252 * 253 * Turbo OPPs are not for normal use, and can be enabled (under certain 254 * conditions) for short duration of times to finish high throughput work 255 * quickly. Running on them for longer times may overheat the chip. 256 * 257 * Return: true if opp is turbo opp, else false. 258 */ 259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 260 { 261 if (IS_ERR_OR_NULL(opp) || !opp->available) { 262 pr_err("%s: Invalid parameters\n", __func__); 263 return false; 264 } 265 266 return opp->turbo; 267 } 268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 269 270 /** 271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 272 * @dev: device for which we do this operation 273 * 274 * Return: This function returns the max clock latency in nanoseconds. 275 */ 276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 277 { 278 struct opp_table *opp_table; 279 unsigned long clock_latency_ns; 280 281 opp_table = _find_opp_table(dev); 282 if (IS_ERR(opp_table)) 283 return 0; 284 285 clock_latency_ns = opp_table->clock_latency_ns_max; 286 287 dev_pm_opp_put_opp_table(opp_table); 288 289 return clock_latency_ns; 290 } 291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 292 293 /** 294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 295 * @dev: device for which we do this operation 296 * 297 * Return: This function returns the max voltage latency in nanoseconds. 298 */ 299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 300 { 301 struct opp_table *opp_table; 302 struct dev_pm_opp *opp; 303 struct regulator *reg; 304 unsigned long latency_ns = 0; 305 int ret, i, count; 306 struct { 307 unsigned long min; 308 unsigned long max; 309 } *uV; 310 311 opp_table = _find_opp_table(dev); 312 if (IS_ERR(opp_table)) 313 return 0; 314 315 /* Regulator may not be required for the device */ 316 if (!opp_table->regulators) 317 goto put_opp_table; 318 319 count = opp_table->regulator_count; 320 321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 322 if (!uV) 323 goto put_opp_table; 324 325 mutex_lock(&opp_table->lock); 326 327 for (i = 0; i < count; i++) { 328 uV[i].min = ~0; 329 uV[i].max = 0; 330 331 list_for_each_entry(opp, &opp_table->opp_list, node) { 332 if (!opp->available) 333 continue; 334 335 if (opp->supplies[i].u_volt_min < uV[i].min) 336 uV[i].min = opp->supplies[i].u_volt_min; 337 if (opp->supplies[i].u_volt_max > uV[i].max) 338 uV[i].max = opp->supplies[i].u_volt_max; 339 } 340 } 341 342 mutex_unlock(&opp_table->lock); 343 344 /* 345 * The caller needs to ensure that opp_table (and hence the regulator) 346 * isn't freed, while we are executing this routine. 347 */ 348 for (i = 0; i < count; i++) { 349 reg = opp_table->regulators[i]; 350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 351 if (ret > 0) 352 latency_ns += ret * 1000; 353 } 354 355 kfree(uV); 356 put_opp_table: 357 dev_pm_opp_put_opp_table(opp_table); 358 359 return latency_ns; 360 } 361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 362 363 /** 364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 365 * nanoseconds 366 * @dev: device for which we do this operation 367 * 368 * Return: This function returns the max transition latency, in nanoseconds, to 369 * switch from one OPP to other. 370 */ 371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 372 { 373 return dev_pm_opp_get_max_volt_latency(dev) + 374 dev_pm_opp_get_max_clock_latency(dev); 375 } 376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 377 378 /** 379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 380 * @dev: device for which we do this operation 381 * 382 * Return: This function returns the frequency of the OPP marked as suspend_opp 383 * if one is available, else returns 0; 384 */ 385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 386 { 387 struct opp_table *opp_table; 388 unsigned long freq = 0; 389 390 opp_table = _find_opp_table(dev); 391 if (IS_ERR(opp_table)) 392 return 0; 393 394 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 396 397 dev_pm_opp_put_opp_table(opp_table); 398 399 return freq; 400 } 401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 402 403 int _get_opp_count(struct opp_table *opp_table) 404 { 405 struct dev_pm_opp *opp; 406 int count = 0; 407 408 mutex_lock(&opp_table->lock); 409 410 list_for_each_entry(opp, &opp_table->opp_list, node) { 411 if (opp->available) 412 count++; 413 } 414 415 mutex_unlock(&opp_table->lock); 416 417 return count; 418 } 419 420 /** 421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 422 * @dev: device for which we do this operation 423 * 424 * Return: This function returns the number of available opps if there are any, 425 * else returns 0 if none or the corresponding error value. 426 */ 427 int dev_pm_opp_get_opp_count(struct device *dev) 428 { 429 struct opp_table *opp_table; 430 int count; 431 432 opp_table = _find_opp_table(dev); 433 if (IS_ERR(opp_table)) { 434 count = PTR_ERR(opp_table); 435 dev_dbg(dev, "%s: OPP table not found (%d)\n", 436 __func__, count); 437 return count; 438 } 439 440 count = _get_opp_count(opp_table); 441 dev_pm_opp_put_opp_table(opp_table); 442 443 return count; 444 } 445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 446 447 /* Helpers to read keys */ 448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index) 449 { 450 return opp->rates[index]; 451 } 452 453 static unsigned long _read_level(struct dev_pm_opp *opp, int index) 454 { 455 return opp->level; 456 } 457 458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index) 459 { 460 return opp->bandwidth[index].peak; 461 } 462 463 /* Generic comparison helpers */ 464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 465 unsigned long opp_key, unsigned long key) 466 { 467 if (opp_key == key) { 468 *opp = temp_opp; 469 return true; 470 } 471 472 return false; 473 } 474 475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 476 unsigned long opp_key, unsigned long key) 477 { 478 if (opp_key >= key) { 479 *opp = temp_opp; 480 return true; 481 } 482 483 return false; 484 } 485 486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 487 unsigned long opp_key, unsigned long key) 488 { 489 if (opp_key > key) 490 return true; 491 492 *opp = temp_opp; 493 return false; 494 } 495 496 /* Generic key finding helpers */ 497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, 498 unsigned long *key, int index, bool available, 499 unsigned long (*read)(struct dev_pm_opp *opp, int index), 500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 501 unsigned long opp_key, unsigned long key), 502 bool (*assert)(struct opp_table *opp_table)) 503 { 504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 505 506 /* Assert that the requirement is met */ 507 if (assert && !assert(opp_table)) 508 return ERR_PTR(-EINVAL); 509 510 mutex_lock(&opp_table->lock); 511 512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 513 if (temp_opp->available == available) { 514 if (compare(&opp, temp_opp, read(temp_opp, index), *key)) 515 break; 516 } 517 } 518 519 /* Increment the reference count of OPP */ 520 if (!IS_ERR(opp)) { 521 *key = read(opp, index); 522 dev_pm_opp_get(opp); 523 } 524 525 mutex_unlock(&opp_table->lock); 526 527 return opp; 528 } 529 530 static struct dev_pm_opp * 531 _find_key(struct device *dev, unsigned long *key, int index, bool available, 532 unsigned long (*read)(struct dev_pm_opp *opp, int index), 533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 534 unsigned long opp_key, unsigned long key), 535 bool (*assert)(struct opp_table *opp_table)) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *opp; 539 540 opp_table = _find_opp_table(dev); 541 if (IS_ERR(opp_table)) { 542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 543 PTR_ERR(opp_table)); 544 return ERR_CAST(opp_table); 545 } 546 547 opp = _opp_table_find_key(opp_table, key, index, available, read, 548 compare, assert); 549 550 dev_pm_opp_put_opp_table(opp_table); 551 552 return opp; 553 } 554 555 static struct dev_pm_opp *_find_key_exact(struct device *dev, 556 unsigned long key, int index, bool available, 557 unsigned long (*read)(struct dev_pm_opp *opp, int index), 558 bool (*assert)(struct opp_table *opp_table)) 559 { 560 /* 561 * The value of key will be updated here, but will be ignored as the 562 * caller doesn't need it. 563 */ 564 return _find_key(dev, &key, index, available, read, _compare_exact, 565 assert); 566 } 567 568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, 569 unsigned long *key, int index, bool available, 570 unsigned long (*read)(struct dev_pm_opp *opp, int index), 571 bool (*assert)(struct opp_table *opp_table)) 572 { 573 return _opp_table_find_key(opp_table, key, index, available, read, 574 _compare_ceil, assert); 575 } 576 577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, 578 int index, bool available, 579 unsigned long (*read)(struct dev_pm_opp *opp, int index), 580 bool (*assert)(struct opp_table *opp_table)) 581 { 582 return _find_key(dev, key, index, available, read, _compare_ceil, 583 assert); 584 } 585 586 static struct dev_pm_opp *_find_key_floor(struct device *dev, 587 unsigned long *key, int index, bool available, 588 unsigned long (*read)(struct dev_pm_opp *opp, int index), 589 bool (*assert)(struct opp_table *opp_table)) 590 { 591 return _find_key(dev, key, index, available, read, _compare_floor, 592 assert); 593 } 594 595 /** 596 * dev_pm_opp_find_freq_exact() - search for an exact frequency 597 * @dev: device for which we do this operation 598 * @freq: frequency to search for 599 * @available: true/false - match for available opp 600 * 601 * Return: Searches for exact match in the opp table and returns pointer to the 602 * matching opp if found, else returns ERR_PTR in case of error and should 603 * be handled using IS_ERR. Error return values can be: 604 * EINVAL: for bad pointer 605 * ERANGE: no match found for search 606 * ENODEV: if device not found in list of registered devices 607 * 608 * Note: available is a modifier for the search. if available=true, then the 609 * match is for exact matching frequency and is available in the stored OPP 610 * table. if false, the match is for exact frequency which is not available. 611 * 612 * This provides a mechanism to enable an opp which is not available currently 613 * or the opposite as well. 614 * 615 * The callers are required to call dev_pm_opp_put() for the returned OPP after 616 * use. 617 */ 618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 619 unsigned long freq, bool available) 620 { 621 return _find_key_exact(dev, freq, 0, available, _read_freq, 622 assert_single_clk); 623 } 624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 625 626 /** 627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the 628 * clock corresponding to the index 629 * @dev: Device for which we do this operation 630 * @freq: frequency to search for 631 * @index: Clock index 632 * @available: true/false - match for available opp 633 * 634 * Search for the matching exact OPP for the clock corresponding to the 635 * specified index from a starting freq for a device. 