1 /* 2 * Generic OPP Interface 3 * 4 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 5 * Nishanth Menon 6 * Romit Dasgupta 7 * Kevin Hilman 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/clk.h> 17 #include <linux/errno.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/export.h> 22 #include <linux/pm_domain.h> 23 #include <linux/regulator/consumer.h> 24 25 #include "opp.h" 26 27 /* 28 * The root of the list of all opp-tables. All opp_table structures branch off 29 * from here, with each opp_table containing the list of opps it supports in 30 * various states of availability. 31 */ 32 LIST_HEAD(opp_tables); 33 /* Lock to allow exclusive modification to the device and opp lists */ 34 DEFINE_MUTEX(opp_table_lock); 35 36 static struct opp_device *_find_opp_dev(const struct device *dev, 37 struct opp_table *opp_table) 38 { 39 struct opp_device *opp_dev; 40 41 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 42 if (opp_dev->dev == dev) 43 return opp_dev; 44 45 return NULL; 46 } 47 48 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 49 { 50 struct opp_table *opp_table; 51 bool found; 52 53 list_for_each_entry(opp_table, &opp_tables, node) { 54 mutex_lock(&opp_table->lock); 55 found = !!_find_opp_dev(dev, opp_table); 56 mutex_unlock(&opp_table->lock); 57 58 if (found) { 59 _get_opp_table_kref(opp_table); 60 61 return opp_table; 62 } 63 } 64 65 return ERR_PTR(-ENODEV); 66 } 67 68 /** 69 * _find_opp_table() - find opp_table struct using device pointer 70 * @dev: device pointer used to lookup OPP table 71 * 72 * Search OPP table for one containing matching device. 73 * 74 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 75 * -EINVAL based on type of error. 76 * 77 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 78 */ 79 struct opp_table *_find_opp_table(struct device *dev) 80 { 81 struct opp_table *opp_table; 82 83 if (IS_ERR_OR_NULL(dev)) { 84 pr_err("%s: Invalid parameters\n", __func__); 85 return ERR_PTR(-EINVAL); 86 } 87 88 mutex_lock(&opp_table_lock); 89 opp_table = _find_opp_table_unlocked(dev); 90 mutex_unlock(&opp_table_lock); 91 92 return opp_table; 93 } 94 95 /** 96 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 97 * @opp: opp for which voltage has to be returned for 98 * 99 * Return: voltage in micro volt corresponding to the opp, else 100 * return 0 101 * 102 * This is useful only for devices with single power supply. 103 */ 104 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 105 { 106 if (IS_ERR_OR_NULL(opp)) { 107 pr_err("%s: Invalid parameters\n", __func__); 108 return 0; 109 } 110 111 return opp->supplies[0].u_volt; 112 } 113 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 114 115 /** 116 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 117 * @opp: opp for which frequency has to be returned for 118 * 119 * Return: frequency in hertz corresponding to the opp, else 120 * return 0 121 */ 122 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 123 { 124 if (IS_ERR_OR_NULL(opp) || !opp->available) { 125 pr_err("%s: Invalid parameters\n", __func__); 126 return 0; 127 } 128 129 return opp->rate; 130 } 131 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 132 133 /** 134 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 135 * @opp: opp for which turbo mode is being verified 136 * 137 * Turbo OPPs are not for normal use, and can be enabled (under certain 138 * conditions) for short duration of times to finish high throughput work 139 * quickly. Running on them for longer times may overheat the chip. 140 * 141 * Return: true if opp is turbo opp, else false. 142 */ 143 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 144 { 145 if (IS_ERR_OR_NULL(opp) || !opp->available) { 146 pr_err("%s: Invalid parameters\n", __func__); 147 return false; 148 } 149 150 return opp->turbo; 151 } 152 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 153 154 /** 155 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 156 * @dev: device for which we do this operation 157 * 158 * Return: This function returns the max clock latency in nanoseconds. 159 */ 160 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 161 { 162 struct opp_table *opp_table; 163 unsigned long clock_latency_ns; 164 165 opp_table = _find_opp_table(dev); 166 if (IS_ERR(opp_table)) 167 return 0; 168 169 clock_latency_ns = opp_table->clock_latency_ns_max; 170 171 dev_pm_opp_put_opp_table(opp_table); 172 173 return clock_latency_ns; 174 } 175 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 176 177 /** 178 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 179 * @dev: device for which we do this operation 180 * 181 * Return: This function returns the max voltage latency in nanoseconds. 182 */ 183 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 184 { 185 struct opp_table *opp_table; 186 struct dev_pm_opp *opp; 187 struct regulator *reg; 188 unsigned long latency_ns = 0; 189 int ret, i, count; 190 struct { 191 unsigned long min; 192 unsigned long max; 193 } *uV; 194 195 opp_table = _find_opp_table(dev); 196 if (IS_ERR(opp_table)) 197 return 0; 198 199 count = opp_table->regulator_count; 200 201 /* Regulator may not be required for the device */ 202 if (!count) 203 goto put_opp_table; 204 205 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 206 if (!uV) 207 goto put_opp_table; 208 209 mutex_lock(&opp_table->lock); 210 211 for (i = 0; i < count; i++) { 212 uV[i].min = ~0; 213 uV[i].max = 0; 214 215 list_for_each_entry(opp, &opp_table->opp_list, node) { 216 if (!opp->available) 217 continue; 218 219 if (opp->supplies[i].u_volt_min < uV[i].min) 220 uV[i].min = opp->supplies[i].u_volt_min; 221 if (opp->supplies[i].u_volt_max > uV[i].max) 222 uV[i].max = opp->supplies[i].u_volt_max; 223 } 224 } 225 226 mutex_unlock(&opp_table->lock); 227 228 /* 229 * The caller needs to ensure that opp_table (and hence the regulator) 230 * isn't freed, while we are executing this routine. 231 */ 232 for (i = 0; i < count; i++) { 233 reg = opp_table->regulators[i]; 234 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 235 if (ret > 0) 236 latency_ns += ret * 1000; 237 } 238 239 kfree(uV); 240 put_opp_table: 241 dev_pm_opp_put_opp_table(opp_table); 242 243 return latency_ns; 244 } 245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 246 247 /** 248 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 249 * nanoseconds 250 * @dev: device for which we do this operation 251 * 252 * Return: This function returns the max transition latency, in nanoseconds, to 253 * switch from one OPP to other. 