xref: /openbmc/linux/drivers/opp/core.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	return 0;
703 
704 restore_freq:
705 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
706 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
707 			__func__, old_freq);
708 restore_voltage:
709 	/* This shouldn't harm even if the voltages weren't updated earlier */
710 	if (old_supply)
711 		_set_opp_voltage(dev, reg, old_supply);
712 
713 	return ret;
714 }
715 
716 static int _set_opp_custom(const struct opp_table *opp_table,
717 			   struct device *dev, unsigned long old_freq,
718 			   unsigned long freq,
719 			   struct dev_pm_opp_supply *old_supply,
720 			   struct dev_pm_opp_supply *new_supply)
721 {
722 	struct dev_pm_set_opp_data *data;
723 	int size;
724 
725 	data = opp_table->set_opp_data;
726 	data->regulators = opp_table->regulators;
727 	data->regulator_count = opp_table->regulator_count;
728 	data->clk = opp_table->clk;
729 	data->dev = dev;
730 
731 	data->old_opp.rate = old_freq;
732 	size = sizeof(*old_supply) * opp_table->regulator_count;
733 	if (!old_supply)
734 		memset(data->old_opp.supplies, 0, size);
735 	else
736 		memcpy(data->old_opp.supplies, old_supply, size);
737 
738 	data->new_opp.rate = freq;
739 	memcpy(data->new_opp.supplies, new_supply, size);
740 
741 	return opp_table->set_opp(data);
742 }
743 
744 /* This is only called for PM domain for now */
745 static int _set_required_opps(struct device *dev,
746 			      struct opp_table *opp_table,
747 			      struct dev_pm_opp *opp)
748 {
749 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
750 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
751 	unsigned int pstate;
752 	int i, ret = 0;
753 
754 	if (!required_opp_tables)
755 		return 0;
756 
757 	/* Single genpd case */
758 	if (!genpd_virt_devs) {
759 		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
760 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
761 		if (ret) {
762 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
763 				dev_name(dev), pstate, ret);
764 		}
765 		return ret;
766 	}
767 
768 	/* Multiple genpd case */
769 
770 	/*
771 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
772 	 * after it is freed from another thread.
773 	 */
774 	mutex_lock(&opp_table->genpd_virt_dev_lock);
775 
776 	for (i = 0; i < opp_table->required_opp_count; i++) {
777 		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
778 
779 		if (!genpd_virt_devs[i])
780 			continue;
781 
782 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
783 		if (ret) {
784 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
785 				dev_name(genpd_virt_devs[i]), pstate, ret);
786 			break;
787 		}
788 	}
789 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
790 
791 	return ret;
792 }
793 
794 /**
795  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
796  * @dev:	 device for which we do this operation
797  * @target_freq: frequency to achieve
798  *
799  * This configures the power-supplies to the levels specified by the OPP
800  * corresponding to the target_freq, and programs the clock to a value <=
801  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
802  * provided by the opp, should have already rounded to the target OPP's
803  * frequency.
