xref: /openbmc/linux/drivers/opp/core.c (revision 929e2a61)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp)) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	/*
703 	 * Enable the regulator after setting its voltages, otherwise it breaks
704 	 * some boot-enabled regulators.
705 	 */
706 	if (unlikely(!opp_table->regulator_enabled)) {
707 		ret = regulator_enable(reg);
708 		if (ret < 0)
709 			dev_warn(dev, "Failed to enable regulator: %d", ret);
710 		else
711 			opp_table->regulator_enabled = true;
712 	}
713 
714 	return 0;
715 
716 restore_freq:
717 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
718 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
719 			__func__, old_freq);
720 restore_voltage:
721 	/* This shouldn't harm even if the voltages weren't updated earlier */
722 	if (old_supply)
723 		_set_opp_voltage(dev, reg, old_supply);
724 
725 	return ret;
726 }
727 
728 static int _set_opp_bw(const struct opp_table *opp_table,
729 		       struct dev_pm_opp *opp, struct device *dev, bool remove)
730 {
731 	u32 avg, peak;
732 	int i, ret;
733 
734 	if (!opp_table->paths)
735 		return 0;
736 
737 	for (i = 0; i < opp_table->path_count; i++) {
738 		if (remove) {
739 			avg = 0;
740 			peak = 0;
741 		} else {
742 			avg = opp->bandwidth[i].avg;
743 			peak = opp->bandwidth[i].peak;
744 		}
745 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
746 		if (ret) {
747 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
748 				remove ? "remove" : "set", i, ret);
749 			return ret;
750 		}
751 	}
752 
753 	return 0;
754 }
755 
756 static int _set_opp_custom(const struct opp_table *opp_table,
757 			   struct device *dev, unsigned long old_freq,
758 			   unsigned long freq,
759 			   struct dev_pm_opp_supply *old_supply,
760 			   struct dev_pm_opp_supply *new_supply)
761 {
762 	struct dev_pm_set_opp_data *data;
763 	int size;
764 
765 	data = opp_table->set_opp_data;
766 	data->regulators = opp_table->regulators;
767 	data->regulator_count = opp_table->regulator_count;
768 	data->clk = opp_table->clk;
769 	data->dev = dev;
770 
771 	data->old_opp.rate = old_freq;
772 	size = sizeof(*old_supply) * opp_table->regulator_count;
773 	if (!old_supply)
774 		memset(data->old_opp.supplies, 0, size);
775 	else
776 		memcpy(data->old_opp.supplies, old_supply, size);
777 
778 	data->new_opp.rate = freq;
779 	memcpy(data->new_opp.supplies, new_supply, size);
780 
781 	return opp_table->set_opp(data);
782 }
783 
784 /* This is only called for PM domain for now */
785 static int _set_required_opps(struct device *dev,
786 			      struct opp_table *opp_table,
787 			      struct dev_pm_opp *opp)
788 {
789 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
790 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
791 	unsigned int pstate;
792 	int i, ret = 0;
793 
794 	if (!required_opp_tables)
795 		return 0;
796 
797 	/* Single genpd case */
798 	if (!genpd_virt_devs) {
799 		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
800 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
801 		if (ret) {
802 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
803 				dev_name(dev), pstate, ret);
804 		}
805 		return ret;
806 	}
807 
808 	/* Multiple genpd case */
809 
810 	/*
811 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
812 	 * after it is freed from another thread.
813 	 */
814 	mutex_lock(&opp_table->genpd_virt_dev_lock);
815 
816 	for (i = 0; i < opp_table->required_opp_count; i++) {
817 		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
818 
819 		if (!genpd_virt_devs[i])
820 			continue;
821 
822 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
823 		if (ret) {
824 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
825 				dev_name(genpd_virt_devs[i]), pstate, ret);
826 			break;
827 		}
828 	}
829 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
830 
831 	return ret;
832 }
833 
834 /**
835  * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
836  * @dev:	device for which we do this operation
837  * @opp:	opp based on which the bandwidth levels are to be configured
838  *
839  * This configures the bandwidth to the levels specified by the OPP. However
840  * if the OPP specified is NULL the bandwidth levels are cleared out.
841  *
842  * Return: 0 on success or a negative error value.
843  */
844 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
845 {
846 	struct opp_table *opp_table;
847 	int ret;
848 
849 	opp_table = _find_opp_table(dev);
850 	if (IS_ERR(opp_table)) {
851 		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
852 		return PTR_ERR(opp_table);
853 	}
854 
855 	if (opp)
856 		ret = _set_opp_bw(opp_table, opp, dev, false);
857 	else
858 		ret = _set_opp_bw(opp_table, NULL, dev, true);
859 
860 	dev_pm_opp_put_opp_table(opp_table);
861 	return ret;
862 }
863 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
864 
865 /**
866  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
867  * @dev:	 device for which we do this operation
868  * @target_freq: frequency to achieve
869  *
870  * This configures the power-supplies to the levels specified by the OPP
871  * corresponding to the target_freq, and programs the clock to a value <=
872  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
873  * provided by the opp, should have already rounded to the target OPP's
874  * frequency.
875  */
876 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
877 {
878 	struct opp_table *opp_table;
879 	unsigned long freq, old_freq, temp_freq;
880 	struct dev_pm_opp *old_opp, *opp;
881 	struct clk *clk;
882 	int ret;
883 
884 	opp_table = _find_opp_table(dev);
885 	if (IS_ERR(opp_table)) {
886 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
887 		return PTR_ERR(opp_table);
888 	}
889 
890 	if (unlikely(!target_freq)) {
891 		/*
892 		 * Some drivers need to support cases where some platforms may
893 		 * have OPP table for the device, while others don't and
894 		 * opp_set_rate() just needs to behave like clk_set_rate().