254 */ 255 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 256 { 257 return dev_pm_opp_get_max_volt_latency(dev) + 258 dev_pm_opp_get_max_clock_latency(dev); 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 261 262 /** 263 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 264 * @dev: device for which we do this operation 265 * 266 * Return: This function returns the frequency of the OPP marked as suspend_opp 267 * if one is available, else returns 0; 268 */ 269 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 270 { 271 struct opp_table *opp_table; 272 unsigned long freq = 0; 273 274 opp_table = _find_opp_table(dev); 275 if (IS_ERR(opp_table)) 276 return 0; 277 278 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 279 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 280 281 dev_pm_opp_put_opp_table(opp_table); 282 283 return freq; 284 } 285 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 286 287 int _get_opp_count(struct opp_table *opp_table) 288 { 289 struct dev_pm_opp *opp; 290 int count = 0; 291 292 mutex_lock(&opp_table->lock); 293 294 list_for_each_entry(opp, &opp_table->opp_list, node) { 295 if (opp->available) 296 count++; 297 } 298 299 mutex_unlock(&opp_table->lock); 300 301 return count; 302 } 303 304 /** 305 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 306 * @dev: device for which we do this operation 307 * 308 * Return: This function returns the number of available opps if there are any, 309 * else returns 0 if none or the corresponding error value. 310 */ 311 int dev_pm_opp_get_opp_count(struct device *dev) 312 { 313 struct opp_table *opp_table; 314 int count; 315 316 opp_table = _find_opp_table(dev); 317 if (IS_ERR(opp_table)) { 318 count = PTR_ERR(opp_table); 319 dev_dbg(dev, "%s: OPP table not found (%d)\n", 320 __func__, count); 321 return count; 322 } 323 324 count = _get_opp_count(opp_table); 325 dev_pm_opp_put_opp_table(opp_table); 326 327 return count; 328 } 329 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 330 331 /** 332 * dev_pm_opp_find_freq_exact() - search for an exact frequency 333 * @dev: device for which we do this operation 334 * @freq: frequency to search for 335 * @available: true/false - match for available opp 336 * 337 * Return: Searches for exact match in the opp table and returns pointer to the 338 * matching opp if found, else returns ERR_PTR in case of error and should 339 * be handled using IS_ERR. Error return values can be: 340 * EINVAL: for bad pointer 341 * ERANGE: no match found for search 342 * ENODEV: if device not found in list of registered devices 343 * 344 * Note: available is a modifier for the search. if available=true, then the 345 * match is for exact matching frequency and is available in the stored OPP 346 * table. if false, the match is for exact frequency which is not available. 347 * 348 * This provides a mechanism to enable an opp which is not available currently 349 * or the opposite as well. 350 * 351 * The callers are required to call dev_pm_opp_put() for the returned OPP after 352 * use. 353 */ 354 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 355 unsigned long freq, 356 bool available) 357 { 358 struct opp_table *opp_table; 359 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 360 361 opp_table = _find_opp_table(dev); 362 if (IS_ERR(opp_table)) { 363 int r = PTR_ERR(opp_table); 364 365 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 366 return ERR_PTR(r); 367 } 368 369 mutex_lock(&opp_table->lock); 370 371 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 372 if (temp_opp->available == available && 373 temp_opp->rate == freq) { 374 opp = temp_opp; 375 376 /* Increment the reference count of OPP */ 377 dev_pm_opp_get(opp); 378 break; 379 } 380 } 381 382 mutex_unlock(&opp_table->lock); 383 dev_pm_opp_put_opp_table(opp_table); 384 385 return opp; 386 } 387 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 388 389 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 390 unsigned long *freq) 391 { 392 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 393 394 mutex_lock(&opp_table->lock); 395 396 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 397 if (temp_opp->available && temp_opp->rate >= *freq) { 398 opp = temp_opp; 399 *freq = opp->rate; 400 401 /* Increment the reference count of OPP */ 402 dev_pm_opp_get(opp); 403 break; 404 } 405 } 406 407 mutex_unlock(&opp_table->lock); 408 409 return opp; 410 } 411 412 /** 413 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 414 * @dev: device for which we do this operation 415 * @freq: Start frequency 416 * 417 * Search for the matching ceil *available* OPP from a starting freq 418 * for a device. 419 * 420 * Return: matching *opp and refreshes *freq accordingly, else returns 421 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 422 * values can be: 423 * EINVAL: for bad pointer 424 * ERANGE: no match found for search 425 * ENODEV: if device not found in list of registered devices 426 * 427 * The callers are required to call dev_pm_opp_put() for the returned OPP after 428 * use. 429 */ 430 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 431 unsigned long *freq) 432 { 433 struct opp_table *opp_table; 434 struct dev_pm_opp *opp; 435 436 if (!dev || !freq) { 437 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 438 return ERR_PTR(-EINVAL); 439 } 440 441 opp_table = _find_opp_table(dev); 442 if (IS_ERR(opp_table)) 443 return ERR_CAST(opp_table); 444 445 opp = _find_freq_ceil(opp_table, freq); 446 447 dev_pm_opp_put_opp_table(opp_table); 448 449 return opp; 450 } 451 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 452 453 /** 454 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 455 * @dev: device for which we do this operation 456 * @freq: Start frequency 457 * 458 * Search for the matching floor *available* OPP from a starting freq 459 * for a device. 