1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp)) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 /** 405 * dev_pm_opp_find_level_exact() - search for an exact level 406 * @dev: device for which we do this operation 407 * @level: level to search for 408 * 409 * Return: Searches for exact match in the opp table and returns pointer to the 410 * matching opp if found, else returns ERR_PTR in case of error and should 411 * be handled using IS_ERR. Error return values can be: 412 * EINVAL: for bad pointer 413 * ERANGE: no match found for search 414 * ENODEV: if device not found in list of registered devices 415 * 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after 417 * use. 418 */ 419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 420 unsigned int level) 421 { 422 struct opp_table *opp_table; 423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 424 425 opp_table = _find_opp_table(dev); 426 if (IS_ERR(opp_table)) { 427 int r = PTR_ERR(opp_table); 428 429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 430 return ERR_PTR(r); 431 } 432 433 mutex_lock(&opp_table->lock); 434 435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 436 if (temp_opp->level == level) { 437 opp = temp_opp; 438 439 /* Increment the reference count of OPP */ 440 dev_pm_opp_get(opp); 441 break; 442 } 443 } 444 445 mutex_unlock(&opp_table->lock); 446 dev_pm_opp_put_opp_table(opp_table); 447 448 return opp; 449 } 450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 451 452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 453 unsigned long *freq) 454 { 455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 456 457 mutex_lock(&opp_table->lock); 458 459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 460 if (temp_opp->available && temp_opp->rate >= *freq) { 461 opp = temp_opp; 462 *freq = opp->rate; 463 464 /* Increment the reference count of OPP */ 465 dev_pm_opp_get(opp); 466 break; 467 } 468 } 469 470 mutex_unlock(&opp_table->lock); 471 472 return opp; 473 } 474 475 /** 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 477 * @dev: device for which we do this operation 478 * @freq: Start frequency 479 * 480 * Search for the matching ceil *available* OPP from a starting freq 481 * for a device. 482 * 483 * Return: matching *opp and refreshes *freq accordingly, else returns 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 485 * values can be: 486 * EINVAL: for bad pointer 487 * ERANGE: no match found for search 488 * ENODEV: if device not found in list of registered devices 489 * 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after 491 * use. 492 */ 493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 494 unsigned long *freq) 495 { 496 struct opp_table *opp_table; 497 struct dev_pm_opp *opp; 498 499 if (!dev || !freq) { 500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 501 return ERR_PTR(-EINVAL); 502 } 503 504 opp_table = _find_opp_table(dev); 505 if (IS_ERR(opp_table)) 506 return ERR_CAST(opp_table); 507 508 opp = _find_freq_ceil(opp_table, freq); 509 510 dev_pm_opp_put_opp_table(opp_table); 511 512 return opp; 513 } 514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 515 516 /** 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 518 * @dev: device for which we do this operation 519 * @freq: Start frequency 520 * 521 * Search for the matching floor *available* OPP from a starting freq 522 * for a device. 523 * 524 * Return: matching *opp and refreshes *freq accordingly, else returns 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 526 * values can be: 527 * EINVAL: for bad pointer 528 * ERANGE: no match found for search 529 * ENODEV: if device not found in list of registered devices 530 * 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after 532 * use. 533 */ 534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 535 unsigned long *freq) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 539 540 if (!dev || !freq) { 541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 542 return ERR_PTR(-EINVAL); 543 } 544 545 opp_table = _find_opp_table(dev); 546 if (IS_ERR(opp_table)) 547 return ERR_CAST(opp_table); 548 549 mutex_lock(&opp_table->lock); 550 551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 552 if (temp_opp->available) { 553 /* go to the next node, before choosing prev */ 554 if (temp_opp->rate > *freq) 555 break; 556 else 557 opp = temp_opp; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) 563 dev_pm_opp_get(opp); 564 mutex_unlock(&opp_table->lock); 565 dev_pm_opp_put_opp_table(opp_table); 566 567 if (!IS_ERR(opp)) 568 *freq = opp->rate; 569 570 return opp; 571 } 572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 573 574 /** 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 576 * target voltage. 577 * @dev: Device for which we do this operation. 578 * @u_volt: Target voltage. 579 * 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 581 * 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be 583 * handled using IS_ERR. 584 * 585 * Error return values can be: 586 * EINVAL: bad parameters 587 * 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after 589 * use. 590 */ 591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 592 unsigned long u_volt) 593 { 594 struct opp_table *opp_table; 595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 596 597 if (!dev || !u_volt) { 598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 599 u_volt); 600 return ERR_PTR(-EINVAL); 601 } 602 603 opp_table = _find_opp_table(dev); 604 if (IS_ERR(opp_table)) 605 return ERR_CAST(opp_table); 606 607 mutex_lock(&opp_table->lock); 608 609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 610 if (temp_opp->available) { 611 if (temp_opp->supplies[0].u_volt > u_volt) 612 break; 613 opp = temp_opp; 614 } 615 } 616 617 /* Increment the reference count of OPP */ 618 if (!IS_ERR(opp)) 619 dev_pm_opp_get(opp); 620 621 mutex_unlock(&opp_table->lock); 622 dev_pm_opp_put_opp_table(opp_table); 623 624 return opp; 625 } 626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 627 628 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 629 struct dev_pm_opp_supply *supply) 630 { 631 int ret; 632 633 /* Regulator not available for device */ 634 if (IS_ERR(reg)) { 635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 636 PTR_ERR(reg)); 637 return 0; 638 } 639 640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 641 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 642 643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 644 supply->u_volt, supply->u_volt_max); 645 if (ret) 646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 647 __func__, supply->u_volt_min, supply->u_volt, 648 supply->u_volt_max, ret); 649 650 return ret; 651 } 652 653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 654 unsigned long freq) 655 { 656 int ret; 657 658 ret = clk_set_rate(clk, freq); 659 if (ret) { 660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 661 ret); 662 } 663 664 return ret; 665 } 666 667 static int _generic_set_opp_regulator(struct opp_table *opp_table, 668 struct device *dev, 669 unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct regulator *reg = opp_table->regulators[0]; 675 int ret; 676 677 /* This function only supports single regulator per device */ 678 if (WARN_ON(opp_table->regulator_count > 1)) { 679 dev_err(dev, "multiple regulators are not supported\n"); 680 return -EINVAL; 681 } 682 683 /* Scaling up? Scale voltage before frequency */ 684 if (freq >= old_freq) { 685 ret = _set_opp_voltage(dev, reg, new_supply); 686 if (ret) 687 goto restore_voltage; 688 } 689 690 /* Change frequency */ 691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 692 if (ret) 693 goto restore_voltage; 694 695 /* Scaling down? Scale voltage after frequency */ 696 if (freq < old_freq) { 697 ret = _set_opp_voltage(dev, reg, new_supply); 698 if (ret) 699 goto restore_freq; 700 } 701 702 /* 703 * Enable the regulator after setting its voltages, otherwise it breaks 704 * some boot-enabled regulators. 