636 * 637 * Return: matching *opp , else returns ERR_PTR in case of error and should be 638 * handled using IS_ERR. Error return values can be: 639 * EINVAL: for bad pointer 640 * ERANGE: no match found for search 641 * ENODEV: if device not found in list of registered devices 642 * 643 * The callers are required to call dev_pm_opp_put() for the returned OPP after 644 * use. 645 */ 646 struct dev_pm_opp * 647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq, 648 u32 index, bool available) 649 { 650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL); 651 } 652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed); 653 654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 655 unsigned long *freq) 656 { 657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, 658 assert_single_clk); 659 } 660 661 /** 662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 663 * @dev: device for which we do this operation 664 * @freq: Start frequency 665 * 666 * Search for the matching ceil *available* OPP from a starting freq 667 * for a device. 668 * 669 * Return: matching *opp and refreshes *freq accordingly, else returns 670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 671 * values can be: 672 * EINVAL: for bad pointer 673 * ERANGE: no match found for search 674 * ENODEV: if device not found in list of registered devices 675 * 676 * The callers are required to call dev_pm_opp_put() for the returned OPP after 677 * use. 678 */ 679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 680 unsigned long *freq) 681 { 682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); 683 } 684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 685 686 /** 687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the 688 * clock corresponding to the index 689 * @dev: Device for which we do this operation 690 * @freq: Start frequency 691 * @index: Clock index 692 * 693 * Search for the matching ceil *available* OPP for the clock corresponding to 694 * the specified index from a starting freq for a device. 695 * 696 * Return: matching *opp and refreshes *freq accordingly, else returns 697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 698 * values can be: 699 * EINVAL: for bad pointer 700 * ERANGE: no match found for search 701 * ENODEV: if device not found in list of registered devices 702 * 703 * The callers are required to call dev_pm_opp_put() for the returned OPP after 704 * use. 705 */ 706 struct dev_pm_opp * 707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq, 708 u32 index) 709 { 710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL); 711 } 712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed); 713 714 /** 715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 716 * @dev: device for which we do this operation 717 * @freq: Start frequency 718 * 719 * Search for the matching floor *available* OPP from a starting freq 720 * for a device. 721 * 722 * Return: matching *opp and refreshes *freq accordingly, else returns 723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 724 * values can be: 725 * EINVAL: for bad pointer 726 * ERANGE: no match found for search 727 * ENODEV: if device not found in list of registered devices 728 * 729 * The callers are required to call dev_pm_opp_put() for the returned OPP after 730 * use. 731 */ 732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 733 unsigned long *freq) 734 { 735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); 736 } 737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 738 739 /** 740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the 741 * clock corresponding to the index 742 * @dev: Device for which we do this operation 743 * @freq: Start frequency 744 * @index: Clock index 745 * 746 * Search for the matching floor *available* OPP for the clock corresponding to 747 * the specified index from a starting freq for a device. 748 * 749 * Return: matching *opp and refreshes *freq accordingly, else returns 750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 751 * values can be: 752 * EINVAL: for bad pointer 753 * ERANGE: no match found for search 754 * ENODEV: if device not found in list of registered devices 755 * 756 * The callers are required to call dev_pm_opp_put() for the returned OPP after 757 * use. 758 */ 759 struct dev_pm_opp * 760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq, 761 u32 index) 762 { 763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL); 764 } 765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed); 766 767 /** 768 * dev_pm_opp_find_level_exact() - search for an exact level 769 * @dev: device for which we do this operation 770 * @level: level to search for 771 * 772 * Return: Searches for exact match in the opp table and returns pointer to the 773 * matching opp if found, else returns ERR_PTR in case of error and should 774 * be handled using IS_ERR. Error return values can be: 775 * EINVAL: for bad pointer 776 * ERANGE: no match found for search 777 * ENODEV: if device not found in list of registered devices 778 * 779 * The callers are required to call dev_pm_opp_put() for the returned OPP after 780 * use. 781 */ 782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 783 unsigned int level) 784 { 785 return _find_key_exact(dev, level, 0, true, _read_level, NULL); 786 } 787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 788 789 /** 790 * dev_pm_opp_find_level_ceil() - search for an rounded up level 791 * @dev: device for which we do this operation 792 * @level: level to search for 793 * 794 * Return: Searches for rounded up match in the opp table and returns pointer 795 * to the matching opp if found, else returns ERR_PTR in case of error and 796 * should be handled using IS_ERR. Error return values can be: 797 * EINVAL: for bad pointer 798 * ERANGE: no match found for search 799 * ENODEV: if device not found in list of registered devices 800 * 801 * The callers are required to call dev_pm_opp_put() for the returned OPP after 802 * use. 803 */ 804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 805 unsigned int *level) 806 { 807 unsigned long temp = *level; 808 struct dev_pm_opp *opp; 809 810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); 811 *level = temp; 812 return opp; 813 } 814 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 815 816 /** 817 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth 818 * @dev: device for which we do this operation 819 * @bw: start bandwidth 820 * @index: which bandwidth to compare, in case of OPPs with several values 821 * 822 * Search for the matching floor *available* OPP from a starting bandwidth 823 * for a device. 824 * 825 * Return: matching *opp and refreshes *bw accordingly, else returns 826 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 827 * values can be: 828 * EINVAL: for bad pointer 829 * ERANGE: no match found for search 830 * ENODEV: if device not found in list of registered devices 831 * 832 * The callers are required to call dev_pm_opp_put() for the returned OPP after 833 * use. 834 */ 835 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, 836 int index) 837 { 838 unsigned long temp = *bw; 839 struct dev_pm_opp *opp; 840 841 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL); 842 *bw = temp; 843 return opp; 844 } 845 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); 846 847 /** 848 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth 849 * @dev: device for which we do this operation 850 * @bw: start bandwidth 851 * @index: which bandwidth to compare, in case of OPPs with several values 852 * 853 * Search for the matching floor *available* OPP from a starting bandwidth 854 * for a device. 855 * 856 * Return: matching *opp and refreshes *bw accordingly, else returns 857 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 858 * values can be: 859 * EINVAL: for bad pointer 860 * ERANGE: no match found for search 861 * ENODEV: if device not found in list of registered devices 862 * 863 * The callers are required to call dev_pm_opp_put() for the returned OPP after 864 * use. 865 */ 866 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, 867 unsigned int *bw, int index) 868 { 869 unsigned long temp = *bw; 870 struct dev_pm_opp *opp; 871 872 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL); 873 *bw = temp; 874 return opp; 875 } 876 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); 877 878 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 879 struct dev_pm_opp_supply *supply) 880 { 881 int ret; 882 883 /* Regulator not available for device */ 884 if (IS_ERR(reg)) { 885 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 886 PTR_ERR(reg)); 887 return 0; 888 } 889 890 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 891 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 892 893 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 894 supply->u_volt, supply->u_volt_max); 895 if (ret) 896 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 897 __func__, supply->u_volt_min, supply->u_volt, 898 supply->u_volt_max, ret); 899 900 return ret; 901 } 902 903 static int 904 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, 905 struct dev_pm_opp *opp, void *data, bool scaling_down) 906 { 907 unsigned long *target = data; 908 unsigned long freq; 909 int ret; 910 911 /* One of target and opp must be available */ 912 if (target) { 913 freq = *target; 914 } else if (opp) { 915 freq = opp->rates[0]; 916 } else { 917 WARN_ON(1); 918 return -EINVAL; 919 } 920 921 ret = clk_set_rate(opp_table->clk, freq); 922 if (ret) { 923 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 924 ret); 925 } else { 926 opp_table->rate_clk_single = freq; 927 } 928 929 return ret; 930 } 931 932 /* 933 * Simple implementation for configuring multiple clocks. Configure clocks in 934 * the order in which they are present in the array while scaling up. 935 */ 936 int dev_pm_opp_config_clks_simple(struct device *dev, 937 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, 938 bool scaling_down) 939 { 940 int ret, i; 941 942 if (scaling_down) { 943 for (i = opp_table->clk_count - 1; i >= 0; i--) { 944 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 945 if (ret) { 946 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 947 ret); 948 return ret; 949 } 950 } 951 } else { 952 for (i = 0; i < opp_table->clk_count; i++) { 953 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 954 if (ret) { 955 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 956 ret); 957 return ret; 958 } 959 } 960 } 961 962 return 0; 963 } 964 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); 965 966 static int _opp_config_regulator_single(struct device *dev, 967 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, 968 struct regulator **regulators, unsigned int count) 969 { 970 struct regulator *reg = regulators[0]; 971 int ret; 972 973 /* This function only supports single regulator per device */ 974 if (WARN_ON(count > 1)) { 975 dev_err(dev, "multiple regulators are not supported\n"); 976 return -EINVAL; 977 } 978 979 ret = _set_opp_voltage(dev, reg, new_opp->supplies); 980 if (ret) 981 return ret; 982 983 /* 984 * Enable the regulator after setting its voltages, otherwise it breaks 985 * some boot-enabled regulators. 