xref: /openbmc/linux/drivers/opp/core.c (revision 97a532c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22 
23 #include "opp.h"
24 
25 /*
26  * The root of the list of all opp-tables. All opp_table structures branch off
27  * from here, with each opp_table containing the list of opps it supports in
28  * various states of availability.
29  */
30 LIST_HEAD(opp_tables);
31 
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36 
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39 
40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 	struct opp_device *opp_dev;
43 	bool found = false;
44 
45 	mutex_lock(&opp_table->lock);
46 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 		if (opp_dev->dev == dev) {
48 			found = true;
49 			break;
50 		}
51 
52 	mutex_unlock(&opp_table->lock);
53 	return found;
54 }
55 
56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 	struct opp_table *opp_table;
59 
60 	list_for_each_entry(opp_table, &opp_tables, node) {
61 		if (_find_opp_dev(dev, opp_table)) {
62 			_get_opp_table_kref(opp_table);
63 			return opp_table;
64 		}
65 	}
66 
67 	return ERR_PTR(-ENODEV);
68 }
69 
70 /**
71  * _find_opp_table() - find opp_table struct using device pointer
72  * @dev:	device pointer used to lookup OPP table
73  *
74  * Search OPP table for one containing matching device.
75  *
76  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77  * -EINVAL based on type of error.
78  *
79  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80  */
81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 	struct opp_table *opp_table;
84 
85 	if (IS_ERR_OR_NULL(dev)) {
86 		pr_err("%s: Invalid parameters\n", __func__);
87 		return ERR_PTR(-EINVAL);
88 	}
89 
90 	mutex_lock(&opp_table_lock);
91 	opp_table = _find_opp_table_unlocked(dev);
92 	mutex_unlock(&opp_table_lock);
93 
94 	return opp_table;
95 }
96 
97 /*
98  * Returns true if multiple clocks aren't there, else returns false with WARN.
99  *
100  * We don't force clk_count == 1 here as there are users who don't have a clock
101  * representation in the OPP table and manage the clock configuration themselves
102  * in an platform specific way.
103  */
104 static bool assert_single_clk(struct opp_table *opp_table)
105 {
106 	return !WARN_ON(opp_table->clk_count > 1);
107 }
108 
109 /**
110  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111  * @opp:	opp for which voltage has to be returned for
112  *
113  * Return: voltage in micro volt corresponding to the opp, else
114  * return 0
115  *
116  * This is useful only for devices with single power supply.
117  */
118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119 {
120 	if (IS_ERR_OR_NULL(opp)) {
121 		pr_err("%s: Invalid parameters\n", __func__);
122 		return 0;
123 	}
124 
125 	return opp->supplies[0].u_volt;
126 }
127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128 
129 /**
130  * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131  * @opp:	opp for which voltage has to be returned for
132  * @supplies:	Placeholder for copying the supply information.
133  *
134  * Return: negative error number on failure, 0 otherwise on success after
135  * setting @supplies.
136  *
137  * This can be used for devices with any number of power supplies. The caller
138  * must ensure the @supplies array must contain space for each regulator.
139  */
140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 			    struct dev_pm_opp_supply *supplies)
142 {
143 	if (IS_ERR_OR_NULL(opp) || !supplies) {
144 		pr_err("%s: Invalid parameters\n", __func__);
145 		return -EINVAL;
146 	}
147 
148 	memcpy(supplies, opp->supplies,
149 	       sizeof(*supplies) * opp->opp_table->regulator_count);
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153 
154 /**
155  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156  * @opp:	opp for which power has to be returned for
157  *
158  * Return: power in micro watt corresponding to the opp, else
159  * return 0
160  *
161  * This is useful only for devices with single power supply.
162  */
163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164 {
165 	unsigned long opp_power = 0;
166 	int i;
167 
168 	if (IS_ERR_OR_NULL(opp)) {
169 		pr_err("%s: Invalid parameters\n", __func__);
170 		return 0;
171 	}
172 	for (i = 0; i < opp->opp_table->regulator_count; i++)
173 		opp_power += opp->supplies[i].u_watt;
174 
175 	return opp_power;
176 }
177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178 
179 /**
180  * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181  *				   available opp with specified index
182  * @opp: opp for which frequency has to be returned for
183  * @index: index of the frequency within the required opp
184  *
185  * Return: frequency in hertz corresponding to the opp with specified index,
186  * else return 0
187  */
188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189 {
190 	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 		pr_err("%s: Invalid parameters\n", __func__);
192 		return 0;
193 	}
194 
195 	return opp->rates[index];
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198 
199 /**
200  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201  * @opp:	opp for which level value has to be returned for
202  *
203  * Return: level read from device tree corresponding to the opp, else
204  * return 0.
205  */
206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207 {
208 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 		pr_err("%s: Invalid parameters\n", __func__);
210 		return 0;
211 	}
212 
213 	return opp->level;
214 }
215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216 
217 /**
218  * dev_pm_opp_get_required_pstate() - Gets the required performance state
219  *                                    corresponding to an available opp
220  * @opp:	opp for which performance state has to be returned for
221  * @index:	index of the required opp
222  *
223  * Return: performance state read from device tree corresponding to the
224  * required opp, else return 0.
225  */
226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 					    unsigned int index)
228 {
229 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 	    index >= opp->opp_table->required_opp_count) {
231 		pr_err("%s: Invalid parameters\n", __func__);
232 		return 0;
233 	}
234 
235 	/* required-opps not fully initialized yet */
236 	if (lazy_linking_pending(opp->opp_table))
237 		return 0;
238 
239 	/* The required OPP table must belong to a genpd */
240 	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 		return 0;
243 	}
244 
245 	return opp->required_opps[index]->level;
246 }
247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248 
249 /**
250  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251  * @opp: opp for which turbo mode is being verified
252  *
253  * Turbo OPPs are not for normal use, and can be enabled (under certain
254  * conditions) for short duration of times to finish high throughput work
255  * quickly. Running on them for longer times may overheat the chip.
256  *
257  * Return: true if opp is turbo opp, else false.
258  */
259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260 {
261 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 		pr_err("%s: Invalid parameters\n", __func__);
263 		return false;
264 	}
265 
266 	return opp->turbo;
267 }
268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269 
270 /**
271  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272  * @dev:	device for which we do this operation
273  *
274  * Return: This function returns the max clock latency in nanoseconds.
275  */
276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277 {
278 	struct opp_table *opp_table;
279 	unsigned long clock_latency_ns;
280 
281 	opp_table = _find_opp_table(dev);
282 	if (IS_ERR(opp_table))
283 		return 0;
284 
285 	clock_latency_ns = opp_table->clock_latency_ns_max;
286 
287 	dev_pm_opp_put_opp_table(opp_table);
288 
289 	return clock_latency_ns;
290 }
291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292 
293 /**
294  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295  * @dev: device for which we do this operation
296  *
297  * Return: This function returns the max voltage latency in nanoseconds.
298  */
299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300 {
301 	struct opp_table *opp_table;
302 	struct dev_pm_opp *opp;
303 	struct regulator *reg;
304 	unsigned long latency_ns = 0;
305 	int ret, i, count;
306 	struct {
307 		unsigned long min;
308 		unsigned long max;
309 	} *uV;
310 
311 	opp_table = _find_opp_table(dev);
312 	if (IS_ERR(opp_table))
313 		return 0;
314 
315 	/* Regulator may not be required for the device */
316 	if (!opp_table->regulators)
317 		goto put_opp_table;
318 
319 	count = opp_table->regulator_count;
320 
321 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 	if (!uV)
323 		goto put_opp_table;
324 
325 	mutex_lock(&opp_table->lock);
326 
327 	for (i = 0; i < count; i++) {
328 		uV[i].min = ~0;
329 		uV[i].max = 0;
330 
331 		list_for_each_entry(opp, &opp_table->opp_list, node) {
332 			if (!opp->available)
333 				continue;
334 
335 			if (opp->supplies[i].u_volt_min < uV[i].min)
336 				uV[i].min = opp->supplies[i].u_volt_min;
337 			if (opp->supplies[i].u_volt_max > uV[i].max)
338 				uV[i].max = opp->supplies[i].u_volt_max;
339 		}
340 	}
341 
342 	mutex_unlock(&opp_table->lock);
343 
344 	/*
345 	 * The caller needs to ensure that opp_table (and hence the regulator)
346 	 * isn't freed, while we are executing this routine.
347 	 */
348 	for (i = 0; i < count; i++) {
349 		reg = opp_table->regulators[i];
350 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 		if (ret > 0)
352 			latency_ns += ret * 1000;
353 	}
354 
355 	kfree(uV);
356 put_opp_table:
357 	dev_pm_opp_put_opp_table(opp_table);
358 
359 	return latency_ns;
360 }
361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362 
363 /**
364  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365  *					     nanoseconds
366  * @dev: device for which we do this operation
367  *
368  * Return: This function returns the max transition latency, in nanoseconds, to
369  * switch from one OPP to other.
370  */
371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372 {
373 	return dev_pm_opp_get_max_volt_latency(dev) +
374 		dev_pm_opp_get_max_clock_latency(dev);
375 }
376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377 
378 /**
379  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380  * @dev:	device for which we do this operation
381  *
382  * Return: This function returns the frequency of the OPP marked as suspend_opp
383  * if one is available, else returns 0;
384  */
385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386 {
387 	struct opp_table *opp_table;
388 	unsigned long freq = 0;
389 
390 	opp_table = _find_opp_table(dev);
391 	if (IS_ERR(opp_table))
392 		return 0;
393 
394 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396 
397 	dev_pm_opp_put_opp_table(opp_table);
398 
399 	return freq;
400 }
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402 
403 int _get_opp_count(struct opp_table *opp_table)
404 {
405 	struct dev_pm_opp *opp;
406 	int count = 0;
407 
408 	mutex_lock(&opp_table->lock);
409 
410 	list_for_each_entry(opp, &opp_table->opp_list, node) {
411 		if (opp->available)
412 			count++;
413 	}
414 
415 	mutex_unlock(&opp_table->lock);
416 
417 	return count;
418 }
419 
420 /**
421  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422  * @dev:	device for which we do this operation
423  *
424  * Return: This function returns the number of available opps if there are any,
425  * else returns 0 if none or the corresponding error value.