705 */ 706 if (unlikely(!opp_table->regulator_enabled)) { 707 ret = regulator_enable(reg); 708 if (ret < 0) 709 dev_warn(dev, "Failed to enable regulator: %d", ret); 710 else 711 opp_table->regulator_enabled = true; 712 } 713 714 return 0; 715 716 restore_freq: 717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 719 __func__, old_freq); 720 restore_voltage: 721 /* This shouldn't harm even if the voltages weren't updated earlier */ 722 if (old_supply) 723 _set_opp_voltage(dev, reg, old_supply); 724 725 return ret; 726 } 727 728 static int _set_opp_bw(const struct opp_table *opp_table, 729 struct dev_pm_opp *opp, struct device *dev, bool remove) 730 { 731 u32 avg, peak; 732 int i, ret; 733 734 if (!opp_table->paths) 735 return 0; 736 737 for (i = 0; i < opp_table->path_count; i++) { 738 if (remove) { 739 avg = 0; 740 peak = 0; 741 } else { 742 avg = opp->bandwidth[i].avg; 743 peak = opp->bandwidth[i].peak; 744 } 745 ret = icc_set_bw(opp_table->paths[i], avg, peak); 746 if (ret) { 747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 748 remove ? "remove" : "set", i, ret); 749 return ret; 750 } 751 } 752 753 return 0; 754 } 755 756 static int _set_opp_custom(const struct opp_table *opp_table, 757 struct device *dev, unsigned long old_freq, 758 unsigned long freq, 759 struct dev_pm_opp_supply *old_supply, 760 struct dev_pm_opp_supply *new_supply) 761 { 762 struct dev_pm_set_opp_data *data; 763 int size; 764 765 data = opp_table->set_opp_data; 766 data->regulators = opp_table->regulators; 767 data->regulator_count = opp_table->regulator_count; 768 data->clk = opp_table->clk; 769 data->dev = dev; 770 771 data->old_opp.rate = old_freq; 772 size = sizeof(*old_supply) * opp_table->regulator_count; 773 if (!old_supply) 774 memset(data->old_opp.supplies, 0, size); 775 else 776 memcpy(data->old_opp.supplies, old_supply, size); 777 778 data->new_opp.rate = freq; 779 memcpy(data->new_opp.supplies, new_supply, size); 780 781 return opp_table->set_opp(data); 782 } 783 784 /* This is only called for PM domain for now */ 785 static int _set_required_opps(struct device *dev, 786 struct opp_table *opp_table, 787 struct dev_pm_opp *opp) 788 { 789 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 791 unsigned int pstate; 792 int i, ret = 0; 793 794 if (!required_opp_tables) 795 return 0; 796 797 /* Single genpd case */ 798 if (!genpd_virt_devs) { 799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0; 800 ret = dev_pm_genpd_set_performance_state(dev, pstate); 801 if (ret) { 802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 803 dev_name(dev), pstate, ret); 804 } 805 return ret; 806 } 807 808 /* Multiple genpd case */ 809 810 /* 811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 812 * after it is freed from another thread. 813 */ 814 mutex_lock(&opp_table->genpd_virt_dev_lock); 815 816 for (i = 0; i < opp_table->required_opp_count; i++) { 817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 818 819 if (!genpd_virt_devs[i]) 820 continue; 821 822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 823 if (ret) { 824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 825 dev_name(genpd_virt_devs[i]), pstate, ret); 826 break; 827 } 828 } 829 mutex_unlock(&opp_table->genpd_virt_dev_lock); 830 831 return ret; 832 } 833 834 /** 835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp 836 * @dev: device for which we do this operation 837 * @opp: opp based on which the bandwidth levels are to be configured 838 * 839 * This configures the bandwidth to the levels specified by the OPP. However 840 * if the OPP specified is NULL the bandwidth levels are cleared out. 841 * 842 * Return: 0 on success or a negative error value. 843 */ 844 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp) 845 { 846 struct opp_table *opp_table; 847 int ret; 848 849 opp_table = _find_opp_table(dev); 850 if (IS_ERR(opp_table)) { 851 dev_err(dev, "%s: device opp table doesn't exist\n", __func__); 852 return PTR_ERR(opp_table); 853 } 854 855 if (opp) 856 ret = _set_opp_bw(opp_table, opp, dev, false); 857 else 858 ret = _set_opp_bw(opp_table, NULL, dev, true); 859 860 dev_pm_opp_put_opp_table(opp_table); 861 return ret; 862 } 863 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw); 864 865 /** 866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 867 * @dev: device for which we do this operation 868 * @target_freq: frequency to achieve 869 * 870 * This configures the power-supplies to the levels specified by the OPP 871 * corresponding to the target_freq, and programs the clock to a value <= 872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 873 * provided by the opp, should have already rounded to the target OPP's 874 * frequency. 875 */ 876 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 877 { 878 struct opp_table *opp_table; 879 unsigned long freq, old_freq, temp_freq; 880 struct dev_pm_opp *old_opp, *opp; 881 struct clk *clk; 882 int ret; 883 884 opp_table = _find_opp_table(dev); 885 if (IS_ERR(opp_table)) { 886 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 887 return PTR_ERR(opp_table); 888 } 889 890 if (unlikely(!target_freq)) { 891 /* 892 * Some drivers need to support cases where some platforms may 893 * have OPP table for the device, while others don't and 894 * opp_set_rate() just needs to behave like clk_set_rate(). 895 */ 896 if (!_get_opp_count(opp_table)) { 897 ret = 0; 898 goto put_opp_table; 899 } 900 901 if (!opp_table->required_opp_tables && !opp_table->regulators && 902 !opp_table->paths) { 903 dev_err(dev, "target frequency can't be 0\n"); 904 ret = -EINVAL; 905 goto put_opp_table; 906 } 907 908 ret = _set_opp_bw(opp_table, NULL, dev, true); 909 if (ret) 910 goto put_opp_table; 911 912 if (opp_table->regulator_enabled) { 913 regulator_disable(opp_table->regulators[0]); 914 opp_table->regulator_enabled = false; 915 } 916 917 ret = _set_required_opps(dev, opp_table, NULL); 918 goto put_opp_table; 919 } 920 921 clk = opp_table->clk; 922 if (IS_ERR(clk)) { 923 dev_err(dev, "%s: No clock available for the device\n", 924 __func__); 925 ret = PTR_ERR(clk); 926 goto put_opp_table; 927 } 928 929 freq = clk_round_rate(clk, target_freq); 930 if ((long)freq <= 0) 931 freq = target_freq; 932 933 old_freq = clk_get_rate(clk); 934 935 /* Return early if nothing to do */ 936 if (old_freq == freq) { 937 if (!opp_table->required_opp_tables && !opp_table->regulators && 938 !opp_table->paths) { 939 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 940 __func__, freq); 941 ret = 0; 942 goto put_opp_table; 943 } 944 } 945 946 /* 947 * For IO devices which require an OPP on some platforms/SoCs 948 * while just needing to scale the clock on some others 949 * we look for empty OPP tables with just a clock handle and 950 * scale only the clk. This makes dev_pm_opp_set_rate() 951 * equivalent to a clk_set_rate() 952 */ 953 if (!