986 */ 987 if (unlikely(!new_opp->opp_table->enabled)) { 988 ret = regulator_enable(reg); 989 if (ret < 0) 990 dev_warn(dev, "Failed to enable regulator: %d", ret); 991 } 992 993 return 0; 994 } 995 996 static int _set_opp_bw(const struct opp_table *opp_table, 997 struct dev_pm_opp *opp, struct device *dev) 998 { 999 u32 avg, peak; 1000 int i, ret; 1001 1002 if (!opp_table->paths) 1003 return 0; 1004 1005 for (i = 0; i < opp_table->path_count; i++) { 1006 if (!opp) { 1007 avg = 0; 1008 peak = 0; 1009 } else { 1010 avg = opp->bandwidth[i].avg; 1011 peak = opp->bandwidth[i].peak; 1012 } 1013 ret = icc_set_bw(opp_table->paths[i], avg, peak); 1014 if (ret) { 1015 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 1016 opp ? "set" : "remove", i, ret); 1017 return ret; 1018 } 1019 } 1020 1021 return 0; 1022 } 1023 1024 static int _set_performance_state(struct device *dev, struct device *pd_dev, 1025 struct dev_pm_opp *opp, int i) 1026 { 1027 unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0; 1028 int ret; 1029 1030 if (!pd_dev) 1031 return 0; 1032 1033 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 1034 if (ret) { 1035 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 1036 dev_name(pd_dev), pstate, ret); 1037 } 1038 1039 return ret; 1040 } 1041 1042 static int _opp_set_required_opps_generic(struct device *dev, 1043 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down) 1044 { 1045 dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n"); 1046 return -ENOENT; 1047 } 1048 1049 static int _opp_set_required_opps_genpd(struct device *dev, 1050 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down) 1051 { 1052 struct device **genpd_virt_devs = 1053 opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev; 1054 int i, ret = 0; 1055 1056 /* 1057 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 1058 * after it is freed from another thread. 1059 */ 1060 mutex_lock(&opp_table->genpd_virt_dev_lock); 1061 1062 /* Scaling up? Set required OPPs in normal order, else reverse */ 1063 if (!scaling_down) { 1064 for (i = 0; i < opp_table->required_opp_count; i++) { 1065 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i); 1066 if (ret) 1067 break; 1068 } 1069 } else { 1070 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 1071 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i); 1072 if (ret) 1073 break; 1074 } 1075 } 1076 1077 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1078 1079 return ret; 1080 } 1081 1082 /* This is only called for PM domain for now */ 1083 static int _set_required_opps(struct device *dev, struct opp_table *opp_table, 1084 struct dev_pm_opp *opp, bool up) 1085 { 1086 /* required-opps not fully initialized yet */ 1087 if (lazy_linking_pending(opp_table)) 1088 return -EBUSY; 1089 1090 if (opp_table->set_required_opps) 1091 return opp_table->set_required_opps(dev, opp_table, opp, up); 1092 1093 return 0; 1094 } 1095 1096 /* Update set_required_opps handler */ 1097 void _update_set_required_opps(struct opp_table *opp_table) 1098 { 1099 /* Already set */ 1100 if (opp_table->set_required_opps) 1101 return; 1102 1103 /* All required OPPs will belong to genpd or none */ 1104 if (opp_table->required_opp_tables[0]->is_genpd) 1105 opp_table->set_required_opps = _opp_set_required_opps_genpd; 1106 else 1107 opp_table->set_required_opps = _opp_set_required_opps_generic; 1108 } 1109 1110 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 1111 { 1112 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 1113 unsigned long freq; 1114 1115 if (!IS_ERR(opp_table->clk)) { 1116 freq = clk_get_rate(opp_table->clk); 1117 opp = _find_freq_ceil(opp_table, &freq); 1118 } 1119 1120 /* 1121 * Unable to find the current OPP ? Pick the first from the list since 1122 * it is in ascending order, otherwise rest of the code will need to 1123 * make special checks to validate current_opp. 1124 */ 1125 if (IS_ERR(opp)) { 1126 mutex_lock(&opp_table->lock); 1127 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 1128 dev_pm_opp_get(opp); 1129 mutex_unlock(&opp_table->lock); 1130 } 1131 1132 opp_table->current_opp = opp; 1133 } 1134 1135 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 1136 { 1137 int ret; 1138 1139 if (!opp_table->enabled) 1140 return 0; 1141 1142 /* 1143 * Some drivers need to support cases where some platforms may 1144 * have OPP table for the device, while others don't and 1145 * opp_set_rate() just needs to behave like clk_set_rate(). 1146 */ 1147 if (!_get_opp_count(opp_table)) 1148 return 0; 1149 1150 ret = _set_opp_bw(opp_table, NULL, dev); 1151 if (ret) 1152 return ret; 1153 1154 if (opp_table->regulators) 1155 regulator_disable(opp_table->regulators[0]); 1156 1157 ret = _set_required_opps(dev, opp_table, NULL, false); 1158 1159 opp_table->enabled = false; 1160 return ret; 1161 } 1162 1163 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1164 struct dev_pm_opp *opp, void *clk_data, bool forced) 1165 { 1166 struct dev_pm_opp *old_opp; 1167 int scaling_down, ret; 1168 1169 if (unlikely(!opp)) 1170 return _disable_opp_table(dev, opp_table); 1171 1172 /* Find the currently set OPP if we don't know already */ 1173 if (unlikely(!opp_table->current_opp)) 1174 _find_current_opp(dev, opp_table); 1175 1176 old_opp = opp_table->current_opp; 1177 1178 /* Return early if nothing to do */ 1179 if (!forced && old_opp == opp && opp_table->enabled) { 1180 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__); 1181 return 0; 1182 } 1183 1184 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1185 __func__, old_opp->rates[0], opp->rates[0], old_opp->level, 1186 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1187 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1188 1189 scaling_down = _opp_compare_key(opp_table, old_opp, opp); 1190 if (scaling_down == -1) 1191 scaling_down = 0; 1192 1193 /* Scaling up? Configure required OPPs before frequency */ 1194 if (!scaling_down) { 1195 ret = _set_required_opps(dev, opp_table, opp, true); 1196 if (ret) { 1197 dev_err(dev, "Failed to set required opps: %d\n", ret); 1198 return ret; 1199 } 1200 1201 ret = _set_opp_bw(opp_table, opp, dev); 1202 if (ret) { 1203 dev_err(dev, "Failed to set bw: %d\n", ret); 1204 return ret; 1205 } 1206 1207 if (opp_table->config_regulators) { 1208 ret = opp_table->config_regulators(dev, old_opp, opp, 1209 opp_table->regulators, 1210 opp_table->regulator_count); 1211 if (ret) { 1212 dev_err(dev, "Failed to set regulator voltages: %d\n", 1213 ret); 1214 return ret; 1215 } 1216 } 1217 } 1218 1219 if (opp_table->config_clks) { 1220 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); 1221 if (ret) 1222 return ret; 1223 } 1224 1225 /* Scaling down? Configure required OPPs after frequency */ 1226 if (scaling_down) { 1227 if (opp_table->config_regulators) { 1228 ret = opp_table->config_regulators(dev, old_opp, opp, 1229 opp_table->regulators, 1230 opp_table->regulator_count); 1231 if (ret) { 1232 dev_err(dev, "Failed to set regulator voltages: %d\n", 1233 ret); 1234 return ret; 1235 } 1236 } 1237 1238 ret = _set_opp_bw(opp_table, opp, dev); 1239 if (ret) { 1240 dev_err(dev, "Failed to set bw: %d\n", ret); 1241 return ret; 1242 } 1243 1244 ret = _set_required_opps(dev, opp_table, opp, false); 1245 if (ret) { 1246 dev_err(dev, "Failed to set required opps: %d\n", ret); 1247 return ret; 1248 } 1249 } 1250 1251 opp_table->enabled = true; 1252 dev_pm_opp_put(old_opp); 1253 1254 /* Make sure current_opp doesn't get freed */ 1255 dev_pm_opp_get(opp); 1256 opp_table->current_opp = opp; 1257 1258 return ret; 1259 } 1260 1261 /** 1262 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1263 * @dev: device for which we do this operation 1264 * @target_freq: frequency to achieve 1265 * 1266 * This configures the power-supplies to the levels specified by the OPP 1267 * corresponding to the target_freq, and programs the clock to a value <= 1268 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1269 * provided by the opp, should have already rounded to the target OPP's 1270 * frequency. 1271 */ 1272 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1273 { 1274 struct opp_table *opp_table; 1275 unsigned long freq = 0, temp_freq; 1276 struct dev_pm_opp *opp = NULL; 1277 bool forced = false; 1278 int ret; 1279 1280 opp_table = _find_opp_table(dev); 1281 if (IS_ERR(opp_table)) { 1282 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1283 return PTR_ERR(opp_table); 1284 } 1285 1286 if (target_freq) { 1287 /* 1288 * For IO devices which require an OPP on some platforms/SoCs 1289 * while just needing to scale the clock on some others 1290 * we look for empty OPP tables with just a clock handle and 1291 * scale only the clk. This makes dev_pm_opp_set_rate() 1292 * equivalent to a clk_set_rate() 1293 */ 1294 if (!_get_opp_count(opp_table)) { 1295 ret = opp_table->config_clks(dev, opp_table, NULL, 1296 &target_freq, false); 1297 goto put_opp_table; 1298 } 1299 1300 freq = clk_round_rate(opp_table->clk, target_freq); 1301 if ((long)freq <= 0) 1302 freq = target_freq; 1303 1304 /* 1305 * The clock driver may support finer resolution of the 1306 * frequencies than the OPP table, don't update the frequency we 1307 * pass to clk_set_rate() here. 1308 */ 1309 temp_freq = freq; 1310 opp = _find_freq_ceil(opp_table, &temp_freq); 1311 if (IS_ERR(opp)) { 1312 ret = PTR_ERR(opp); 1313 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1314 __func__, freq, ret); 1315 goto put_opp_table; 1316 } 1317 1318 /* 1319 * An OPP entry specifies the highest frequency at which other 1320 * properties of the OPP entry apply. Even if the new OPP is 1321 * same as the old one, we may still reach here for a different 1322 * value of the frequency. In such a case, do not abort but 1323 * configure the hardware to the desired frequency forcefully. 1324 */ 1325 forced = opp_table->rate_clk_single != freq; 1326 } 1327 1328 ret = _set_opp(dev, opp_table, opp, &freq, forced); 1329 1330 if (freq) 1331 dev_pm_opp_put(opp); 1332 1333 put_opp_table: 1334 dev_pm_opp_put_opp_table(opp_table); 1335 return ret; 1336 } 1337 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1338 1339 /** 1340 * dev_pm_opp_set_opp() - Configure device for OPP 1341 * @dev: device for which we do this operation 1342 * @opp: OPP to set to 1343 * 1344 * This configures the device based on the properties of the OPP passed to this 1345 * routine. 