426  */
427 int dev_pm_opp_get_opp_count(struct device *dev)
428 {
429 	struct opp_table *opp_table;
430 	int count;
431 
432 	opp_table = _find_opp_table(dev);
433 	if (IS_ERR(opp_table)) {
434 		count = PTR_ERR(opp_table);
435 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 			__func__, count);
437 		return count;
438 	}
439 
440 	count = _get_opp_count(opp_table);
441 	dev_pm_opp_put_opp_table(opp_table);
442 
443 	return count;
444 }
445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446 
447 /* Helpers to read keys */
448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449 {
450 	return opp->rates[index];
451 }
452 
453 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454 {
455 	return opp->level;
456 }
457 
458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459 {
460 	return opp->bandwidth[index].peak;
461 }
462 
463 /* Generic comparison helpers */
464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 			   unsigned long opp_key, unsigned long key)
466 {
467 	if (opp_key == key) {
468 		*opp = temp_opp;
469 		return true;
470 	}
471 
472 	return false;
473 }
474 
475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 			  unsigned long opp_key, unsigned long key)
477 {
478 	if (opp_key >= key) {
479 		*opp = temp_opp;
480 		return true;
481 	}
482 
483 	return false;
484 }
485 
486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 			   unsigned long opp_key, unsigned long key)
488 {
489 	if (opp_key > key)
490 		return true;
491 
492 	*opp = temp_opp;
493 	return false;
494 }
495 
496 /* Generic key finding helpers */
497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 		unsigned long *key, int index, bool available,
499 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 				unsigned long opp_key, unsigned long key),
502 		bool (*assert)(struct opp_table *opp_table))
503 {
504 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505 
506 	/* Assert that the requirement is met */
507 	if (assert && !assert(opp_table))
508 		return ERR_PTR(-EINVAL);
509 
510 	mutex_lock(&opp_table->lock);
511 
512 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 		if (temp_opp->available == available) {
514 			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 				break;
516 		}
517 	}
518 
519 	/* Increment the reference count of OPP */
520 	if (!IS_ERR(opp)) {
521 		*key = read(opp, index);
522 		dev_pm_opp_get(opp);
523 	}
524 
525 	mutex_unlock(&opp_table->lock);
526 
527 	return opp;
528 }
529 
530 static struct dev_pm_opp *
531 _find_key(struct device *dev, unsigned long *key, int index, bool available,
532 	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 			  unsigned long opp_key, unsigned long key),
535 	  bool (*assert)(struct opp_table *opp_table))
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *opp;
539 
540 	opp_table = _find_opp_table(dev);
541 	if (IS_ERR(opp_table)) {
542 		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 			PTR_ERR(opp_table));
544 		return ERR_CAST(opp_table);
545 	}
546 
547 	opp = _opp_table_find_key(opp_table, key, index, available, read,
548 				  compare, assert);
549 
550 	dev_pm_opp_put_opp_table(opp_table);
551 
552 	return opp;
553 }
554 
555 static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 		unsigned long key, int index, bool available,
557 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 		bool (*assert)(struct opp_table *opp_table))
559 {
560 	/*
561 	 * The value of key will be updated here, but will be ignored as the
562 	 * caller doesn't need it.
563 	 */
564 	return _find_key(dev, &key, index, available, read, _compare_exact,
565 			 assert);
566 }
567 
568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 		unsigned long *key, int index, bool available,
570 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 		bool (*assert)(struct opp_table *opp_table))
572 {
573 	return _opp_table_find_key(opp_table, key, index, available, read,
574 				   _compare_ceil, assert);
575 }
576 
577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 		int index, bool available,
579 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 		bool (*assert)(struct opp_table *opp_table))
581 {
582 	return _find_key(dev, key, index, available, read, _compare_ceil,
583 			 assert);
584 }
585 
586 static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 		unsigned long *key, int index, bool available,
588 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 		bool (*assert)(struct opp_table *opp_table))
590 {
591 	return _find_key(dev, key, index, available, read, _compare_floor,
592 			 assert);
593 }
594 
595 /**
596  * dev_pm_opp_find_freq_exact() - search for an exact frequency
597  * @dev:		device for which we do this operation
598  * @freq:		frequency to search for
599  * @available:		true/false - match for available opp
600  *
601  * Return: Searches for exact match in the opp table and returns pointer to the
602  * matching opp if found, else returns ERR_PTR in case of error and should
603  * be handled using IS_ERR. Error return values can be:
604  * EINVAL:	for bad pointer
605  * ERANGE:	no match found for search
606  * ENODEV:	if device not found in list of registered devices
607  *
608  * Note: available is a modifier for the search. if available=true, then the
609  * match is for exact matching frequency and is available in the stored OPP
610  * table. if false, the match is for exact frequency which is not available.
611  *
612  * This provides a mechanism to enable an opp which is not available currently
613  * or the opposite as well.
614  *
615  * The callers are required to call dev_pm_opp_put() for the returned OPP after
616  * use.
617  */
618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 		unsigned long freq, bool available)
620 {
621 	return _find_key_exact(dev, freq, 0, available, _read_freq,
622 			       assert_single_clk);
623 }
624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625 
626 /**
627  * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628  *					 clock corresponding to the index
629  * @dev:	Device for which we do this operation
630  * @freq:	frequency to search for
631  * @index:	Clock index
632  * @available:	true/false - match for available opp
633  *
634  * Search for the matching exact OPP for the clock corresponding to the
635  * specified index from a starting freq for a device.
636  *
637  * Return: matching *opp , else returns ERR_PTR in case of error and should be
638  * handled using IS_ERR. Error return values can be:
639  * EINVAL:	for bad pointer
640  * ERANGE:	no match found for search
641  * ENODEV:	if device not found in list of registered devices
642  *
643  * The callers are required to call dev_pm_opp_put() for the returned OPP after
644  * use.
645  */
646 struct dev_pm_opp *
647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 				   u32 index, bool available)
649 {
650 	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651 }
652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653 
654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 						   unsigned long *freq)
656 {
657 	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 					assert_single_clk);
659 }
660 
661 /**
662  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663  * @dev:	device for which we do this operation
664  * @freq:	Start frequency
665  *
666  * Search for the matching ceil *available* OPP from a starting freq
667  * for a device.
668  *
669  * Return: matching *opp and refreshes *freq accordingly, else returns
670  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671  * values can be:
672  * EINVAL:	for bad pointer
673  * ERANGE:	no match found for search
674  * ENODEV:	if device not found in list of registered devices
675  *
676  * The callers are required to call dev_pm_opp_put() for the returned OPP after
677  * use.
678  */
679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 					     unsigned long *freq)
681 {
682 	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683 }
684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685 
686 /**
687  * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688  *					 clock corresponding to the index
689  * @dev:	Device for which we do this operation
690  * @freq:	Start frequency
691  * @index:	Clock index
692  *
693  * Search for the matching ceil *available* OPP for the clock corresponding to
694  * the specified index from a starting freq for a device.
695  *
696  * Return: matching *opp and refreshes *freq accordingly, else returns
697  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698  * values can be:
699  * EINVAL:	for bad pointer
700  * ERANGE:	no match found for search
701  * ENODEV:	if device not found in list of registered devices
702  *
703  * The callers are required to call dev_pm_opp_put() for the returned OPP after
704  * use.
705  */
706 struct dev_pm_opp *
707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 				  u32 index)
709 {
710 	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711 }
712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713 
714 /**
715  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716  * @dev:	device for which we do this operation
717  * @freq:	Start frequency
718  *
719  * Search for the matching floor *available* OPP from a starting freq
720  * for a device.
721  *
722  * Return: matching *opp and refreshes *freq accordingly, else returns
723  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724  * values can be:
725  * EINVAL:	for bad pointer
726  * ERANGE:	no match found for search
727  * ENODEV:	if device not found in list of registered devices
728  *
729  * The callers are required to call dev_pm_opp_put() for the returned OPP after
730  * use.
731  */
732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 					      unsigned long *freq)
734 {
735 	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736 }
737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738 
739 /**
740  * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741  *					  clock corresponding to the index
742  * @dev:	Device for which we do this operation
743  * @freq:	Start frequency
744  * @index:	Clock index
745  *
746  * Search for the matching floor *available* OPP for the clock corresponding to
747  * the specified index from a starting freq for a device.
748  *
749  * Return: matching *opp and refreshes *freq accordingly, else returns
750  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751  * values can be:
752  * EINVAL:	for bad pointer
753  * ERANGE:	no match found for search
754  * ENODEV:	if device not found in list of registered devices
755  *
756  * The callers are required to call dev_pm_opp_put() for the returned OPP after
757  * use.
758  */
759 struct dev_pm_opp *
760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 				   u32 index)
762 {
763 	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764 }
765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766 
767 /**
768  * dev_pm_opp_find_level_exact() - search for an exact level
769  * @dev:		device for which we do this operation
770  * @level:		level to search for
771  *
772  * Return: Searches for exact match in the opp table and returns pointer to the
773  * matching opp if found, else returns ERR_PTR in case of error and should
774  * be handled using IS_ERR. Error return values can be:
775  * EINVAL:	for bad pointer
776  * ERANGE:	no match found for search
777  * ENODEV:	if device not found in list of registered devices
778  *
779  * The callers are required to call dev_pm_opp_put() for the returned OPP after
780  * use.
781  */
782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 					       unsigned int level)
784 {
785 	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786 }
787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788 
789 /**
790  * dev_pm_opp_find_level_ceil() - search for an rounded up level
791  * @dev:		device for which we do this operation
792  * @level:		level to search for
793  *
794  * Return: Searches for rounded up match in the opp table and returns pointer
795  * to the  matching opp if found, else returns ERR_PTR in case of error and
796  * should be handled using IS_ERR. Error return values can be:
797  * EINVAL:	for bad pointer
798  * ERANGE:	no match found for search
799  * ENODEV:	if device not found in list of registered devices
800  *
801  * The callers are required to call dev_pm_opp_put() for the returned OPP after
802  * use.
803  */
804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 					      unsigned int *level)
806 {
807 	unsigned long temp = *level;
808 	struct dev_pm_opp *opp;
809 
810 	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 	*level = temp;
812 	return opp;
813 }
814 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
815 
816 /**
817  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
818  * @dev:	device for which we do this operation
819  * @bw:	start bandwidth
820  * @index:	which bandwidth to compare, in case of OPPs with several values
821  *
822  * Search for the matching floor *available* OPP from a starting bandwidth
823  * for a device.
824  *
825  * Return: matching *opp and refreshes *bw accordingly, else returns
826  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
827  * values can be:
828  * EINVAL:	for bad pointer
829  * ERANGE:	no match found for search
830  * ENODEV:	if device not found in list of registered devices
831  *
832  * The callers are required to call dev_pm_opp_put() for the returned OPP after
833  * use.
834  */
835 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
836 					   int index)
837 {
838 	unsigned long temp = *bw;
839 	struct dev_pm_opp *opp;
840 
841 	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
842 	*bw = temp;
843 	return opp;
844 }
845 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
846 
847 /**
848  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
849  * @dev:	device for which we do this operation
850  * @bw:	start bandwidth
851  * @index:	which bandwidth to compare, in case of OPPs with several values
852  *
853  * Search for the matching floor *available* OPP from a starting bandwidth
854  * for a device.
855  *
856  * Return: matching *opp and refreshes *bw accordingly, else returns
857  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
858  * values can be:
859  * EINVAL:	for bad pointer
860  * ERANGE:	no match found for search
861  * ENODEV:	if device not found in list of registered devices
862  *
863  * The callers are required to call dev_pm_opp_put() for the returned OPP after
864  * use.
865  */
866 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
867 					    unsigned int *bw, int index)
868 {
869 	unsigned long temp = *bw;
870 	struct dev_pm_opp *opp;
871 
872 	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
873 	*bw = temp;
874 	return opp;
875 }
876 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
877 
878 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
879 			    struct dev_pm_opp_supply *supply)
880 {
881 	int ret;
882 
883 	/* Regulator not available for device */
884 	if (IS_ERR(reg)) {
885 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
886 			PTR_ERR(reg));
887 		return 0;
888 	}
889 
890 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
891 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
892 
893 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
894 					    supply->u_volt, supply->u_volt_max);
895 	if (ret)
896 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
897 			__func__, supply->u_volt_min, supply->u_volt,
898 			supply->u_volt_max, ret);
899 
900 	return ret;
901 }
902 
903 static int
904 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
905 		       struct dev_pm_opp *opp, void *data, bool scaling_down)
906 {
907 	unsigned long *target = data;
908 	unsigned long freq;
909 	int ret;
910 
911 	/* One of target and opp must be available */
912 	if (target) {
913 		freq = *target;
914 	} else if (opp) {
915 		freq = opp->rates[0];
916 	} else {
917 		WARN_ON(1);
918 		return -EINVAL;
919 	}
920 
921 	ret = clk_set_rate(opp_table->clk, freq);
922 	if (ret) {
923 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
924 			ret);
925 	} else {
926 		opp_table->rate_clk_single = freq;
927 	}
928 
929 	return ret;
930 }
931 
932 /*
933  * Simple implementation for configuring multiple clocks. Configure clocks in
934  * the order in which they are present in the array while scaling up.