_get_opp_count(opp_table)) { 954 ret = _generic_set_opp_clk_only(dev, clk, freq); 955 goto put_opp_table; 956 } 957 958 temp_freq = old_freq; 959 old_opp = _find_freq_ceil(opp_table, &temp_freq); 960 if (IS_ERR(old_opp)) { 961 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 962 __func__, old_freq, PTR_ERR(old_opp)); 963 } 964 965 temp_freq = freq; 966 opp = _find_freq_ceil(opp_table, &temp_freq); 967 if (IS_ERR(opp)) { 968 ret = PTR_ERR(opp); 969 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 970 __func__, freq, ret); 971 goto put_old_opp; 972 } 973 974 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 975 old_freq, freq); 976 977 /* Scaling up? Configure required OPPs before frequency */ 978 if (freq >= old_freq) { 979 ret = _set_required_opps(dev, opp_table, opp); 980 if (ret) 981 goto put_opp; 982 } 983 984 if (opp_table->set_opp) { 985 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 986 IS_ERR(old_opp) ? NULL : old_opp->supplies, 987 opp->supplies); 988 } else if (opp_table->regulators) { 989 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 990 IS_ERR(old_opp) ? NULL : old_opp->supplies, 991 opp->supplies); 992 } else { 993 /* Only frequency scaling */ 994 ret = _generic_set_opp_clk_only(dev, clk, freq); 995 } 996 997 /* Scaling down? Configure required OPPs after frequency */ 998 if (!ret && freq < old_freq) { 999 ret = _set_required_opps(dev, opp_table, opp); 1000 if (ret) 1001 dev_err(dev, "Failed to set required opps: %d\n", ret); 1002 } 1003 1004 if (!ret) 1005 ret = _set_opp_bw(opp_table, opp, dev, false); 1006 1007 put_opp: 1008 dev_pm_opp_put(opp); 1009 put_old_opp: 1010 if (!IS_ERR(old_opp)) 1011 dev_pm_opp_put(old_opp); 1012 put_opp_table: 1013 dev_pm_opp_put_opp_table(opp_table); 1014 return ret; 1015 } 1016 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1017 1018 /* OPP-dev Helpers */ 1019 static void _remove_opp_dev(struct opp_device *opp_dev, 1020 struct opp_table *opp_table) 1021 { 1022 opp_debug_unregister(opp_dev, opp_table); 1023 list_del(&opp_dev->node); 1024 kfree(opp_dev); 1025 } 1026 1027 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 1028 struct opp_table *opp_table) 1029 { 1030 struct opp_device *opp_dev; 1031 1032 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1033 if (!opp_dev) 1034 return NULL; 1035 1036 /* Initialize opp-dev */ 1037 opp_dev->dev = dev; 1038 1039 list_add(&opp_dev->node, &opp_table->dev_list); 1040 1041 /* Create debugfs entries for the opp_table */ 1042 opp_debug_register(opp_dev, opp_table); 1043 1044 return opp_dev; 1045 } 1046 1047 struct opp_device *_add_opp_dev(const struct device *dev, 1048 struct opp_table *opp_table) 1049 { 1050 struct opp_device *opp_dev; 1051 1052 mutex_lock(&opp_table->lock); 1053 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 1054 mutex_unlock(&opp_table->lock); 1055 1056 return opp_dev; 1057 } 1058 1059 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1060 { 1061 struct opp_table *opp_table; 1062 struct opp_device *opp_dev; 1063 int ret; 1064 1065 /* 1066 * Allocate a new OPP table. In the infrequent case where a new 1067 * device is needed to be added, we pay this penalty. 1068 */ 1069 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1070 if (!opp_table) 1071 return NULL; 1072 1073 mutex_init(&opp_table->lock); 1074 mutex_init(&opp_table->genpd_virt_dev_lock); 1075 INIT_LIST_HEAD(&opp_table->dev_list); 1076 1077 /* Mark regulator count uninitialized */ 1078 opp_table->regulator_count = -1; 1079 1080 opp_dev = _add_opp_dev(dev, opp_table); 1081 if (!opp_dev) { 1082 kfree(opp_table); 1083 return NULL; 1084 } 1085 1086 _of_init_opp_table(opp_table, dev, index); 1087 1088 /* Find clk for the device */ 1089 opp_table->clk = clk_get(dev, NULL); 1090 if (IS_ERR(opp_table->clk)) { 1091 ret = PTR_ERR(opp_table->clk); 1092 if (ret != -EPROBE_DEFER) 1093 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 1094 ret); 1095 } 1096 1097 /* Find interconnect path(s) for the device */ 1098 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1099 if (ret) 1100 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1101 __func__, ret); 1102 1103 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1104 INIT_LIST_HEAD(&opp_table->opp_list); 1105 kref_init(&opp_table->kref); 1106 1107 /* Secure the device table modification */ 1108 list_add(&opp_table->node, &opp_tables); 1109 return opp_table; 1110 } 1111 1112 void _get_opp_table_kref(struct opp_table *opp_table) 1113 { 1114 kref_get(&opp_table->kref); 1115 } 1116 1117 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 1118 { 1119 struct opp_table *opp_table; 1120 1121 /* Hold our table modification lock here */ 1122 mutex_lock(&opp_table_lock); 1123 1124 opp_table = _find_opp_table_unlocked(dev); 1125 if (!IS_ERR(opp_table)) 1126 goto unlock; 1127 1128 opp_table = _managed_opp(dev, index); 1129 if (opp_table) { 1130 if (!_add_opp_dev_unlocked(dev, opp_table)) { 1131 dev_pm_opp_put_opp_table(opp_table); 1132 opp_table = NULL; 1133 } 1134 goto unlock; 1135 } 1136 1137 opp_table = _allocate_opp_table(dev, index); 1138 1139 unlock: 1140 mutex_unlock(&opp_table_lock); 1141 1142 return opp_table; 1143 } 1144 1145 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1146 { 1147 return _opp_get_opp_table(dev, 0); 1148 } 1149 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1150 1151 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 1152 int index) 1153 { 1154 return _opp_get_opp_table(dev, index); 1155 } 1156 1157 static void _opp_table_kref_release(struct kref *kref) 1158 { 1159 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1160 struct opp_device *opp_dev, *temp; 1161 int i; 1162 1163 _of_clear_opp_table(opp_table); 1164 1165 /* Release clk */ 1166 if (!IS_ERR(opp_table->clk)) 1167 clk_put(opp_table->clk); 1168 1169 if (opp_table->paths) { 1170 for (i = 0; i < opp_table->path_count; i++) 1171 icc_put(opp_table->paths[i]); 1172 kfree(opp_table->paths); 1173 } 1174 1175 WARN_ON(!list_empty(&opp_table->opp_list)); 1176 1177 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1178 /* 1179 * The OPP table is getting removed, drop the performance state 1180 * constraints. 1181 */ 1182 if (opp_table->genpd_performance_state) 1183 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1184 1185 _remove_opp_dev(opp_dev, opp_table); 1186 } 1187 1188 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1189 mutex_destroy(&opp_table->lock); 1190 list_del(&opp_table->node); 1191 kfree(opp_table); 1192 1193 mutex_unlock(&opp_table_lock); 1194 } 1195 1196 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1197 { 1198 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1199 &opp_table_lock); 1200 } 1201 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1202 1203 void _opp_free(struct dev_pm_opp *opp) 1204 { 1205 kfree(opp); 1206 } 1207 1208 static void _opp_kref_release(struct dev_pm_opp *opp, 1209 struct opp_table *opp_table) 1210 { 1211 /* 1212 * Notify the changes in the availability of the operable 1213 * frequency/voltage list. 1214 */ 1215 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1216 _of_opp_free_required_opps(opp_table, opp); 1217 opp_debug_remove_one(opp); 1218 list_del(&opp->node); 1219 kfree(opp); 1220 } 1221 1222 static void _opp_kref_release_unlocked(struct kref *kref) 1223 { 1224 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1225 struct opp_table *opp_table = opp->opp_table; 1226 1227 _opp_kref_release(opp, opp_table); 1228 } 1229 1230 static void _opp_kref_release_locked(struct kref *kref) 1231 { 1232 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1233 struct opp_table *opp_table = opp->opp_table; 1234 1235 _opp_kref_release(opp, opp_table); 1236 mutex_unlock(&opp_table->lock); 1237 } 1238 1239 void dev_pm_opp_get(struct dev_pm_opp *opp) 1240 { 1241 kref_get(&opp->kref); 1242 } 1243 1244 void dev_pm_opp_put(struct dev_pm_opp *opp) 1245 { 1246 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1247 &opp->opp_table->lock); 1248 } 1249 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1250 1251 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1252 { 1253 kref_put(&opp->kref, _opp_kref_release_unlocked); 1254 } 1255 1256 /** 1257 * dev_pm_opp_remove() - Remove an OPP from OPP table 1258 * @dev: device for which we do this operation 1259 * @freq: OPP to remove with matching 'freq' 1260 * 1261 * This function removes an opp from the opp table. 