804  */
805 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
806 {
807 	struct opp_table *opp_table;
808 	unsigned long freq, old_freq, temp_freq;
809 	struct dev_pm_opp *old_opp, *opp;
810 	struct clk *clk;
811 	int ret;
812 
813 	opp_table = _find_opp_table(dev);
814 	if (IS_ERR(opp_table)) {
815 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
816 		return PTR_ERR(opp_table);
817 	}
818 
819 	if (unlikely(!target_freq)) {
820 		if (opp_table->required_opp_tables) {
821 			ret = _set_required_opps(dev, opp_table, NULL);
822 		} else {
823 			dev_err(dev, "target frequency can't be 0\n");
824 			ret = -EINVAL;
825 		}
826 
827 		goto put_opp_table;
828 	}
829 
830 	clk = opp_table->clk;
831 	if (IS_ERR(clk)) {
832 		dev_err(dev, "%s: No clock available for the device\n",
833 			__func__);
834 		ret = PTR_ERR(clk);
835 		goto put_opp_table;
836 	}
837 
838 	freq = clk_round_rate(clk, target_freq);
839 	if ((long)freq <= 0)
840 		freq = target_freq;
841 
842 	old_freq = clk_get_rate(clk);
843 
844 	/* Return early if nothing to do */
845 	if (old_freq == freq) {
846 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
847 			__func__, freq);
848 		ret = 0;
849 		goto put_opp_table;
850 	}
851 
852 	temp_freq = old_freq;
853 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
854 	if (IS_ERR(old_opp)) {
855 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
856 			__func__, old_freq, PTR_ERR(old_opp));
857 	}
858 
859 	temp_freq = freq;
860 	opp = _find_freq_ceil(opp_table, &temp_freq);
861 	if (IS_ERR(opp)) {
862 		ret = PTR_ERR(opp);
863 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
864 			__func__, freq, ret);
865 		goto put_old_opp;
866 	}
867 
868 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
869 		old_freq, freq);
870 
871 	/* Scaling up? Configure required OPPs before frequency */
872 	if (freq >= old_freq) {
873 		ret = _set_required_opps(dev, opp_table, opp);
874 		if (ret)
875 			goto put_opp;
876 	}
877 
878 	if (opp_table->set_opp) {
879 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
880 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
881 				      opp->supplies);
882 	} else if (opp_table->regulators) {
883 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
884 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
885 						 opp->supplies);
886 	} else {
887 		/* Only frequency scaling */
888 		ret = _generic_set_opp_clk_only(dev, clk, freq);
889 	}
890 
891 	/* Scaling down? Configure required OPPs after frequency */
892 	if (!ret && freq < old_freq) {
893 		ret = _set_required_opps(dev, opp_table, opp);
894 		if (ret)
895 			dev_err(dev, "Failed to set required opps: %d\n", ret);
896 	}
897 
898 put_opp:
899 	dev_pm_opp_put(opp);
900 put_old_opp:
901 	if (!IS_ERR(old_opp))
902 		dev_pm_opp_put(old_opp);
903 put_opp_table:
904 	dev_pm_opp_put_opp_table(opp_table);
905 	return ret;
906 }
907 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
908 
909 /* OPP-dev Helpers */
910 static void _remove_opp_dev(struct opp_device *opp_dev,
911 			    struct opp_table *opp_table)
912 {
913 	opp_debug_unregister(opp_dev, opp_table);
914 	list_del(&opp_dev->node);
915 	kfree(opp_dev);
916 }
917 
918 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
919 						struct opp_table *opp_table)
920 {
921 	struct opp_device *opp_dev;
922 
923 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
924 	if (!opp_dev)
925 		return NULL;
926 
927 	/* Initialize opp-dev */
928 	opp_dev->dev = dev;
929 
930 	list_add(&opp_dev->node, &opp_table->dev_list);
931 
932 	/* Create debugfs entries for the opp_table */
933 	opp_debug_register(opp_dev, opp_table);
934 
935 	return opp_dev;
936 }
937 
938 struct opp_device *_add_opp_dev(const struct device *dev,
939 				struct opp_table *opp_table)
940 {
941 	struct opp_device *opp_dev;
942 
943 	mutex_lock(&opp_table->lock);
944 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
945 	mutex_unlock(&opp_table->lock);
946 
947 	return opp_dev;
948 }
949 
950 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
951 {
952 	struct opp_table *opp_table;
953 	struct opp_device *opp_dev;
954 	int ret;
955 
956 	/*
957 	 * Allocate a new OPP table. In the infrequent case where a new
958 	 * device is needed to be added, we pay this penalty.