935  */
936 int dev_pm_opp_config_clks_simple(struct device *dev,
937 		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
938 		bool scaling_down)
939 {
940 	int ret, i;
941 
942 	if (scaling_down) {
943 		for (i = opp_table->clk_count - 1; i >= 0; i--) {
944 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
945 			if (ret) {
946 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
947 					ret);
948 				return ret;
949 			}
950 		}
951 	} else {
952 		for (i = 0; i < opp_table->clk_count; i++) {
953 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
954 			if (ret) {
955 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
956 					ret);
957 				return ret;
958 			}
959 		}
960 	}
961 
962 	return 0;
963 }
964 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
965 
966 static int _opp_config_regulator_single(struct device *dev,
967 			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
968 			struct regulator **regulators, unsigned int count)
969 {
970 	struct regulator *reg = regulators[0];
971 	int ret;
972 
973 	/* This function only supports single regulator per device */
974 	if (WARN_ON(count > 1)) {
975 		dev_err(dev, "multiple regulators are not supported\n");
976 		return -EINVAL;
977 	}
978 
979 	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
980 	if (ret)
981 		return ret;
982 
983 	/*
984 	 * Enable the regulator after setting its voltages, otherwise it breaks
985 	 * some boot-enabled regulators.
986 	 */
987 	if (unlikely(!new_opp->opp_table->enabled)) {
988 		ret = regulator_enable(reg);
989 		if (ret < 0)
990 			dev_warn(dev, "Failed to enable regulator: %d", ret);
991 	}
992 
993 	return 0;
994 }
995 
996 static int _set_opp_bw(const struct opp_table *opp_table,
997 		       struct dev_pm_opp *opp, struct device *dev)
998 {
999 	u32 avg, peak;
1000 	int i, ret;
1001 
1002 	if (!opp_table->paths)
1003 		return 0;
1004 
1005 	for (i = 0; i < opp_table->path_count; i++) {
1006 		if (!opp) {
1007 			avg = 0;
1008 			peak = 0;
1009 		} else {
1010 			avg = opp->bandwidth[i].avg;
1011 			peak = opp->bandwidth[i].peak;
1012 		}
1013 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1014 		if (ret) {
1015 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1016 				opp ? "set" : "remove", i, ret);
1017 			return ret;
1018 		}
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 static int _set_performance_state(struct device *dev, struct device *pd_dev,
1025 				  struct dev_pm_opp *opp, int i)
1026 {
1027 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
1028 	int ret;
1029 
1030 	if (!pd_dev)
1031 		return 0;
1032 
1033 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
1034 	if (ret) {
1035 		dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
1036 			dev_name(pd_dev), pstate, ret);
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 static int _opp_set_required_opps_generic(struct device *dev,
1043 	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1044 {
1045 	dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1046 	return -ENOENT;
1047 }
1048 
1049 static int _opp_set_required_opps_genpd(struct device *dev,
1050 	struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1051 {
1052 	struct device **genpd_virt_devs =
1053 		opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
1054 	int i, ret = 0;
1055 
1056 	/*
1057 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
1058 	 * after it is freed from another thread.
1059 	 */
1060 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1061 
1062 	/* Scaling up? Set required OPPs in normal order, else reverse */
1063 	if (!scaling_down) {
1064 		for (i = 0; i < opp_table->required_opp_count; i++) {
1065 			ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1066 			if (ret)
1067 				break;
1068 		}
1069 	} else {
1070 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1071 			ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
1072 			if (ret)
1073 				break;
1074 		}
1075 	}
1076 
1077 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1078 
1079 	return ret;
1080 }
1081 
1082 /* This is only called for PM domain for now */
1083 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1084 			      struct dev_pm_opp *opp, bool up)
1085 {
1086 	/* required-opps not fully initialized yet */
1087 	if (lazy_linking_pending(opp_table))
1088 		return -EBUSY;
1089 
1090 	if (opp_table->set_required_opps)
1091 		return opp_table->set_required_opps(dev, opp_table, opp, up);
1092 
1093 	return 0;
1094 }
1095 
1096 /* Update set_required_opps handler */
1097 void _update_set_required_opps(struct opp_table *opp_table)
1098 {
1099 	/* Already set */
1100 	if (opp_table->set_required_opps)
1101 		return;
1102 
1103 	/* All required OPPs will belong to genpd or none */
1104 	if (opp_table->required_opp_tables[0]->is_genpd)
1105 		opp_table->set_required_opps = _opp_set_required_opps_genpd;
1106 	else
1107 		opp_table->set_required_opps = _opp_set_required_opps_generic;
1108 }
1109 
1110 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1111 {
1112 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1113 	unsigned long freq;
1114 
1115 	if (!IS_ERR(opp_table->clk)) {
1116 		freq = clk_get_rate(opp_table->clk);
1117 		opp = _find_freq_ceil(opp_table, &freq);
1118 	}
1119 
1120 	/*
1121 	 * Unable to find the current OPP ? Pick the first from the list since
1122 	 * it is in ascending order, otherwise rest of the code will need to
1123 	 * make special checks to validate current_opp.
1124 	 */
1125 	if (IS_ERR(opp)) {
1126 		mutex_lock(&opp_table->lock);
1127 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1128 		dev_pm_opp_get(opp);
1129 		mutex_unlock(&opp_table->lock);
1130 	}
1131 
1132 	opp_table->current_opp = opp;
1133 }
1134 
1135 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1136 {
1137 	int ret;
1138 
1139 	if (!opp_table->enabled)
1140 		return 0;
1141 
1142 	/*
1143 	 * Some drivers need to support cases where some platforms may
1144 	 * have OPP table for the device, while others don't and
1145 	 * opp_set_rate() just needs to behave like clk_set_rate().
1146 	 */
1147 	if (!_get_opp_count(opp_table))
1148 		return 0;
1149 
1150 	ret = _set_opp_bw(opp_table, NULL, dev);
1151 	if (ret)
1152 		return ret;
1153 
1154 	if (opp_table->regulators)
1155 		regulator_disable(opp_table->regulators[0]);
1156 
1157 	ret = _set_required_opps(dev, opp_table, NULL, false);
1158 
1159 	opp_table->enabled = false;
1160 	return ret;
1161 }
1162 
1163 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1164 		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1165 {
1166 	struct dev_pm_opp *old_opp;
1167 	int scaling_down, ret;
1168 
1169 	if (unlikely(!opp))
1170 		return _disable_opp_table(dev, opp_table);
1171 
1172 	/* Find the currently set OPP if we don't know already */
1173 	if (unlikely(!opp_table->current_opp))
1174 		_find_current_opp(dev, opp_table);
1175 
1176 	old_opp = opp_table->current_opp;
1177 
1178 	/* Return early if nothing to do */
1179 	if (!forced && old_opp == opp && opp_table->enabled) {
1180 		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1181 		return 0;
1182 	}
1183 
1184 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1185 		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1186 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1187 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1188 
1189 	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1190 	if (scaling_down == -1)
1191 		scaling_down = 0;
1192 
1193 	/* Scaling up? Configure required OPPs before frequency */
1194 	if (!scaling_down) {
1195 		ret = _set_required_opps(dev, opp_table, opp, true);
1196 		if (ret) {
1197 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1198 			return ret;
1199 		}
1200 
1201 		ret = _set_opp_bw(opp_table, opp, dev);
1202 		if (ret) {
1203 			dev_err(dev, "Failed to set bw: %d\n", ret);
1204 			return ret;
1205 		}
1206 
1207 		if (opp_table->config_regulators) {
1208 			ret = opp_table->config_regulators(dev, old_opp, opp,
1209 							   opp_table->regulators,
1210 							   opp_table->regulator_count);
1211 			if (ret) {
1212 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1213 					ret);
1214 				return ret;
1215 			}
1216 		}
1217 	}
1218 
1219 	if (opp_table->config_clks) {
1220 		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1221 		if (ret)
1222 			return ret;
1223 	}
1224 
1225 	/* Scaling down? Configure required OPPs after frequency */
1226 	if (scaling_down) {
1227 		if (opp_table->config_regulators) {
1228 			ret = opp_table->config_regulators(dev, old_opp, opp,
1229 							   opp_table->regulators,
1230 							   opp_table->regulator_count);
1231 			if (ret) {
1232 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1233 					ret);
1234 				return ret;
1235 			}
1236 		}
1237 
1238 		ret = _set_opp_bw(opp_table, opp, dev);
1239 		if (ret) {
1240 			dev_err(dev, "Failed to set bw: %d\n", ret);
1241 			return ret;
1242 		}
1243 
1244 		ret = _set_required_opps(dev, opp_table, opp, false);
1245 		if (ret) {
1246 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1247 			return ret;
1248 		}
1249 	}
1250 
1251 	opp_table->enabled = true;
1252 	dev_pm_opp_put(old_opp);
1253 
1254 	/* Make sure current_opp doesn't get freed */
1255 	dev_pm_opp_get(opp);
1256 	opp_table->current_opp = opp;
1257 
1258 	return ret;
1259 }
1260 
1261 /**
1262  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1263  * @dev:	 device for which we do this operation
1264  * @target_freq: frequency to achieve
1265  *
1266  * This configures the power-supplies to the levels specified by the OPP
1267  * corresponding to the target_freq, and programs the clock to a value <=
1268  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1269  * provided by the opp, should have already rounded to the target OPP's
1270  * frequency.
1271  */
1272 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1273 {
1274 	struct opp_table *opp_table;
1275 	unsigned long freq = 0, temp_freq;
1276 	struct dev_pm_opp *opp = NULL;
1277 	bool forced = false;
1278 	int ret;
1279 
1280 	opp_table = _find_opp_table(dev);
1281 	if (IS_ERR(opp_table)) {
1282 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1283 		return PTR_ERR(opp_table);
1284 	}
1285 
1286 	if (target_freq) {
1287 		/*
1288 		 * For IO devices which require an OPP on some platforms/SoCs
1289 		 * while just needing to scale the clock on some others
1290 		 * we look for empty OPP tables with just a clock handle and
1291 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1292 		 * equivalent to a clk_set_rate()
1293 		 */
1294 		if (!_get_opp_count(opp_table)) {
1295 			ret = opp_table->config_clks(dev, opp_table, NULL,
1296 						     &target_freq, false);
1297 			goto put_opp_table;
1298 		}
1299 
1300 		freq = clk_round_rate(opp_table->clk, target_freq);
1301 		if ((long)freq <= 0)
1302 			freq = target_freq;
1303 
1304 		/*
1305 		 * The clock driver may support finer resolution of the
1306 		 * frequencies than the OPP table, don't update the frequency we
1307 		 * pass to clk_set_rate() here.