460 * 461 * Return: matching *opp and refreshes *freq accordingly, else returns 462 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 463 * values can be: 464 * EINVAL: for bad pointer 465 * ERANGE: no match found for search 466 * ENODEV: if device not found in list of registered devices 467 * 468 * The callers are required to call dev_pm_opp_put() for the returned OPP after 469 * use. 470 */ 471 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 472 unsigned long *freq) 473 { 474 struct opp_table *opp_table; 475 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 476 477 if (!dev || !freq) { 478 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 479 return ERR_PTR(-EINVAL); 480 } 481 482 opp_table = _find_opp_table(dev); 483 if (IS_ERR(opp_table)) 484 return ERR_CAST(opp_table); 485 486 mutex_lock(&opp_table->lock); 487 488 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 489 if (temp_opp->available) { 490 /* go to the next node, before choosing prev */ 491 if (temp_opp->rate > *freq) 492 break; 493 else 494 opp = temp_opp; 495 } 496 } 497 498 /* Increment the reference count of OPP */ 499 if (!IS_ERR(opp)) 500 dev_pm_opp_get(opp); 501 mutex_unlock(&opp_table->lock); 502 dev_pm_opp_put_opp_table(opp_table); 503 504 if (!IS_ERR(opp)) 505 *freq = opp->rate; 506 507 return opp; 508 } 509 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 510 511 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 512 struct dev_pm_opp_supply *supply) 513 { 514 int ret; 515 516 /* Regulator not available for device */ 517 if (IS_ERR(reg)) { 518 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 519 PTR_ERR(reg)); 520 return 0; 521 } 522 523 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 524 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 525 526 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 527 supply->u_volt, supply->u_volt_max); 528 if (ret) 529 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 530 __func__, supply->u_volt_min, supply->u_volt, 531 supply->u_volt_max, ret); 532 533 return ret; 534 } 535 536 static inline int 537 _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 538 unsigned long old_freq, unsigned long freq) 539 { 540 int ret; 541 542 ret = clk_set_rate(clk, freq); 543 if (ret) { 544 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 545 ret); 546 } 547 548 return ret; 549 } 550 551 static inline int 552 _generic_set_opp_domain(struct device *dev, struct clk *clk, 553 unsigned long old_freq, unsigned long freq, 554 unsigned int old_pstate, unsigned int new_pstate) 555 { 556 int ret; 557 558 /* Scaling up? Scale domain performance state before frequency */ 559 if (freq > old_freq) { 560 ret = dev_pm_genpd_set_performance_state(dev, new_pstate); 561 if (ret) 562 return ret; 563 } 564 565 ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq); 566 if (ret) 567 goto restore_domain_state; 568 569 /* Scaling down? Scale domain performance state after frequency */ 570 if (freq < old_freq) { 571 ret = dev_pm_genpd_set_performance_state(dev, new_pstate); 572 if (ret) 573 goto restore_freq; 574 } 575 576 return 0; 577 578 restore_freq: 579 if (_generic_set_opp_clk_only(dev, clk, freq, old_freq)) 580 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 581 __func__, old_freq); 582 restore_domain_state: 583 if (freq > old_freq) 584 dev_pm_genpd_set_performance_state(dev, old_pstate); 585 586 return ret; 587 } 588 589 static int _generic_set_opp_regulator(const struct opp_table *opp_table, 590 struct device *dev, 591 unsigned long old_freq, 592 unsigned long freq, 593 struct dev_pm_opp_supply *old_supply, 594 struct dev_pm_opp_supply *new_supply) 595 { 596 struct regulator *reg = opp_table->regulators[0]; 597 int ret; 598 599 /* This function only supports single regulator per device */ 600 if (WARN_ON(opp_table->regulator_count > 1)) { 601 dev_err(dev, "multiple regulators are not supported\n"); 602 return -EINVAL; 603 } 604 605 /* Scaling up? Scale voltage before frequency */ 606 if (freq >= old_freq) { 607 ret = _set_opp_voltage(dev, reg, new_supply); 608 if (ret) 609 goto restore_voltage; 610 } 611 612 /* Change frequency */ 613 ret = _generic_set_opp_clk_only(dev, opp_table->clk, old_freq, freq); 614 if (ret) 615 goto restore_voltage; 616 617 /* Scaling down? Scale voltage after frequency */ 618 if (freq < old_freq) { 619 ret = _set_opp_voltage(dev, reg, new_supply); 620 if (ret) 621 goto restore_freq; 622 } 623 624 return 0; 625 626 restore_freq: 627 if (_generic_set_opp_clk_only(dev, opp_table->clk, freq, old_freq)) 628 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 629 __func__, old_freq); 630 restore_voltage: 631 /* This shouldn't harm even if the voltages weren't updated earlier */ 632 if (old_supply) 633 _set_opp_voltage(dev, reg, old_supply); 634 635 return ret; 636 } 637 638 /** 639 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 640 * @dev: device for which we do this operation 641 * @target_freq: frequency to achieve 642 * 643 * This configures the power-supplies and clock source to the levels specified 644 * by the OPP corresponding to the target_freq. 645 */ 646 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 647 { 648 struct opp_table *opp_table; 649 unsigned long freq, old_freq; 650 struct dev_pm_opp *old_opp, *opp; 651 struct clk *clk; 652 int ret, size; 653 654 if (unlikely(!target_freq)) { 655 dev_err(dev, "%s: Invalid target frequency %lu\n", __func__, 656 target_freq); 657 return -EINVAL; 658 } 659 660 opp_table = _find_opp_table(dev); 661 if (IS_ERR(opp_table)) { 662 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 663 return PTR_ERR(opp_table); 664 } 665 666 clk = opp_table->clk; 667 if (IS_ERR(clk)) { 668 dev_err(dev, "%s: No clock available for the device\n", 669 __func__); 670 ret = PTR_ERR(clk); 671 goto put_opp_table; 672 } 673 674 freq = clk_round_rate(clk, target_freq); 675 if ((long)freq <= 0) 676 freq = target_freq; 677 678 old_freq = clk_get_rate(clk); 679 680 /* Return early if nothing to do */ 681 if (old_freq == freq) { 682 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 683 __func__, freq); 684 ret = 0; 685 goto put_opp_table; 686 } 687 688 old_opp = _find_freq_ceil(opp_table, &old_freq); 689 if (IS_ERR(old_opp)) { 690 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 691 __func__, old_freq, PTR_ERR(old_opp)); 692 } 693 694 opp = _find_freq_ceil(opp_table, &freq); 695 if (IS_ERR(opp)) { 696 ret = PTR_ERR(opp); 697 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 698 __func__, freq, ret); 699 goto put_old_opp; 700 } 701 702 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 703 old_freq, freq); 704 705 /* Only frequency scaling */ 706 if (!opp_table->regulators) { 707 /* 708 * We don't support devices with both regulator and 709 * domain performance-state for now. 710 */ 711 if (opp_table->genpd_performance_state) 712 ret = _generic_set_opp_domain(dev, clk, old_freq, freq, 713 IS_ERR(old_opp) ? 