959 	 */
960 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
961 	if (!opp_table)
962 		return NULL;
963 
964 	mutex_init(&opp_table->lock);
965 	mutex_init(&opp_table->genpd_virt_dev_lock);
966 	INIT_LIST_HEAD(&opp_table->dev_list);
967 
968 	/* Mark regulator count uninitialized */
969 	opp_table->regulator_count = -1;
970 
971 	opp_dev = _add_opp_dev(dev, opp_table);
972 	if (!opp_dev) {
973 		kfree(opp_table);
974 		return NULL;
975 	}
976 
977 	_of_init_opp_table(opp_table, dev, index);
978 
979 	/* Find clk for the device */
980 	opp_table->clk = clk_get(dev, NULL);
981 	if (IS_ERR(opp_table->clk)) {
982 		ret = PTR_ERR(opp_table->clk);
983 		if (ret != -EPROBE_DEFER)
984 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
985 				ret);
986 	}
987 
988 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
989 	INIT_LIST_HEAD(&opp_table->opp_list);
990 	kref_init(&opp_table->kref);
991 	kref_init(&opp_table->list_kref);
992 
993 	/* Secure the device table modification */
994 	list_add(&opp_table->node, &opp_tables);
995 	return opp_table;
996 }
997 
998 void _get_opp_table_kref(struct opp_table *opp_table)
999 {
1000 	kref_get(&opp_table->kref);
1001 }
1002 
1003 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1004 {
1005 	struct opp_table *opp_table;
1006 
1007 	/* Hold our table modification lock here */
1008 	mutex_lock(&opp_table_lock);
1009 
1010 	opp_table = _find_opp_table_unlocked(dev);
1011 	if (!IS_ERR(opp_table))
1012 		goto unlock;
1013 
1014 	opp_table = _managed_opp(dev, index);
1015 	if (opp_table) {
1016 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1017 			dev_pm_opp_put_opp_table(opp_table);
1018 			opp_table = NULL;
1019 		}
1020 		goto unlock;
1021 	}
1022 
1023 	opp_table = _allocate_opp_table(dev, index);
1024 
1025 unlock:
1026 	mutex_unlock(&opp_table_lock);
1027 
1028 	return opp_table;
1029 }
1030 
1031 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1032 {
1033 	return _opp_get_opp_table(dev, 0);
1034 }
1035 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1036 
1037 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1038 						   int index)
1039 {
1040 	return _opp_get_opp_table(dev, index);
1041 }
1042 
1043 static void _opp_table_kref_release(struct kref *kref)
1044 {
1045 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1046 	struct opp_device *opp_dev, *temp;
1047 
1048 	_of_clear_opp_table(opp_table);
1049 
1050 	/* Release clk */
1051 	if (!IS_ERR(opp_table->clk))
1052 		clk_put(opp_table->clk);
1053 
1054 	WARN_ON(!list_empty(&opp_table->opp_list));
1055 
1056 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1057 		/*
1058 		 * The OPP table is getting removed, drop the performance state
1059 		 * constraints.
1060 		 */
1061 		if (opp_table->genpd_performance_state)
1062 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1063 
1064 		_remove_opp_dev(opp_dev, opp_table);
1065 	}
1066 
1067 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1068 	mutex_destroy(&opp_table->lock);
1069 	list_del(&opp_table->node);
1070 	kfree(opp_table);
1071 
1072 	mutex_unlock(&opp_table_lock);
1073 }
1074 
1075 void _opp_remove_all_static(struct opp_table *opp_table)
1076 {
1077 	struct dev_pm_opp *opp, *tmp;
1078 
1079 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1080 		if (!opp->dynamic)
1081 			dev_pm_opp_put(opp);
1082 	}
1083 
1084 	opp_table->parsed_static_opps = false;
1085 }
1086 
1087 static void _opp_table_list_kref_release(struct kref *kref)
1088 {
1089 	struct opp_table *opp_table = container_of(kref, struct opp_table,
1090 						   list_kref);
1091 
1092 	_opp_remove_all_static(opp_table);
1093 	mutex_unlock(&opp_table_lock);
1094 }
1095 
1096 void _put_opp_list_kref(struct opp_table *opp_table)
1097 {
1098 	kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1099 		       &opp_table_lock);
1100 }
1101 
1102 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1103 {
1104 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1105 		       &opp_table_lock);
1106 }
1107 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1108 
1109 void _opp_free(struct dev_pm_opp *opp)
1110 {
1111 	kfree(opp);
1112 }
1113 
1114 static void _opp_kref_release(struct dev_pm_opp *opp,
1115 			      struct opp_table *opp_table)
1116 {
1117 	/*
1118 	 * Notify the changes in the availability of the operable
1119 	 * frequency/voltage list.