1308 		 */
1309 		temp_freq = freq;
1310 		opp = _find_freq_ceil(opp_table, &temp_freq);
1311 		if (IS_ERR(opp)) {
1312 			ret = PTR_ERR(opp);
1313 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1314 				__func__, freq, ret);
1315 			goto put_opp_table;
1316 		}
1317 
1318 		/*
1319 		 * An OPP entry specifies the highest frequency at which other
1320 		 * properties of the OPP entry apply. Even if the new OPP is
1321 		 * same as the old one, we may still reach here for a different
1322 		 * value of the frequency. In such a case, do not abort but
1323 		 * configure the hardware to the desired frequency forcefully.
1324 		 */
1325 		forced = opp_table->rate_clk_single != freq;
1326 	}
1327 
1328 	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1329 
1330 	if (freq)
1331 		dev_pm_opp_put(opp);
1332 
1333 put_opp_table:
1334 	dev_pm_opp_put_opp_table(opp_table);
1335 	return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1338 
1339 /**
1340  * dev_pm_opp_set_opp() - Configure device for OPP
1341  * @dev: device for which we do this operation
1342  * @opp: OPP to set to
1343  *
1344  * This configures the device based on the properties of the OPP passed to this
1345  * routine.
1346  *
1347  * Return: 0 on success, a negative error number otherwise.
1348  */
1349 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1350 {
1351 	struct opp_table *opp_table;
1352 	int ret;
1353 
1354 	opp_table = _find_opp_table(dev);
1355 	if (IS_ERR(opp_table)) {
1356 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1357 		return PTR_ERR(opp_table);
1358 	}
1359 
1360 	ret = _set_opp(dev, opp_table, opp, NULL, false);
1361 	dev_pm_opp_put_opp_table(opp_table);
1362 
1363 	return ret;
1364 }
1365 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1366 
1367 /* OPP-dev Helpers */
1368 static void _remove_opp_dev(struct opp_device *opp_dev,
1369 			    struct opp_table *opp_table)
1370 {
1371 	opp_debug_unregister(opp_dev, opp_table);
1372 	list_del(&opp_dev->node);
1373 	kfree(opp_dev);
1374 }
1375 
1376 struct opp_device *_add_opp_dev(const struct device *dev,
1377 				struct opp_table *opp_table)
1378 {
1379 	struct opp_device *opp_dev;
1380 
1381 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1382 	if (!opp_dev)
1383 		return NULL;
1384 
1385 	/* Initialize opp-dev */
1386 	opp_dev->dev = dev;
1387 
1388 	mutex_lock(&opp_table->lock);
1389 	list_add(&opp_dev->node, &opp_table->dev_list);
1390 	mutex_unlock(&opp_table->lock);
1391 
1392 	/* Create debugfs entries for the opp_table */
1393 	opp_debug_register(opp_dev, opp_table);
1394 
1395 	return opp_dev;
1396 }
1397 
1398 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1399 {
1400 	struct opp_table *opp_table;
1401 	struct opp_device *opp_dev;
1402 	int ret;
1403 
1404 	/*
1405 	 * Allocate a new OPP table. In the infrequent case where a new
1406 	 * device is needed to be added, we pay this penalty.
1407 	 */
1408 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1409 	if (!opp_table)
1410 		return ERR_PTR(-ENOMEM);
1411 
1412 	mutex_init(&opp_table->lock);
1413 	mutex_init(&opp_table->genpd_virt_dev_lock);
1414 	INIT_LIST_HEAD(&opp_table->dev_list);
1415 	INIT_LIST_HEAD(&opp_table->lazy);
1416 
1417 	opp_table->clk = ERR_PTR(-ENODEV);
1418 
1419 	/* Mark regulator count uninitialized */
1420 	opp_table->regulator_count = -1;
1421 
1422 	opp_dev = _add_opp_dev(dev, opp_table);
1423 	if (!opp_dev) {
1424 		ret = -ENOMEM;
1425 		goto err;
1426 	}
1427 
1428 	_of_init_opp_table(opp_table, dev, index);
1429 
1430 	/* Find interconnect path(s) for the device */
1431 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1432 	if (ret) {
1433 		if (ret == -EPROBE_DEFER)
1434 			goto remove_opp_dev;
1435 
1436 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1437 			 __func__, ret);
1438 	}
1439 
1440 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1441 	INIT_LIST_HEAD(&opp_table->opp_list);
1442 	kref_init(&opp_table->kref);
1443 
1444 	return opp_table;
1445 
1446 remove_opp_dev:
1447 	_of_clear_opp_table(opp_table);
1448 	_remove_opp_dev(opp_dev, opp_table);
1449 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1450 	mutex_destroy(&opp_table->lock);
1451 err:
1452 	kfree(opp_table);
1453 	return ERR_PTR(ret);
1454 }
1455 
1456 void _get_opp_table_kref(struct opp_table *opp_table)
1457 {
1458 	kref_get(&opp_table->kref);
1459 }
1460 
1461 static struct opp_table *_update_opp_table_clk(struct device *dev,
1462 					       struct opp_table *opp_table,
1463 					       bool getclk)
1464 {
1465 	int ret;
1466 
1467 	/*
1468 	 * Return early if we don't need to get clk or we have already done it
1469 	 * earlier.
1470 	 */
1471 	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1472 	    opp_table->clks)
1473 		return opp_table;
1474 
1475 	/* Find clk for the device */
1476 	opp_table->clk = clk_get(dev, NULL);
1477 
1478 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1479 	if (!ret) {
1480 		opp_table->config_clks = _opp_config_clk_single;
1481 		opp_table->clk_count = 1;
1482 		return opp_table;
1483 	}
1484 
1485 	if (ret == -ENOENT) {
1486 		/*
1487 		 * There are few platforms which don't want the OPP core to
1488 		 * manage device's clock settings. In such cases neither the
1489 		 * platform provides the clks explicitly to us, nor the DT
1490 		 * contains a valid clk entry. The OPP nodes in DT may still
1491 		 * contain "opp-hz" property though, which we need to parse and
1492 		 * allow the platform to find an OPP based on freq later on.
1493 		 *
1494 		 * This is a simple solution to take care of such corner cases,
1495 		 * i.e. make the clk_count 1, which lets us allocate space for
1496 		 * frequency in opp->rates and also parse the entries in DT.
1497 		 */
1498 		opp_table->clk_count = 1;
1499 
1500 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1501 		return opp_table;
1502 	}
1503 
1504 	dev_pm_opp_put_opp_table(opp_table);
1505 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1506 
1507 	return ERR_PTR(ret);
1508 }
1509 
1510 /*
1511  * We need to make sure that the OPP table for a device doesn't get added twice,
1512  * if this routine gets called in parallel with the same device pointer.
1513  *
1514  * The simplest way to enforce that is to perform everything (find existing
1515  * table and if not found, create a new one) under the opp_table_lock, so only
1516  * one creator gets access to the same. But that expands the critical section
1517  * under the lock and may end up causing circular dependencies with frameworks
1518  * like debugfs, interconnect or clock framework as they may be direct or
1519  * indirect users of OPP core.
1520  *
1521  * And for that reason we have to go for a bit tricky implementation here, which
1522  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1523  * of adding an OPP table and others should wait for it to finish.
1524  */
1525 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1526 					 bool getclk)
1527 {
1528 	struct opp_table *opp_table;
1529 
1530 again:
1531 	mutex_lock(&opp_table_lock);
1532 
1533 	opp_table = _find_opp_table_unlocked(dev);
1534 	if (!IS_ERR(opp_table))
1535 		goto unlock;
1536 
1537 	/*
1538 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1539 	 * another user, wait for it to finish.
1540 	 */
1541 	if (unlikely(opp_tables_busy)) {
1542 		mutex_unlock(&opp_table_lock);
1543 		cpu_relax();
1544 		goto again;
1545 	}
1546 
1547 	opp_tables_busy = true;
1548 	opp_table = _managed_opp(dev, index);
1549 
1550 	/* Drop the lock to reduce the size of critical section */
1551 	mutex_unlock(&opp_table_lock);
1552 
1553 	if (opp_table) {
1554 		if (!_add_opp_dev(dev, opp_table)) {
1555 			dev_pm_opp_put_opp_table(opp_table);
1556 			opp_table = ERR_PTR(-ENOMEM);
1557 		}
1558 
1559 		mutex_lock(&opp_table_lock);
1560 	} else {
1561 		opp_table = _allocate_opp_table(dev, index);
1562 
1563 		mutex_lock(&opp_table_lock);
1564 		if (!IS_ERR(opp_table))
1565 			list_add(&opp_table->node, &opp_tables);
1566 	}
1567 
1568 	opp_tables_busy = false;
1569 
1570 unlock:
1571 	mutex_unlock(&opp_table_lock);
1572 
1573 	return _update_opp_table_clk(dev, opp_table, getclk);
1574 }
1575 
1576 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1577 {
1578 	return _add_opp_table_indexed(dev, 0, getclk);
1579 }
1580 
1581 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1582 {
1583 	return _find_opp_table(dev);
1584 }
1585 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1586 
1587 static void _opp_table_kref_release(struct kref *kref)
1588 {
1589 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1590 	struct opp_device *opp_dev, *temp;
1591 	int i;
1592 
1593 	/* Drop the lock as soon as we can */
1594 	list_del(&opp_table->node);
1595 	mutex_unlock(&opp_table_lock);
1596 
1597 	if (opp_table->current_opp)
1598 		dev_pm_opp_put(opp_table->current_opp);
1599 
1600 	_of_clear_opp_table(opp_table);
1601 
1602 	/* Release automatically acquired single clk */
1603 	if (!IS_ERR(opp_table->clk))
1604 		clk_put(opp_table->clk);
1605 
1606 	if (opp_table->paths) {
1607 		for (i = 0; i < opp_table->path_count; i++)
1608 			icc_put(opp_table->paths[i]);
1609 		kfree(opp_table->paths);
1610 	}
1611 
1612 	WARN_ON(!list_empty(&opp_table->opp_list));
1613 
1614 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1615 		_remove_opp_dev(opp_dev, opp_table);
1616 
1617 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1618 	mutex_destroy(&opp_table->lock);
1619 	kfree(opp_table);
1620 }
1621 
1622 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1623 {
1624 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1625 		       &opp_table_lock);
1626 }
1627 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1628 
1629 void _opp_free(struct dev_pm_opp *opp)
1630 {
1631 	kfree(opp);
1632 }
1633 
1634 static void _opp_kref_release(struct kref *kref)
1635 {
1636 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1637 	struct opp_table *opp_table = opp->opp_table;
1638 
1639 	list_del(&opp->node);
1640 	mutex_unlock(&opp_table->lock);
1641 
1642 	/*
1643 	 * Notify the changes in the availability of the operable
1644 	 * frequency/voltage list.
1645 	 */
1646 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1647 	_of_clear_opp(opp_table, opp);
1648 	opp_debug_remove_one(opp);
1649 	kfree(opp);
1650 }
1651 
1652 void dev_pm_opp_get(struct dev_pm_opp *opp)
1653 {
1654 	kref_get(&opp->kref);
1655 }
1656 
1657 void dev_pm_opp_put(struct dev_pm_opp *opp)
1658 {
1659 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1660 }
1661 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1662 
1663 /**
1664  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1665  * @dev:	device for which we do this operation
1666  * @freq:	OPP to remove with matching 'freq'
1667  *
1668  * This function removes an opp from the opp table.