0 : old_opp->pstate, 714 opp->pstate); 715 else 716 ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq); 717 } else if (!opp_table->set_opp) { 718 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 719 IS_ERR(old_opp) ? NULL : old_opp->supplies, 720 opp->supplies); 721 } else { 722 struct dev_pm_set_opp_data *data; 723 724 data = opp_table->set_opp_data; 725 data->regulators = opp_table->regulators; 726 data->regulator_count = opp_table->regulator_count; 727 data->clk = clk; 728 data->dev = dev; 729 730 data->old_opp.rate = old_freq; 731 size = sizeof(*opp->supplies) * opp_table->regulator_count; 732 if (IS_ERR(old_opp)) 733 memset(data->old_opp.supplies, 0, size); 734 else 735 memcpy(data->old_opp.supplies, old_opp->supplies, size); 736 737 data->new_opp.rate = freq; 738 memcpy(data->new_opp.supplies, opp->supplies, size); 739 740 ret = opp_table->set_opp(data); 741 } 742 743 dev_pm_opp_put(opp); 744 put_old_opp: 745 if (!IS_ERR(old_opp)) 746 dev_pm_opp_put(old_opp); 747 put_opp_table: 748 dev_pm_opp_put_opp_table(opp_table); 749 return ret; 750 } 751 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 752 753 /* OPP-dev Helpers */ 754 static void _remove_opp_dev(struct opp_device *opp_dev, 755 struct opp_table *opp_table) 756 { 757 opp_debug_unregister(opp_dev, opp_table); 758 list_del(&opp_dev->node); 759 kfree(opp_dev); 760 } 761 762 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 763 struct opp_table *opp_table) 764 { 765 struct opp_device *opp_dev; 766 int ret; 767 768 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 769 if (!opp_dev) 770 return NULL; 771 772 /* Initialize opp-dev */ 773 opp_dev->dev = dev; 774 775 list_add(&opp_dev->node, &opp_table->dev_list); 776 777 /* Create debugfs entries for the opp_table */ 778 ret = opp_debug_register(opp_dev, opp_table); 779 if (ret) 780 dev_err(dev, "%s: Failed to register opp debugfs (%d)\n", 781 __func__, ret); 782 783 return opp_dev; 784 } 785 786 struct opp_device *_add_opp_dev(const struct device *dev, 787 struct opp_table *opp_table) 788 { 789 struct opp_device *opp_dev; 790 791 mutex_lock(&opp_table->lock); 792 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 793 mutex_unlock(&opp_table->lock); 794 795 return opp_dev; 796 } 797 798 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 799 { 800 struct opp_table *opp_table; 801 struct opp_device *opp_dev; 802 int ret; 803 804 /* 805 * Allocate a new OPP table. In the infrequent case where a new 806 * device is needed to be added, we pay this penalty. 807 */ 808 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 809 if (!opp_table) 810 return NULL; 811 812 mutex_init(&opp_table->lock); 813 INIT_LIST_HEAD(&opp_table->dev_list); 814 815 opp_dev = _add_opp_dev(dev, opp_table); 816 if (!opp_dev) { 817 kfree(opp_table); 818 return NULL; 819 } 820 821 _of_init_opp_table(opp_table, dev, index); 822 823 /* Find clk for the device */ 824 opp_table->clk = clk_get(dev, NULL); 825 if (IS_ERR(opp_table->clk)) { 826 ret = PTR_ERR(opp_table->clk); 827 if (ret != -EPROBE_DEFER) 828 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 829 ret); 830 } 831 832 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 833 INIT_LIST_HEAD(&opp_table->opp_list); 834 kref_init(&opp_table->kref); 835 836 /* Secure the device table modification */ 837 list_add(&opp_table->node, &opp_tables); 838 return opp_table; 839 } 840 841 void _get_opp_table_kref(struct opp_table *opp_table) 842 { 843 kref_get(&opp_table->kref); 844 } 845 846 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 847 { 848 struct opp_table *opp_table; 849 850 /* Hold our table modification lock here */ 851 mutex_lock(&opp_table_lock); 852 853 opp_table = _find_opp_table_unlocked(dev); 854 if (!IS_ERR(opp_table)) 855 goto unlock; 856 857 opp_table = _managed_opp(dev, index); 858 if (opp_table) { 859 if (!_add_opp_dev_unlocked(dev, opp_table)) { 860 dev_pm_opp_put_opp_table(opp_table); 861 opp_table = NULL; 862 } 863 goto unlock; 864 } 865 866 opp_table = _allocate_opp_table(dev, index); 867 868 unlock: 869 mutex_unlock(&opp_table_lock); 870 871 return opp_table; 872 } 873 874 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 875 { 876 return _opp_get_opp_table(dev, 0); 877 } 878 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 879 880 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 881 int index) 882 { 883 return _opp_get_opp_table(dev, index); 884 } 885 886 static void _opp_table_kref_release(struct kref *kref) 887 { 888 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 889 struct opp_device *opp_dev, *temp; 890 891 /* Release clk */ 892 if (!IS_ERR(opp_table->clk)) 893 clk_put(opp_table->clk); 894 895 WARN_ON(!list_empty(&opp_table->opp_list)); 896 897 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 898 /* 899 * The OPP table is getting removed, drop the performance state 900 * constraints. 901 */ 902 if (opp_table->genpd_performance_state) 903 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 904 905 _remove_opp_dev(opp_dev, opp_table); 906 } 907 908 mutex_destroy(&opp_table->lock); 909 list_del(&opp_table->node); 910 kfree(opp_table); 911 912 mutex_unlock(&opp_table_lock); 913 } 914 915 void _opp_remove_all_static(struct opp_table *opp_table) 916 { 917 struct dev_pm_opp *opp, *tmp; 918 919 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 920 if (!opp->dynamic) 921 dev_pm_opp_put(opp); 922 } 923 924 opp_table->parsed_static_opps = false; 925 } 926 927 static void _opp_table_list_kref_release(struct kref *kref) 928 { 929 struct opp_table *opp_table = container_of(kref, struct opp_table, 930 list_kref); 931 932 _opp_remove_all_static(opp_table); 933 mutex_unlock(&opp_table_lock); 934 } 935 936 void _put_opp_list_kref(struct opp_table *opp_table) 937 { 938 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release, 939 &opp_table_lock); 940 } 941 942 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 943 { 944 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 945 &opp_table_lock); 946 } 947 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 948 949 void _opp_free(struct dev_pm_opp *opp) 950 { 951 kfree(opp); 952 } 953 954 static void _opp_kref_release(struct kref *kref) 955 { 956 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 957 struct opp_table *opp_table = opp->opp_table; 958 959 /* 960 * Notify the changes in the availability of the operable 961 * frequency/voltage list. 962 */ 963 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 964 opp_debug_remove_one(opp); 965 list_del(&opp->node); 966 kfree(opp); 967 968 mutex_unlock(&opp_table->lock); 969 } 970 971 void dev_pm_opp_get(struct dev_pm_opp *opp) 972 { 973 kref_get(&opp->kref); 974 } 975 976 void dev_pm_opp_put(struct dev_pm_opp *opp) 977 { 978 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 979 } 980 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 981 982 /** 983 * dev_pm_opp_remove() - Remove an OPP from OPP table 984 * @dev: device for which we do this operation 985 * @freq: OPP to remove with matching 'freq' 986 * 987 * This function removes an opp from the opp table. 