1120 	 */
1121 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1122 	_of_opp_free_required_opps(opp_table, opp);
1123 	opp_debug_remove_one(opp);
1124 	list_del(&opp->node);
1125 	kfree(opp);
1126 }
1127 
1128 static void _opp_kref_release_unlocked(struct kref *kref)
1129 {
1130 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1131 	struct opp_table *opp_table = opp->opp_table;
1132 
1133 	_opp_kref_release(opp, opp_table);
1134 }
1135 
1136 static void _opp_kref_release_locked(struct kref *kref)
1137 {
1138 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1139 	struct opp_table *opp_table = opp->opp_table;
1140 
1141 	_opp_kref_release(opp, opp_table);
1142 	mutex_unlock(&opp_table->lock);
1143 }
1144 
1145 void dev_pm_opp_get(struct dev_pm_opp *opp)
1146 {
1147 	kref_get(&opp->kref);
1148 }
1149 
1150 void dev_pm_opp_put(struct dev_pm_opp *opp)
1151 {
1152 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1153 		       &opp->opp_table->lock);
1154 }
1155 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1156 
1157 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1158 {
1159 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1160 }
1161 
1162 /**
1163  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1164  * @dev:	device for which we do this operation
1165  * @freq:	OPP to remove with matching 'freq'
1166  *
1167  * This function removes an opp from the opp table.
1168  */
1169 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1170 {
1171 	struct dev_pm_opp *opp;
1172 	struct opp_table *opp_table;
1173 	bool found = false;
1174 
1175 	opp_table = _find_opp_table(dev);
1176 	if (IS_ERR(opp_table))
1177 		return;
1178 
1179 	mutex_lock(&opp_table->lock);
1180 
1181 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1182 		if (opp->rate == freq) {
1183 			found = true;
1184 			break;
1185 		}
1186 	}
1187 
1188 	mutex_unlock(&opp_table->lock);
1189 
1190 	if (found) {
1191 		dev_pm_opp_put(opp);
1192 
1193 		/* Drop the reference taken by dev_pm_opp_add() */
1194 		dev_pm_opp_put_opp_table(opp_table);
1195 	} else {
1196 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1197 			 __func__, freq);
1198 	}
1199 
1200 	/* Drop the reference taken by _find_opp_table() */
1201 	dev_pm_opp_put_opp_table(opp_table);
1202 }
1203 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1204 
1205 /**
1206  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1207  * @dev:	device for which we do this operation
1208  *
1209  * This function removes all dynamically created OPPs from the opp table.
1210  */
1211 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1212 {
1213 	struct opp_table *opp_table;
1214 	struct dev_pm_opp *opp, *temp;
1215 	int count = 0;
1216 
1217 	opp_table = _find_opp_table(dev);
1218 	if (IS_ERR(opp_table))
1219 		return;
1220 
1221 	mutex_lock(&opp_table->lock);
1222 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1223 		if (opp->dynamic) {
1224 			dev_pm_opp_put_unlocked(opp);
1225 			count++;
1226 		}
1227 	}
1228 	mutex_unlock(&opp_table->lock);
1229 
1230 	/* Drop the references taken by dev_pm_opp_add() */
1231 	while (count--)
1232 		dev_pm_opp_put_opp_table(opp_table);
1233 
1234 	/* Drop the reference taken by _find_opp_table() */
1235 	dev_pm_opp_put_opp_table(opp_table);
1236 }
1237 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1238 
1239 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1240 {
1241 	struct dev_pm_opp *opp;
1242 	int count, supply_size;
1243 
1244 	/* Allocate space for at least one supply */
1245 	count = table->regulator_count > 0 ? table->regulator_count : 1;
1246 	supply_size = sizeof(*opp->supplies) * count;
1247 
1248 	/* allocate new OPP node and supplies structures */
1249 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1250 	if (!opp)
1251 		return NULL;
1252 
1253 	/* Put the supplies at the end of the OPP structure as an empty array */
1254 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1255 	INIT_LIST_HEAD(&opp->node);
1256 
1257 	return opp;
1258 }
1259 
1260 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1261 					 struct opp_table *opp_table)
1262 {
1263 	struct regulator *reg;
1264 	int i;
1265 
1266 	if (!opp_table->regulators)
1267 		return true;
1268 
1269 	for (i = 0; i < opp_table->regulator_count; i++) {
1270 		reg = opp_table->regulators[i];
1271 
1272 		if (!regulator_is_supported_voltage(reg,
1273 					opp->supplies[i].u_volt_min,
1274 					opp->supplies[i].u_volt_max)) {
1275 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1276 				__func__, opp->supplies[i].u_volt_min,
1277 				opp->supplies[i].u_volt_max);
1278 			return false;
1279 		}
1280 	}
1281 
1282 	return true;
1283 }
1284 
1285 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1286 			     struct opp_table *opp_table,
1287 			     struct list_head **head)
1288 {
1289 	struct dev_pm_opp *opp;
1290 
1291 	/*
1292 	 * Insert new OPP in order of increasing frequency and discard if
1293 	 * already present.