1669  */
1670 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1671 {
1672 	struct dev_pm_opp *opp = NULL, *iter;
1673 	struct opp_table *opp_table;
1674 
1675 	opp_table = _find_opp_table(dev);
1676 	if (IS_ERR(opp_table))
1677 		return;
1678 
1679 	if (!assert_single_clk(opp_table))
1680 		goto put_table;
1681 
1682 	mutex_lock(&opp_table->lock);
1683 
1684 	list_for_each_entry(iter, &opp_table->opp_list, node) {
1685 		if (iter->rates[0] == freq) {
1686 			opp = iter;
1687 			break;
1688 		}
1689 	}
1690 
1691 	mutex_unlock(&opp_table->lock);
1692 
1693 	if (opp) {
1694 		dev_pm_opp_put(opp);
1695 
1696 		/* Drop the reference taken by dev_pm_opp_add() */
1697 		dev_pm_opp_put_opp_table(opp_table);
1698 	} else {
1699 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1700 			 __func__, freq);
1701 	}
1702 
1703 put_table:
1704 	/* Drop the reference taken by _find_opp_table() */
1705 	dev_pm_opp_put_opp_table(opp_table);
1706 }
1707 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1708 
1709 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1710 					bool dynamic)
1711 {
1712 	struct dev_pm_opp *opp = NULL, *temp;
1713 
1714 	mutex_lock(&opp_table->lock);
1715 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1716 		/*
1717 		 * Refcount must be dropped only once for each OPP by OPP core,
1718 		 * do that with help of "removed" flag.
1719 		 */
1720 		if (!temp->removed && dynamic == temp->dynamic) {
1721 			opp = temp;
1722 			break;
1723 		}
1724 	}
1725 
1726 	mutex_unlock(&opp_table->lock);
1727 	return opp;
1728 }
1729 
1730 /*
1731  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1732  * happen lock less to avoid circular dependency issues. This routine must be
1733  * called without the opp_table->lock held.
1734  */
1735 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1736 {
1737 	struct dev_pm_opp *opp;
1738 
1739 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1740 		opp->removed = true;
1741 		dev_pm_opp_put(opp);
1742 
1743 		/* Drop the references taken by dev_pm_opp_add() */
1744 		if (dynamic)
1745 			dev_pm_opp_put_opp_table(opp_table);
1746 	}
1747 }
1748 
1749 bool _opp_remove_all_static(struct opp_table *opp_table)
1750 {
1751 	mutex_lock(&opp_table->lock);
1752 
1753 	if (!opp_table->parsed_static_opps) {
1754 		mutex_unlock(&opp_table->lock);
1755 		return false;
1756 	}
1757 
1758 	if (--opp_table->parsed_static_opps) {
1759 		mutex_unlock(&opp_table->lock);
1760 		return true;
1761 	}
1762 
1763 	mutex_unlock(&opp_table->lock);
1764 
1765 	_opp_remove_all(opp_table, false);
1766 	return true;
1767 }
1768 
1769 /**
1770  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1771  * @dev:	device for which we do this operation
1772  *
1773  * This function removes all dynamically created OPPs from the opp table.
1774  */
1775 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1776 {
1777 	struct opp_table *opp_table;
1778 
1779 	opp_table = _find_opp_table(dev);
1780 	if (IS_ERR(opp_table))
1781 		return;
1782 
1783 	_opp_remove_all(opp_table, true);
1784 
1785 	/* Drop the reference taken by _find_opp_table() */
1786 	dev_pm_opp_put_opp_table(opp_table);
1787 }
1788 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1789 
1790 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1791 {
1792 	struct dev_pm_opp *opp;
1793 	int supply_count, supply_size, icc_size, clk_size;
1794 
1795 	/* Allocate space for at least one supply */
1796 	supply_count = opp_table->regulator_count > 0 ?
1797 			opp_table->regulator_count : 1;
1798 	supply_size = sizeof(*opp->supplies) * supply_count;
1799 	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1800 	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1801 
1802 	/* allocate new OPP node and supplies structures */
1803 	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1804 	if (!opp)
1805 		return NULL;
1806 
1807 	/* Put the supplies, bw and clock at the end of the OPP structure */
1808 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1809 
1810 	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1811 
1812 	if (icc_size)
1813 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1814 
1815 	INIT_LIST_HEAD(&opp->node);
1816 
1817 	return opp;
1818 }
1819 
1820 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1821 					 struct opp_table *opp_table)
1822 {
1823 	struct regulator *reg;
1824 	int i;
1825 
1826 	if (!opp_table->regulators)
1827 		return true;
1828 
1829 	for (i = 0; i < opp_table->regulator_count; i++) {
1830 		reg = opp_table->regulators[i];
1831 
1832 		if (!regulator_is_supported_voltage(reg,
1833 					opp->supplies[i].u_volt_min,
1834 					opp->supplies[i].u_volt_max)) {
1835 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1836 				__func__, opp->supplies[i].u_volt_min,
1837 				opp->supplies[i].u_volt_max);
1838 			return false;
1839 		}
1840 	}
1841 
1842 	return true;
1843 }
1844 
1845 static int _opp_compare_rate(struct opp_table *opp_table,
1846 			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1847 {
1848 	int i;
1849 
1850 	for (i = 0; i < opp_table->clk_count; i++) {
1851 		if (opp1->rates[i] != opp2->rates[i])
1852 			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1853 	}
1854 
1855 	/* Same rates for both OPPs */
1856 	return 0;
1857 }
1858 
1859 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1860 			   struct dev_pm_opp *opp2)
1861 {
1862 	int i;
1863 
1864 	for (i = 0; i < opp_table->path_count; i++) {
1865 		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1866 			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1867 	}
1868 
1869 	/* Same bw for both OPPs */
1870 	return 0;
1871 }
1872 
1873 /*
1874  * Returns
1875  * 0: opp1 == opp2
1876  * 1: opp1 > opp2
1877  * -1: opp1 < opp2
1878  */
1879 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1880 		     struct dev_pm_opp *opp2)
1881 {
1882 	int ret;
1883 
1884 	ret = _opp_compare_rate(opp_table, opp1, opp2);
1885 	if (ret)
1886 		return ret;
1887 
1888 	ret = _opp_compare_bw(opp_table, opp1, opp2);
1889 	if (ret)
1890 		return ret;
1891 
1892 	if (opp1->level != opp2->level)
1893 		return opp1->level < opp2->level ? -1 : 1;
1894 
1895 	/* Duplicate OPPs */
1896 	return 0;
1897 }
1898 
1899 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1900 			     struct opp_table *opp_table,
1901 			     struct list_head **head)
1902 {
1903 	struct dev_pm_opp *opp;
1904 	int opp_cmp;
1905 
1906 	/*
1907 	 * Insert new OPP in order of increasing frequency and discard if
1908 	 * already present.
1909 	 *
1910 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1911 	 * loop, don't replace it with head otherwise it will become an infinite
1912 	 * loop.
1913 	 */
1914 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1915 		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1916 		if (opp_cmp > 0) {
1917 			*head = &opp->node;
1918 			continue;
1919 		}
1920 
1921 		if (opp_cmp < 0)
1922 			return 0;
1923 
1924 		/* Duplicate OPPs */
1925 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1926 			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1927 			 opp->available, new_opp->rates[0],
1928 			 new_opp->supplies[0].u_volt, new_opp->available);
1929 
1930 		/* Should we compare voltages for all regulators here ? */
1931 		return opp->available &&
1932 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 void _required_opps_available(struct dev_pm_opp *opp, int count)
1939 {
1940 	int i;
1941 
1942 	for (i = 0; i < count; i++) {
1943 		if (opp->required_opps[i]->available)
1944 			continue;
1945 
1946 		opp->available = false;
1947 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1948 			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1949 		return;
1950 	}
1951 }
1952 
1953 /*
1954  * Returns:
1955  * 0: On success. And appropriate error message for duplicate OPPs.
1956  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1957  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1958  *  sure we don't print error messages unnecessarily if different parts of
1959  *  kernel try to initialize the OPP table.
1960  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1961  *  should be considered an error by the callers of _opp_add().
1962  */
1963 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1964 	     struct opp_table *opp_table)
1965 {
1966 	struct list_head *head;
1967 	int ret;
1968 
1969 	mutex_lock(&opp_table->lock);
1970 	head = &opp_table->opp_list;
1971 
1972 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1973 	if (ret) {
1974 		mutex_unlock(&opp_table->lock);
1975 		return ret;
1976 	}
1977 
1978 	list_add(&new_opp->node, head);
1979 	mutex_unlock(&opp_table->lock);
1980 
1981 	new_opp->opp_table = opp_table;
1982 	kref_init(&new_opp->kref);
1983 
1984 	opp_debug_create_one(new_opp, opp_table);
1985 
1986 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1987 		new_opp->available = false;
1988 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1989 			 __func__, new_opp->rates[0]);
1990 	}
1991 
1992 	/* required-opps not fully initialized yet */
1993 	if (lazy_linking_pending(opp_table))
1994 		return 0;
1995 
1996 	_required_opps_available(new_opp, opp_table->required_opp_count);
1997 
1998 	return 0;
1999 }
2000 
2001 /**
2002  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2003  * @opp_table:	OPP table
2004  * @dev:	device for which we do this operation
2005  * @freq:	Frequency in Hz for this OPP
2006  * @u_volt:	Voltage in uVolts for this OPP
2007  * @dynamic:	Dynamically added OPPs.
2008  *
2009  * This function adds an opp definition to the opp table and returns status.
2010  * The opp is made available by default and it can be controlled using
2011  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2012  *
2013  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2014  * and freed by dev_pm_opp_of_remove_table.
2015  *
2016  * Return:
2017  * 0		On success OR
2018  *		Duplicate OPPs (both freq and volt are same) and opp->available
2019  * -EEXIST	Freq are same and volt are different OR
2020  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2021  * -ENOMEM	Memory allocation failure
2022  */
2023 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2024 		unsigned long freq, long u_volt, bool dynamic)
2025 {
2026 	struct dev_pm_opp *new_opp;
2027 	unsigned long tol;
2028 	int ret;
2029 
2030 	if (!assert_single_clk(opp_table))
2031 		return -EINVAL;
2032 
2033 	new_opp = _opp_allocate(opp_table);
2034 	if (!new_opp)
2035 		return -ENOMEM;
2036 
2037 	/* populate the opp table */
2038 	new_opp->rates[0] = freq;
2039 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2040 	new_opp->supplies[0].u_volt = u_volt;
2041 	new_opp->supplies[0].u_volt_min = u_volt - tol;
2042 	new_opp->supplies[0].u_volt_max = u_volt + tol;
2043 	new_opp->available = true;
2044 	new_opp->dynamic = dynamic;
2045 
2046 	ret = _opp_add(dev, new_opp, opp_table);
2047 	if (ret) {
2048 		/* Don't return error for duplicate OPPs */
2049 		if (ret == -EBUSY)
2050 			ret = 0;
2051 		goto free_opp;
2052 	}
2053 
2054 	/*
2055 	 * Notify the changes in the availability of the operable
2056 	 * frequency/voltage list.
2057 	 */
2058 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2059 	return 0;
2060 
2061 free_opp:
2062 	_opp_free(new_opp);
2063 
2064 	return ret;
2065 }
2066 
2067 /**
2068  * _opp_set_supported_hw() - Set supported platforms
2069  * @dev: Device for which supported-hw has to be set.
2070  * @versions: Array of hierarchy of versions to match.
2071  * @count: Number of elements in the array.
2072  *
2073  * This is required only for the V2 bindings, and it enables a platform to
2074  * specify the hierarchy of versions it supports. OPP layer will then enable
2075  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2076  * property.