1262 */ 1263 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1264 { 1265 struct dev_pm_opp *opp; 1266 struct opp_table *opp_table; 1267 bool found = false; 1268 1269 opp_table = _find_opp_table(dev); 1270 if (IS_ERR(opp_table)) 1271 return; 1272 1273 mutex_lock(&opp_table->lock); 1274 1275 list_for_each_entry(opp, &opp_table->opp_list, node) { 1276 if (opp->rate == freq) { 1277 found = true; 1278 break; 1279 } 1280 } 1281 1282 mutex_unlock(&opp_table->lock); 1283 1284 if (found) { 1285 dev_pm_opp_put(opp); 1286 1287 /* Drop the reference taken by dev_pm_opp_add() */ 1288 dev_pm_opp_put_opp_table(opp_table); 1289 } else { 1290 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1291 __func__, freq); 1292 } 1293 1294 /* Drop the reference taken by _find_opp_table() */ 1295 dev_pm_opp_put_opp_table(opp_table); 1296 } 1297 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1298 1299 bool _opp_remove_all_static(struct opp_table *opp_table) 1300 { 1301 struct dev_pm_opp *opp, *tmp; 1302 bool ret = true; 1303 1304 mutex_lock(&opp_table->lock); 1305 1306 if (!opp_table->parsed_static_opps) { 1307 ret = false; 1308 goto unlock; 1309 } 1310 1311 if (--opp_table->parsed_static_opps) 1312 goto unlock; 1313 1314 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1315 if (!opp->dynamic) 1316 dev_pm_opp_put_unlocked(opp); 1317 } 1318 1319 unlock: 1320 mutex_unlock(&opp_table->lock); 1321 1322 return ret; 1323 } 1324 1325 /** 1326 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1327 * @dev: device for which we do this operation 1328 * 1329 * This function removes all dynamically created OPPs from the opp table. 1330 */ 1331 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1332 { 1333 struct opp_table *opp_table; 1334 struct dev_pm_opp *opp, *temp; 1335 int count = 0; 1336 1337 opp_table = _find_opp_table(dev); 1338 if (IS_ERR(opp_table)) 1339 return; 1340 1341 mutex_lock(&opp_table->lock); 1342 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1343 if (opp->dynamic) { 1344 dev_pm_opp_put_unlocked(opp); 1345 count++; 1346 } 1347 } 1348 mutex_unlock(&opp_table->lock); 1349 1350 /* Drop the references taken by dev_pm_opp_add() */ 1351 while (count--) 1352 dev_pm_opp_put_opp_table(opp_table); 1353 1354 /* Drop the reference taken by _find_opp_table() */ 1355 dev_pm_opp_put_opp_table(opp_table); 1356 } 1357 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1358 1359 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1360 { 1361 struct dev_pm_opp *opp; 1362 int supply_count, supply_size, icc_size; 1363 1364 /* Allocate space for at least one supply */ 1365 supply_count = table->regulator_count > 0 ? table->regulator_count : 1; 1366 supply_size = sizeof(*opp->supplies) * supply_count; 1367 icc_size = sizeof(*opp->bandwidth) * table->path_count; 1368 1369 /* allocate new OPP node and supplies structures */ 1370 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL); 1371 1372 if (!opp) 1373 return NULL; 1374 1375 /* Put the supplies at the end of the OPP structure as an empty array */ 1376 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1377 if (icc_size) 1378 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count); 1379 INIT_LIST_HEAD(&opp->node); 1380 1381 return opp; 1382 } 1383 1384 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1385 struct opp_table *opp_table) 1386 { 1387 struct regulator *reg; 1388 int i; 1389 1390 if (!opp_table->regulators) 1391 return true; 1392 1393 for (i = 0; i < opp_table->regulator_count; i++) { 1394 reg = opp_table->regulators[i]; 1395 1396 if (!regulator_is_supported_voltage(reg, 1397 opp->supplies[i].u_volt_min, 1398 opp->supplies[i].u_volt_max)) { 1399 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1400 __func__, opp->supplies[i].u_volt_min, 1401 opp->supplies[i].u_volt_max); 1402 return false; 1403 } 1404 } 1405 1406 return true; 1407 } 1408 1409 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1410 { 1411 if (opp1->rate != opp2->rate) 1412 return opp1->rate < opp2->rate ? -1 : 1; 1413 if (opp1->bandwidth && opp2->bandwidth && 1414 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak) 1415 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1; 1416 if (opp1->level != opp2->level) 1417 return opp1->level < opp2->level ? -1 : 1; 1418 return 0; 1419 } 1420 1421 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1422 struct opp_table *opp_table, 1423 struct list_head **head) 1424 { 1425 struct dev_pm_opp *opp; 1426 int opp_cmp; 1427 1428 /* 1429 * Insert new OPP in order of increasing frequency and discard if 1430 * already present. 1431 * 1432 * Need to use &opp_table->opp_list in the condition part of the 'for' 1433 * loop, don't replace it with head otherwise it will become an infinite 1434 * loop. 1435 */ 1436 list_for_each_entry(opp, &opp_table->opp_list, node) { 1437 opp_cmp = _opp_compare_key(new_opp, opp); 1438 if (opp_cmp > 0) { 1439 *head = &opp->node; 1440 continue; 1441 } 1442 1443 if (opp_cmp < 0) 1444 return 0; 1445 1446 /* Duplicate OPPs */ 1447 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1448 __func__, opp->rate, opp->supplies[0].u_volt, 1449 opp->available, new_opp->rate, 1450 new_opp->supplies[0].u_volt, new_opp->available); 1451 1452 /* Should we compare voltages for all regulators here ? */ 1453 return opp->available && 1454 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1455 } 1456 1457 return 0; 1458 } 1459 1460 /* 1461 * Returns: 1462 * 0: On success. And appropriate error message for duplicate OPPs. 1463 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1464 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1465 * sure we don't print error messages unnecessarily if different parts of 1466 * kernel try to initialize the OPP table. 1467 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1468 * should be considered an error by the callers of _opp_add(). 