1346 * 1347 * Return: 0 on success, a negative error number otherwise. 1348 */ 1349 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1350 { 1351 struct opp_table *opp_table; 1352 int ret; 1353 1354 opp_table = _find_opp_table(dev); 1355 if (IS_ERR(opp_table)) { 1356 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1357 return PTR_ERR(opp_table); 1358 } 1359 1360 ret = _set_opp(dev, opp_table, opp, NULL, false); 1361 dev_pm_opp_put_opp_table(opp_table); 1362 1363 return ret; 1364 } 1365 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1366 1367 /* OPP-dev Helpers */ 1368 static void _remove_opp_dev(struct opp_device *opp_dev, 1369 struct opp_table *opp_table) 1370 { 1371 opp_debug_unregister(opp_dev, opp_table); 1372 list_del(&opp_dev->node); 1373 kfree(opp_dev); 1374 } 1375 1376 struct opp_device *_add_opp_dev(const struct device *dev, 1377 struct opp_table *opp_table) 1378 { 1379 struct opp_device *opp_dev; 1380 1381 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1382 if (!opp_dev) 1383 return NULL; 1384 1385 /* Initialize opp-dev */ 1386 opp_dev->dev = dev; 1387 1388 mutex_lock(&opp_table->lock); 1389 list_add(&opp_dev->node, &opp_table->dev_list); 1390 mutex_unlock(&opp_table->lock); 1391 1392 /* Create debugfs entries for the opp_table */ 1393 opp_debug_register(opp_dev, opp_table); 1394 1395 return opp_dev; 1396 } 1397 1398 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1399 { 1400 struct opp_table *opp_table; 1401 struct opp_device *opp_dev; 1402 int ret; 1403 1404 /* 1405 * Allocate a new OPP table. In the infrequent case where a new 1406 * device is needed to be added, we pay this penalty. 1407 */ 1408 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1409 if (!opp_table) 1410 return ERR_PTR(-ENOMEM); 1411 1412 mutex_init(&opp_table->lock); 1413 mutex_init(&opp_table->genpd_virt_dev_lock); 1414 INIT_LIST_HEAD(&opp_table->dev_list); 1415 INIT_LIST_HEAD(&opp_table->lazy); 1416 1417 opp_table->clk = ERR_PTR(-ENODEV); 1418 1419 /* Mark regulator count uninitialized */ 1420 opp_table->regulator_count = -1; 1421 1422 opp_dev = _add_opp_dev(dev, opp_table); 1423 if (!opp_dev) { 1424 ret = -ENOMEM; 1425 goto err; 1426 } 1427 1428 _of_init_opp_table(opp_table, dev, index); 1429 1430 /* Find interconnect path(s) for the device */ 1431 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1432 if (ret) { 1433 if (ret == -EPROBE_DEFER) 1434 goto remove_opp_dev; 1435 1436 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1437 __func__, ret); 1438 } 1439 1440 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1441 INIT_LIST_HEAD(&opp_table->opp_list); 1442 kref_init(&opp_table->kref); 1443 1444 return opp_table; 1445 1446 remove_opp_dev: 1447 _of_clear_opp_table(opp_table); 1448 _remove_opp_dev(opp_dev, opp_table); 1449 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1450 mutex_destroy(&opp_table->lock); 1451 err: 1452 kfree(opp_table); 1453 return ERR_PTR(ret); 1454 } 1455 1456 void _get_opp_table_kref(struct opp_table *opp_table) 1457 { 1458 kref_get(&opp_table->kref); 1459 } 1460 1461 static struct opp_table *_update_opp_table_clk(struct device *dev, 1462 struct opp_table *opp_table, 1463 bool getclk) 1464 { 1465 int ret; 1466 1467 /* 1468 * Return early if we don't need to get clk or we have already done it 1469 * earlier. 1470 */ 1471 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || 1472 opp_table->clks) 1473 return opp_table; 1474 1475 /* Find clk for the device */ 1476 opp_table->clk = clk_get(dev, NULL); 1477 1478 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1479 if (!ret) { 1480 opp_table->config_clks = _opp_config_clk_single; 1481 opp_table->clk_count = 1; 1482 return opp_table; 1483 } 1484 1485 if (ret == -ENOENT) { 1486 /* 1487 * There are few platforms which don't want the OPP core to 1488 * manage device's clock settings. In such cases neither the 1489 * platform provides the clks explicitly to us, nor the DT 1490 * contains a valid clk entry. The OPP nodes in DT may still 1491 * contain "opp-hz" property though, which we need to parse and 1492 * allow the platform to find an OPP based on freq later on. 1493 * 1494 * This is a simple solution to take care of such corner cases, 1495 * i.e. make the clk_count 1, which lets us allocate space for 1496 * frequency in opp->rates and also parse the entries in DT. 1497 */ 1498 opp_table->clk_count = 1; 1499 1500 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1501 return opp_table; 1502 } 1503 1504 dev_pm_opp_put_opp_table(opp_table); 1505 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1506 1507 return ERR_PTR(ret); 1508 } 1509 1510 /* 1511 * We need to make sure that the OPP table for a device doesn't get added twice, 1512 * if this routine gets called in parallel with the same device pointer. 1513 * 1514 * The simplest way to enforce that is to perform everything (find existing 1515 * table and if not found, create a new one) under the opp_table_lock, so only 1516 * one creator gets access to the same. But that expands the critical section 1517 * under the lock and may end up causing circular dependencies with frameworks 1518 * like debugfs, interconnect or clock framework as they may be direct or 1519 * indirect users of OPP core. 1520 * 1521 * And for that reason we have to go for a bit tricky implementation here, which 1522 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1523 * of adding an OPP table and others should wait for it to finish. 1524 */ 1525 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1526 bool getclk) 1527 { 1528 struct opp_table *opp_table; 1529 1530 again: 1531 mutex_lock(&opp_table_lock); 1532 1533 opp_table = _find_opp_table_unlocked(dev); 1534 if (!IS_ERR(opp_table)) 1535 goto unlock; 1536 1537 /* 1538 * The opp_tables list or an OPP table's dev_list is getting updated by 1539 * another user, wait for it to finish. 1540 */ 1541 if (unlikely(opp_tables_busy)) { 1542 mutex_unlock(&opp_table_lock); 1543 cpu_relax(); 1544 goto again; 1545 } 1546 1547 opp_tables_busy = true; 1548 opp_table = _managed_opp(dev, index); 1549 1550 /* Drop the lock to reduce the size of critical section */ 1551 mutex_unlock(&opp_table_lock); 1552 1553 if (opp_table) { 1554 if (!_add_opp_dev(dev, opp_table)) { 1555 dev_pm_opp_put_opp_table(opp_table); 1556 opp_table = ERR_PTR(-ENOMEM); 1557 } 1558 1559 mutex_lock(&opp_table_lock); 1560 } else { 1561 opp_table = _allocate_opp_table(dev, index); 1562 1563 mutex_lock(&opp_table_lock); 1564 if (!IS_ERR(opp_table)) 1565 list_add(&opp_table->node, &opp_tables); 1566 } 1567 1568 opp_tables_busy = false; 1569 1570 unlock: 1571 mutex_unlock(&opp_table_lock); 1572 1573 return _update_opp_table_clk(dev, opp_table, getclk); 1574 } 1575 1576 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1577 { 1578 return _add_opp_table_indexed(dev, 0, getclk); 1579 } 1580 1581 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1582 { 1583 return _find_opp_table(dev); 1584 } 1585 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1586 1587 static void _opp_table_kref_release(struct kref *kref) 1588 { 1589 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1590 struct opp_device *opp_dev, *temp; 1591 int i; 1592 1593 /* Drop the lock as soon as we can */ 1594 list_del(&opp_table->node); 1595 mutex_unlock(&opp_table_lock); 1596 1597 if (opp_table->current_opp) 1598 dev_pm_opp_put(opp_table->current_opp); 1599 1600 _of_clear_opp_table(opp_table); 1601 1602 /* Release automatically acquired single clk */ 1603 if (!IS_ERR(opp_table->clk)) 1604 clk_put(opp_table->clk); 1605 1606 if (opp_table->paths) { 1607 for (i = 0; i < opp_table->path_count; i++) 1608 icc_put(opp_table->paths[i]); 1609 kfree(opp_table->paths); 1610 } 1611 1612 WARN_ON(!list_empty(&opp_table->opp_list)); 1613 1614 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) 1615 _remove_opp_dev(opp_dev, opp_table); 1616 1617 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1618 mutex_destroy(&opp_table->lock); 1619 kfree(opp_table); 1620 } 1621 1622 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1623 { 1624 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1625 &opp_table_lock); 1626 } 1627 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1628 1629 void _opp_free(struct dev_pm_opp *opp) 1630 { 1631 kfree(opp); 1632 } 1633 1634 static void _opp_kref_release(struct kref *kref) 1635 { 1636 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1637 struct opp_table *opp_table = opp->opp_table; 1638 1639 list_del(&opp->node); 1640 mutex_unlock(&opp_table->lock); 1641 1642 /* 1643 * Notify the changes in the availability of the operable 1644 * frequency/voltage list. 1645 */ 1646 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1647 _of_clear_opp(opp_table, opp); 1648 opp_debug_remove_one(opp); 1649 kfree(opp); 1650 } 1651 1652 void dev_pm_opp_get(struct dev_pm_opp *opp) 1653 { 1654 kref_get(&opp->kref); 1655 } 1656 1657 void dev_pm_opp_put(struct dev_pm_opp *opp) 1658 { 1659 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1660 } 1661 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1662 1663 /** 1664 * dev_pm_opp_remove() - Remove an OPP from OPP table 1665 * @dev: device for which we do this operation 1666 * @freq: OPP to remove with matching 'freq' 1667 * 1668 * This function removes an opp from the opp table. 1669 */ 1670 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1671 { 1672 struct dev_pm_opp *opp = NULL, *iter; 1673 struct opp_table *opp_table; 1674 1675 opp_table = _find_opp_table(dev); 1676 if (IS_ERR(opp_table)) 1677 return; 1678 1679 if (!assert_single_clk(opp_table)) 1680 goto put_table; 1681 1682 mutex_lock(&opp_table->lock); 1683 1684 list_for_each_entry(iter, &opp_table->opp_list, node) { 1685 if (iter->rates[0] == freq) { 1686 opp = iter; 1687 break; 1688 } 1689 } 1690 1691 mutex_unlock(&opp_table->lock); 1692 1693 if (opp) { 1694 dev_pm_opp_put(opp); 1695 1696 /* Drop the reference taken by dev_pm_opp_add() */ 1697 dev_pm_opp_put_opp_table(opp_table); 1698 } else { 1699 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1700 __func__, freq); 1701 } 1702 1703 put_table: 1704 /* Drop the reference taken by _find_opp_table() */ 1705 dev_pm_opp_put_opp_table(opp_table); 1706 } 1707 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1708 1709 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1710 bool dynamic) 1711 { 1712 struct dev_pm_opp *opp = NULL, *temp; 1713 1714 mutex_lock(&opp_table->lock); 1715 list_for_each_entry(temp, &opp_table->opp_list, node) { 1716 /* 1717 * Refcount must be dropped only once for each OPP by OPP core, 1718 * do that with help of "removed" flag. 1719 */ 1720 if (!temp->removed && dynamic == temp->dynamic) { 1721 opp = temp; 1722 break; 1723 } 1724 } 1725 1726 mutex_unlock(&opp_table->lock); 1727 return opp; 1728 } 1729 1730 /* 1731 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1732 * happen lock less to avoid circular dependency issues. This routine must be 1733 * called without the opp_table->lock held. 1734 */ 1735 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1736 { 1737 struct dev_pm_opp *opp; 1738 1739 while ((opp = _opp_get_next(opp_table, dynamic))) { 1740 opp->removed = true; 1741 dev_pm_opp_put(opp); 1742 1743 /* Drop the references taken by dev_pm_opp_add() */ 1744 if (dynamic) 1745 dev_pm_opp_put_opp_table(opp_table); 1746 } 1747 } 1748 1749 bool _opp_remove_all_static(struct opp_table *opp_table) 1750 { 1751 mutex_lock(&opp_table->lock); 1752 1753 if (!opp_table->parsed_static_opps) { 1754 mutex_unlock(&opp_table->lock); 1755 return false; 1756 } 1757 1758 if (--opp_table->parsed_static_opps) { 1759 mutex_unlock(&opp_table->lock); 1760 return true; 1761 } 1762 1763 mutex_unlock(&opp_table->lock); 1764 1765 _opp_remove_all(opp_table, false); 1766 return true; 1767 } 1768 1769 /** 1770 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1771 * @dev: device for which we do this operation 1772 * 1773 * This function removes all dynamically created OPPs from the opp table. 