2077  */
2078 static int _opp_set_supported_hw(struct opp_table *opp_table,
2079 				 const u32 *versions, unsigned int count)
2080 {
2081 	/* Another CPU that shares the OPP table has set the property ? */
2082 	if (opp_table->supported_hw)
2083 		return 0;
2084 
2085 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2086 					GFP_KERNEL);
2087 	if (!opp_table->supported_hw)
2088 		return -ENOMEM;
2089 
2090 	opp_table->supported_hw_count = count;
2091 
2092 	return 0;
2093 }
2094 
2095 /**
2096  * _opp_put_supported_hw() - Releases resources blocked for supported hw
2097  * @opp_table: OPP table returned by _opp_set_supported_hw().
2098  *
2099  * This is required only for the V2 bindings, and is called for a matching
2100  * _opp_set_supported_hw(). Until this is called, the opp_table structure
2101  * will not be freed.
2102  */
2103 static void _opp_put_supported_hw(struct opp_table *opp_table)
2104 {
2105 	if (opp_table->supported_hw) {
2106 		kfree(opp_table->supported_hw);
2107 		opp_table->supported_hw = NULL;
2108 		opp_table->supported_hw_count = 0;
2109 	}
2110 }
2111 
2112 /**
2113  * _opp_set_prop_name() - Set prop-extn name
2114  * @dev: Device for which the prop-name has to be set.
2115  * @name: name to postfix to properties.
2116  *
2117  * This is required only for the V2 bindings, and it enables a platform to
2118  * specify the extn to be used for certain property names. The properties to
2119  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2120  * should postfix the property name with -<name> while looking for them.
2121  */
2122 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2123 {
2124 	/* Another CPU that shares the OPP table has set the property ? */
2125 	if (!opp_table->prop_name) {
2126 		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2127 		if (!opp_table->prop_name)
2128 			return -ENOMEM;
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 /**
2135  * _opp_put_prop_name() - Releases resources blocked for prop-name
2136  * @opp_table: OPP table returned by _opp_set_prop_name().
2137  *
2138  * This is required only for the V2 bindings, and is called for a matching
2139  * _opp_set_prop_name(). Until this is called, the opp_table structure
2140  * will not be freed.
2141  */
2142 static void _opp_put_prop_name(struct opp_table *opp_table)
2143 {
2144 	if (opp_table->prop_name) {
2145 		kfree(opp_table->prop_name);
2146 		opp_table->prop_name = NULL;
2147 	}
2148 }
2149 
2150 /**
2151  * _opp_set_regulators() - Set regulator names for the device
2152  * @dev: Device for which regulator name is being set.
2153  * @names: Array of pointers to the names of the regulator.
2154  * @count: Number of regulators.
2155  *
2156  * In order to support OPP switching, OPP layer needs to know the name of the
2157  * device's regulators, as the core would be required to switch voltages as
2158  * well.
2159  *
2160  * This must be called before any OPPs are initialized for the device.
2161  */
2162 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2163 			       const char * const names[])
2164 {
2165 	const char * const *temp = names;
2166 	struct regulator *reg;
2167 	int count = 0, ret, i;
2168 
2169 	/* Count number of regulators */
2170 	while (*temp++)
2171 		count++;
2172 
2173 	if (!count)
2174 		return -EINVAL;
2175 
2176 	/* Another CPU that shares the OPP table has set the regulators ? */
2177 	if (opp_table->regulators)
2178 		return 0;
2179 
2180 	opp_table->regulators = kmalloc_array(count,
2181 					      sizeof(*opp_table->regulators),
2182 					      GFP_KERNEL);
2183 	if (!opp_table->regulators)
2184 		return -ENOMEM;
2185 
2186 	for (i = 0; i < count; i++) {
2187 		reg = regulator_get_optional(dev, names[i]);
2188 		if (IS_ERR(reg)) {
2189 			ret = dev_err_probe(dev, PTR_ERR(reg),
2190 					    "%s: no regulator (%s) found\n",
2191 					    __func__, names[i]);
2192 			goto free_regulators;
2193 		}
2194 
2195 		opp_table->regulators[i] = reg;
2196 	}
2197 
2198 	opp_table->regulator_count = count;
2199 
2200 	/* Set generic config_regulators() for single regulators here */
2201 	if (count == 1)
2202 		opp_table->config_regulators = _opp_config_regulator_single;
2203 
2204 	return 0;
2205 
2206 free_regulators:
2207 	while (i != 0)
2208 		regulator_put(opp_table->regulators[--i]);
2209 
2210 	kfree(opp_table->regulators);
2211 	opp_table->regulators = NULL;
2212 	opp_table->regulator_count = -1;
2213 
2214 	return ret;
2215 }
2216 
2217 /**
2218  * _opp_put_regulators() - Releases resources blocked for regulator
2219  * @opp_table: OPP table returned from _opp_set_regulators().
2220  */
2221 static void _opp_put_regulators(struct opp_table *opp_table)
2222 {
2223 	int i;
2224 
2225 	if (!opp_table->regulators)
2226 		return;
2227 
2228 	if (opp_table->enabled) {
2229 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2230 			regulator_disable(opp_table->regulators[i]);
2231 	}
2232 
2233 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2234 		regulator_put(opp_table->regulators[i]);
2235 
2236 	kfree(opp_table->regulators);
2237 	opp_table->regulators = NULL;
2238 	opp_table->regulator_count = -1;
2239 }
2240 
2241 static void _put_clks(struct opp_table *opp_table, int count)
2242 {
2243 	int i;
2244 
2245 	for (i = count - 1; i >= 0; i--)
2246 		clk_put(opp_table->clks[i]);
2247 
2248 	kfree(opp_table->clks);
2249 	opp_table->clks = NULL;
2250 }
2251 
2252 /**
2253  * _opp_set_clknames() - Set clk names for the device
2254  * @dev: Device for which clk names is being set.
2255  * @names: Clk names.
2256  *
2257  * In order to support OPP switching, OPP layer needs to get pointers to the
2258  * clocks for the device. Simple cases work fine without using this routine
2259  * (i.e. by passing connection-id as NULL), but for a device with multiple
2260  * clocks available, the OPP core needs to know the exact names of the clks to
2261  * use.
2262  *
2263  * This must be called before any OPPs are initialized for the device.
2264  */
2265 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2266 			     const char * const names[],
2267 			     config_clks_t config_clks)
2268 {
2269 	const char * const *temp = names;
2270 	int count = 0, ret, i;
2271 	struct clk *clk;
2272 
2273 	/* Count number of clks */
2274 	while (*temp++)
2275 		count++;
2276 
2277 	/*
2278 	 * This is a special case where we have a single clock, whose connection
2279 	 * id name is NULL, i.e. first two entries are NULL in the array.
2280 	 */
2281 	if (!count && !names[1])
2282 		count = 1;
2283 
2284 	/* Fail early for invalid configurations */
2285 	if (!count || (!config_clks && count > 1))
2286 		return -EINVAL;
2287 
2288 	/* Another CPU that shares the OPP table has set the clkname ? */
2289 	if (opp_table->clks)
2290 		return 0;
2291 
2292 	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2293 					GFP_KERNEL);
2294 	if (!opp_table->clks)
2295 		return -ENOMEM;
2296 
2297 	/* Find clks for the device */
2298 	for (i = 0; i < count; i++) {
2299 		clk = clk_get(dev, names[i]);
2300 		if (IS_ERR(clk)) {
2301 			ret = dev_err_probe(dev, PTR_ERR(clk),
2302 					    "%s: Couldn't find clock with name: %s\n",
2303 					    __func__, names[i]);
2304 			goto free_clks;
2305 		}
2306 
2307 		opp_table->clks[i] = clk;
2308 	}
2309 
2310 	opp_table->clk_count = count;
2311 	opp_table->config_clks = config_clks;
2312 
2313 	/* Set generic single clk set here */
2314 	if (count == 1) {
2315 		if (!opp_table->config_clks)
2316 			opp_table->config_clks = _opp_config_clk_single;
2317 
2318 		/*
2319 		 * We could have just dropped the "clk" field and used "clks"
2320 		 * everywhere. Instead we kept the "clk" field around for
2321 		 * following reasons:
2322 		 *
2323 		 * - avoiding clks[0] everywhere else.
2324 		 * - not running single clk helpers for multiple clk usecase by
2325 		 *   mistake.
2326 		 *
2327 		 * Since this is single-clk case, just update the clk pointer
2328 		 * too.
2329 		 */
2330 		opp_table->clk = opp_table->clks[0];
2331 	}
2332 
2333 	return 0;
2334 
2335 free_clks:
2336 	_put_clks(opp_table, i);
2337 	return ret;
2338 }
2339 
2340 /**
2341  * _opp_put_clknames() - Releases resources blocked for clks.
2342  * @opp_table: OPP table returned from _opp_set_clknames().
2343  */
2344 static void _opp_put_clknames(struct opp_table *opp_table)
2345 {
2346 	if (!opp_table->clks)
2347 		return;
2348 
2349 	opp_table->config_clks = NULL;
2350 	opp_table->clk = ERR_PTR(-ENODEV);
2351 
2352 	_put_clks(opp_table, opp_table->clk_count);
2353 }
2354 
2355 /**
2356  * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2357  * @dev: Device for which the helper is getting registered.
2358  * @config_regulators: Custom set regulator helper.
2359  *
2360  * This is useful to support platforms with multiple regulators per device.
2361  *
2362  * This must be called before any OPPs are initialized for the device.
2363  */
2364 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2365 		struct device *dev, config_regulators_t config_regulators)
2366 {
2367 	/* Another CPU that shares the OPP table has set the helper ? */
2368 	if (!opp_table->config_regulators)
2369 		opp_table->config_regulators = config_regulators;
2370 
2371 	return 0;
2372 }
2373 
2374 /**
2375  * _opp_put_config_regulators_helper() - Releases resources blocked for
2376  *					 config_regulators helper.
2377  * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2378  *
2379  * Release resources blocked for platform specific config_regulators helper.
2380  */
2381 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2382 {
2383 	if (opp_table->config_regulators)
2384 		opp_table->config_regulators = NULL;
2385 }
2386 
2387 static void _detach_genpd(struct opp_table *opp_table)
2388 {
2389 	int index;
2390 
2391 	if (!opp_table->genpd_virt_devs)
2392 		return;
2393 
2394 	for (index = 0; index < opp_table->required_opp_count; index++) {
2395 		if (!opp_table->genpd_virt_devs[index])
2396 			continue;
2397 
2398 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2399 		opp_table->genpd_virt_devs[index] = NULL;
2400 	}
2401 
2402 	kfree(opp_table->genpd_virt_devs);
2403 	opp_table->genpd_virt_devs = NULL;
2404 }
2405 
2406 /**
2407  * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2408  * @dev: Consumer device for which the genpd is getting attached.
2409  * @names: Null terminated array of pointers containing names of genpd to attach.
2410  * @virt_devs: Pointer to return the array of virtual devices.
2411  *
2412  * Multiple generic power domains for a device are supported with the help of
2413  * virtual genpd devices, which are created for each consumer device - genpd
2414  * pair. These are the device structures which are attached to the power domain
2415  * and are required by the OPP core to set the performance state of the genpd.
2416  * The same API also works for the case where single genpd is available and so
2417  * we don't need to support that separately.
2418  *
2419  * This helper will normally be called by the consumer driver of the device
2420  * "dev", as only that has details of the genpd names.
2421  *
2422  * This helper needs to be called once with a list of all genpd to attach.
2423  * Otherwise the original device structure will be used instead by the OPP core.