1294 	 *
1295 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1296 	 * loop, don't replace it with head otherwise it will become an infinite
1297 	 * loop.
1298 	 */
1299 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1300 		if (new_opp->rate > opp->rate) {
1301 			*head = &opp->node;
1302 			continue;
1303 		}
1304 
1305 		if (new_opp->rate < opp->rate)
1306 			return 0;
1307 
1308 		/* Duplicate OPPs */
1309 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1310 			 __func__, opp->rate, opp->supplies[0].u_volt,
1311 			 opp->available, new_opp->rate,
1312 			 new_opp->supplies[0].u_volt, new_opp->available);
1313 
1314 		/* Should we compare voltages for all regulators here ? */
1315 		return opp->available &&
1316 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 /*
1323  * Returns:
1324  * 0: On success. And appropriate error message for duplicate OPPs.
1325  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1326  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1327  *  sure we don't print error messages unnecessarily if different parts of
1328  *  kernel try to initialize the OPP table.
1329  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1330  *  should be considered an error by the callers of _opp_add().
1331  */
1332 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1333 	     struct opp_table *opp_table, bool rate_not_available)
1334 {
1335 	struct list_head *head;
1336 	int ret;
1337 
1338 	mutex_lock(&opp_table->lock);
1339 	head = &opp_table->opp_list;
1340 
1341 	if (likely(!rate_not_available)) {
1342 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1343 		if (ret) {
1344 			mutex_unlock(&opp_table->lock);
1345 			return ret;
1346 		}
1347 	}
1348 
1349 	list_add(&new_opp->node, head);
1350 	mutex_unlock(&opp_table->lock);
1351 
1352 	new_opp->opp_table = opp_table;
1353 	kref_init(&new_opp->kref);
1354 
1355 	opp_debug_create_one(new_opp, opp_table);
1356 
1357 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1358 		new_opp->available = false;
1359 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1360 			 __func__, new_opp->rate);
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 /**
1367  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1368  * @opp_table:	OPP table
1369  * @dev:	device for which we do this operation
1370  * @freq:	Frequency in Hz for this OPP
1371  * @u_volt:	Voltage in uVolts for this OPP
1372  * @dynamic:	Dynamically added OPPs.
1373  *
1374  * This function adds an opp definition to the opp table and returns status.
1375  * The opp is made available by default and it can be controlled using
1376  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1377  *
1378  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1379  * and freed by dev_pm_opp_of_remove_table.
1380  *
1381  * Return:
1382  * 0		On success OR
1383  *		Duplicate OPPs (both freq and volt are same) and opp->available
1384  * -EEXIST	Freq are same and volt are different OR
1385  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1386  * -ENOMEM	Memory allocation failure
1387  */
1388 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1389 		unsigned long freq, long u_volt, bool dynamic)
1390 {
1391 	struct dev_pm_opp *new_opp;
1392 	unsigned long tol;
1393 	int ret;
1394 
1395 	new_opp = _opp_allocate(opp_table);
1396 	if (!new_opp)
1397 		return -ENOMEM;
1398 
1399 	/* populate the opp table */
1400 	new_opp->rate = freq;
1401 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1402 	new_opp->supplies[0].u_volt = u_volt;
1403 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1404 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1405 	new_opp->available = true;
1406 	new_opp->dynamic = dynamic;
1407 
1408 	ret = _opp_add(dev, new_opp, opp_table, false);
1409 	if (ret) {
1410 		/* Don't return error for duplicate OPPs */
1411 		if (ret == -EBUSY)
1412 			ret = 0;
1413 		goto free_opp;
1414 	}
1415 
1416 	/*
1417 	 * Notify the changes in the availability of the operable
1418 	 * frequency/voltage list.