895 		 */
896 		if (!_get_opp_count(opp_table))
897 			return 0;
898 
899 		if (!opp_table->required_opp_tables && !opp_table->regulators &&
900 		    !opp_table->paths) {
901 			dev_err(dev, "target frequency can't be 0\n");
902 			ret = -EINVAL;
903 			goto put_opp_table;
904 		}
905 
906 		ret = _set_opp_bw(opp_table, NULL, dev, true);
907 		if (ret)
908 			return ret;
909 
910 		if (opp_table->regulator_enabled) {
911 			regulator_disable(opp_table->regulators[0]);
912 			opp_table->regulator_enabled = false;
913 		}
914 
915 		ret = _set_required_opps(dev, opp_table, NULL);
916 		goto put_opp_table;
917 	}
918 
919 	clk = opp_table->clk;
920 	if (IS_ERR(clk)) {
921 		dev_err(dev, "%s: No clock available for the device\n",
922 			__func__);
923 		ret = PTR_ERR(clk);
924 		goto put_opp_table;
925 	}
926 
927 	freq = clk_round_rate(clk, target_freq);
928 	if ((long)freq <= 0)
929 		freq = target_freq;
930 
931 	old_freq = clk_get_rate(clk);
932 
933 	/* Return early if nothing to do */
934 	if (old_freq == freq) {
935 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
936 			__func__, freq);
937 		ret = 0;
938 		goto put_opp_table;
939 	}
940 
941 	/*
942 	 * For IO devices which require an OPP on some platforms/SoCs
943 	 * while just needing to scale the clock on some others
944 	 * we look for empty OPP tables with just a clock handle and
945 	 * scale only the clk. This makes dev_pm_opp_set_rate()
946 	 * equivalent to a clk_set_rate()
947 	 */
948 	if (!_get_opp_count(opp_table)) {
949 		ret = _generic_set_opp_clk_only(dev, clk, freq);
950 		goto put_opp_table;
951 	}
952 
953 	temp_freq = old_freq;
954 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
955 	if (IS_ERR(old_opp)) {
956 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
957 			__func__, old_freq, PTR_ERR(old_opp));
958 	}
959 
960 	temp_freq = freq;
961 	opp = _find_freq_ceil(opp_table, &temp_freq);
962 	if (IS_ERR(opp)) {
963 		ret = PTR_ERR(opp);
964 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
965 			__func__, freq, ret);
966 		goto put_old_opp;
967 	}
968 
969 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
970 		old_freq, freq);
971 
972 	/* Scaling up? Configure required OPPs before frequency */
973 	if (freq >= old_freq) {
974 		ret = _set_required_opps(dev, opp_table, opp);
975 		if (ret)
976 			goto put_opp;
977 	}
978 
979 	if (opp_table->set_opp) {
980 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
981 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
982 				      opp->supplies);
983 	} else if (opp_table->regulators) {
984 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
985 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
986 						 opp->supplies);
987 	} else {
988 		/* Only frequency scaling */
989 		ret = _generic_set_opp_clk_only(dev, clk, freq);
990 	}
991 
992 	/* Scaling down? Configure required OPPs after frequency */
993 	if (!ret && freq < old_freq) {
994 		ret = _set_required_opps(dev, opp_table, opp);
995 		if (ret)
996 			dev_err(dev, "Failed to set required opps: %d\n", ret);
997 	}
998 
999 	if (!ret)
1000 		ret = _set_opp_bw(opp_table, opp, dev, false);
1001 
1002 put_opp:
1003 	dev_pm_opp_put(opp);
1004 put_old_opp:
1005 	if (!IS_ERR(old_opp))
1006 		dev_pm_opp_put(old_opp);
1007 put_opp_table:
1008 	dev_pm_opp_put_opp_table(opp_table);
1009 	return ret;
1010 }
1011 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1012 
1013 /* OPP-dev Helpers */
1014 static void _remove_opp_dev(struct opp_device *opp_dev,
1015 			    struct opp_table *opp_table)
1016 {
1017 	opp_debug_unregister(opp_dev, opp_table);
1018 	list_del(&opp_dev->node);
1019 	kfree(opp_dev);
1020 }
1021 
1022 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1023 						struct opp_table *opp_table)
1024 {
1025 	struct opp_device *opp_dev;
1026 
1027 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1028 	if (!opp_dev)
1029 		return NULL;
1030 
1031 	/* Initialize opp-dev */
1032 	opp_dev->dev = dev;
1033 
1034 	list_add(&opp_dev->node, &opp_table->dev_list);
1035 
1036 	/* Create debugfs entries for the opp_table */
1037 	opp_debug_register(opp_dev, opp_table);
1038 
1039 	return opp_dev;
1040 }
1041 
1042 struct opp_device *_add_opp_dev(const struct device *dev,
1043 				struct opp_table *opp_table)
1044 {
1045 	struct opp_device *opp_dev;
1046 
1047 	mutex_lock(&opp_table->lock);
1048 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1049 	mutex_unlock(&opp_table->lock);
1050 
1051 	return opp_dev;
1052 }
1053 
1054 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1055 {
1056 	struct opp_table *opp_table;
1057 	struct opp_device *opp_dev;
1058 	int ret;
1059 
1060 	/*
1061 	 * Allocate a new OPP table. In the infrequent case where a new
1062 	 * device is needed to be added, we pay this penalty.
1063 	 */
1064 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1065 	if (!opp_table)
1066 		return NULL;
1067 
1068 	mutex_init(&opp_table->lock);
1069 	mutex_init(&opp_table->genpd_virt_dev_lock);
1070 	INIT_LIST_HEAD(&opp_table->dev_list);
1071 
1072 	/* Mark regulator count uninitialized */
1073 	opp_table->regulator_count = -1;
1074 
1075 	opp_dev = _add_opp_dev(dev, opp_table);
1076 	if (!opp_dev) {
1077 		kfree(opp_table);
1078 		return NULL;
1079 	}
1080 
1081 	_of_init_opp_table(opp_table, dev, index);
1082 
1083 	/* Find clk for the device */
1084 	opp_table->clk = clk_get(dev, NULL);
1085 	if (IS_ERR(opp_table->clk)) {
1086 		ret = PTR_ERR(opp_table->clk);
1087 		if (ret != -EPROBE_DEFER)
1088 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1089 				ret);
1090 	}
1091 
1092 	/* Find interconnect path(s) for the device */
1093 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1094 	if (ret)
1095 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1096 			 __func__, ret);
1097 
1098 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1099 	INIT_LIST_HEAD(&opp_table->opp_list);
1100 	kref_init(&opp_table->kref);
1101 
1102 	/* Secure the device table modification */
1103 	list_add(&opp_table->node, &opp_tables);
1104 	return opp_table;
1105 }
1106 
1107 void _get_opp_table_kref(struct opp_table *opp_table)
1108 {
1109 	kref_get(&opp_table->kref);
1110 }
1111 
1112 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1113 {
1114 	struct opp_table *opp_table;
1115 
1116 	/* Hold our table modification lock here */
1117 	mutex_lock(&opp_table_lock);
1118 
1119 	opp_table = _find_opp_table_unlocked(dev);
1120 	if (!IS_ERR(opp_table))
1121 		goto unlock;
1122 
1123 	opp_table = _managed_opp(dev, index);
1124 	if (opp_table) {
1125 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1126 			dev_pm_opp_put_opp_table(opp_table);
1127 			opp_table = NULL;
1128 		}
1129 		goto unlock;
1130 	}
1131 
1132 	opp_table = _allocate_opp_table(dev, index);
1133 
1134 unlock:
1135 	mutex_unlock(&opp_table_lock);
1136 
1137 	return opp_table;
1138 }
1139 
1140 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1141 {
1142 	return _opp_get_opp_table(dev, 0);
1143 }
1144 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1145 
1146 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1147 						   int index)
1148 {
1149 	return _opp_get_opp_table(dev, index);
1150 }
1151 
1152 static void _opp_table_kref_release(struct kref *kref)
1153 {
1154 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1155 	struct opp_device *opp_dev, *temp;
1156 	int i;
1157 
1158 	_of_clear_opp_table(opp_table);
1159 
1160 	/* Release clk */
1161 	if (!IS_ERR(opp_table->clk))
1162 		clk_put(opp_table->clk);
1163 
1164 	if (opp_table->paths) {
1165 		for (i = 0; i < opp_table->path_count; i++)
1166 			icc_put(opp_table->paths[i]);
1167 		kfree(opp_table->paths);
1168 	}
1169 
1170 	WARN_ON(!list_empty(&opp_table->opp_list));
1171 
1172 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1173 		/*
1174 		 * The OPP table is getting removed, drop the performance state
1175 		 * constraints.