2424  *
2425  * The order of entries in the names array must match the order in which
2426  * "required-opps" are added in DT.
2427  */
2428 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2429 			const char * const *names, struct device ***virt_devs)
2430 {
2431 	struct device *virt_dev;
2432 	int index = 0, ret = -EINVAL;
2433 	const char * const *name = names;
2434 
2435 	if (opp_table->genpd_virt_devs)
2436 		return 0;
2437 
2438 	/*
2439 	 * If the genpd's OPP table isn't already initialized, parsing of the
2440 	 * required-opps fail for dev. We should retry this after genpd's OPP
2441 	 * table is added.
2442 	 */
2443 	if (!opp_table->required_opp_count)
2444 		return -EPROBE_DEFER;
2445 
2446 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2447 
2448 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2449 					     sizeof(*opp_table->genpd_virt_devs),
2450 					     GFP_KERNEL);
2451 	if (!opp_table->genpd_virt_devs)
2452 		goto unlock;
2453 
2454 	while (*name) {
2455 		if (index >= opp_table->required_opp_count) {
2456 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2457 				*name, opp_table->required_opp_count, index);
2458 			goto err;
2459 		}
2460 
2461 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2462 		if (IS_ERR_OR_NULL(virt_dev)) {
2463 			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2464 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2465 			goto err;
2466 		}
2467 
2468 		opp_table->genpd_virt_devs[index] = virt_dev;
2469 		index++;
2470 		name++;
2471 	}
2472 
2473 	if (virt_devs)
2474 		*virt_devs = opp_table->genpd_virt_devs;
2475 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2476 
2477 	return 0;
2478 
2479 err:
2480 	_detach_genpd(opp_table);
2481 unlock:
2482 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2483 	return ret;
2484 
2485 }
2486 
2487 /**
2488  * _opp_detach_genpd() - Detach genpd(s) from the device.
2489  * @opp_table: OPP table returned by _opp_attach_genpd().
2490  *
2491  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2492  * OPP table.
2493  */
2494 static void _opp_detach_genpd(struct opp_table *opp_table)
2495 {
2496 	/*
2497 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2498 	 * used in parallel.
2499 	 */
2500 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2501 	_detach_genpd(opp_table);
2502 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2503 }
2504 
2505 static void _opp_clear_config(struct opp_config_data *data)
2506 {
2507 	if (data->flags & OPP_CONFIG_GENPD)
2508 		_opp_detach_genpd(data->opp_table);
2509 	if (data->flags & OPP_CONFIG_REGULATOR)
2510 		_opp_put_regulators(data->opp_table);
2511 	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2512 		_opp_put_supported_hw(data->opp_table);
2513 	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2514 		_opp_put_config_regulators_helper(data->opp_table);
2515 	if (data->flags & OPP_CONFIG_PROP_NAME)
2516 		_opp_put_prop_name(data->opp_table);
2517 	if (data->flags & OPP_CONFIG_CLK)
2518 		_opp_put_clknames(data->opp_table);
2519 
2520 	dev_pm_opp_put_opp_table(data->opp_table);
2521 	kfree(data);
2522 }
2523 
2524 /**
2525  * dev_pm_opp_set_config() - Set OPP configuration for the device.
2526  * @dev: Device for which configuration is being set.
2527  * @config: OPP configuration.
2528  *
2529  * This allows all device OPP configurations to be performed at once.
2530  *
2531  * This must be called before any OPPs are initialized for the device. This may
2532  * be called multiple times for the same OPP table, for example once for each
2533  * CPU that share the same table. This must be balanced by the same number of
2534  * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2535  *
2536  * This returns a token to the caller, which must be passed to
2537  * dev_pm_opp_clear_config() to free the resources later. The value of the
2538  * returned token will be >= 1 for success and negative for errors. The minimum
2539  * value of 1 is chosen here to make it easy for callers to manage the resource.
2540  */
2541 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2542 {
2543 	struct opp_table *opp_table;
2544 	struct opp_config_data *data;
2545 	unsigned int id;
2546 	int ret;
2547 
2548 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2549 	if (!data)
2550 		return -ENOMEM;
2551 
2552 	opp_table = _add_opp_table(dev, false);
2553 	if (IS_ERR(opp_table)) {
2554 		kfree(data);
2555 		return PTR_ERR(opp_table);
2556 	}
2557 
2558 	data->opp_table = opp_table;
2559 	data->flags = 0;
2560 
2561 	/* This should be called before OPPs are initialized */
2562 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2563 		ret = -EBUSY;
2564 		goto err;
2565 	}
2566 
2567 	/* Configure clocks */
2568 	if (config->clk_names) {
2569 		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2570 					config->config_clks);
2571 		if (ret)
2572 			goto err;
2573 
2574 		data->flags |= OPP_CONFIG_CLK;
2575 	} else if (config->config_clks) {
2576 		/* Don't allow config callback without clocks */
2577 		ret = -EINVAL;
2578 		goto err;
2579 	}
2580 
2581 	/* Configure property names */
2582 	if (config->prop_name) {
2583 		ret = _opp_set_prop_name(opp_table, config->prop_name);
2584 		if (ret)
2585 			goto err;
2586 
2587 		data->flags |= OPP_CONFIG_PROP_NAME;
2588 	}
2589 
2590 	/* Configure config_regulators helper */
2591 	if (config->config_regulators) {
2592 		ret = _opp_set_config_regulators_helper(opp_table, dev,
2593 						config->config_regulators);
2594 		if (ret)
2595 			goto err;
2596 
2597 		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2598 	}
2599 
2600 	/* Configure supported hardware */
2601 	if (config->supported_hw) {
2602 		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2603 					    config->supported_hw_count);
2604 		if (ret)
2605 			goto err;
2606 
2607 		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2608 	}
2609 
2610 	/* Configure supplies */
2611 	if (config->regulator_names) {
2612 		ret = _opp_set_regulators(opp_table, dev,
2613 					  config->regulator_names);
2614 		if (ret)
2615 			goto err;
2616 
2617 		data->flags |= OPP_CONFIG_REGULATOR;
2618 	}
2619 
2620 	/* Attach genpds */
2621 	if (config->genpd_names) {
2622 		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2623 					config->virt_devs);
2624 		if (ret)
2625 			goto err;
2626 
2627 		data->flags |= OPP_CONFIG_GENPD;
2628 	}
2629 
2630 	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2631 		       GFP_KERNEL);
2632 	if (ret)
2633 		goto err;
2634 
2635 	return id;
2636 
2637 err:
2638 	_opp_clear_config(data);
2639 	return ret;
2640 }
2641 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2642 
2643 /**
2644  * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2645  * @opp_table: OPP table returned from dev_pm_opp_set_config().
2646  *
2647  * This allows all device OPP configurations to be cleared at once. This must be
2648  * called once for each call made to dev_pm_opp_set_config(), in order to free
2649  * the OPPs properly.
2650  *
2651  * Currently the first call itself ends up freeing all the OPP configurations,
2652  * while the later ones only drop the OPP table reference. This works well for
2653  * now as we would never want to use an half initialized OPP table and want to
2654  * remove the configurations together.
2655  */
2656 void dev_pm_opp_clear_config(int token)
2657 {
2658 	struct opp_config_data *data;
2659 
2660 	/*
2661 	 * This lets the callers call this unconditionally and keep their code
2662 	 * simple.
2663 	 */
2664 	if (unlikely(token <= 0))
2665 		return;
2666 
2667 	data = xa_erase(&opp_configs, token);
2668 	if (WARN_ON(!data))
2669 		return;
2670 
2671 	_opp_clear_config(data);
2672 }
2673 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2674 
2675 static void devm_pm_opp_config_release(void *token)
2676 {
2677 	dev_pm_opp_clear_config((unsigned long)token);
2678 }
2679 
2680 /**
2681  * devm_pm_opp_set_config() - Set OPP configuration for the device.
2682  * @dev: Device for which configuration is being set.
2683  * @config: OPP configuration.
2684  *
2685  * This allows all device OPP configurations to be performed at once.
2686  * This is a resource-managed variant of dev_pm_opp_set_config().
2687  *
2688  * Return: 0 on success and errorno otherwise.
2689  */
2690 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2691 {
2692 	int token = dev_pm_opp_set_config(dev, config);
2693 
2694 	if (token < 0)
2695 		return token;
2696 
2697 	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2698 					(void *) ((unsigned long) token));
2699 }
2700 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2701 
2702 /**
2703  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2704  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2705  * @dst_table: Required OPP table of the @src_table.
2706  * @src_opp: OPP from the @src_table.
2707  *
2708  * This function returns the OPP (present in @dst_table) pointed out by the
2709  * "required-opps" property of the @src_opp (present in @src_table).
2710  *
2711  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2712  * use.
2713  *
2714  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2715  */
2716 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2717 						 struct opp_table *dst_table,
2718 						 struct dev_pm_opp *src_opp)
2719 {
2720 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2721 	int i;
2722 
2723 	if (!src_table || !dst_table || !src_opp ||
2724 	    !src_table->required_opp_tables)
2725 		return ERR_PTR(-EINVAL);
2726 
2727 	/* required-opps not fully initialized yet */
2728 	if (lazy_linking_pending(src_table))
2729 		return ERR_PTR(-EBUSY);
2730 
2731 	for (i = 0; i < src_table->required_opp_count; i++) {
2732 		if (src_table->required_opp_tables[i] == dst_table) {
2733 			mutex_lock(&src_table->lock);
2734 
2735 			list_for_each_entry(opp, &src_table->opp_list, node) {
2736 				if (opp == src_opp) {
2737 					dest_opp = opp->required_opps[i];
2738 					dev_pm_opp_get(dest_opp);
2739 					break;
2740 				}
2741 			}
2742 
2743 			mutex_unlock(&src_table->lock);
2744 			break;
2745 		}
2746 	}
2747 
2748 	if (IS_ERR(dest_opp)) {
2749 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2750 		       src_table, dst_table);
2751 	}
2752 
2753 	return dest_opp;
2754 }
2755 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2756 
2757 /**
2758  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2759  * @src_table: OPP table which has dst_table as one of its required OPP table.
2760  * @dst_table: Required OPP table of the src_table.
2761  * @pstate: Current performance state of the src_table.
2762  *
2763  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2764  * "required-opps" property of the OPP (present in @src_table) which has
2765  * performance state set to @pstate.
2766  *
2767  * Return: Zero or positive performance state on success, otherwise negative
2768  * value on errors.
2769  */
2770 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2771 				       struct opp_table *dst_table,
2772 				       unsigned int pstate)
2773 {
2774 	struct dev_pm_opp *opp;
2775 	int dest_pstate = -EINVAL;
2776 	int i;
2777 
2778 	/*
2779 	 * Normally the src_table will have the "required_opps" property set to
2780 	 * point to one of the OPPs in the dst_table, but in some cases the
2781 	 * genpd and its master have one to one mapping of performance states
2782 	 * and so none of them have the "required-opps" property set. Return the
2783 	 * pstate of the src_table as it is in such cases.