1469 */ 1470 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1471 struct opp_table *opp_table, bool rate_not_available) 1472 { 1473 struct list_head *head; 1474 int ret; 1475 1476 mutex_lock(&opp_table->lock); 1477 head = &opp_table->opp_list; 1478 1479 if (likely(!rate_not_available)) { 1480 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1481 if (ret) { 1482 mutex_unlock(&opp_table->lock); 1483 return ret; 1484 } 1485 } 1486 1487 list_add(&new_opp->node, head); 1488 mutex_unlock(&opp_table->lock); 1489 1490 new_opp->opp_table = opp_table; 1491 kref_init(&new_opp->kref); 1492 1493 opp_debug_create_one(new_opp, opp_table); 1494 1495 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1496 new_opp->available = false; 1497 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1498 __func__, new_opp->rate); 1499 } 1500 1501 return 0; 1502 } 1503 1504 /** 1505 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1506 * @opp_table: OPP table 1507 * @dev: device for which we do this operation 1508 * @freq: Frequency in Hz for this OPP 1509 * @u_volt: Voltage in uVolts for this OPP 1510 * @dynamic: Dynamically added OPPs. 1511 * 1512 * This function adds an opp definition to the opp table and returns status. 1513 * The opp is made available by default and it can be controlled using 1514 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1515 * 1516 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1517 * and freed by dev_pm_opp_of_remove_table. 1518 * 1519 * Return: 1520 * 0 On success OR 1521 * Duplicate OPPs (both freq and volt are same) and opp->available 1522 * -EEXIST Freq are same and volt are different OR 1523 * Duplicate OPPs (both freq and volt are same) and !opp->available 1524 * -ENOMEM Memory allocation failure 1525 */ 1526 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1527 unsigned long freq, long u_volt, bool dynamic) 1528 { 1529 struct dev_pm_opp *new_opp; 1530 unsigned long tol; 1531 int ret; 1532 1533 new_opp = _opp_allocate(opp_table); 1534 if (!new_opp) 1535 return -ENOMEM; 1536 1537 /* populate the opp table */ 1538 new_opp->rate = freq; 1539 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1540 new_opp->supplies[0].u_volt = u_volt; 1541 new_opp->supplies[0].u_volt_min = u_volt - tol; 1542 new_opp->supplies[0].u_volt_max = u_volt + tol; 1543 new_opp->available = true; 1544 new_opp->dynamic = dynamic; 1545 1546 ret = _opp_add(dev, new_opp, opp_table, false); 1547 if (ret) { 1548 /* Don't return error for duplicate OPPs */ 1549 if (ret == -EBUSY) 1550 ret = 0; 1551 goto free_opp; 1552 } 1553 1554 /* 1555 * Notify the changes in the availability of the operable 1556 * frequency/voltage list. 1557 */ 1558 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1559 return 0; 1560 1561 free_opp: 1562 _opp_free(new_opp); 1563 1564 return ret; 1565 } 1566 1567 /** 1568 * dev_pm_opp_set_supported_hw() - Set supported platforms 1569 * @dev: Device for which supported-hw has to be set. 1570 * @versions: Array of hierarchy of versions to match. 1571 * @count: Number of elements in the array. 1572 * 1573 * This is required only for the V2 bindings, and it enables a platform to 1574 * specify the hierarchy of versions it supports. OPP layer will then enable 1575 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1576 * property. 1577 */ 1578 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1579 const u32 *versions, unsigned int count) 1580 { 1581 struct opp_table *opp_table; 1582 1583 opp_table = dev_pm_opp_get_opp_table(dev); 1584 if (!opp_table) 1585 return ERR_PTR(-ENOMEM); 1586 1587 /* Make sure there are no concurrent readers while updating opp_table */ 1588 WARN_ON(!list_empty(&opp_table->opp_list)); 1589 1590 /* Another CPU that shares the OPP table has set the property ? */ 1591 if (opp_table->supported_hw) 1592 return opp_table; 1593 1594 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1595 GFP_KERNEL); 1596 if (!opp_table->supported_hw) { 1597 dev_pm_opp_put_opp_table(opp_table); 1598 return ERR_PTR(-ENOMEM); 1599 } 1600 1601 opp_table->supported_hw_count = count; 1602 1603 return opp_table; 1604 } 1605 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1606 1607 /** 1608 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1609 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1610 * 1611 * This is required only for the V2 bindings, and is called for a matching 1612 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1613 * will not be freed. 1614 */ 1615 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1616 { 1617 /* Make sure there are no concurrent readers while updating opp_table */ 1618 WARN_ON(!list_empty(&opp_table->opp_list)); 1619 1620 kfree(opp_table->supported_hw); 1621 opp_table->supported_hw = NULL; 1622 opp_table->supported_hw_count = 0; 1623 1624 dev_pm_opp_put_opp_table(opp_table); 1625 } 1626 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1627 1628 /** 1629 * dev_pm_opp_set_prop_name() - Set prop-extn name 1630 * @dev: Device for which the prop-name has to be set. 1631 * @name: name to postfix to properties. 1632 * 1633 * This is required only for the V2 bindings, and it enables a platform to 1634 * specify the extn to be used for certain property names. The properties to 1635 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1636 * should postfix the property name with -<name> while looking for them. 1637 */ 1638 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1639 { 1640 struct opp_table *opp_table; 1641 1642 opp_table = dev_pm_opp_get_opp_table(dev); 1643 if (!opp_table) 1644 return ERR_PTR(-ENOMEM); 1645 1646 /* Make sure there are no concurrent readers while updating opp_table */ 1647 WARN_ON(!list_empty(&opp_table->opp_list)); 1648 1649 /* Another CPU that shares the OPP table has set the property ? */ 1650 if (opp_table->prop_name) 1651 return opp_table; 1652 1653 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1654 if (!opp_table->prop_name) { 1655 dev_pm_opp_put_opp_table(opp_table); 1656 return ERR_PTR(-ENOMEM); 1657 } 1658 1659 return opp_table; 1660 } 1661 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1662 1663 /** 1664 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1665 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1666 * 1667 * This is required only for the V2 bindings, and is called for a matching 1668 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1669 * will not be freed. 1670 */ 1671 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1672 { 1673 /* Make sure there are no concurrent readers while updating opp_table */ 1674 WARN_ON(!list_empty(&opp_table->opp_list)); 1675 1676 kfree(opp_table->prop_name); 1677 opp_table->prop_name = NULL; 1678 1679 dev_pm_opp_put_opp_table(opp_table); 1680 } 1681 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1682 1683 static int _allocate_set_opp_data(struct opp_table *opp_table) 1684 { 1685 struct dev_pm_set_opp_data *data; 1686 int len, count = opp_table->regulator_count; 1687 1688 if (WARN_ON(!opp_table->regulators)) 1689 return -EINVAL; 1690 1691 /* space for set_opp_data */ 1692 len = sizeof(*data); 1693 1694 /* space for old_opp.supplies and new_opp.supplies */ 1695 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1696 1697 data = kzalloc(len, GFP_KERNEL); 1698 if (!data) 1699 return -ENOMEM; 1700 1701 data->old_opp.supplies = (void *)(data + 1); 1702 data->new_opp.supplies = data->old_opp.supplies + count; 1703 1704 opp_table->set_opp_data = data; 1705 1706 return 0; 1707 } 1708 1709 static void _free_set_opp_data(struct opp_table *opp_table) 1710 { 1711 kfree(opp_table->set_opp_data); 1712 opp_table->set_opp_data = NULL; 1713 } 1714 1715 /** 1716 * dev_pm_opp_set_regulators() - Set regulator names for the device 1717 * @dev: Device for which regulator name is being set. 1718 * @names: Array of pointers to the names of the regulator. 1719 * @count: Number of regulators. 