1176 		 */
1177 		if (opp_table->genpd_performance_state)
1178 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1179 
1180 		_remove_opp_dev(opp_dev, opp_table);
1181 	}
1182 
1183 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1184 	mutex_destroy(&opp_table->lock);
1185 	list_del(&opp_table->node);
1186 	kfree(opp_table);
1187 
1188 	mutex_unlock(&opp_table_lock);
1189 }
1190 
1191 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1192 {
1193 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1194 		       &opp_table_lock);
1195 }
1196 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1197 
1198 void _opp_free(struct dev_pm_opp *opp)
1199 {
1200 	kfree(opp);
1201 }
1202 
1203 static void _opp_kref_release(struct dev_pm_opp *opp,
1204 			      struct opp_table *opp_table)
1205 {
1206 	/*
1207 	 * Notify the changes in the availability of the operable
1208 	 * frequency/voltage list.
1209 	 */
1210 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1211 	_of_opp_free_required_opps(opp_table, opp);
1212 	opp_debug_remove_one(opp);
1213 	list_del(&opp->node);
1214 	kfree(opp);
1215 }
1216 
1217 static void _opp_kref_release_unlocked(struct kref *kref)
1218 {
1219 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1220 	struct opp_table *opp_table = opp->opp_table;
1221 
1222 	_opp_kref_release(opp, opp_table);
1223 }
1224 
1225 static void _opp_kref_release_locked(struct kref *kref)
1226 {
1227 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1228 	struct opp_table *opp_table = opp->opp_table;
1229 
1230 	_opp_kref_release(opp, opp_table);
1231 	mutex_unlock(&opp_table->lock);
1232 }
1233 
1234 void dev_pm_opp_get(struct dev_pm_opp *opp)
1235 {
1236 	kref_get(&opp->kref);
1237 }
1238 
1239 void dev_pm_opp_put(struct dev_pm_opp *opp)
1240 {
1241 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1242 		       &opp->opp_table->lock);
1243 }
1244 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1245 
1246 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1247 {
1248 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1249 }
1250 
1251 /**
1252  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1253  * @dev:	device for which we do this operation
1254  * @freq:	OPP to remove with matching 'freq'
1255  *
1256  * This function removes an opp from the opp table.
1257  */
1258 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1259 {
1260 	struct dev_pm_opp *opp;
1261 	struct opp_table *opp_table;
1262 	bool found = false;
1263 
1264 	opp_table = _find_opp_table(dev);
1265 	if (IS_ERR(opp_table))
1266 		return;
1267 
1268 	mutex_lock(&opp_table->lock);
1269 
1270 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1271 		if (opp->rate == freq) {
1272 			found = true;
1273 			break;
1274 		}
1275 	}
1276 
1277 	mutex_unlock(&opp_table->lock);
1278 
1279 	if (found) {
1280 		dev_pm_opp_put(opp);
1281 
1282 		/* Drop the reference taken by dev_pm_opp_add() */
1283 		dev_pm_opp_put_opp_table(opp_table);
1284 	} else {
1285 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1286 			 __func__, freq);
1287 	}
1288 
1289 	/* Drop the reference taken by _find_opp_table() */
1290 	dev_pm_opp_put_opp_table(opp_table);
1291 }
1292 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1293 
1294 void _opp_remove_all_static(struct opp_table *opp_table)
1295 {
1296 	struct dev_pm_opp *opp, *tmp;
1297 
1298 	mutex_lock(&opp_table->lock);
1299 
1300 	if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1301 		goto unlock;
1302 
1303 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1304 		if (!opp->dynamic)
1305 			dev_pm_opp_put_unlocked(opp);
1306 	}
1307 
1308 unlock:
1309 	mutex_unlock(&opp_table->lock);
1310 }
1311 
1312 /**
1313  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1314  * @dev:	device for which we do this operation
1315  *
1316  * This function removes all dynamically created OPPs from the opp table.