1774 */ 1775 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1776 { 1777 struct opp_table *opp_table; 1778 1779 opp_table = _find_opp_table(dev); 1780 if (IS_ERR(opp_table)) 1781 return; 1782 1783 _opp_remove_all(opp_table, true); 1784 1785 /* Drop the reference taken by _find_opp_table() */ 1786 dev_pm_opp_put_opp_table(opp_table); 1787 } 1788 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1789 1790 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) 1791 { 1792 struct dev_pm_opp *opp; 1793 int supply_count, supply_size, icc_size, clk_size; 1794 1795 /* Allocate space for at least one supply */ 1796 supply_count = opp_table->regulator_count > 0 ? 1797 opp_table->regulator_count : 1; 1798 supply_size = sizeof(*opp->supplies) * supply_count; 1799 clk_size = sizeof(*opp->rates) * opp_table->clk_count; 1800 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; 1801 1802 /* allocate new OPP node and supplies structures */ 1803 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); 1804 if (!opp) 1805 return NULL; 1806 1807 /* Put the supplies, bw and clock at the end of the OPP structure */ 1808 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1809 1810 opp->rates = (unsigned long *)(opp->supplies + supply_count); 1811 1812 if (icc_size) 1813 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); 1814 1815 INIT_LIST_HEAD(&opp->node); 1816 1817 return opp; 1818 } 1819 1820 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1821 struct opp_table *opp_table) 1822 { 1823 struct regulator *reg; 1824 int i; 1825 1826 if (!opp_table->regulators) 1827 return true; 1828 1829 for (i = 0; i < opp_table->regulator_count; i++) { 1830 reg = opp_table->regulators[i]; 1831 1832 if (!regulator_is_supported_voltage(reg, 1833 opp->supplies[i].u_volt_min, 1834 opp->supplies[i].u_volt_max)) { 1835 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1836 __func__, opp->supplies[i].u_volt_min, 1837 opp->supplies[i].u_volt_max); 1838 return false; 1839 } 1840 } 1841 1842 return true; 1843 } 1844 1845 static int _opp_compare_rate(struct opp_table *opp_table, 1846 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1847 { 1848 int i; 1849 1850 for (i = 0; i < opp_table->clk_count; i++) { 1851 if (opp1->rates[i] != opp2->rates[i]) 1852 return opp1->rates[i] < opp2->rates[i] ? -1 : 1; 1853 } 1854 1855 /* Same rates for both OPPs */ 1856 return 0; 1857 } 1858 1859 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1860 struct dev_pm_opp *opp2) 1861 { 1862 int i; 1863 1864 for (i = 0; i < opp_table->path_count; i++) { 1865 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) 1866 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; 1867 } 1868 1869 /* Same bw for both OPPs */ 1870 return 0; 1871 } 1872 1873 /* 1874 * Returns 1875 * 0: opp1 == opp2 1876 * 1: opp1 > opp2 1877 * -1: opp1 < opp2 1878 */ 1879 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1880 struct dev_pm_opp *opp2) 1881 { 1882 int ret; 1883 1884 ret = _opp_compare_rate(opp_table, opp1, opp2); 1885 if (ret) 1886 return ret; 1887 1888 ret = _opp_compare_bw(opp_table, opp1, opp2); 1889 if (ret) 1890 return ret; 1891 1892 if (opp1->level != opp2->level) 1893 return opp1->level < opp2->level ? -1 : 1; 1894 1895 /* Duplicate OPPs */ 1896 return 0; 1897 } 1898 1899 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1900 struct opp_table *opp_table, 1901 struct list_head **head) 1902 { 1903 struct dev_pm_opp *opp; 1904 int opp_cmp; 1905 1906 /* 1907 * Insert new OPP in order of increasing frequency and discard if 1908 * already present. 1909 * 1910 * Need to use &opp_table->opp_list in the condition part of the 'for' 1911 * loop, don't replace it with head otherwise it will become an infinite 1912 * loop. 1913 */ 1914 list_for_each_entry(opp, &opp_table->opp_list, node) { 1915 opp_cmp = _opp_compare_key(opp_table, new_opp, opp); 1916 if (opp_cmp > 0) { 1917 *head = &opp->node; 1918 continue; 1919 } 1920 1921 if (opp_cmp < 0) 1922 return 0; 1923 1924 /* Duplicate OPPs */ 1925 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1926 __func__, opp->rates[0], opp->supplies[0].u_volt, 1927 opp->available, new_opp->rates[0], 1928 new_opp->supplies[0].u_volt, new_opp->available); 1929 1930 /* Should we compare voltages for all regulators here ? */ 1931 return opp->available && 1932 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1933 } 1934 1935 return 0; 1936 } 1937 1938 void _required_opps_available(struct dev_pm_opp *opp, int count) 1939 { 1940 int i; 1941 1942 for (i = 0; i < count; i++) { 1943 if (opp->required_opps[i]->available) 1944 continue; 1945 1946 opp->available = false; 1947 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1948 __func__, opp->required_opps[i]->np, opp->rates[0]); 1949 return; 1950 } 1951 } 1952 1953 /* 1954 * Returns: 1955 * 0: On success. And appropriate error message for duplicate OPPs. 1956 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1957 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1958 * sure we don't print error messages unnecessarily if different parts of 1959 * kernel try to initialize the OPP table. 1960 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1961 * should be considered an error by the callers of _opp_add(). 1962 */ 1963 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1964 struct opp_table *opp_table) 1965 { 1966 struct list_head *head; 1967 int ret; 1968 1969 mutex_lock(&opp_table->lock); 1970 head = &opp_table->opp_list; 1971 1972 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1973 if (ret) { 1974 mutex_unlock(&opp_table->lock); 1975 return ret; 1976 } 1977 1978 list_add(&new_opp->node, head); 1979 mutex_unlock(&opp_table->lock); 1980 1981 new_opp->opp_table = opp_table; 1982 kref_init(&new_opp->kref); 1983 1984 opp_debug_create_one(new_opp, opp_table); 1985 1986 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1987 new_opp->available = false; 1988 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1989 __func__, new_opp->rates[0]); 1990 } 1991 1992 /* required-opps not fully initialized yet */ 1993 if (lazy_linking_pending(opp_table)) 1994 return 0; 1995 1996 _required_opps_available(new_opp, opp_table->required_opp_count); 1997 1998 return 0; 1999 } 2000 2001 /** 2002 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 2003 * @opp_table: OPP table 2004 * @dev: device for which we do this operation 2005 * @freq: Frequency in Hz for this OPP 2006 * @u_volt: Voltage in uVolts for this OPP 2007 * @dynamic: Dynamically added OPPs. 2008 * 2009 * This function adds an opp definition to the opp table and returns status. 2010 * The opp is made available by default and it can be controlled using 2011 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 2012 * 2013 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 2014 * and freed by dev_pm_opp_of_remove_table. 2015 * 2016 * Return: 2017 * 0 On success OR 2018 * Duplicate OPPs (both freq and volt are same) and opp->available 2019 * -EEXIST Freq are same and volt are different OR 2020 * Duplicate OPPs (both freq and volt are same) and !opp->available 2021 * -ENOMEM Memory allocation failure 2022 */ 2023 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 2024 unsigned long freq, long u_volt, bool dynamic) 2025 { 2026 struct dev_pm_opp *new_opp; 2027 unsigned long tol; 2028 int ret; 2029 2030 if (!assert_single_clk(opp_table)) 2031 return -EINVAL; 2032 2033 new_opp = _opp_allocate(opp_table); 2034 if (!new_opp) 2035 return -ENOMEM; 2036 2037 /* populate the opp table */ 2038 new_opp->rates[0] = freq; 2039 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 2040 new_opp->supplies[0].u_volt = u_volt; 2041 new_opp->supplies[0].u_volt_min = u_volt - tol; 2042 new_opp->supplies[0].u_volt_max = u_volt + tol; 2043 new_opp->available = true; 2044 new_opp->dynamic = dynamic; 2045 2046 ret = _opp_add(dev, new_opp, opp_table); 2047 if (ret) { 2048 /* Don't return error for duplicate OPPs */ 2049 if (ret == -EBUSY) 2050 ret = 0; 2051 goto free_opp; 2052 } 2053 2054 /* 2055 * Notify the changes in the availability of the operable 2056 * frequency/voltage list. 2057 */ 2058 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 2059 return 0; 2060 2061 free_opp: 2062 _opp_free(new_opp); 2063 2064 return ret; 2065 } 2066 2067 /** 2068 * _opp_set_supported_hw() - Set supported platforms 2069 * @dev: Device for which supported-hw has to be set. 2070 * @versions: Array of hierarchy of versions to match. 2071 * @count: Number of elements in the array. 2072 * 2073 * This is required only for the V2 bindings, and it enables a platform to 2074 * specify the hierarchy of versions it supports. OPP layer will then enable 2075 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 2076 * property. 2077 */ 2078 static int _opp_set_supported_hw(struct opp_table *opp_table, 2079 const u32 *versions, unsigned int count) 2080 { 2081 /* Another CPU that shares the OPP table has set the property ? */ 2082 if (opp_table->supported_hw) 2083 return 0; 2084 2085 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 2086 GFP_KERNEL); 2087 if (!opp_table->supported_hw) 2088 return -ENOMEM; 2089 2090 opp_table->supported_hw_count = count; 2091 2092 return 0; 2093 } 2094 2095 /** 2096 * _opp_put_supported_hw() - Releases resources blocked for supported hw 2097 * @opp_table: OPP table returned by _opp_set_supported_hw(). 2098 * 2099 * This is required only for the V2 bindings, and is called for a matching 2100 * _opp_set_supported_hw(). Until this is called, the opp_table structure 2101 * will not be freed. 