988 */ 989 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 990 { 991 struct dev_pm_opp *opp; 992 struct opp_table *opp_table; 993 bool found = false; 994 995 opp_table = _find_opp_table(dev); 996 if (IS_ERR(opp_table)) 997 return; 998 999 mutex_lock(&opp_table->lock); 1000 1001 list_for_each_entry(opp, &opp_table->opp_list, node) { 1002 if (opp->rate == freq) { 1003 found = true; 1004 break; 1005 } 1006 } 1007 1008 mutex_unlock(&opp_table->lock); 1009 1010 if (found) { 1011 dev_pm_opp_put(opp); 1012 1013 /* Drop the reference taken by dev_pm_opp_add() */ 1014 dev_pm_opp_put_opp_table(opp_table); 1015 } else { 1016 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1017 __func__, freq); 1018 } 1019 1020 /* Drop the reference taken by _find_opp_table() */ 1021 dev_pm_opp_put_opp_table(opp_table); 1022 } 1023 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1024 1025 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1026 { 1027 struct dev_pm_opp *opp; 1028 int count, supply_size; 1029 1030 /* Allocate space for at least one supply */ 1031 count = table->regulator_count ? table->regulator_count : 1; 1032 supply_size = sizeof(*opp->supplies) * count; 1033 1034 /* allocate new OPP node and supplies structures */ 1035 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); 1036 if (!opp) 1037 return NULL; 1038 1039 /* Put the supplies at the end of the OPP structure as an empty array */ 1040 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1041 INIT_LIST_HEAD(&opp->node); 1042 1043 return opp; 1044 } 1045 1046 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1047 struct opp_table *opp_table) 1048 { 1049 struct regulator *reg; 1050 int i; 1051 1052 for (i = 0; i < opp_table->regulator_count; i++) { 1053 reg = opp_table->regulators[i]; 1054 1055 if (!regulator_is_supported_voltage(reg, 1056 opp->supplies[i].u_volt_min, 1057 opp->supplies[i].u_volt_max)) { 1058 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1059 __func__, opp->supplies[i].u_volt_min, 1060 opp->supplies[i].u_volt_max); 1061 return false; 1062 } 1063 } 1064 1065 return true; 1066 } 1067 1068 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1069 struct opp_table *opp_table, 1070 struct list_head **head) 1071 { 1072 struct dev_pm_opp *opp; 1073 1074 /* 1075 * Insert new OPP in order of increasing frequency and discard if 1076 * already present. 1077 * 1078 * Need to use &opp_table->opp_list in the condition part of the 'for' 1079 * loop, don't replace it with head otherwise it will become an infinite 1080 * loop. 1081 */ 1082 list_for_each_entry(opp, &opp_table->opp_list, node) { 1083 if (new_opp->rate > opp->rate) { 1084 *head = &opp->node; 1085 continue; 1086 } 1087 1088 if (new_opp->rate < opp->rate) 1089 return 0; 1090 1091 /* Duplicate OPPs */ 1092 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1093 __func__, opp->rate, opp->supplies[0].u_volt, 1094 opp->available, new_opp->rate, 1095 new_opp->supplies[0].u_volt, new_opp->available); 1096 1097 /* Should we compare voltages for all regulators here ? */ 1098 return opp->available && 1099 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1100 } 1101 1102 return 0; 1103 } 1104 1105 /* 1106 * Returns: 1107 * 0: On success. And appropriate error message for duplicate OPPs. 1108 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1109 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1110 * sure we don't print error messages unnecessarily if different parts of 1111 * kernel try to initialize the OPP table. 1112 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1113 * should be considered an error by the callers of _opp_add(). 1114 */ 1115 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1116 struct opp_table *opp_table, bool rate_not_available) 1117 { 1118 struct list_head *head; 1119 int ret; 1120 1121 mutex_lock(&opp_table->lock); 1122 head = &opp_table->opp_list; 1123 1124 if (likely(!rate_not_available)) { 1125 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1126 if (ret) { 1127 mutex_unlock(&opp_table->lock); 1128 return ret; 1129 } 1130 } 1131 1132 list_add(&new_opp->node, head); 1133 mutex_unlock(&opp_table->lock); 1134 1135 new_opp->opp_table = opp_table; 1136 kref_init(&new_opp->kref); 1137 1138 ret = opp_debug_create_one(new_opp, opp_table); 1139 if (ret) 1140 dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n", 1141 __func__, ret); 1142 1143 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1144 new_opp->available = false; 1145 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1146 __func__, new_opp->rate); 1147 } 1148 1149 return 0; 1150 } 1151 1152 /** 1153 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1154 * @opp_table: OPP table 1155 * @dev: device for which we do this operation 1156 * @freq: Frequency in Hz for this OPP 1157 * @u_volt: Voltage in uVolts for this OPP 1158 * @dynamic: Dynamically added OPPs. 1159 * 1160 * This function adds an opp definition to the opp table and returns status. 1161 * The opp is made available by default and it can be controlled using 1162 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1163 * 1164 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1165 * and freed by dev_pm_opp_of_remove_table. 