1317  */
1318 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1319 {
1320 	struct opp_table *opp_table;
1321 	struct dev_pm_opp *opp, *temp;
1322 	int count = 0;
1323 
1324 	opp_table = _find_opp_table(dev);
1325 	if (IS_ERR(opp_table))
1326 		return;
1327 
1328 	mutex_lock(&opp_table->lock);
1329 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1330 		if (opp->dynamic) {
1331 			dev_pm_opp_put_unlocked(opp);
1332 			count++;
1333 		}
1334 	}
1335 	mutex_unlock(&opp_table->lock);
1336 
1337 	/* Drop the references taken by dev_pm_opp_add() */
1338 	while (count--)
1339 		dev_pm_opp_put_opp_table(opp_table);
1340 
1341 	/* Drop the reference taken by _find_opp_table() */
1342 	dev_pm_opp_put_opp_table(opp_table);
1343 }
1344 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1345 
1346 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1347 {
1348 	struct dev_pm_opp *opp;
1349 	int supply_count, supply_size, icc_size;
1350 
1351 	/* Allocate space for at least one supply */
1352 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1353 	supply_size = sizeof(*opp->supplies) * supply_count;
1354 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1355 
1356 	/* allocate new OPP node and supplies structures */
1357 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1358 
1359 	if (!opp)
1360 		return NULL;
1361 
1362 	/* Put the supplies at the end of the OPP structure as an empty array */
1363 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1364 	if (icc_size)
1365 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1366 	INIT_LIST_HEAD(&opp->node);
1367 
1368 	return opp;
1369 }
1370 
1371 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1372 					 struct opp_table *opp_table)
1373 {
1374 	struct regulator *reg;
1375 	int i;
1376 
1377 	if (!opp_table->regulators)
1378 		return true;
1379 
1380 	for (i = 0; i < opp_table->regulator_count; i++) {
1381 		reg = opp_table->regulators[i];
1382 
1383 		if (!regulator_is_supported_voltage(reg,
1384 					opp->supplies[i].u_volt_min,
1385 					opp->supplies[i].u_volt_max)) {
1386 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1387 				__func__, opp->supplies[i].u_volt_min,
1388 				opp->supplies[i].u_volt_max);
1389 			return false;
1390 		}
1391 	}
1392 
1393 	return true;
1394 }
1395 
1396 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1397 {
1398 	if (opp1->rate != opp2->rate)
1399 		return opp1->rate < opp2->rate ? -1 : 1;
1400 	if (opp1->bandwidth && opp2->bandwidth &&
1401 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1402 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1403 	if (opp1->level != opp2->level)
1404 		return opp1->level < opp2->level ? -1 : 1;
1405 	return 0;
1406 }
1407 
1408 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1409 			     struct opp_table *opp_table,
1410 			     struct list_head **head)
1411 {
1412 	struct dev_pm_opp *opp;
1413 	int opp_cmp;
1414 
1415 	/*
1416 	 * Insert new OPP in order of increasing frequency and discard if
1417 	 * already present.
1418 	 *
1419 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1420 	 * loop, don't replace it with head otherwise it will become an infinite
1421 	 * loop.
1422 	 */
1423 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1424 		opp_cmp = _opp_compare_key(new_opp, opp);
1425 		if (opp_cmp > 0) {
1426 			*head = &opp->node;
1427 			continue;
1428 		}
1429 
1430 		if (opp_cmp < 0)
1431 			return 0;
1432 
1433 		/* Duplicate OPPs */
1434 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1435 			 __func__, opp->rate, opp->supplies[0].u_volt,
1436 			 opp->available, new_opp->rate,
1437 			 new_opp->supplies[0].u_volt, new_opp->available);
1438 
1439 		/* Should we compare voltages for all regulators here ? */
1440 		return opp->available &&
1441 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 /*
1448  * Returns:
1449  * 0: On success. And appropriate error message for duplicate OPPs.
1450  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1451  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1452  *  sure we don't print error messages unnecessarily if different parts of
1453  *  kernel try to initialize the OPP table.
1454  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1455  *  should be considered an error by the callers of _opp_add().
1456  */
1457 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1458 	     struct opp_table *opp_table, bool rate_not_available)
1459 {
1460 	struct list_head *head;
1461 	int ret;
1462 
1463 	mutex_lock(&opp_table->lock);
1464 	head = &opp_table->opp_list;
1465 
1466 	if (likely(!rate_not_available)) {
1467 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1468 		if (ret) {
1469 			mutex_unlock(&opp_table->lock);
1470 			return ret;
1471 		}
1472 	}
1473 
1474 	list_add(&new_opp->node, head);
1475 	mutex_unlock(&opp_table->lock);
1476 
1477 	new_opp->opp_table = opp_table;
1478 	kref_init(&new_opp->kref);
1479 
1480 	opp_debug_create_one(new_opp, opp_table);
1481 
1482 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1483 		new_opp->available = false;
1484 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1485 			 __func__, new_opp->rate);
1486 	}
1487 
1488 	return 0;
1489 }
1490 
1491 /**
1492  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1493  * @opp_table:	OPP table
1494  * @dev:	device for which we do this operation
1495  * @freq:	Frequency in Hz for this OPP
1496  * @u_volt:	Voltage in uVolts for this OPP
1497  * @dynamic:	Dynamically added OPPs.
1498  *
1499  * This function adds an opp definition to the opp table and returns status.
1500  * The opp is made available by default and it can be controlled using
1501  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1502  *
1503  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1504  * and freed by dev_pm_opp_of_remove_table.
1505  *
1506  * Return:
1507  * 0		On success OR
1508  *		Duplicate OPPs (both freq and volt are same) and opp->available
1509  * -EEXIST	Freq are same and volt are different OR
1510  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1511  * -ENOMEM	Memory allocation failure
1512  */
1513 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1514 		unsigned long freq, long u_volt, bool dynamic)
1515 {
1516 	struct dev_pm_opp *new_opp;
1517 	unsigned long tol;
1518 	int ret;
1519 
1520 	new_opp = _opp_allocate(opp_table);
1521 	if (!new_opp)
1522 		return -ENOMEM;
1523 
1524 	/* populate the opp table */
1525 	new_opp->rate = freq;
1526 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1527 	new_opp->supplies[0].u_volt = u_volt;
1528 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1529 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1530 	new_opp->available = true;
1531 	new_opp->dynamic = dynamic;
1532 
1533 	ret = _opp_add(dev, new_opp, opp_table, false);
1534 	if (ret) {
1535 		/* Don't return error for duplicate OPPs */
1536 		if (ret == -EBUSY)
1537 			ret = 0;
1538 		goto free_opp;
1539 	}
1540 
1541 	/*
1542 	 * Notify the changes in the availability of the operable
1543 	 * frequency/voltage list.
1544 	 */
1545 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1546 	return 0;
1547 
1548 free_opp:
1549 	_opp_free(new_opp);
1550 
1551 	return ret;
1552 }
1553 
1554 /**
1555  * dev_pm_opp_set_supported_hw() - Set supported platforms
1556  * @dev: Device for which supported-hw has to be set.
1557  * @versions: Array of hierarchy of versions to match.
1558  * @count: Number of elements in the array.
1559  *
1560  * This is required only for the V2 bindings, and it enables a platform to
1561  * specify the hierarchy of versions it supports. OPP layer will then enable
1562  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1563  * property.
1564  */
1565 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1566 			const u32 *versions, unsigned int count)
1567 {
1568 	struct opp_table *opp_table;
1569 
1570 	opp_table = dev_pm_opp_get_opp_table(dev);
1571 	if (!opp_table)
1572 		return ERR_PTR(-ENOMEM);
1573 
1574 	/* Make sure there are no concurrent readers while updating opp_table */
1575 	WARN_ON(!list_empty(&opp_table->opp_list));
1576 
1577 	/* Another CPU that shares the OPP table has set the property ? */
1578 	if (opp_table->supported_hw)
1579 		return opp_table;
1580 
1581 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1582 					GFP_KERNEL);
1583 	if (!opp_table->supported_hw) {
1584 		dev_pm_opp_put_opp_table(opp_table);
1585 		return ERR_PTR(-ENOMEM);
1586 	}
1587 
1588 	opp_table->supported_hw_count = count;
1589 
1590 	return opp_table;
1591 }
1592 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1593 
1594 /**
1595  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1596  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1597  *
1598  * This is required only for the V2 bindings, and is called for a matching
1599  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1600  * will not be freed.