2102 */ 2103 static void _opp_put_supported_hw(struct opp_table *opp_table) 2104 { 2105 if (opp_table->supported_hw) { 2106 kfree(opp_table->supported_hw); 2107 opp_table->supported_hw = NULL; 2108 opp_table->supported_hw_count = 0; 2109 } 2110 } 2111 2112 /** 2113 * _opp_set_prop_name() - Set prop-extn name 2114 * @dev: Device for which the prop-name has to be set. 2115 * @name: name to postfix to properties. 2116 * 2117 * This is required only for the V2 bindings, and it enables a platform to 2118 * specify the extn to be used for certain property names. The properties to 2119 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 2120 * should postfix the property name with -<name> while looking for them. 2121 */ 2122 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) 2123 { 2124 /* Another CPU that shares the OPP table has set the property ? */ 2125 if (!opp_table->prop_name) { 2126 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 2127 if (!opp_table->prop_name) 2128 return -ENOMEM; 2129 } 2130 2131 return 0; 2132 } 2133 2134 /** 2135 * _opp_put_prop_name() - Releases resources blocked for prop-name 2136 * @opp_table: OPP table returned by _opp_set_prop_name(). 2137 * 2138 * This is required only for the V2 bindings, and is called for a matching 2139 * _opp_set_prop_name(). Until this is called, the opp_table structure 2140 * will not be freed. 2141 */ 2142 static void _opp_put_prop_name(struct opp_table *opp_table) 2143 { 2144 if (opp_table->prop_name) { 2145 kfree(opp_table->prop_name); 2146 opp_table->prop_name = NULL; 2147 } 2148 } 2149 2150 /** 2151 * _opp_set_regulators() - Set regulator names for the device 2152 * @dev: Device for which regulator name is being set. 2153 * @names: Array of pointers to the names of the regulator. 2154 * @count: Number of regulators. 2155 * 2156 * In order to support OPP switching, OPP layer needs to know the name of the 2157 * device's regulators, as the core would be required to switch voltages as 2158 * well. 2159 * 2160 * This must be called before any OPPs are initialized for the device. 2161 */ 2162 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, 2163 const char * const names[]) 2164 { 2165 const char * const *temp = names; 2166 struct regulator *reg; 2167 int count = 0, ret, i; 2168 2169 /* Count number of regulators */ 2170 while (*temp++) 2171 count++; 2172 2173 if (!count) 2174 return -EINVAL; 2175 2176 /* Another CPU that shares the OPP table has set the regulators ? */ 2177 if (opp_table->regulators) 2178 return 0; 2179 2180 opp_table->regulators = kmalloc_array(count, 2181 sizeof(*opp_table->regulators), 2182 GFP_KERNEL); 2183 if (!opp_table->regulators) 2184 return -ENOMEM; 2185 2186 for (i = 0; i < count; i++) { 2187 reg = regulator_get_optional(dev, names[i]); 2188 if (IS_ERR(reg)) { 2189 ret = dev_err_probe(dev, PTR_ERR(reg), 2190 "%s: no regulator (%s) found\n", 2191 __func__, names[i]); 2192 goto free_regulators; 2193 } 2194 2195 opp_table->regulators[i] = reg; 2196 } 2197 2198 opp_table->regulator_count = count; 2199 2200 /* Set generic config_regulators() for single regulators here */ 2201 if (count == 1) 2202 opp_table->config_regulators = _opp_config_regulator_single; 2203 2204 return 0; 2205 2206 free_regulators: 2207 while (i != 0) 2208 regulator_put(opp_table->regulators[--i]); 2209 2210 kfree(opp_table->regulators); 2211 opp_table->regulators = NULL; 2212 opp_table->regulator_count = -1; 2213 2214 return ret; 2215 } 2216 2217 /** 2218 * _opp_put_regulators() - Releases resources blocked for regulator 2219 * @opp_table: OPP table returned from _opp_set_regulators(). 2220 */ 2221 static void _opp_put_regulators(struct opp_table *opp_table) 2222 { 2223 int i; 2224 2225 if (!opp_table->regulators) 2226 return; 2227 2228 if (opp_table->enabled) { 2229 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2230 regulator_disable(opp_table->regulators[i]); 2231 } 2232 2233 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2234 regulator_put(opp_table->regulators[i]); 2235 2236 kfree(opp_table->regulators); 2237 opp_table->regulators = NULL; 2238 opp_table->regulator_count = -1; 2239 } 2240 2241 static void _put_clks(struct opp_table *opp_table, int count) 2242 { 2243 int i; 2244 2245 for (i = count - 1; i >= 0; i--) 2246 clk_put(opp_table->clks[i]); 2247 2248 kfree(opp_table->clks); 2249 opp_table->clks = NULL; 2250 } 2251 2252 /** 2253 * _opp_set_clknames() - Set clk names for the device 2254 * @dev: Device for which clk names is being set. 2255 * @names: Clk names. 2256 * 2257 * In order to support OPP switching, OPP layer needs to get pointers to the 2258 * clocks for the device. Simple cases work fine without using this routine 2259 * (i.e. by passing connection-id as NULL), but for a device with multiple 2260 * clocks available, the OPP core needs to know the exact names of the clks to 2261 * use. 2262 * 2263 * This must be called before any OPPs are initialized for the device. 2264 */ 2265 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, 2266 const char * const names[], 2267 config_clks_t config_clks) 2268 { 2269 const char * const *temp = names; 2270 int count = 0, ret, i; 2271 struct clk *clk; 2272 2273 /* Count number of clks */ 2274 while (*temp++) 2275 count++; 2276 2277 /* 2278 * This is a special case where we have a single clock, whose connection 2279 * id name is NULL, i.e. first two entries are NULL in the array. 2280 */ 2281 if (!count && !names[1]) 2282 count = 1; 2283 2284 /* Fail early for invalid configurations */ 2285 if (!count || (!config_clks && count > 1)) 2286 return -EINVAL; 2287 2288 /* Another CPU that shares the OPP table has set the clkname ? */ 2289 if (opp_table->clks) 2290 return 0; 2291 2292 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), 2293 GFP_KERNEL); 2294 if (!opp_table->clks) 2295 return -ENOMEM; 2296 2297 /* Find clks for the device */ 2298 for (i = 0; i < count; i++) { 2299 clk = clk_get(dev, names[i]); 2300 if (IS_ERR(clk)) { 2301 ret = dev_err_probe(dev, PTR_ERR(clk), 2302 "%s: Couldn't find clock with name: %s\n", 2303 __func__, names[i]); 2304 goto free_clks; 2305 } 2306 2307 opp_table->clks[i] = clk; 2308 } 2309 2310 opp_table->clk_count = count; 2311 opp_table->config_clks = config_clks; 2312 2313 /* Set generic single clk set here */ 2314 if (count == 1) { 2315 if (!opp_table->config_clks) 2316 opp_table->config_clks = _opp_config_clk_single; 2317 2318 /* 2319 * We could have just dropped the "clk" field and used "clks" 2320 * everywhere. Instead we kept the "clk" field around for 2321 * following reasons: 2322 * 2323 * - avoiding clks[0] everywhere else. 2324 * - not running single clk helpers for multiple clk usecase by 2325 * mistake. 2326 * 2327 * Since this is single-clk case, just update the clk pointer 2328 * too. 2329 */ 2330 opp_table->clk = opp_table->clks[0]; 2331 } 2332 2333 return 0; 2334 2335 free_clks: 2336 _put_clks(opp_table, i); 2337 return ret; 2338 } 2339 2340 /** 2341 * _opp_put_clknames() - Releases resources blocked for clks. 2342 * @opp_table: OPP table returned from _opp_set_clknames(). 2343 */ 2344 static void _opp_put_clknames(struct opp_table *opp_table) 2345 { 2346 if (!opp_table->clks) 2347 return; 2348 2349 opp_table->config_clks = NULL; 2350 opp_table->clk = ERR_PTR(-ENODEV); 2351 2352 _put_clks(opp_table, opp_table->clk_count); 2353 } 2354 2355 /** 2356 * _opp_set_config_regulators_helper() - Register custom set regulator helper. 2357 * @dev: Device for which the helper is getting registered. 2358 * @config_regulators: Custom set regulator helper. 2359 * 2360 * This is useful to support platforms with multiple regulators per device. 2361 * 2362 * This must be called before any OPPs are initialized for the device. 2363 */ 2364 static int _opp_set_config_regulators_helper(struct opp_table *opp_table, 2365 struct device *dev, config_regulators_t config_regulators) 2366 { 2367 /* Another CPU that shares the OPP table has set the helper ? */ 2368 if (!opp_table->config_regulators) 2369 opp_table->config_regulators = config_regulators; 2370 2371 return 0; 2372 } 2373 2374 /** 2375 * _opp_put_config_regulators_helper() - Releases resources blocked for 2376 * config_regulators helper. 2377 * @opp_table: OPP table returned from _opp_set_config_regulators_helper(). 2378 * 2379 * Release resources blocked for platform specific config_regulators helper. 2380 */ 2381 static void _opp_put_config_regulators_helper(struct opp_table *opp_table) 2382 { 2383 if (opp_table->config_regulators) 2384 opp_table->config_regulators = NULL; 2385 } 2386 2387 static void _detach_genpd(struct opp_table *opp_table) 2388 { 2389 int index; 2390 2391 if (!opp_table->genpd_virt_devs) 2392 return; 2393 2394 for (index = 0; index < opp_table->required_opp_count; index++) { 2395 if (!opp_table->genpd_virt_devs[index]) 2396 continue; 2397 2398 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 2399 opp_table->genpd_virt_devs[index] = NULL; 2400 } 2401 2402 kfree(opp_table->genpd_virt_devs); 2403 opp_table->genpd_virt_devs = NULL; 2404 } 2405 2406 /** 2407 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 2408 * @dev: Consumer device for which the genpd is getting attached. 2409 * @names: Null terminated array of pointers containing names of genpd to attach. 2410 * @virt_devs: Pointer to return the array of virtual devices. 2411 * 2412 * Multiple generic power domains for a device are supported with the help of 2413 * virtual genpd devices, which are created for each consumer device - genpd 2414 * pair. These are the device structures which are attached to the power domain 2415 * and are required by the OPP core to set the performance state of the genpd. 2416 * The same API also works for the case where single genpd is available and so 2417 * we don't need to support that separately. 2418 * 2419 * This helper will normally be called by the consumer driver of the device 2420 * "dev", as only that has details of the genpd names. 2421 * 2422 * This helper needs to be called once with a list of all genpd to attach. 2423 * Otherwise the original device structure will be used instead by the OPP core. 2424 * 2425 * The order of entries in the names array must match the order in which 2426 * "required-opps" are added in DT. 2427 */ 2428 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev, 2429 const char * const *names, struct device ***virt_devs) 2430 { 2431 struct device *virt_dev; 2432 int index = 0, ret = -EINVAL; 2433 const char * const *name = names; 2434 2435 if (opp_table->genpd_virt_devs) 2436 return 0; 2437 2438 /* 2439 * If the genpd's OPP table isn't already initialized, parsing of the 2440 * required-opps fail for dev. We should retry this after genpd's OPP 2441 * table is added. 