1720 * 1721 * In order to support OPP switching, OPP layer needs to know the name of the 1722 * device's regulators, as the core would be required to switch voltages as 1723 * well. 1724 * 1725 * This must be called before any OPPs are initialized for the device. 1726 */ 1727 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1728 const char * const names[], 1729 unsigned int count) 1730 { 1731 struct opp_table *opp_table; 1732 struct regulator *reg; 1733 int ret, i; 1734 1735 opp_table = dev_pm_opp_get_opp_table(dev); 1736 if (!opp_table) 1737 return ERR_PTR(-ENOMEM); 1738 1739 /* This should be called before OPPs are initialized */ 1740 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1741 ret = -EBUSY; 1742 goto err; 1743 } 1744 1745 /* Another CPU that shares the OPP table has set the regulators ? */ 1746 if (opp_table->regulators) 1747 return opp_table; 1748 1749 opp_table->regulators = kmalloc_array(count, 1750 sizeof(*opp_table->regulators), 1751 GFP_KERNEL); 1752 if (!opp_table->regulators) { 1753 ret = -ENOMEM; 1754 goto err; 1755 } 1756 1757 for (i = 0; i < count; i++) { 1758 reg = regulator_get_optional(dev, names[i]); 1759 if (IS_ERR(reg)) { 1760 ret = PTR_ERR(reg); 1761 if (ret != -EPROBE_DEFER) 1762 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1763 __func__, names[i], ret); 1764 goto free_regulators; 1765 } 1766 1767 opp_table->regulators[i] = reg; 1768 } 1769 1770 opp_table->regulator_count = count; 1771 1772 /* Allocate block only once to pass to set_opp() routines */ 1773 ret = _allocate_set_opp_data(opp_table); 1774 if (ret) 1775 goto free_regulators; 1776 1777 return opp_table; 1778 1779 free_regulators: 1780 while (i != 0) 1781 regulator_put(opp_table->regulators[--i]); 1782 1783 kfree(opp_table->regulators); 1784 opp_table->regulators = NULL; 1785 opp_table->regulator_count = -1; 1786 err: 1787 dev_pm_opp_put_opp_table(opp_table); 1788 1789 return ERR_PTR(ret); 1790 } 1791 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1792 1793 /** 1794 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1795 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1796 */ 1797 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1798 { 1799 int i; 1800 1801 if (!opp_table->regulators) 1802 goto put_opp_table; 1803 1804 /* Make sure there are no concurrent readers while updating opp_table */ 1805 WARN_ON(!list_empty(&opp_table->opp_list)); 1806 1807 if (opp_table->regulator_enabled) { 1808 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1809 regulator_disable(opp_table->regulators[i]); 1810 1811 opp_table->regulator_enabled = false; 1812 } 1813 1814 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1815 regulator_put(opp_table->regulators[i]); 1816 1817 _free_set_opp_data(opp_table); 1818 1819 kfree(opp_table->regulators); 1820 opp_table->regulators = NULL; 1821 opp_table->regulator_count = -1; 1822 1823 put_opp_table: 1824 dev_pm_opp_put_opp_table(opp_table); 1825 } 1826 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1827 1828 /** 1829 * dev_pm_opp_set_clkname() - Set clk name for the device 1830 * @dev: Device for which clk name is being set. 1831 * @name: Clk name. 1832 * 1833 * In order to support OPP switching, OPP layer needs to get pointer to the 1834 * clock for the device. Simple cases work fine without using this routine (i.e. 1835 * by passing connection-id as NULL), but for a device with multiple clocks 1836 * available, the OPP core needs to know the exact name of the clk to use. 1837 * 1838 * This must be called before any OPPs are initialized for the device. 1839 */ 1840 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1841 { 1842 struct opp_table *opp_table; 1843 int ret; 1844 1845 opp_table = dev_pm_opp_get_opp_table(dev); 1846 if (!opp_table) 1847 return ERR_PTR(-ENOMEM); 1848 1849 /* This should be called before OPPs are initialized */ 1850 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1851 ret = -EBUSY; 1852 goto err; 1853 } 1854 1855 /* Already have default clk set, free it */ 1856 if (!IS_ERR(opp_table->clk)) 1857 clk_put(opp_table->clk); 1858 1859 /* Find clk for the device */ 1860 opp_table->clk = clk_get(dev, name); 1861 if (IS_ERR(opp_table->clk)) { 1862 ret = PTR_ERR(opp_table->clk); 1863 if (ret != -EPROBE_DEFER) { 1864 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1865 ret); 1866 } 1867 goto err; 1868 } 1869 1870 return opp_table; 1871 1872 err: 1873 dev_pm_opp_put_opp_table(opp_table); 1874 1875 return ERR_PTR(ret); 1876 } 1877 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1878 1879 /** 1880 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1881 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1882 */ 1883 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1884 { 1885 /* Make sure there are no concurrent readers while updating opp_table */ 1886 WARN_ON(!list_empty(&opp_table->opp_list)); 1887 1888 clk_put(opp_table->clk); 1889 opp_table->clk = ERR_PTR(-EINVAL); 1890 1891 dev_pm_opp_put_opp_table(opp_table); 1892 } 1893 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1894 1895 /** 1896 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1897 * @dev: Device for which the helper is getting registered. 1898 * @set_opp: Custom set OPP helper. 1899 * 1900 * This is useful to support complex platforms (like platforms with multiple 1901 * regulators per device), instead of the generic OPP set rate helper. 1902 * 1903 * This must be called before any OPPs are initialized for the device. 1904 */ 1905 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1906 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1907 { 1908 struct opp_table *opp_table; 1909 1910 if (!set_opp) 1911 return ERR_PTR(-EINVAL); 1912 1913 opp_table = dev_pm_opp_get_opp_table(dev); 1914 if (!opp_table) 1915 return ERR_PTR(-ENOMEM); 1916 1917 /* This should be called before OPPs are initialized */ 1918 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1919 dev_pm_opp_put_opp_table(opp_table); 1920 return ERR_PTR(-EBUSY); 1921 } 1922 1923 /* Another CPU that shares the OPP table has set the helper ? */ 1924 if (!opp_table->set_opp) 1925 opp_table->set_opp = set_opp; 1926 1927 return opp_table; 1928 } 1929 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1930 1931 /** 1932 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1933 * set_opp helper 1934 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1935 * 1936 * Release resources blocked for platform specific set_opp helper. 1937 */ 1938 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1939 { 1940 /* Make sure there are no concurrent readers while updating opp_table */ 1941 WARN_ON(!list_empty(&opp_table->opp_list)); 1942 1943 opp_table->set_opp = NULL; 1944 dev_pm_opp_put_opp_table(opp_table); 1945 } 1946 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1947 1948 static void _opp_detach_genpd(struct opp_table *opp_table) 1949 { 1950 int index; 1951 1952 for (index = 0; index < opp_table->required_opp_count; index++) { 1953 if (!opp_table->genpd_virt_devs[index]) 1954 continue; 1955 1956 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1957 opp_table->genpd_virt_devs[index] = NULL; 1958 } 1959 1960 kfree(opp_table->genpd_virt_devs); 1961 opp_table->genpd_virt_devs = NULL; 1962 } 1963 1964 /** 1965 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1966 * @dev: Consumer device for which the genpd is getting attached. 