1419 	 */
1420 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1421 	return 0;
1422 
1423 free_opp:
1424 	_opp_free(new_opp);
1425 
1426 	return ret;
1427 }
1428 
1429 /**
1430  * dev_pm_opp_set_supported_hw() - Set supported platforms
1431  * @dev: Device for which supported-hw has to be set.
1432  * @versions: Array of hierarchy of versions to match.
1433  * @count: Number of elements in the array.
1434  *
1435  * This is required only for the V2 bindings, and it enables a platform to
1436  * specify the hierarchy of versions it supports. OPP layer will then enable
1437  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1438  * property.
1439  */
1440 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1441 			const u32 *versions, unsigned int count)
1442 {
1443 	struct opp_table *opp_table;
1444 
1445 	opp_table = dev_pm_opp_get_opp_table(dev);
1446 	if (!opp_table)
1447 		return ERR_PTR(-ENOMEM);
1448 
1449 	/* Make sure there are no concurrent readers while updating opp_table */
1450 	WARN_ON(!list_empty(&opp_table->opp_list));
1451 
1452 	/* Another CPU that shares the OPP table has set the property ? */
1453 	if (opp_table->supported_hw)
1454 		return opp_table;
1455 
1456 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1457 					GFP_KERNEL);
1458 	if (!opp_table->supported_hw) {
1459 		dev_pm_opp_put_opp_table(opp_table);
1460 		return ERR_PTR(-ENOMEM);
1461 	}
1462 
1463 	opp_table->supported_hw_count = count;
1464 
1465 	return opp_table;
1466 }
1467 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1468 
1469 /**
1470  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1471  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1472  *
1473  * This is required only for the V2 bindings, and is called for a matching
1474  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1475  * will not be freed.
1476  */
1477 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1478 {
1479 	/* Make sure there are no concurrent readers while updating opp_table */
1480 	WARN_ON(!list_empty(&opp_table->opp_list));
1481 
1482 	kfree(opp_table->supported_hw);
1483 	opp_table->supported_hw = NULL;
1484 	opp_table->supported_hw_count = 0;
1485 
1486 	dev_pm_opp_put_opp_table(opp_table);
1487 }
1488 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1489 
1490 /**
1491  * dev_pm_opp_set_prop_name() - Set prop-extn name
1492  * @dev: Device for which the prop-name has to be set.
1493  * @name: name to postfix to properties.
1494  *
1495  * This is required only for the V2 bindings, and it enables a platform to
1496  * specify the extn to be used for certain property names. The properties to
1497  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1498  * should postfix the property name with -<name> while looking for them.
1499  */
1500 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1501 {
1502 	struct opp_table *opp_table;
1503 
1504 	opp_table = dev_pm_opp_get_opp_table(dev);
1505 	if (!opp_table)
1506 		return ERR_PTR(-ENOMEM);
1507 
1508 	/* Make sure there are no concurrent readers while updating opp_table */
1509 	WARN_ON(!list_empty(&opp_table->opp_list));
1510 
1511 	/* Another CPU that shares the OPP table has set the property ? */
1512 	if (opp_table->prop_name)
1513 		return opp_table;
1514 
1515 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1516 	if (!opp_table->prop_name) {
1517 		dev_pm_opp_put_opp_table(opp_table);
1518 		return ERR_PTR(-ENOMEM);
1519 	}
1520 
1521 	return opp_table;
1522 }
1523 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1524 
1525 /**
1526  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1527  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1528  *
1529  * This is required only for the V2 bindings, and is called for a matching
1530  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1531  * will not be freed.