2442 */ 2443 if (!opp_table->required_opp_count) 2444 return -EPROBE_DEFER; 2445 2446 mutex_lock(&opp_table->genpd_virt_dev_lock); 2447 2448 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2449 sizeof(*opp_table->genpd_virt_devs), 2450 GFP_KERNEL); 2451 if (!opp_table->genpd_virt_devs) 2452 goto unlock; 2453 2454 while (*name) { 2455 if (index >= opp_table->required_opp_count) { 2456 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2457 *name, opp_table->required_opp_count, index); 2458 goto err; 2459 } 2460 2461 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2462 if (IS_ERR_OR_NULL(virt_dev)) { 2463 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV; 2464 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2465 goto err; 2466 } 2467 2468 opp_table->genpd_virt_devs[index] = virt_dev; 2469 index++; 2470 name++; 2471 } 2472 2473 if (virt_devs) 2474 *virt_devs = opp_table->genpd_virt_devs; 2475 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2476 2477 return 0; 2478 2479 err: 2480 _detach_genpd(opp_table); 2481 unlock: 2482 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2483 return ret; 2484 2485 } 2486 2487 /** 2488 * _opp_detach_genpd() - Detach genpd(s) from the device. 2489 * @opp_table: OPP table returned by _opp_attach_genpd(). 2490 * 2491 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2492 * OPP table. 2493 */ 2494 static void _opp_detach_genpd(struct opp_table *opp_table) 2495 { 2496 /* 2497 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2498 * used in parallel. 2499 */ 2500 mutex_lock(&opp_table->genpd_virt_dev_lock); 2501 _detach_genpd(opp_table); 2502 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2503 } 2504 2505 static void _opp_clear_config(struct opp_config_data *data) 2506 { 2507 if (data->flags & OPP_CONFIG_GENPD) 2508 _opp_detach_genpd(data->opp_table); 2509 if (data->flags & OPP_CONFIG_REGULATOR) 2510 _opp_put_regulators(data->opp_table); 2511 if (data->flags & OPP_CONFIG_SUPPORTED_HW) 2512 _opp_put_supported_hw(data->opp_table); 2513 if (data->flags & OPP_CONFIG_REGULATOR_HELPER) 2514 _opp_put_config_regulators_helper(data->opp_table); 2515 if (data->flags & OPP_CONFIG_PROP_NAME) 2516 _opp_put_prop_name(data->opp_table); 2517 if (data->flags & OPP_CONFIG_CLK) 2518 _opp_put_clknames(data->opp_table); 2519 2520 dev_pm_opp_put_opp_table(data->opp_table); 2521 kfree(data); 2522 } 2523 2524 /** 2525 * dev_pm_opp_set_config() - Set OPP configuration for the device. 2526 * @dev: Device for which configuration is being set. 2527 * @config: OPP configuration. 2528 * 2529 * This allows all device OPP configurations to be performed at once. 2530 * 2531 * This must be called before any OPPs are initialized for the device. This may 2532 * be called multiple times for the same OPP table, for example once for each 2533 * CPU that share the same table. This must be balanced by the same number of 2534 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. 2535 * 2536 * This returns a token to the caller, which must be passed to 2537 * dev_pm_opp_clear_config() to free the resources later. The value of the 2538 * returned token will be >= 1 for success and negative for errors. The minimum 2539 * value of 1 is chosen here to make it easy for callers to manage the resource. 2540 */ 2541 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2542 { 2543 struct opp_table *opp_table; 2544 struct opp_config_data *data; 2545 unsigned int id; 2546 int ret; 2547 2548 data = kmalloc(sizeof(*data), GFP_KERNEL); 2549 if (!data) 2550 return -ENOMEM; 2551 2552 opp_table = _add_opp_table(dev, false); 2553 if (IS_ERR(opp_table)) { 2554 kfree(data); 2555 return PTR_ERR(opp_table); 2556 } 2557 2558 data->opp_table = opp_table; 2559 data->flags = 0; 2560 2561 /* This should be called before OPPs are initialized */ 2562 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2563 ret = -EBUSY; 2564 goto err; 2565 } 2566 2567 /* Configure clocks */ 2568 if (config->clk_names) { 2569 ret = _opp_set_clknames(opp_table, dev, config->clk_names, 2570 config->config_clks); 2571 if (ret) 2572 goto err; 2573 2574 data->flags |= OPP_CONFIG_CLK; 2575 } else if (config->config_clks) { 2576 /* Don't allow config callback without clocks */ 2577 ret = -EINVAL; 2578 goto err; 2579 } 2580 2581 /* Configure property names */ 2582 if (config->prop_name) { 2583 ret = _opp_set_prop_name(opp_table, config->prop_name); 2584 if (ret) 2585 goto err; 2586 2587 data->flags |= OPP_CONFIG_PROP_NAME; 2588 } 2589 2590 /* Configure config_regulators helper */ 2591 if (config->config_regulators) { 2592 ret = _opp_set_config_regulators_helper(opp_table, dev, 2593 config->config_regulators); 2594 if (ret) 2595 goto err; 2596 2597 data->flags |= OPP_CONFIG_REGULATOR_HELPER; 2598 } 2599 2600 /* Configure supported hardware */ 2601 if (config->supported_hw) { 2602 ret = _opp_set_supported_hw(opp_table, config->supported_hw, 2603 config->supported_hw_count); 2604 if (ret) 2605 goto err; 2606 2607 data->flags |= OPP_CONFIG_SUPPORTED_HW; 2608 } 2609 2610 /* Configure supplies */ 2611 if (config->regulator_names) { 2612 ret = _opp_set_regulators(opp_table, dev, 2613 config->regulator_names); 2614 if (ret) 2615 goto err; 2616 2617 data->flags |= OPP_CONFIG_REGULATOR; 2618 } 2619 2620 /* Attach genpds */ 2621 if (config->genpd_names) { 2622 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names, 2623 config->virt_devs); 2624 if (ret) 2625 goto err; 2626 2627 data->flags |= OPP_CONFIG_GENPD; 2628 } 2629 2630 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), 2631 GFP_KERNEL); 2632 if (ret) 2633 goto err; 2634 2635 return id; 2636 2637 err: 2638 _opp_clear_config(data); 2639 return ret; 2640 } 2641 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); 2642 2643 /** 2644 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. 2645 * @opp_table: OPP table returned from dev_pm_opp_set_config(). 2646 * 2647 * This allows all device OPP configurations to be cleared at once. This must be 2648 * called once for each call made to dev_pm_opp_set_config(), in order to free 2649 * the OPPs properly. 2650 * 2651 * Currently the first call itself ends up freeing all the OPP configurations, 2652 * while the later ones only drop the OPP table reference. This works well for 2653 * now as we would never want to use an half initialized OPP table and want to 2654 * remove the configurations together. 2655 */ 2656 void dev_pm_opp_clear_config(int token) 2657 { 2658 struct opp_config_data *data; 2659 2660 /* 2661 * This lets the callers call this unconditionally and keep their code 2662 * simple. 2663 */ 2664 if (unlikely(token <= 0)) 2665 return; 2666 2667 data = xa_erase(&opp_configs, token); 2668 if (WARN_ON(!data)) 2669 return; 2670 2671 _opp_clear_config(data); 2672 } 2673 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); 2674 2675 static void devm_pm_opp_config_release(void *token) 2676 { 2677 dev_pm_opp_clear_config((unsigned long)token); 2678 } 2679 2680 /** 2681 * devm_pm_opp_set_config() - Set OPP configuration for the device. 2682 * @dev: Device for which configuration is being set. 2683 * @config: OPP configuration. 2684 * 2685 * This allows all device OPP configurations to be performed at once. 2686 * This is a resource-managed variant of dev_pm_opp_set_config(). 2687 * 2688 * Return: 0 on success and errorno otherwise. 2689 */ 2690 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2691 { 2692 int token = dev_pm_opp_set_config(dev, config); 2693 2694 if (token < 0) 2695 return token; 2696 2697 return devm_add_action_or_reset(dev, devm_pm_opp_config_release, 2698 (void *) ((unsigned long) token)); 2699 } 2700 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); 2701 2702 /** 2703 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2704 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2705 * @dst_table: Required OPP table of the @src_table. 2706 * @src_opp: OPP from the @src_table. 2707 * 2708 * This function returns the OPP (present in @dst_table) pointed out by the 2709 * "required-opps" property of the @src_opp (present in @src_table). 2710 * 2711 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2712 * use. 2713 * 2714 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2715 */ 2716 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2717 struct opp_table *dst_table, 2718 struct dev_pm_opp *src_opp) 2719 { 2720 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2721 int i; 2722 2723 if (!src_table || !dst_table || !src_opp || 2724 !src_table->required_opp_tables) 2725 return ERR_PTR(-EINVAL); 2726 2727 /* required-opps not fully initialized yet */ 2728 if (lazy_linking_pending(src_table)) 2729 return ERR_PTR(-EBUSY); 2730 2731 for (i = 0; i < src_table->required_opp_count; i++) { 2732 if (src_table->required_opp_tables[i] == dst_table) { 2733 mutex_lock(&src_table->lock); 2734 2735 list_for_each_entry(opp, &src_table->opp_list, node) { 2736 if (opp == src_opp) { 2737 dest_opp = opp->required_opps[i]; 2738 dev_pm_opp_get(dest_opp); 2739 break; 2740 } 2741 } 2742 2743 mutex_unlock(&src_table->lock); 2744 break; 2745 } 2746 } 2747 2748 if (IS_ERR(dest_opp)) { 2749 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2750 src_table, dst_table); 2751 } 2752 2753 return dest_opp; 2754 } 2755 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2756 2757 /** 2758 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2759 * @src_table: OPP table which has dst_table as one of its required OPP table. 2760 * @dst_table: Required OPP table of the src_table. 2761 * @pstate: Current performance state of the src_table. 2762 * 2763 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2764 * "required-opps" property of the OPP (present in @src_table) which has 2765 * performance state set to @pstate. 2766 * 2767 * Return: Zero or positive performance state on success, otherwise negative 2768 * value on errors. 2769 */ 2770 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2771 struct opp_table *dst_table, 2772 unsigned int pstate) 2773 { 2774 struct dev_pm_opp *opp; 2775 int dest_pstate = -EINVAL; 2776 int i; 2777 2778 /* 2779 * Normally the src_table will have the "required_opps" property set to 2780 * point to one of the OPPs in the dst_table, but in some cases the 2781 * genpd and its master have one to one mapping of performance states 2782 * and so none of them have the "required-opps" property set. Return the 2783 * pstate of the src_table as it is in such cases. 