1166 * 1167 * Return: 1168 * 0 On success OR 1169 * Duplicate OPPs (both freq and volt are same) and opp->available 1170 * -EEXIST Freq are same and volt are different OR 1171 * Duplicate OPPs (both freq and volt are same) and !opp->available 1172 * -ENOMEM Memory allocation failure 1173 */ 1174 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1175 unsigned long freq, long u_volt, bool dynamic) 1176 { 1177 struct dev_pm_opp *new_opp; 1178 unsigned long tol; 1179 int ret; 1180 1181 new_opp = _opp_allocate(opp_table); 1182 if (!new_opp) 1183 return -ENOMEM; 1184 1185 /* populate the opp table */ 1186 new_opp->rate = freq; 1187 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1188 new_opp->supplies[0].u_volt = u_volt; 1189 new_opp->supplies[0].u_volt_min = u_volt - tol; 1190 new_opp->supplies[0].u_volt_max = u_volt + tol; 1191 new_opp->available = true; 1192 new_opp->dynamic = dynamic; 1193 1194 ret = _opp_add(dev, new_opp, opp_table, false); 1195 if (ret) { 1196 /* Don't return error for duplicate OPPs */ 1197 if (ret == -EBUSY) 1198 ret = 0; 1199 goto free_opp; 1200 } 1201 1202 /* 1203 * Notify the changes in the availability of the operable 1204 * frequency/voltage list. 1205 */ 1206 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1207 return 0; 1208 1209 free_opp: 1210 _opp_free(new_opp); 1211 1212 return ret; 1213 } 1214 1215 /** 1216 * dev_pm_opp_set_supported_hw() - Set supported platforms 1217 * @dev: Device for which supported-hw has to be set. 1218 * @versions: Array of hierarchy of versions to match. 1219 * @count: Number of elements in the array. 1220 * 1221 * This is required only for the V2 bindings, and it enables a platform to 1222 * specify the hierarchy of versions it supports. OPP layer will then enable 1223 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1224 * property. 1225 */ 1226 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1227 const u32 *versions, unsigned int count) 1228 { 1229 struct opp_table *opp_table; 1230 1231 opp_table = dev_pm_opp_get_opp_table(dev); 1232 if (!opp_table) 1233 return ERR_PTR(-ENOMEM); 1234 1235 /* Make sure there are no concurrent readers while updating opp_table */ 1236 WARN_ON(!list_empty(&opp_table->opp_list)); 1237 1238 /* Another CPU that shares the OPP table has set the property ? */ 1239 if (opp_table->supported_hw) 1240 return opp_table; 1241 1242 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1243 GFP_KERNEL); 1244 if (!opp_table->supported_hw) { 1245 dev_pm_opp_put_opp_table(opp_table); 1246 return ERR_PTR(-ENOMEM); 1247 } 1248 1249 opp_table->supported_hw_count = count; 1250 1251 return opp_table; 1252 } 1253 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1254 1255 /** 1256 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1257 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1258 * 1259 * This is required only for the V2 bindings, and is called for a matching 1260 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1261 * will not be freed. 1262 */ 1263 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1264 { 1265 /* Make sure there are no concurrent readers while updating opp_table */ 1266 WARN_ON(!list_empty(&opp_table->opp_list)); 1267 1268 kfree(opp_table->supported_hw); 1269 opp_table->supported_hw = NULL; 1270 opp_table->supported_hw_count = 0; 1271 1272 dev_pm_opp_put_opp_table(opp_table); 1273 } 1274 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1275 1276 /** 1277 * dev_pm_opp_set_prop_name() - Set prop-extn name 1278 * @dev: Device for which the prop-name has to be set. 1279 * @name: name to postfix to properties. 1280 * 1281 * This is required only for the V2 bindings, and it enables a platform to 1282 * specify the extn to be used for certain property names. The properties to 1283 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1284 * should postfix the property name with -<name> while looking for them. 1285 */ 1286 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1287 { 1288 struct opp_table *opp_table; 1289 1290 opp_table = dev_pm_opp_get_opp_table(dev); 1291 if (!opp_table) 1292 return ERR_PTR(-ENOMEM); 1293 1294 /* Make sure there are no concurrent readers while updating opp_table */ 1295 WARN_ON(!list_empty(&opp_table->opp_list)); 1296 1297 /* Another CPU that shares the OPP table has set the property ? */ 1298 if (opp_table->prop_name) 1299 return opp_table; 1300 1301 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1302 if (!opp_table->prop_name) { 1303 dev_pm_opp_put_opp_table(opp_table); 1304 return ERR_PTR(-ENOMEM); 1305 } 1306 1307 return opp_table; 1308 } 1309 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1310 1311 /** 1312 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1313 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1314 * 1315 * This is required only for the V2 bindings, and is called for a matching 1316 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1317 * will not be freed. 1318 */ 1319 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1320 { 1321 /* Make sure there are no concurrent readers while updating opp_table */ 1322 WARN_ON(!list_empty(&opp_table->opp_list)); 1323 1324 kfree(opp_table->prop_name); 1325 opp_table->prop_name = NULL; 1326 1327 dev_pm_opp_put_opp_table(opp_table); 1328 } 1329 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1330 1331 static int _allocate_set_opp_data(struct opp_table *opp_table) 1332 { 1333 struct dev_pm_set_opp_data *data; 1334 int len, count = opp_table->regulator_count; 1335 1336 if (WARN_ON(!count)) 1337 return -EINVAL; 1338 1339 /* space for set_opp_data */ 1340 len = sizeof(*data); 1341 1342 /* space for old_opp.supplies and new_opp.supplies */ 1343 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1344 1345 data = kzalloc(len, GFP_KERNEL); 1346 if (!data) 1347 return -ENOMEM; 1348 1349 data->old_opp.supplies = (void *)(data + 1); 1350 data->new_opp.supplies = data->old_opp.supplies + count; 1351 1352 opp_table->set_opp_data = data; 1353 1354 return 0; 1355 } 1356 1357 static void _free_set_opp_data(struct opp_table *opp_table) 1358 { 1359 kfree(opp_table->set_opp_data); 1360 opp_table->set_opp_data = NULL; 1361 } 1362 1363 /** 1364 * dev_pm_opp_set_regulators() - Set regulator names for the device 1365 * @dev: Device for which regulator name is being set. 1366 * @names: Array of pointers to the names of the regulator. 1367 * @count: Number of regulators. 1368 * 1369 * In order to support OPP switching, OPP layer needs to know the name of the 1370 * device's regulators, as the core would be required to switch voltages as 1371 * well. 1372 * 1373 * This must be called before any OPPs are initialized for the device. 