2784 	 */
2785 	if (!src_table || !src_table->required_opp_count)
2786 		return pstate;
2787 
2788 	/* Both OPP tables must belong to genpds */
2789 	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2790 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2791 		return -EINVAL;
2792 	}
2793 
2794 	/* required-opps not fully initialized yet */
2795 	if (lazy_linking_pending(src_table))
2796 		return -EBUSY;
2797 
2798 	for (i = 0; i < src_table->required_opp_count; i++) {
2799 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2800 			break;
2801 	}
2802 
2803 	if (unlikely(i == src_table->required_opp_count)) {
2804 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2805 		       __func__, src_table, dst_table);
2806 		return -EINVAL;
2807 	}
2808 
2809 	mutex_lock(&src_table->lock);
2810 
2811 	list_for_each_entry(opp, &src_table->opp_list, node) {
2812 		if (opp->level == pstate) {
2813 			dest_pstate = opp->required_opps[i]->level;
2814 			goto unlock;
2815 		}
2816 	}
2817 
2818 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2819 	       dst_table);
2820 
2821 unlock:
2822 	mutex_unlock(&src_table->lock);
2823 
2824 	return dest_pstate;
2825 }
2826 
2827 /**
2828  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2829  * @dev:	device for which we do this operation
2830  * @freq:	Frequency in Hz for this OPP
2831  * @u_volt:	Voltage in uVolts for this OPP
2832  *
2833  * This function adds an opp definition to the opp table and returns status.
2834  * The opp is made available by default and it can be controlled using
2835  * dev_pm_opp_enable/disable functions.
2836  *
2837  * Return:
2838  * 0		On success OR
2839  *		Duplicate OPPs (both freq and volt are same) and opp->available
2840  * -EEXIST	Freq are same and volt are different OR
2841  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2842  * -ENOMEM	Memory allocation failure
2843  */
2844 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2845 {
2846 	struct opp_table *opp_table;
2847 	int ret;
2848 
2849 	opp_table = _add_opp_table(dev, true);
2850 	if (IS_ERR(opp_table))
2851 		return PTR_ERR(opp_table);
2852 
2853 	/* Fix regulator count for dynamic OPPs */
2854 	opp_table->regulator_count = 1;
2855 
2856 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2857 	if (ret)
2858 		dev_pm_opp_put_opp_table(opp_table);
2859 
2860 	return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2863 
2864 /**
2865  * _opp_set_availability() - helper to set the availability of an opp
2866  * @dev:		device for which we do this operation
2867  * @freq:		OPP frequency to modify availability
2868  * @availability_req:	availability status requested for this opp
2869  *
2870  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2871  * which is isolated here.
2872  *
2873  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2874  * copy operation, returns 0 if no modification was done OR modification was
2875  * successful.
2876  */
2877 static int _opp_set_availability(struct device *dev, unsigned long freq,
2878 				 bool availability_req)
2879 {
2880 	struct opp_table *opp_table;
2881 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2882 	int r = 0;
2883 
2884 	/* Find the opp_table */
2885 	opp_table = _find_opp_table(dev);
2886 	if (IS_ERR(opp_table)) {
2887 		r = PTR_ERR(opp_table);
2888 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2889 		return r;
2890 	}
2891 
2892 	if (!assert_single_clk(opp_table)) {
2893 		r = -EINVAL;
2894 		goto put_table;
2895 	}
2896 
2897 	mutex_lock(&opp_table->lock);
2898 
2899 	/* Do we have the frequency? */
2900 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2901 		if (tmp_opp->rates[0] == freq) {
2902 			opp = tmp_opp;
2903 			break;
2904 		}
2905 	}
2906 
2907 	if (IS_ERR(opp)) {
2908 		r = PTR_ERR(opp);
2909 		goto unlock;
2910 	}
2911 
2912 	/* Is update really needed? */
2913 	if (opp->available == availability_req)
2914 		goto unlock;
2915 
2916 	opp->available = availability_req;
2917 
2918 	dev_pm_opp_get(opp);
2919 	mutex_unlock(&opp_table->lock);
2920 
2921 	/* Notify the change of the OPP availability */
2922 	if (availability_req)
2923 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2924 					     opp);
2925 	else
2926 		blocking_notifier_call_chain(&opp_table->head,
2927 					     OPP_EVENT_DISABLE, opp);
2928 
2929 	dev_pm_opp_put(opp);
2930 	goto put_table;
2931 
2932 unlock:
2933 	mutex_unlock(&opp_table->lock);
2934 put_table:
2935 	dev_pm_opp_put_opp_table(opp_table);
2936 	return r;
2937 }
2938 
2939 /**
2940  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2941  * @dev:		device for which we do this operation
2942  * @freq:		OPP frequency to adjust voltage of
2943  * @u_volt:		new OPP target voltage
2944  * @u_volt_min:		new OPP min voltage
2945  * @u_volt_max:		new OPP max voltage
2946  *
2947  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2948  * copy operation, returns 0 if no modifcation was done OR modification was
2949  * successful.
2950  */
2951 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2952 			      unsigned long u_volt, unsigned long u_volt_min,
2953 			      unsigned long u_volt_max)
2954 
2955 {
2956 	struct opp_table *opp_table;
2957 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2958 	int r = 0;
2959 
2960 	/* Find the opp_table */
2961 	opp_table = _find_opp_table(dev);
2962 	if (IS_ERR(opp_table)) {
2963 		r = PTR_ERR(opp_table);
2964 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2965 		return r;
2966 	}
2967 
2968 	if (!assert_single_clk(opp_table)) {
2969 		r = -EINVAL;
2970 		goto put_table;
2971 	}
2972 
2973 	mutex_lock(&opp_table->lock);
2974 
2975 	/* Do we have the frequency? */
2976 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2977 		if (tmp_opp->rates[0] == freq) {
2978 			opp = tmp_opp;
2979 			break;
2980 		}
2981 	}
2982 
2983 	if (IS_ERR(opp)) {
2984 		r = PTR_ERR(opp);
2985 		goto adjust_unlock;
2986 	}
2987 
2988 	/* Is update really needed? */
2989 	if (opp->supplies->u_volt == u_volt)
2990 		goto adjust_unlock;
2991 
2992 	opp->supplies->u_volt = u_volt;
2993 	opp->supplies->u_volt_min = u_volt_min;
2994 	opp->supplies->u_volt_max = u_volt_max;
2995 
2996 	dev_pm_opp_get(opp);
2997 	mutex_unlock(&opp_table->lock);
2998 
2999 	/* Notify the voltage change of the OPP */
3000 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3001 				     opp);
3002 
3003 	dev_pm_opp_put(opp);
3004 	goto put_table;
3005 
3006 adjust_unlock:
3007 	mutex_unlock(&opp_table->lock);
3008 put_table:
3009 	dev_pm_opp_put_opp_table(opp_table);
3010 	return r;
3011 }
3012 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3013 
3014 /**
3015  * dev_pm_opp_enable() - Enable a specific OPP
3016  * @dev:	device for which we do this operation
3017  * @freq:	OPP frequency to enable
3018  *
3019  * Enables a provided opp. If the operation is valid, this returns 0, else the
3020  * corresponding error value. It is meant to be used for users an OPP available
3021  * after being temporarily made unavailable with dev_pm_opp_disable.
3022  *
3023  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3024  * copy operation, returns 0 if no modification was done OR modification was
3025  * successful.
3026  */
3027 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3028 {
3029 	return _opp_set_availability(dev, freq, true);
3030 }
3031 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3032 
3033 /**
3034  * dev_pm_opp_disable() - Disable a specific OPP
3035  * @dev:	device for which we do this operation
3036  * @freq:	OPP frequency to disable
3037  *
3038  * Disables a provided opp. If the operation is valid, this returns
3039  * 0, else the corresponding error value. It is meant to be a temporary
3040  * control by users to make this OPP not available until the circumstances are
3041  * right to make it available again (with a call to dev_pm_opp_enable).
3042  *
3043  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3044  * copy operation, returns 0 if no modification was done OR modification was
3045  * successful.
3046  */
3047 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3048 {
3049 	return _opp_set_availability(dev, freq, false);
3050 }
3051 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3052 
3053 /**
3054  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3055  * @dev:	Device for which notifier needs to be registered
3056  * @nb:		Notifier block to be registered
3057  *
3058  * Return: 0 on success or a negative error value.
3059  */
3060 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3061 {
3062 	struct opp_table *opp_table;
3063 	int ret;
3064 
3065 	opp_table = _find_opp_table(dev);
3066 	if (IS_ERR(opp_table))
3067 		return PTR_ERR(opp_table);
3068 
3069 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3070 
3071 	dev_pm_opp_put_opp_table(opp_table);
3072 
3073 	return ret;
3074 }
3075 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3076 
3077 /**
3078  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3079  * @dev:	Device for which notifier needs to be unregistered
3080  * @nb:		Notifier block to be unregistered
3081  *
3082  * Return: 0 on success or a negative error value.
3083  */
3084 int dev_pm_opp_unregister_notifier(struct device *dev,
3085 				   struct notifier_block *nb)
3086 {
3087 	struct opp_table *opp_table;
3088 	int ret;
3089 
3090 	opp_table = _find_opp_table(dev);
3091 	if (IS_ERR(opp_table))
3092 		return PTR_ERR(opp_table);
3093 
3094 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3095 
3096 	dev_pm_opp_put_opp_table(opp_table);
3097 
3098 	return ret;
3099 }
3100 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3101 
3102 /**
3103  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3104  * @dev:	device pointer used to lookup OPP table.
3105  *
3106  * Free both OPPs created using static entries present in DT and the
3107  * dynamically added entries.
3108  */
3109 void dev_pm_opp_remove_table(struct device *dev)
3110 {
3111 	struct opp_table *opp_table;
3112 
3113 	/* Check for existing table for 'dev' */
3114 	opp_table = _find_opp_table(dev);
3115 	if (IS_ERR(opp_table)) {
3116 		int error = PTR_ERR(opp_table);
3117 
3118 		if (error != -ENODEV)
3119 			WARN(1, "%s: opp_table: %d\n",
3120 			     IS_ERR_OR_NULL(dev) ?
3121 					"Invalid device" : dev_name(dev),
3122 			     error);
3123 		return;
3124 	}
3125 
3126 	/*
3127 	 * Drop the extra reference only if the OPP table was successfully added
3128 	 * with dev_pm_opp_of_add_table() earlier.
3129 	 **/
3130 	if (_opp_remove_all_static(opp_table))
3131 		dev_pm_opp_put_opp_table(opp_table);
3132 
3133 	/* Drop reference taken by _find_opp_table() */
3134 	dev_pm_opp_put_opp_table(opp_table);
3135 }
3136 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3137 
3138 /**
3139  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3140  * @dev:	device for which we do this operation
3141  *
3142  * Sync voltage state of the OPP table regulators.
3143  *
3144  * Return: 0 on success or a negative error value.
3145  */
3146 int dev_pm_opp_sync_regulators(struct device *dev)
3147 {
3148 	struct opp_table *opp_table;
3149 	struct regulator *reg;
3150 	int i, ret = 0;
3151 
3152 	/* Device may not have OPP table */
3153 	opp_table = _find_opp_table(dev);
3154 	if (IS_ERR(opp_table))
3155 		return 0;
3156 
3157 	/* Regulator may not be required for the device */
3158 	if (unlikely(!opp_table->regulators))
3159 		goto put_table;
3160 
3161 	/* Nothing to sync if voltage wasn't changed */
3162 	if (!opp_table->enabled)
3163 		goto put_table;
3164 
3165 	for (i = 0; i < opp_table->regulator_count; i++) {
3166 		reg = opp_table->regulators[i];
3167 		ret = regulator_sync_voltage(reg);
3168 		if (ret)
3169 			break;
3170 	}
3171 put_table:
3172 	/* Drop reference taken by _find_opp_table() */
3173 	dev_pm_opp_put_opp_table(opp_table);
3174 
3175 	return ret;
3176 }
3177 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3178