1967 * @names: Null terminated array of pointers containing names of genpd to attach. 1968 * @virt_devs: Pointer to return the array of virtual devices. 1969 * 1970 * Multiple generic power domains for a device are supported with the help of 1971 * virtual genpd devices, which are created for each consumer device - genpd 1972 * pair. These are the device structures which are attached to the power domain 1973 * and are required by the OPP core to set the performance state of the genpd. 1974 * The same API also works for the case where single genpd is available and so 1975 * we don't need to support that separately. 1976 * 1977 * This helper will normally be called by the consumer driver of the device 1978 * "dev", as only that has details of the genpd names. 1979 * 1980 * This helper needs to be called once with a list of all genpd to attach. 1981 * Otherwise the original device structure will be used instead by the OPP core. 1982 * 1983 * The order of entries in the names array must match the order in which 1984 * "required-opps" are added in DT. 1985 */ 1986 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 1987 const char **names, struct device ***virt_devs) 1988 { 1989 struct opp_table *opp_table; 1990 struct device *virt_dev; 1991 int index = 0, ret = -EINVAL; 1992 const char **name = names; 1993 1994 opp_table = dev_pm_opp_get_opp_table(dev); 1995 if (!opp_table) 1996 return ERR_PTR(-ENOMEM); 1997 1998 /* 1999 * If the genpd's OPP table isn't already initialized, parsing of the 2000 * required-opps fail for dev. We should retry this after genpd's OPP 2001 * table is added. 2002 */ 2003 if (!opp_table->required_opp_count) { 2004 ret = -EPROBE_DEFER; 2005 goto put_table; 2006 } 2007 2008 mutex_lock(&opp_table->genpd_virt_dev_lock); 2009 2010 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2011 sizeof(*opp_table->genpd_virt_devs), 2012 GFP_KERNEL); 2013 if (!opp_table->genpd_virt_devs) 2014 goto unlock; 2015 2016 while (*name) { 2017 if (index >= opp_table->required_opp_count) { 2018 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2019 *name, opp_table->required_opp_count, index); 2020 goto err; 2021 } 2022 2023 if (opp_table->genpd_virt_devs[index]) { 2024 dev_err(dev, "Genpd virtual device already set %s\n", 2025 *name); 2026 goto err; 2027 } 2028 2029 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2030 if (IS_ERR(virt_dev)) { 2031 ret = PTR_ERR(virt_dev); 2032 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2033 goto err; 2034 } 2035 2036 opp_table->genpd_virt_devs[index] = virt_dev; 2037 index++; 2038 name++; 2039 } 2040 2041 if (virt_devs) 2042 *virt_devs = opp_table->genpd_virt_devs; 2043 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2044 2045 return opp_table; 2046 2047 err: 2048 _opp_detach_genpd(opp_table); 2049 unlock: 2050 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2051 2052 put_table: 2053 dev_pm_opp_put_opp_table(opp_table); 2054 2055 return ERR_PTR(ret); 2056 } 2057 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 2058 2059 /** 2060 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 2061 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 2062 * 2063 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2064 * OPP table. 2065 */ 2066 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 2067 { 2068 /* 2069 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2070 * used in parallel. 2071 */ 2072 mutex_lock(&opp_table->genpd_virt_dev_lock); 2073 _opp_detach_genpd(opp_table); 2074 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2075 2076 dev_pm_opp_put_opp_table(opp_table); 2077 } 2078 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 2079 2080 /** 2081 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2082 * @src_table: OPP table which has dst_table as one of its required OPP table. 2083 * @dst_table: Required OPP table of the src_table. 2084 * @pstate: Current performance state of the src_table. 2085 * 2086 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2087 * "required-opps" property of the OPP (present in @src_table) which has 2088 * performance state set to @pstate. 2089 * 2090 * Return: Zero or positive performance state on success, otherwise negative 2091 * value on errors. 2092 */ 2093 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2094 struct opp_table *dst_table, 2095 unsigned int pstate) 2096 { 2097 struct dev_pm_opp *opp; 2098 int dest_pstate = -EINVAL; 2099 int i; 2100 2101 if (!pstate) 2102 return 0; 2103 2104 /* 2105 * Normally the src_table will have the "required_opps" property set to 2106 * point to one of the OPPs in the dst_table, but in some cases the 2107 * genpd and its master have one to one mapping of performance states 2108 * and so none of them have the "required-opps" property set. Return the 2109 * pstate of the src_table as it is in such cases. 2110 */ 2111 if (!src_table->required_opp_count) 2112 return pstate; 2113 2114 for (i = 0; i < src_table->required_opp_count; i++) { 2115 if (src_table->required_opp_tables[i]->np == dst_table->np) 2116 break; 2117 } 2118 2119 if (unlikely(i == src_table->required_opp_count)) { 2120 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2121 __func__, src_table, dst_table); 2122 return -EINVAL; 2123 } 2124 2125 mutex_lock(&src_table->lock); 2126 2127 list_for_each_entry(opp, &src_table->opp_list, node) { 2128 if (opp->pstate == pstate) { 2129 dest_pstate = opp->required_opps[i]->pstate; 2130 goto unlock; 2131 } 2132 } 2133 2134 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2135 dst_table); 2136 2137 unlock: 2138 mutex_unlock(&src_table->lock); 2139 2140 return dest_pstate; 2141 } 2142 2143 /** 2144 * dev_pm_opp_add() - Add an OPP table from a table definitions 2145 * @dev: device for which we do this operation 2146 * @freq: Frequency in Hz for this OPP 2147 * @u_volt: Voltage in uVolts for this OPP 2148 * 2149 * This function adds an opp definition to the opp table and returns status. 2150 * The opp is made available by default and it can be controlled using 2151 * dev_pm_opp_enable/disable functions. 2152 * 2153 * Return: 2154 * 0 On success OR 2155 * Duplicate OPPs (both freq and volt are same) and opp->available 2156 * -EEXIST Freq are same and volt are different OR 2157 * Duplicate OPPs (both freq and volt are same) and !opp->available 2158 * -ENOMEM Memory allocation failure 2159 */ 2160 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2161 { 2162 struct opp_table *opp_table; 2163 int ret; 2164 2165 opp_table = dev_pm_opp_get_opp_table(dev); 2166 if (!opp_table) 2167 return -ENOMEM; 2168 2169 /* Fix regulator count for dynamic OPPs */ 2170 opp_table->regulator_count = 1; 2171 2172 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2173 if (ret) 2174 dev_pm_opp_put_opp_table(opp_table); 2175 2176 return ret; 2177 } 2178 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2179 2180 /** 2181 * _opp_set_availability() - helper to set the availability of an opp 2182 * @dev: device for which we do this operation 2183 * @freq: OPP frequency to modify availability 2184 * @availability_req: availability status requested for this opp 2185 * 2186 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2187 * which is isolated here. 2188 * 2189 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2190 * copy operation, returns 0 if no modification was done OR modification was 2191 * successful. 