1532  */
1533 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1534 {
1535 	/* Make sure there are no concurrent readers while updating opp_table */
1536 	WARN_ON(!list_empty(&opp_table->opp_list));
1537 
1538 	kfree(opp_table->prop_name);
1539 	opp_table->prop_name = NULL;
1540 
1541 	dev_pm_opp_put_opp_table(opp_table);
1542 }
1543 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1544 
1545 static int _allocate_set_opp_data(struct opp_table *opp_table)
1546 {
1547 	struct dev_pm_set_opp_data *data;
1548 	int len, count = opp_table->regulator_count;
1549 
1550 	if (WARN_ON(!opp_table->regulators))
1551 		return -EINVAL;
1552 
1553 	/* space for set_opp_data */
1554 	len = sizeof(*data);
1555 
1556 	/* space for old_opp.supplies and new_opp.supplies */
1557 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1558 
1559 	data = kzalloc(len, GFP_KERNEL);
1560 	if (!data)
1561 		return -ENOMEM;
1562 
1563 	data->old_opp.supplies = (void *)(data + 1);
1564 	data->new_opp.supplies = data->old_opp.supplies + count;
1565 
1566 	opp_table->set_opp_data = data;
1567 
1568 	return 0;
1569 }
1570 
1571 static void _free_set_opp_data(struct opp_table *opp_table)
1572 {
1573 	kfree(opp_table->set_opp_data);
1574 	opp_table->set_opp_data = NULL;
1575 }
1576 
1577 /**
1578  * dev_pm_opp_set_regulators() - Set regulator names for the device
1579  * @dev: Device for which regulator name is being set.
1580  * @names: Array of pointers to the names of the regulator.
1581  * @count: Number of regulators.
1582  *
1583  * In order to support OPP switching, OPP layer needs to know the name of the
1584  * device's regulators, as the core would be required to switch voltages as
1585  * well.
1586  *
1587  * This must be called before any OPPs are initialized for the device.
1588  */
1589 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1590 					    const char * const names[],
1591 					    unsigned int count)
1592 {
1593 	struct opp_table *opp_table;
1594 	struct regulator *reg;
1595 	int ret, i;
1596 
1597 	opp_table = dev_pm_opp_get_opp_table(dev);
1598 	if (!opp_table)
1599 		return ERR_PTR(-ENOMEM);
1600 
1601 	/* This should be called before OPPs are initialized */
1602 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1603 		ret = -EBUSY;
1604 		goto err;
1605 	}
1606 
1607 	/* Another CPU that shares the OPP table has set the regulators ? */
1608 	if (opp_table->regulators)
1609 		return opp_table;
1610 
1611 	opp_table->regulators = kmalloc_array(count,
1612 					      sizeof(*opp_table->regulators),
1613 					      GFP_KERNEL);
1614 	if (!opp_table->regulators) {
1615 		ret = -ENOMEM;
1616 		goto err;
1617 	}
1618 
1619 	for (i = 0; i < count; i++) {
1620 		reg = regulator_get_optional(dev, names[i]);
1621 		if (IS_ERR(reg)) {
1622 			ret = PTR_ERR(reg);
1623 			if (ret != -EPROBE_DEFER)
1624 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1625 					__func__, names[i], ret);
1626 			goto free_regulators;
1627 		}
1628 
1629 		ret = regulator_enable(reg);
1630 		if (ret < 0) {
1631 			regulator_put(reg);
1632 			goto free_regulators;
1633 		}
1634 
1635 		opp_table->regulators[i] = reg;
1636 	}
1637 
1638 	opp_table->regulator_count = count;
1639 
1640 	/* Allocate block only once to pass to set_opp() routines */
1641 	ret = _allocate_set_opp_data(opp_table);
1642 	if (ret)
1643 		goto free_regulators;
1644 
1645 	return opp_table;
1646 
1647 free_regulators:
1648 	while (i--) {
1649 		regulator_disable(opp_table->regulators[i]);
1650 		regulator_put(opp_table->regulators[i]);
1651 	}
1652 
1653 	kfree(opp_table->regulators);
1654 	opp_table->regulators = NULL;
1655 	opp_table->regulator_count = -1;
1656 err:
1657 	dev_pm_opp_put_opp_table(opp_table);
1658 
1659 	return ERR_PTR(ret);
1660 }
1661 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1662 
1663 /**
1664  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1665  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1666  */
1667 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1668 {
1669 	int i;
1670 
1671 	if (!opp_table->regulators)
1672 		goto put_opp_table;
1673 
1674 	/* Make sure there are no concurrent readers while updating opp_table */
1675 	WARN_ON(!list_empty(&opp_table->opp_list));
1676 
1677 	for (i = opp_table->regulator_count - 1; i >= 0; i--) {
1678 		regulator_disable(opp_table->regulators[i]);
1679 		regulator_put(opp_table->regulators[i]);
1680 	}
1681 
1682 	_free_set_opp_data(opp_table);
1683 
1684 	kfree(opp_table->regulators);
1685 	opp_table->regulators = NULL;
1686 	opp_table->regulator_count = -1;
1687 
1688 put_opp_table:
1689 	dev_pm_opp_put_opp_table(opp_table);
1690 }
1691 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1692 
1693 /**
1694  * dev_pm_opp_set_clkname() - Set clk name for the device
1695  * @dev: Device for which clk name is being set.