1601  */
1602 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1603 {
1604 	/* Make sure there are no concurrent readers while updating opp_table */
1605 	WARN_ON(!list_empty(&opp_table->opp_list));
1606 
1607 	kfree(opp_table->supported_hw);
1608 	opp_table->supported_hw = NULL;
1609 	opp_table->supported_hw_count = 0;
1610 
1611 	dev_pm_opp_put_opp_table(opp_table);
1612 }
1613 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1614 
1615 /**
1616  * dev_pm_opp_set_prop_name() - Set prop-extn name
1617  * @dev: Device for which the prop-name has to be set.
1618  * @name: name to postfix to properties.
1619  *
1620  * This is required only for the V2 bindings, and it enables a platform to
1621  * specify the extn to be used for certain property names. The properties to
1622  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1623  * should postfix the property name with -<name> while looking for them.
1624  */
1625 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1626 {
1627 	struct opp_table *opp_table;
1628 
1629 	opp_table = dev_pm_opp_get_opp_table(dev);
1630 	if (!opp_table)
1631 		return ERR_PTR(-ENOMEM);
1632 
1633 	/* Make sure there are no concurrent readers while updating opp_table */
1634 	WARN_ON(!list_empty(&opp_table->opp_list));
1635 
1636 	/* Another CPU that shares the OPP table has set the property ? */
1637 	if (opp_table->prop_name)
1638 		return opp_table;
1639 
1640 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1641 	if (!opp_table->prop_name) {
1642 		dev_pm_opp_put_opp_table(opp_table);
1643 		return ERR_PTR(-ENOMEM);
1644 	}
1645 
1646 	return opp_table;
1647 }
1648 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1649 
1650 /**
1651  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1652  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1653  *
1654  * This is required only for the V2 bindings, and is called for a matching
1655  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1656  * will not be freed.
1657  */
1658 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1659 {
1660 	/* Make sure there are no concurrent readers while updating opp_table */
1661 	WARN_ON(!list_empty(&opp_table->opp_list));
1662 
1663 	kfree(opp_table->prop_name);
1664 	opp_table->prop_name = NULL;
1665 
1666 	dev_pm_opp_put_opp_table(opp_table);
1667 }
1668 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1669 
1670 static int _allocate_set_opp_data(struct opp_table *opp_table)
1671 {
1672 	struct dev_pm_set_opp_data *data;
1673 	int len, count = opp_table->regulator_count;
1674 
1675 	if (WARN_ON(!opp_table->regulators))
1676 		return -EINVAL;
1677 
1678 	/* space for set_opp_data */
1679 	len = sizeof(*data);
1680 
1681 	/* space for old_opp.supplies and new_opp.supplies */
1682 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1683 
1684 	data = kzalloc(len, GFP_KERNEL);
1685 	if (!data)
1686 		return -ENOMEM;
1687 
1688 	data->old_opp.supplies = (void *)(data + 1);
1689 	data->new_opp.supplies = data->old_opp.supplies + count;
1690 
1691 	opp_table->set_opp_data = data;
1692 
1693 	return 0;
1694 }
1695 
1696 static void _free_set_opp_data(struct opp_table *opp_table)
1697 {
1698 	kfree(opp_table->set_opp_data);
1699 	opp_table->set_opp_data = NULL;
1700 }
1701 
1702 /**
1703  * dev_pm_opp_set_regulators() - Set regulator names for the device
1704  * @dev: Device for which regulator name is being set.
1705  * @names: Array of pointers to the names of the regulator.
1706  * @count: Number of regulators.
1707  *
1708  * In order to support OPP switching, OPP layer needs to know the name of the
1709  * device's regulators, as the core would be required to switch voltages as
1710  * well.
1711  *
1712  * This must be called before any OPPs are initialized for the device.
1713  */
1714 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1715 					    const char * const names[],
1716 					    unsigned int count)
1717 {
1718 	struct opp_table *opp_table;
1719 	struct regulator *reg;
1720 	int ret, i;
1721 
1722 	opp_table = dev_pm_opp_get_opp_table(dev);
1723 	if (!opp_table)
1724 		return ERR_PTR(-ENOMEM);
1725 
1726 	/* This should be called before OPPs are initialized */
1727 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1728 		ret = -EBUSY;
1729 		goto err;
1730 	}
1731 
1732 	/* Another CPU that shares the OPP table has set the regulators ? */
1733 	if (opp_table->regulators)
1734 		return opp_table;
1735 
1736 	opp_table->regulators = kmalloc_array(count,
1737 					      sizeof(*opp_table->regulators),
1738 					      GFP_KERNEL);
1739 	if (!opp_table->regulators) {
1740 		ret = -ENOMEM;
1741 		goto err;
1742 	}
1743 
1744 	for (i = 0; i < count; i++) {
1745 		reg = regulator_get_optional(dev, names[i]);
1746 		if (IS_ERR(reg)) {
1747 			ret = PTR_ERR(reg);
1748 			if (ret != -EPROBE_DEFER)
1749 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1750 					__func__, names[i], ret);
1751 			goto free_regulators;
1752 		}
1753 
1754 		opp_table->regulators[i] = reg;
1755 	}
1756 
1757 	opp_table->regulator_count = count;
1758 
1759 	/* Allocate block only once to pass to set_opp() routines */
1760 	ret = _allocate_set_opp_data(opp_table);
1761 	if (ret)
1762 		goto free_regulators;
1763 
1764 	return opp_table;
1765 
1766 free_regulators:
1767 	while (i != 0)
1768 		regulator_put(opp_table->regulators[--i]);
1769 
1770 	kfree(opp_table->regulators);
1771 	opp_table->regulators = NULL;
1772 	opp_table->regulator_count = -1;
1773 err:
1774 	dev_pm_opp_put_opp_table(opp_table);
1775 
1776 	return ERR_PTR(ret);
1777 }
1778 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1779 
1780 /**
1781  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1782  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1783  */
1784 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1785 {
1786 	int i;
1787 
1788 	if (!opp_table->regulators)
1789 		goto put_opp_table;
1790 
1791 	/* Make sure there are no concurrent readers while updating opp_table */
1792 	WARN_ON(!list_empty(&opp_table->opp_list));
1793 
1794 	if (opp_table->regulator_enabled) {
1795 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1796 			regulator_disable(opp_table->regulators[i]);
1797 
1798 		opp_table->regulator_enabled = false;
1799 	}
1800 
1801 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1802 		regulator_put(opp_table->regulators[i]);
1803 
1804 	_free_set_opp_data(opp_table);
1805 
1806 	kfree(opp_table->regulators);
1807 	opp_table->regulators = NULL;
1808 	opp_table->regulator_count = -1;
1809 
1810 put_opp_table:
1811 	dev_pm_opp_put_opp_table(opp_table);
1812 }
1813 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1814 
1815 /**
1816  * dev_pm_opp_set_clkname() - Set clk name for the device
1817  * @dev: Device for which clk name is being set.