2784 */ 2785 if (!src_table || !src_table->required_opp_count) 2786 return pstate; 2787 2788 /* Both OPP tables must belong to genpds */ 2789 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) { 2790 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 2791 return -EINVAL; 2792 } 2793 2794 /* required-opps not fully initialized yet */ 2795 if (lazy_linking_pending(src_table)) 2796 return -EBUSY; 2797 2798 for (i = 0; i < src_table->required_opp_count; i++) { 2799 if (src_table->required_opp_tables[i]->np == dst_table->np) 2800 break; 2801 } 2802 2803 if (unlikely(i == src_table->required_opp_count)) { 2804 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2805 __func__, src_table, dst_table); 2806 return -EINVAL; 2807 } 2808 2809 mutex_lock(&src_table->lock); 2810 2811 list_for_each_entry(opp, &src_table->opp_list, node) { 2812 if (opp->level == pstate) { 2813 dest_pstate = opp->required_opps[i]->level; 2814 goto unlock; 2815 } 2816 } 2817 2818 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2819 dst_table); 2820 2821 unlock: 2822 mutex_unlock(&src_table->lock); 2823 2824 return dest_pstate; 2825 } 2826 2827 /** 2828 * dev_pm_opp_add() - Add an OPP table from a table definitions 2829 * @dev: device for which we do this operation 2830 * @freq: Frequency in Hz for this OPP 2831 * @u_volt: Voltage in uVolts for this OPP 2832 * 2833 * This function adds an opp definition to the opp table and returns status. 2834 * The opp is made available by default and it can be controlled using 2835 * dev_pm_opp_enable/disable functions. 2836 * 2837 * Return: 2838 * 0 On success OR 2839 * Duplicate OPPs (both freq and volt are same) and opp->available 2840 * -EEXIST Freq are same and volt are different OR 2841 * Duplicate OPPs (both freq and volt are same) and !opp->available 2842 * -ENOMEM Memory allocation failure 2843 */ 2844 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2845 { 2846 struct opp_table *opp_table; 2847 int ret; 2848 2849 opp_table = _add_opp_table(dev, true); 2850 if (IS_ERR(opp_table)) 2851 return PTR_ERR(opp_table); 2852 2853 /* Fix regulator count for dynamic OPPs */ 2854 opp_table->regulator_count = 1; 2855 2856 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2857 if (ret) 2858 dev_pm_opp_put_opp_table(opp_table); 2859 2860 return ret; 2861 } 2862 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2863 2864 /** 2865 * _opp_set_availability() - helper to set the availability of an opp 2866 * @dev: device for which we do this operation 2867 * @freq: OPP frequency to modify availability 2868 * @availability_req: availability status requested for this opp 2869 * 2870 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2871 * which is isolated here. 2872 * 2873 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2874 * copy operation, returns 0 if no modification was done OR modification was 2875 * successful. 2876 */ 2877 static int _opp_set_availability(struct device *dev, unsigned long freq, 2878 bool availability_req) 2879 { 2880 struct opp_table *opp_table; 2881 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2882 int r = 0; 2883 2884 /* Find the opp_table */ 2885 opp_table = _find_opp_table(dev); 2886 if (IS_ERR(opp_table)) { 2887 r = PTR_ERR(opp_table); 2888 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2889 return r; 2890 } 2891 2892 if (!assert_single_clk(opp_table)) { 2893 r = -EINVAL; 2894 goto put_table; 2895 } 2896 2897 mutex_lock(&opp_table->lock); 2898 2899 /* Do we have the frequency? */ 2900 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2901 if (tmp_opp->rates[0] == freq) { 2902 opp = tmp_opp; 2903 break; 2904 } 2905 } 2906 2907 if (IS_ERR(opp)) { 2908 r = PTR_ERR(opp); 2909 goto unlock; 2910 } 2911 2912 /* Is update really needed? */ 2913 if (opp->available == availability_req) 2914 goto unlock; 2915 2916 opp->available = availability_req; 2917 2918 dev_pm_opp_get(opp); 2919 mutex_unlock(&opp_table->lock); 2920 2921 /* Notify the change of the OPP availability */ 2922 if (availability_req) 2923 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2924 opp); 2925 else 2926 blocking_notifier_call_chain(&opp_table->head, 2927 OPP_EVENT_DISABLE, opp); 2928 2929 dev_pm_opp_put(opp); 2930 goto put_table; 2931 2932 unlock: 2933 mutex_unlock(&opp_table->lock); 2934 put_table: 2935 dev_pm_opp_put_opp_table(opp_table); 2936 return r; 2937 } 2938 2939 /** 2940 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2941 * @dev: device for which we do this operation 2942 * @freq: OPP frequency to adjust voltage of 2943 * @u_volt: new OPP target voltage 2944 * @u_volt_min: new OPP min voltage 2945 * @u_volt_max: new OPP max voltage 2946 * 2947 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2948 * copy operation, returns 0 if no modifcation was done OR modification was 2949 * successful. 2950 */ 2951 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2952 unsigned long u_volt, unsigned long u_volt_min, 2953 unsigned long u_volt_max) 2954 2955 { 2956 struct opp_table *opp_table; 2957 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2958 int r = 0; 2959 2960 /* Find the opp_table */ 2961 opp_table = _find_opp_table(dev); 2962 if (IS_ERR(opp_table)) { 2963 r = PTR_ERR(opp_table); 2964 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2965 return r; 2966 } 2967 2968 if (!assert_single_clk(opp_table)) { 2969 r = -EINVAL; 2970 goto put_table; 2971 } 2972 2973 mutex_lock(&opp_table->lock); 2974 2975 /* Do we have the frequency? */ 2976 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2977 if (tmp_opp->rates[0] == freq) { 2978 opp = tmp_opp; 2979 break; 2980 } 2981 } 2982 2983 if (IS_ERR(opp)) { 2984 r = PTR_ERR(opp); 2985 goto adjust_unlock; 2986 } 2987 2988 /* Is update really needed? */ 2989 if (opp->supplies->u_volt == u_volt) 2990 goto adjust_unlock; 2991 2992 opp->supplies->u_volt = u_volt; 2993 opp->supplies->u_volt_min = u_volt_min; 2994 opp->supplies->u_volt_max = u_volt_max; 2995 2996 dev_pm_opp_get(opp); 2997 mutex_unlock(&opp_table->lock); 2998 2999 /* Notify the voltage change of the OPP */ 3000 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 3001 opp); 3002 3003 dev_pm_opp_put(opp); 3004 goto put_table; 3005 3006 adjust_unlock: 3007 mutex_unlock(&opp_table->lock); 3008 put_table: 3009 dev_pm_opp_put_opp_table(opp_table); 3010 return r; 3011 } 3012 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 3013 3014 /** 3015 * dev_pm_opp_enable() - Enable a specific OPP 3016 * @dev: device for which we do this operation 3017 * @freq: OPP frequency to enable 3018 * 3019 * Enables a provided opp. If the operation is valid, this returns 0, else the 3020 * corresponding error value. It is meant to be used for users an OPP available 3021 * after being temporarily made unavailable with dev_pm_opp_disable. 3022 * 3023 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3024 * copy operation, returns 0 if no modification was done OR modification was 3025 * successful. 3026 */ 3027 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 3028 { 3029 return _opp_set_availability(dev, freq, true); 3030 } 3031 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 3032 3033 /** 3034 * dev_pm_opp_disable() - Disable a specific OPP 3035 * @dev: device for which we do this operation 3036 * @freq: OPP frequency to disable 3037 * 3038 * Disables a provided opp. If the operation is valid, this returns 3039 * 0, else the corresponding error value. It is meant to be a temporary 3040 * control by users to make this OPP not available until the circumstances are 3041 * right to make it available again (with a call to dev_pm_opp_enable). 3042 * 3043 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3044 * copy operation, returns 0 if no modification was done OR modification was 3045 * successful. 3046 */ 3047 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 3048 { 3049 return _opp_set_availability(dev, freq, false); 3050 } 3051 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 3052 3053 /** 3054 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 3055 * @dev: Device for which notifier needs to be registered 3056 * @nb: Notifier block to be registered 3057 * 3058 * Return: 0 on success or a negative error value. 3059 */ 3060 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 3061 { 3062 struct opp_table *opp_table; 3063 int ret; 3064 3065 opp_table = _find_opp_table(dev); 3066 if (IS_ERR(opp_table)) 3067 return PTR_ERR(opp_table); 3068 3069 ret = blocking_notifier_chain_register(&opp_table->head, nb); 3070 3071 dev_pm_opp_put_opp_table(opp_table); 3072 3073 return ret; 3074 } 3075 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 3076 3077 /** 3078 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 3079 * @dev: Device for which notifier needs to be unregistered 3080 * @nb: Notifier block to be unregistered 3081 * 3082 * Return: 0 on success or a negative error value. 3083 */ 3084 int dev_pm_opp_unregister_notifier(struct device *dev, 3085 struct notifier_block *nb) 3086 { 3087 struct opp_table *opp_table; 3088 int ret; 3089 3090 opp_table = _find_opp_table(dev); 3091 if (IS_ERR(opp_table)) 3092 return PTR_ERR(opp_table); 3093 3094 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 3095 3096 dev_pm_opp_put_opp_table(opp_table); 3097 3098 return ret; 3099 } 3100 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 3101 3102 /** 3103 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 3104 * @dev: device pointer used to lookup OPP table. 3105 * 3106 * Free both OPPs created using static entries present in DT and the 3107 * dynamically added entries. 3108 */ 3109 void dev_pm_opp_remove_table(struct device *dev) 3110 { 3111 struct opp_table *opp_table; 3112 3113 /* Check for existing table for 'dev' */ 3114 opp_table = _find_opp_table(dev); 3115 if (IS_ERR(opp_table)) { 3116 int error = PTR_ERR(opp_table); 3117 3118 if (error != -ENODEV) 3119 WARN(1, "%s: opp_table: %d\n", 3120 IS_ERR_OR_NULL(dev) ? 3121 "Invalid device" : dev_name(dev), 3122 error); 3123 return; 3124 } 3125 3126 /* 3127 * Drop the extra reference only if the OPP table was successfully added 3128 * with dev_pm_opp_of_add_table() earlier. 3129 **/ 3130 if (_opp_remove_all_static(opp_table)) 3131 dev_pm_opp_put_opp_table(opp_table); 3132 3133 /* Drop reference taken by _find_opp_table() */ 3134 dev_pm_opp_put_opp_table(opp_table); 3135 } 3136 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 3137 3138 /** 3139 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 3140 * @dev: device for which we do this operation 3141 * 3142 * Sync voltage state of the OPP table regulators. 3143 * 3144 * Return: 0 on success or a negative error value. 3145 */ 3146 int dev_pm_opp_sync_regulators(struct device *dev) 3147 { 3148 struct opp_table *opp_table; 3149 struct regulator *reg; 3150 int i, ret = 0; 3151 3152 /* Device may not have OPP table */ 3153 opp_table = _find_opp_table(dev); 3154 if (IS_ERR(opp_table)) 3155 return 0; 3156 3157 /* Regulator may not be required for the device */ 3158 if (unlikely(!opp_table->regulators)) 3159 goto put_table; 3160 3161 /* Nothing to sync if voltage wasn't changed */ 3162 if (!opp_table->enabled) 3163 goto put_table; 3164 3165 for (i = 0; i < opp_table->regulator_count; i++) { 3166 reg = opp_table->regulators[i]; 3167 ret = regulator_sync_voltage(reg); 3168 if (ret) 3169 break; 3170 } 3171 put_table: 3172 /* Drop reference taken by _find_opp_table() */ 3173 dev_pm_opp_put_opp_table(opp_table); 3174 3175 return ret; 3176 } 3177 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 3178