1374 */ 1375 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1376 const char * const names[], 1377 unsigned int count) 1378 { 1379 struct opp_table *opp_table; 1380 struct regulator *reg; 1381 int ret, i; 1382 1383 opp_table = dev_pm_opp_get_opp_table(dev); 1384 if (!opp_table) 1385 return ERR_PTR(-ENOMEM); 1386 1387 /* This should be called before OPPs are initialized */ 1388 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1389 ret = -EBUSY; 1390 goto err; 1391 } 1392 1393 /* Another CPU that shares the OPP table has set the regulators ? */ 1394 if (opp_table->regulators) 1395 return opp_table; 1396 1397 opp_table->regulators = kmalloc_array(count, 1398 sizeof(*opp_table->regulators), 1399 GFP_KERNEL); 1400 if (!opp_table->regulators) { 1401 ret = -ENOMEM; 1402 goto err; 1403 } 1404 1405 for (i = 0; i < count; i++) { 1406 reg = regulator_get_optional(dev, names[i]); 1407 if (IS_ERR(reg)) { 1408 ret = PTR_ERR(reg); 1409 if (ret != -EPROBE_DEFER) 1410 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1411 __func__, names[i], ret); 1412 goto free_regulators; 1413 } 1414 1415 opp_table->regulators[i] = reg; 1416 } 1417 1418 opp_table->regulator_count = count; 1419 1420 /* Allocate block only once to pass to set_opp() routines */ 1421 ret = _allocate_set_opp_data(opp_table); 1422 if (ret) 1423 goto free_regulators; 1424 1425 return opp_table; 1426 1427 free_regulators: 1428 while (i != 0) 1429 regulator_put(opp_table->regulators[--i]); 1430 1431 kfree(opp_table->regulators); 1432 opp_table->regulators = NULL; 1433 opp_table->regulator_count = 0; 1434 err: 1435 dev_pm_opp_put_opp_table(opp_table); 1436 1437 return ERR_PTR(ret); 1438 } 1439 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1440 1441 /** 1442 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1443 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1444 */ 1445 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1446 { 1447 int i; 1448 1449 if (!opp_table->regulators) 1450 goto put_opp_table; 1451 1452 /* Make sure there are no concurrent readers while updating opp_table */ 1453 WARN_ON(!list_empty(&opp_table->opp_list)); 1454 1455 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1456 regulator_put(opp_table->regulators[i]); 1457 1458 _free_set_opp_data(opp_table); 1459 1460 kfree(opp_table->regulators); 1461 opp_table->regulators = NULL; 1462 opp_table->regulator_count = 0; 1463 1464 put_opp_table: 1465 dev_pm_opp_put_opp_table(opp_table); 1466 } 1467 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1468 1469 /** 1470 * dev_pm_opp_set_clkname() - Set clk name for the device 1471 * @dev: Device for which clk name is being set. 1472 * @name: Clk name. 1473 * 1474 * In order to support OPP switching, OPP layer needs to get pointer to the 1475 * clock for the device. Simple cases work fine without using this routine (i.e. 1476 * by passing connection-id as NULL), but for a device with multiple clocks 1477 * available, the OPP core needs to know the exact name of the clk to use. 1478 * 1479 * This must be called before any OPPs are initialized for the device. 1480 */ 1481 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1482 { 1483 struct opp_table *opp_table; 1484 int ret; 1485 1486 opp_table = dev_pm_opp_get_opp_table(dev); 1487 if (!opp_table) 1488 return ERR_PTR(-ENOMEM); 1489 1490 /* This should be called before OPPs are initialized */ 1491 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1492 ret = -EBUSY; 1493 goto err; 1494 } 1495 1496 /* Already have default clk set, free it */ 1497 if (!IS_ERR(opp_table->clk)) 1498 clk_put(opp_table->clk); 1499 1500 /* Find clk for the device */ 1501 opp_table->clk = clk_get(dev, name); 1502 if (IS_ERR(opp_table->clk)) { 1503 ret = PTR_ERR(opp_table->clk); 1504 if (ret != -EPROBE_DEFER) { 1505 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1506 ret); 1507 } 1508 goto err; 1509 } 1510 1511 return opp_table; 1512 1513 err: 1514 dev_pm_opp_put_opp_table(opp_table); 1515 1516 return ERR_PTR(ret); 1517 } 1518 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1519 1520 /** 1521 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1522 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1523 */ 1524 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1525 { 1526 /* Make sure there are no concurrent readers while updating opp_table */ 1527 WARN_ON(!list_empty(&opp_table->opp_list)); 1528 1529 clk_put(opp_table->clk); 1530 opp_table->clk = ERR_PTR(-EINVAL); 1531 1532 dev_pm_opp_put_opp_table(opp_table); 1533 } 1534 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1535 1536 /** 1537 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1538 * @dev: Device for which the helper is getting registered. 1539 * @set_opp: Custom set OPP helper. 1540 * 1541 * This is useful to support complex platforms (like platforms with multiple 1542 * regulators per device), instead of the generic OPP set rate helper. 1543 * 1544 * This must be called before any OPPs are initialized for the device. 1545 */ 1546 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1547 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1548 { 1549 struct opp_table *opp_table; 1550 1551 if (!set_opp) 1552 return ERR_PTR(-EINVAL); 1553 1554 opp_table = dev_pm_opp_get_opp_table(dev); 1555 if (!opp_table) 1556 return ERR_PTR(-ENOMEM); 1557 1558 /* This should be called before OPPs are initialized */ 1559 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1560 dev_pm_opp_put_opp_table(opp_table); 1561 return ERR_PTR(-EBUSY); 1562 } 1563 1564 /* Another CPU that shares the OPP table has set the helper ? */ 1565 if (!opp_table->set_opp) 1566 opp_table->set_opp = set_opp; 1567 1568 return opp_table; 1569 } 1570 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1571 1572 /** 1573 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1574 * set_opp helper 1575 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1576 * 1577 * Release resources blocked for platform specific set_opp helper. 1578 */ 1579 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1580 { 1581 /* Make sure there are no concurrent readers while updating opp_table */ 1582 WARN_ON(!list_empty(&opp_table->opp_list)); 1583 1584 opp_table->set_opp = NULL; 1585 dev_pm_opp_put_opp_table(opp_table); 1586 } 1587 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1588 1589 /** 1590 * dev_pm_opp_add() - Add an OPP table from a table definitions 1591 * @dev: device for which we do this operation 1592 * @freq: Frequency in Hz for this OPP 1593 * @u_volt: Voltage in uVolts for this OPP 1594 * 1595 * This function adds an opp definition to the opp table and returns status. 1596 * The opp is made available by default and it can be controlled using 1597 * dev_pm_opp_enable/disable functions. 