1818  * @name: Clk name.
1819  *
1820  * In order to support OPP switching, OPP layer needs to get pointer to the
1821  * clock for the device. Simple cases work fine without using this routine (i.e.
1822  * by passing connection-id as NULL), but for a device with multiple clocks
1823  * available, the OPP core needs to know the exact name of the clk to use.
1824  *
1825  * This must be called before any OPPs are initialized for the device.
1826  */
1827 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1828 {
1829 	struct opp_table *opp_table;
1830 	int ret;
1831 
1832 	opp_table = dev_pm_opp_get_opp_table(dev);
1833 	if (!opp_table)
1834 		return ERR_PTR(-ENOMEM);
1835 
1836 	/* This should be called before OPPs are initialized */
1837 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1838 		ret = -EBUSY;
1839 		goto err;
1840 	}
1841 
1842 	/* Already have default clk set, free it */
1843 	if (!IS_ERR(opp_table->clk))
1844 		clk_put(opp_table->clk);
1845 
1846 	/* Find clk for the device */
1847 	opp_table->clk = clk_get(dev, name);
1848 	if (IS_ERR(opp_table->clk)) {
1849 		ret = PTR_ERR(opp_table->clk);
1850 		if (ret != -EPROBE_DEFER) {
1851 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1852 				ret);
1853 		}
1854 		goto err;
1855 	}
1856 
1857 	return opp_table;
1858 
1859 err:
1860 	dev_pm_opp_put_opp_table(opp_table);
1861 
1862 	return ERR_PTR(ret);
1863 }
1864 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1865 
1866 /**
1867  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1868  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1869  */
1870 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1871 {
1872 	/* Make sure there are no concurrent readers while updating opp_table */
1873 	WARN_ON(!list_empty(&opp_table->opp_list));
1874 
1875 	clk_put(opp_table->clk);
1876 	opp_table->clk = ERR_PTR(-EINVAL);
1877 
1878 	dev_pm_opp_put_opp_table(opp_table);
1879 }
1880 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1881 
1882 /**
1883  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1884  * @dev: Device for which the helper is getting registered.
1885  * @set_opp: Custom set OPP helper.
1886  *
1887  * This is useful to support complex platforms (like platforms with multiple
1888  * regulators per device), instead of the generic OPP set rate helper.
1889  *
1890  * This must be called before any OPPs are initialized for the device.
1891  */
1892 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1893 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1894 {
1895 	struct opp_table *opp_table;
1896 
1897 	if (!set_opp)
1898 		return ERR_PTR(-EINVAL);
1899 
1900 	opp_table = dev_pm_opp_get_opp_table(dev);
1901 	if (!opp_table)
1902 		return ERR_PTR(-ENOMEM);
1903 
1904 	/* This should be called before OPPs are initialized */
1905 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1906 		dev_pm_opp_put_opp_table(opp_table);
1907 		return ERR_PTR(-EBUSY);
1908 	}
1909 
1910 	/* Another CPU that shares the OPP table has set the helper ? */
1911 	if (!opp_table->set_opp)
1912 		opp_table->set_opp = set_opp;
1913 
1914 	return opp_table;
1915 }
1916 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1917 
1918 /**
1919  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1920  *					   set_opp helper
1921  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1922  *
1923  * Release resources blocked for platform specific set_opp helper.
1924  */
1925 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1926 {
1927 	/* Make sure there are no concurrent readers while updating opp_table */
1928 	WARN_ON(!list_empty(&opp_table->opp_list));
1929 
1930 	opp_table->set_opp = NULL;
1931 	dev_pm_opp_put_opp_table(opp_table);
1932 }
1933 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1934 
1935 static void _opp_detach_genpd(struct opp_table *opp_table)
1936 {
1937 	int index;
1938 
1939 	for (index = 0; index < opp_table->required_opp_count; index++) {
1940 		if (!opp_table->genpd_virt_devs[index])
1941 			continue;
1942 
1943 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1944 		opp_table->genpd_virt_devs[index] = NULL;
1945 	}
1946 
1947 	kfree(opp_table->genpd_virt_devs);
1948 	opp_table->genpd_virt_devs = NULL;
1949 }
1950 
1951 /**
1952  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1953  * @dev: Consumer device for which the genpd is getting attached.
1954  * @names: Null terminated array of pointers containing names of genpd to attach.
1955  * @virt_devs: Pointer to return the array of virtual devices.
1956  *
1957  * Multiple generic power domains for a device are supported with the help of
1958  * virtual genpd devices, which are created for each consumer device - genpd
1959  * pair. These are the device structures which are attached to the power domain
1960  * and are required by the OPP core to set the performance state of the genpd.
1961  * The same API also works for the case where single genpd is available and so
1962  * we don't need to support that separately.
1963  *
1964  * This helper will normally be called by the consumer driver of the device
1965  * "dev", as only that has details of the genpd names.
1966  *
1967  * This helper needs to be called once with a list of all genpd to attach.
1968  * Otherwise the original device structure will be used instead by the OPP core.
1969  *
1970  * The order of entries in the names array must match the order in which
1971  * "required-opps" are added in DT.
1972  */
1973 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1974 		const char **names, struct device ***virt_devs)
1975 {
1976 	struct opp_table *opp_table;
1977 	struct device *virt_dev;
1978 	int index = 0, ret = -EINVAL;
1979 	const char **name = names;
1980 
1981 	opp_table = dev_pm_opp_get_opp_table(dev);
1982 	if (!opp_table)
1983 		return ERR_PTR(-ENOMEM);
1984 
1985 	/*
1986 	 * If the genpd's OPP table isn't already initialized, parsing of the
1987 	 * required-opps fail for dev. We should retry this after genpd's OPP
1988 	 * table is added.