2192 */ 2193 static int _opp_set_availability(struct device *dev, unsigned long freq, 2194 bool availability_req) 2195 { 2196 struct opp_table *opp_table; 2197 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2198 int r = 0; 2199 2200 /* Find the opp_table */ 2201 opp_table = _find_opp_table(dev); 2202 if (IS_ERR(opp_table)) { 2203 r = PTR_ERR(opp_table); 2204 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2205 return r; 2206 } 2207 2208 mutex_lock(&opp_table->lock); 2209 2210 /* Do we have the frequency? */ 2211 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2212 if (tmp_opp->rate == freq) { 2213 opp = tmp_opp; 2214 break; 2215 } 2216 } 2217 2218 if (IS_ERR(opp)) { 2219 r = PTR_ERR(opp); 2220 goto unlock; 2221 } 2222 2223 /* Is update really needed? */ 2224 if (opp->available == availability_req) 2225 goto unlock; 2226 2227 opp->available = availability_req; 2228 2229 dev_pm_opp_get(opp); 2230 mutex_unlock(&opp_table->lock); 2231 2232 /* Notify the change of the OPP availability */ 2233 if (availability_req) 2234 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2235 opp); 2236 else 2237 blocking_notifier_call_chain(&opp_table->head, 2238 OPP_EVENT_DISABLE, opp); 2239 2240 dev_pm_opp_put(opp); 2241 goto put_table; 2242 2243 unlock: 2244 mutex_unlock(&opp_table->lock); 2245 put_table: 2246 dev_pm_opp_put_opp_table(opp_table); 2247 return r; 2248 } 2249 2250 /** 2251 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2252 * @dev: device for which we do this operation 2253 * @freq: OPP frequency to adjust voltage of 2254 * @u_volt: new OPP target voltage 2255 * @u_volt_min: new OPP min voltage 2256 * @u_volt_max: new OPP max voltage 2257 * 2258 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2259 * copy operation, returns 0 if no modifcation was done OR modification was 2260 * successful. 2261 */ 2262 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2263 unsigned long u_volt, unsigned long u_volt_min, 2264 unsigned long u_volt_max) 2265 2266 { 2267 struct opp_table *opp_table; 2268 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2269 int r = 0; 2270 2271 /* Find the opp_table */ 2272 opp_table = _find_opp_table(dev); 2273 if (IS_ERR(opp_table)) { 2274 r = PTR_ERR(opp_table); 2275 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2276 return r; 2277 } 2278 2279 mutex_lock(&opp_table->lock); 2280 2281 /* Do we have the frequency? */ 2282 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2283 if (tmp_opp->rate == freq) { 2284 opp = tmp_opp; 2285 break; 2286 } 2287 } 2288 2289 if (IS_ERR(opp)) { 2290 r = PTR_ERR(opp); 2291 goto adjust_unlock; 2292 } 2293 2294 /* Is update really needed? */ 2295 if (opp->supplies->u_volt == u_volt) 2296 goto adjust_unlock; 2297 2298 opp->supplies->u_volt = u_volt; 2299 opp->supplies->u_volt_min = u_volt_min; 2300 opp->supplies->u_volt_max = u_volt_max; 2301 2302 dev_pm_opp_get(opp); 2303 mutex_unlock(&opp_table->lock); 2304 2305 /* Notify the voltage change of the OPP */ 2306 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2307 opp); 2308 2309 dev_pm_opp_put(opp); 2310 goto adjust_put_table; 2311 2312 adjust_unlock: 2313 mutex_unlock(&opp_table->lock); 2314 adjust_put_table: 2315 dev_pm_opp_put_opp_table(opp_table); 2316 return r; 2317 } 2318 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2319 2320 /** 2321 * dev_pm_opp_enable() - Enable a specific OPP 2322 * @dev: device for which we do this operation 2323 * @freq: OPP frequency to enable 2324 * 2325 * Enables a provided opp. If the operation is valid, this returns 0, else the 2326 * corresponding error value. It is meant to be used for users an OPP available 2327 * after being temporarily made unavailable with dev_pm_opp_disable. 2328 * 2329 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2330 * copy operation, returns 0 if no modification was done OR modification was 2331 * successful. 2332 */ 2333 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2334 { 2335 return _opp_set_availability(dev, freq, true); 2336 } 2337 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2338 2339 /** 2340 * dev_pm_opp_disable() - Disable a specific OPP 2341 * @dev: device for which we do this operation 2342 * @freq: OPP frequency to disable 2343 * 2344 * Disables a provided opp. If the operation is valid, this returns 2345 * 0, else the corresponding error value. It is meant to be a temporary 2346 * control by users to make this OPP not available until the circumstances are 2347 * right to make it available again (with a call to dev_pm_opp_enable). 2348 * 2349 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2350 * copy operation, returns 0 if no modification was done OR modification was 2351 * successful. 2352 */ 2353 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2354 { 2355 return _opp_set_availability(dev, freq, false); 2356 } 2357 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2358 2359 /** 2360 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2361 * @dev: Device for which notifier needs to be registered 2362 * @nb: Notifier block to be registered 2363 * 2364 * Return: 0 on success or a negative error value. 2365 */ 2366 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2367 { 2368 struct opp_table *opp_table; 2369 int ret; 2370 2371 opp_table = _find_opp_table(dev); 2372 if (IS_ERR(opp_table)) 2373 return PTR_ERR(opp_table); 2374 2375 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2376 2377 dev_pm_opp_put_opp_table(opp_table); 2378 2379 return ret; 2380 } 2381 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2382 2383 /** 2384 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2385 * @dev: Device for which notifier needs to be unregistered 2386 * @nb: Notifier block to be unregistered 2387 * 2388 * Return: 0 on success or a negative error value. 2389 */ 2390 int dev_pm_opp_unregister_notifier(struct device *dev, 2391 struct notifier_block *nb) 2392 { 2393 struct opp_table *opp_table; 2394 int ret; 2395 2396 opp_table = _find_opp_table(dev); 2397 if (IS_ERR(opp_table)) 2398 return PTR_ERR(opp_table); 2399 2400 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2401 2402 dev_pm_opp_put_opp_table(opp_table); 2403 2404 return ret; 2405 } 2406 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2407 2408 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2409 { 2410 struct opp_table *opp_table; 2411 2412 /* Check for existing table for 'dev' */ 2413 opp_table = _find_opp_table(dev); 2414 if (IS_ERR(opp_table)) { 2415 int error = PTR_ERR(opp_table); 2416 2417 if (error != -ENODEV) 2418 WARN(1, "%s: opp_table: %d\n", 2419 IS_ERR_OR_NULL(dev) ? 2420 "Invalid device" : dev_name(dev), 2421 error); 2422 return; 2423 } 2424 2425 /* 2426 * Drop the extra reference only if the OPP table was successfully added 2427 * with dev_pm_opp_of_add_table() earlier. 2428 **/ 2429 if (_opp_remove_all_static(opp_table)) 2430 dev_pm_opp_put_opp_table(opp_table); 2431 2432 /* Drop reference taken by _find_opp_table() */ 2433 dev_pm_opp_put_opp_table(opp_table); 2434 } 2435 2436 /** 2437 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2438 * @dev: device pointer used to lookup OPP table. 2439 * 2440 * Free both OPPs created using static entries present in DT and the 2441 * dynamically added entries. 2442 */ 2443 void dev_pm_opp_remove_table(struct device *dev) 2444 { 2445 _dev_pm_opp_find_and_remove_table(dev); 2446 } 2447 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2448