1598 * 1599 * Return: 1600 * 0 On success OR 1601 * Duplicate OPPs (both freq and volt are same) and opp->available 1602 * -EEXIST Freq are same and volt are different OR 1603 * Duplicate OPPs (both freq and volt are same) and !opp->available 1604 * -ENOMEM Memory allocation failure 1605 */ 1606 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 1607 { 1608 struct opp_table *opp_table; 1609 int ret; 1610 1611 opp_table = dev_pm_opp_get_opp_table(dev); 1612 if (!opp_table) 1613 return -ENOMEM; 1614 1615 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 1616 if (ret) 1617 dev_pm_opp_put_opp_table(opp_table); 1618 1619 return ret; 1620 } 1621 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 1622 1623 /** 1624 * _opp_set_availability() - helper to set the availability of an opp 1625 * @dev: device for which we do this operation 1626 * @freq: OPP frequency to modify availability 1627 * @availability_req: availability status requested for this opp 1628 * 1629 * Set the availability of an OPP, opp_{enable,disable} share a common logic 1630 * which is isolated here. 1631 * 1632 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1633 * copy operation, returns 0 if no modification was done OR modification was 1634 * successful. 1635 */ 1636 static int _opp_set_availability(struct device *dev, unsigned long freq, 1637 bool availability_req) 1638 { 1639 struct opp_table *opp_table; 1640 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 1641 int r = 0; 1642 1643 /* Find the opp_table */ 1644 opp_table = _find_opp_table(dev); 1645 if (IS_ERR(opp_table)) { 1646 r = PTR_ERR(opp_table); 1647 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 1648 return r; 1649 } 1650 1651 mutex_lock(&opp_table->lock); 1652 1653 /* Do we have the frequency? */ 1654 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 1655 if (tmp_opp->rate == freq) { 1656 opp = tmp_opp; 1657 break; 1658 } 1659 } 1660 1661 if (IS_ERR(opp)) { 1662 r = PTR_ERR(opp); 1663 goto unlock; 1664 } 1665 1666 /* Is update really needed? */ 1667 if (opp->available == availability_req) 1668 goto unlock; 1669 1670 opp->available = availability_req; 1671 1672 dev_pm_opp_get(opp); 1673 mutex_unlock(&opp_table->lock); 1674 1675 /* Notify the change of the OPP availability */ 1676 if (availability_req) 1677 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 1678 opp); 1679 else 1680 blocking_notifier_call_chain(&opp_table->head, 1681 OPP_EVENT_DISABLE, opp); 1682 1683 dev_pm_opp_put(opp); 1684 goto put_table; 1685 1686 unlock: 1687 mutex_unlock(&opp_table->lock); 1688 put_table: 1689 dev_pm_opp_put_opp_table(opp_table); 1690 return r; 1691 } 1692 1693 /** 1694 * dev_pm_opp_enable() - Enable a specific OPP 1695 * @dev: device for which we do this operation 1696 * @freq: OPP frequency to enable 1697 * 1698 * Enables a provided opp. If the operation is valid, this returns 0, else the 1699 * corresponding error value. It is meant to be used for users an OPP available 1700 * after being temporarily made unavailable with dev_pm_opp_disable. 1701 * 1702 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1703 * copy operation, returns 0 if no modification was done OR modification was 1704 * successful. 1705 */ 1706 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 1707 { 1708 return _opp_set_availability(dev, freq, true); 1709 } 1710 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 1711 1712 /** 1713 * dev_pm_opp_disable() - Disable a specific OPP 1714 * @dev: device for which we do this operation 1715 * @freq: OPP frequency to disable 1716 * 1717 * Disables a provided opp. If the operation is valid, this returns 1718 * 0, else the corresponding error value. It is meant to be a temporary 1719 * control by users to make this OPP not available until the circumstances are 1720 * right to make it available again (with a call to dev_pm_opp_enable). 1721 * 1722 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1723 * copy operation, returns 0 if no modification was done OR modification was 1724 * successful. 1725 */ 1726 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 1727 { 1728 return _opp_set_availability(dev, freq, false); 1729 } 1730 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 1731 1732 /** 1733 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 1734 * @dev: Device for which notifier needs to be registered 1735 * @nb: Notifier block to be registered 1736 * 1737 * Return: 0 on success or a negative error value. 1738 */ 1739 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 1740 { 1741 struct opp_table *opp_table; 1742 int ret; 1743 1744 opp_table = _find_opp_table(dev); 1745 if (IS_ERR(opp_table)) 1746 return PTR_ERR(opp_table); 1747 1748 ret = blocking_notifier_chain_register(&opp_table->head, nb); 1749 1750 dev_pm_opp_put_opp_table(opp_table); 1751 1752 return ret; 1753 } 1754 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 1755 1756 /** 1757 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 1758 * @dev: Device for which notifier needs to be unregistered 1759 * @nb: Notifier block to be unregistered 1760 * 1761 * Return: 0 on success or a negative error value. 1762 */ 1763 int dev_pm_opp_unregister_notifier(struct device *dev, 1764 struct notifier_block *nb) 1765 { 1766 struct opp_table *opp_table; 1767 int ret; 1768 1769 opp_table = _find_opp_table(dev); 1770 if (IS_ERR(opp_table)) 1771 return PTR_ERR(opp_table); 1772 1773 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 1774 1775 dev_pm_opp_put_opp_table(opp_table); 1776 1777 return ret; 1778 } 1779 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 1780 1781 void _dev_pm_opp_find_and_remove_table(struct device *dev) 1782 { 1783 struct opp_table *opp_table; 1784 1785 /* Check for existing table for 'dev' */ 1786 opp_table = _find_opp_table(dev); 1787 if (IS_ERR(opp_table)) { 1788 int error = PTR_ERR(opp_table); 1789 1790 if (error != -ENODEV) 1791 WARN(1, "%s: opp_table: %d\n", 1792 IS_ERR_OR_NULL(dev) ? 1793 "Invalid device" : dev_name(dev), 1794 error); 1795 return; 1796 } 1797 1798 _put_opp_list_kref(opp_table); 1799 1800 /* Drop reference taken by _find_opp_table() */ 1801 dev_pm_opp_put_opp_table(opp_table); 1802 1803 /* Drop reference taken while the OPP table was added */ 1804 dev_pm_opp_put_opp_table(opp_table); 1805 } 1806 1807 /** 1808 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 1809 * @dev: device pointer used to lookup OPP table. 1810 * 1811 * Free both OPPs created using static entries present in DT and the 1812 * dynamically added entries. 1813 */ 1814 void dev_pm_opp_remove_table(struct device *dev) 1815 { 1816 _dev_pm_opp_find_and_remove_table(dev); 1817 } 1818 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 1819