1989 	 */
1990 	if (!opp_table->required_opp_count) {
1991 		ret = -EPROBE_DEFER;
1992 		goto put_table;
1993 	}
1994 
1995 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1996 
1997 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1998 					     sizeof(*opp_table->genpd_virt_devs),
1999 					     GFP_KERNEL);
2000 	if (!opp_table->genpd_virt_devs)
2001 		goto unlock;
2002 
2003 	while (*name) {
2004 		if (index >= opp_table->required_opp_count) {
2005 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2006 				*name, opp_table->required_opp_count, index);
2007 			goto err;
2008 		}
2009 
2010 		if (opp_table->genpd_virt_devs[index]) {
2011 			dev_err(dev, "Genpd virtual device already set %s\n",
2012 				*name);
2013 			goto err;
2014 		}
2015 
2016 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2017 		if (IS_ERR(virt_dev)) {
2018 			ret = PTR_ERR(virt_dev);
2019 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2020 			goto err;
2021 		}
2022 
2023 		opp_table->genpd_virt_devs[index] = virt_dev;
2024 		index++;
2025 		name++;
2026 	}
2027 
2028 	if (virt_devs)
2029 		*virt_devs = opp_table->genpd_virt_devs;
2030 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2031 
2032 	return opp_table;
2033 
2034 err:
2035 	_opp_detach_genpd(opp_table);
2036 unlock:
2037 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2038 
2039 put_table:
2040 	dev_pm_opp_put_opp_table(opp_table);
2041 
2042 	return ERR_PTR(ret);
2043 }
2044 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2045 
2046 /**
2047  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2048  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2049  *
2050  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2051  * OPP table.
2052  */
2053 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2054 {
2055 	/*
2056 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2057 	 * used in parallel.
2058 	 */
2059 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2060 	_opp_detach_genpd(opp_table);
2061 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2062 
2063 	dev_pm_opp_put_opp_table(opp_table);
2064 }
2065 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2066 
2067 /**
2068  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2069  * @src_table: OPP table which has dst_table as one of its required OPP table.
2070  * @dst_table: Required OPP table of the src_table.
2071  * @pstate: Current performance state of the src_table.
2072  *
2073  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2074  * "required-opps" property of the OPP (present in @src_table) which has
2075  * performance state set to @pstate.
2076  *
2077  * Return: Zero or positive performance state on success, otherwise negative
2078  * value on errors.
2079  */
2080 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2081 				       struct opp_table *dst_table,
2082 				       unsigned int pstate)
2083 {
2084 	struct dev_pm_opp *opp;
2085 	int dest_pstate = -EINVAL;
2086 	int i;
2087 
2088 	if (!pstate)
2089 		return 0;
2090 
2091 	/*
2092 	 * Normally the src_table will have the "required_opps" property set to
2093 	 * point to one of the OPPs in the dst_table, but in some cases the
2094 	 * genpd and its master have one to one mapping of performance states
2095 	 * and so none of them have the "required-opps" property set. Return the
2096 	 * pstate of the src_table as it is in such cases.
2097 	 */
2098 	if (!src_table->required_opp_count)
2099 		return pstate;
2100 
2101 	for (i = 0; i < src_table->required_opp_count; i++) {
2102 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2103 			break;
2104 	}
2105 
2106 	if (unlikely(i == src_table->required_opp_count)) {
2107 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2108 		       __func__, src_table, dst_table);
2109 		return -EINVAL;
2110 	}
2111 
2112 	mutex_lock(&src_table->lock);
2113 
2114 	list_for_each_entry(opp, &src_table->opp_list, node) {
2115 		if (opp->pstate == pstate) {
2116 			dest_pstate = opp->required_opps[i]->pstate;
2117 			goto unlock;
2118 		}
2119 	}
2120 
2121 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2122 	       dst_table);
2123 
2124 unlock:
2125 	mutex_unlock(&src_table->lock);
2126 
2127 	return dest_pstate;
2128 }
2129 
2130 /**
2131  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2132  * @dev:	device for which we do this operation
2133  * @freq:	Frequency in Hz for this OPP
2134  * @u_volt:	Voltage in uVolts for this OPP
2135  *
2136  * This function adds an opp definition to the opp table and returns status.
2137  * The opp is made available by default and it can be controlled using
2138  * dev_pm_opp_enable/disable functions.
2139  *
2140  * Return:
2141  * 0		On success OR
2142  *		Duplicate OPPs (both freq and volt are same) and opp->available
2143  * -EEXIST	Freq are same and volt are different OR
2144  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2145  * -ENOMEM	Memory allocation failure
2146  */
2147 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2148 {
2149 	struct opp_table *opp_table;
2150 	int ret;
2151 
2152 	opp_table = dev_pm_opp_get_opp_table(dev);
2153 	if (!opp_table)
2154 		return -ENOMEM;
2155 
2156 	/* Fix regulator count for dynamic OPPs */
2157 	opp_table->regulator_count = 1;
2158 
2159 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2160 	if (ret)
2161 		dev_pm_opp_put_opp_table(opp_table);
2162 
2163 	return ret;
2164 }
2165 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2166 
2167 /**
2168  * _opp_set_availability() - helper to set the availability of an opp
2169  * @dev:		device for which we do this operation
2170  * @freq:		OPP frequency to modify availability
2171  * @availability_req:	availability status requested for this opp
2172  *
2173  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2174  * which is isolated here.
2175  *
2176  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2177  * copy operation, returns 0 if no modification was done OR modification was
2178  * successful.
2179  */
2180 static int _opp_set_availability(struct device *dev, unsigned long freq,
2181 				 bool availability_req)
2182 {
2183 	struct opp_table *opp_table;
2184 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2185 	int r = 0;
2186 
2187 	/* Find the opp_table */
2188 	opp_table = _find_opp_table(dev);
2189 	if (IS_ERR(opp_table)) {
2190 		r = PTR_ERR(opp_table);
2191 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2192 		return r;
2193 	}
2194 
2195 	mutex_lock(&opp_table->lock);
2196 
2197 	/* Do we have the frequency? */
2198 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2199 		if (tmp_opp->rate == freq) {
2200 			opp = tmp_opp;
2201 			break;
2202 		}
2203 	}
2204 
2205 	if (IS_ERR(opp)) {
2206 		r = PTR_ERR(opp);
2207 		goto unlock;
2208 	}
2209 
2210 	/* Is update really needed? */
2211 	if (opp->available == availability_req)
2212 		goto unlock;
2213 
2214 	opp->available = availability_req;
2215 
2216 	dev_pm_opp_get(opp);
2217 	mutex_unlock(&opp_table->lock);
2218 
2219 	/* Notify the change of the OPP availability */
2220 	if (availability_req)
2221 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2222 					     opp);
2223 	else
2224 		blocking_notifier_call_chain(&opp_table->head,
2225 					     OPP_EVENT_DISABLE, opp);
2226 
2227 	dev_pm_opp_put(opp);
2228 	goto put_table;
2229 
2230 unlock:
2231 	mutex_unlock(&opp_table->lock);
2232 put_table:
2233 	dev_pm_opp_put_opp_table(opp_table);
2234 	return r;
2235 }
2236 
2237 /**
2238  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2239  * @dev:		device for which we do this operation
2240  * @freq:		OPP frequency to adjust voltage of
2241  * @u_volt:		new OPP target voltage
2242  * @u_volt_min:		new OPP min voltage
2243  * @u_volt_max:		new OPP max voltage
2244  *
2245  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2246  * copy operation, returns 0 if no modifcation was done OR modification was
2247  * successful.
2248  */
2249 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2250 			      unsigned long u_volt, unsigned long u_volt_min,
2251 			      unsigned long u_volt_max)
2252 
2253 {
2254 	struct opp_table *opp_table;
2255 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2256 	int r = 0;
2257 
2258 	/* Find the opp_table */
2259 	opp_table = _find_opp_table(dev);
2260 	if (IS_ERR(opp_table)) {
2261 		r = PTR_ERR(opp_table);
2262 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2263 		return r;
2264 	}
2265 
2266 	mutex_lock(&opp_table->lock);
2267 
2268 	/* Do we have the frequency? */
2269 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2270 		if (tmp_opp->rate == freq) {
2271 			opp = tmp_opp;
2272 			break;
2273 		}
2274 	}
2275 
2276 	if (IS_ERR(opp)) {
2277 		r = PTR_ERR(opp);
2278 		goto adjust_unlock;
2279 	}
2280 
2281 	/* Is update really needed? */
2282 	if (opp->supplies->u_volt == u_volt)
2283 		goto adjust_unlock;
2284 
2285 	opp->supplies->u_volt = u_volt;
2286 	opp->supplies->u_volt_min = u_volt_min;
2287 	opp->supplies->u_volt_max = u_volt_max;
2288 
2289 	dev_pm_opp_get(opp);
2290 	mutex_unlock(&opp_table->lock);
2291 
2292 	/* Notify the voltage change of the OPP */
2293 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2294 				     opp);
2295 
2296 	dev_pm_opp_put(opp);
2297 	goto adjust_put_table;
2298 
2299 adjust_unlock:
2300 	mutex_unlock(&opp_table->lock);
2301 adjust_put_table:
2302 	dev_pm_opp_put_opp_table(opp_table);
2303 	return r;
2304 }
2305 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2306 
2307 /**
2308  * dev_pm_opp_enable() - Enable a specific OPP
2309  * @dev:	device for which we do this operation
2310  * @freq:	OPP frequency to enable
2311  *
2312  * Enables a provided opp. If the operation is valid, this returns 0, else the
2313  * corresponding error value. It is meant to be used for users an OPP available
2314  * after being temporarily made unavailable with dev_pm_opp_disable.
2315  *
2316  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2317  * copy operation, returns 0 if no modification was done OR modification was
2318  * successful.
2319  */
2320 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2321 {
2322 	return _opp_set_availability(dev, freq, true);
2323 }
2324 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2325 
2326 /**
2327  * dev_pm_opp_disable() - Disable a specific OPP
2328  * @dev:	device for which we do this operation
2329  * @freq:	OPP frequency to disable
2330  *
2331  * Disables a provided opp. If the operation is valid, this returns
2332  * 0, else the corresponding error value. It is meant to be a temporary
2333  * control by users to make this OPP not available until the circumstances are
2334  * right to make it available again (with a call to dev_pm_opp_enable).
2335  *
2336  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2337  * copy operation, returns 0 if no modification was done OR modification was
2338  * successful.
2339  */
2340 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2341 {
2342 	return _opp_set_availability(dev, freq, false);
2343 }
2344 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2345 
2346 /**
2347  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2348  * @dev:	Device for which notifier needs to be registered
2349  * @nb:		Notifier block to be registered
2350  *
2351  * Return: 0 on success or a negative error value.
2352  */
2353 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2354 {
2355 	struct opp_table *opp_table;
2356 	int ret;
2357 
2358 	opp_table = _find_opp_table(dev);
2359 	if (IS_ERR(opp_table))
2360 		return PTR_ERR(opp_table);
2361 
2362 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2363 
2364 	dev_pm_opp_put_opp_table(opp_table);
2365 
2366 	return ret;
2367 }
2368 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2369 
2370 /**
2371  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2372  * @dev:	Device for which notifier needs to be unregistered
2373  * @nb:		Notifier block to be unregistered
2374  *
2375  * Return: 0 on success or a negative error value.
2376  */
2377 int dev_pm_opp_unregister_notifier(struct device *dev,
2378 				   struct notifier_block *nb)
2379 {
2380 	struct opp_table *opp_table;
2381 	int ret;
2382 
2383 	opp_table = _find_opp_table(dev);
2384 	if (IS_ERR(opp_table))
2385 		return PTR_ERR(opp_table);
2386 
2387 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2388 
2389 	dev_pm_opp_put_opp_table(opp_table);
2390 
2391 	return ret;
2392 }
2393 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2394 
2395 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2396 {
2397 	struct opp_table *opp_table;
2398 
2399 	/* Check for existing table for 'dev' */
2400 	opp_table = _find_opp_table(dev);
2401 	if (IS_ERR(opp_table)) {
2402 		int error = PTR_ERR(opp_table);
2403 
2404 		if (error != -ENODEV)
2405 			WARN(1, "%s: opp_table: %d\n",
2406 			     IS_ERR_OR_NULL(dev) ?
2407 					"Invalid device" : dev_name(dev),
2408 			     error);
2409 		return;
2410 	}
2411 
2412 	_opp_remove_all_static(opp_table);
2413 
2414 	/* Drop reference taken by _find_opp_table() */
2415 	dev_pm_opp_put_opp_table(opp_table);
2416 
2417 	/* Drop reference taken while the OPP table was added */
2418 	dev_pm_opp_put_opp_table(opp_table);
2419 }
2420 
2421 /**
2422  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2423  * @dev:	device pointer used to lookup OPP table.
2424  *
2425  * Free both OPPs created using static entries present in DT and the
2426  * dynamically added entries.
2427  */
2428 void dev_pm_opp_remove_table(struct device *dev)
2429 {
2430 	_dev_pm_opp_find_and_remove_table(dev);
2431 }
2432 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2433