1696  * @name: Clk name.
1697  *
1698  * In order to support OPP switching, OPP layer needs to get pointer to the
1699  * clock for the device. Simple cases work fine without using this routine (i.e.
1700  * by passing connection-id as NULL), but for a device with multiple clocks
1701  * available, the OPP core needs to know the exact name of the clk to use.
1702  *
1703  * This must be called before any OPPs are initialized for the device.
1704  */
1705 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1706 {
1707 	struct opp_table *opp_table;
1708 	int ret;
1709 
1710 	opp_table = dev_pm_opp_get_opp_table(dev);
1711 	if (!opp_table)
1712 		return ERR_PTR(-ENOMEM);
1713 
1714 	/* This should be called before OPPs are initialized */
1715 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1716 		ret = -EBUSY;
1717 		goto err;
1718 	}
1719 
1720 	/* Already have default clk set, free it */
1721 	if (!IS_ERR(opp_table->clk))
1722 		clk_put(opp_table->clk);
1723 
1724 	/* Find clk for the device */
1725 	opp_table->clk = clk_get(dev, name);
1726 	if (IS_ERR(opp_table->clk)) {
1727 		ret = PTR_ERR(opp_table->clk);
1728 		if (ret != -EPROBE_DEFER) {
1729 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1730 				ret);
1731 		}
1732 		goto err;
1733 	}
1734 
1735 	return opp_table;
1736 
1737 err:
1738 	dev_pm_opp_put_opp_table(opp_table);
1739 
1740 	return ERR_PTR(ret);
1741 }
1742 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1743 
1744 /**
1745  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1746  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1747  */
1748 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1749 {
1750 	/* Make sure there are no concurrent readers while updating opp_table */
1751 	WARN_ON(!list_empty(&opp_table->opp_list));
1752 
1753 	clk_put(opp_table->clk);
1754 	opp_table->clk = ERR_PTR(-EINVAL);
1755 
1756 	dev_pm_opp_put_opp_table(opp_table);
1757 }
1758 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1759 
1760 /**
1761  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1762  * @dev: Device for which the helper is getting registered.
1763  * @set_opp: Custom set OPP helper.
1764  *
1765  * This is useful to support complex platforms (like platforms with multiple
1766  * regulators per device), instead of the generic OPP set rate helper.
1767  *
1768  * This must be called before any OPPs are initialized for the device.
1769  */
1770 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1771 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1772 {
1773 	struct opp_table *opp_table;
1774 
1775 	if (!set_opp)
1776 		return ERR_PTR(-EINVAL);
1777 
1778 	opp_table = dev_pm_opp_get_opp_table(dev);
1779 	if (!opp_table)
1780 		return ERR_PTR(-ENOMEM);
1781 
1782 	/* This should be called before OPPs are initialized */
1783 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1784 		dev_pm_opp_put_opp_table(opp_table);
1785 		return ERR_PTR(-EBUSY);
1786 	}
1787 
1788 	/* Another CPU that shares the OPP table has set the helper ? */
1789 	if (!opp_table->set_opp)
1790 		opp_table->set_opp = set_opp;
1791 
1792 	return opp_table;
1793 }
1794 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1795 
1796 /**
1797  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1798  *					   set_opp helper
1799  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1800  *
1801  * Release resources blocked for platform specific set_opp helper.
1802  */
1803 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1804 {
1805 	/* Make sure there are no concurrent readers while updating opp_table */
1806 	WARN_ON(!list_empty(&opp_table->opp_list));
1807 
1808 	opp_table->set_opp = NULL;
1809 	dev_pm_opp_put_opp_table(opp_table);
1810 }
1811 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1812 
1813 static void _opp_detach_genpd(struct opp_table *opp_table)
1814 {
1815 	int index;
1816 
1817 	for (index = 0; index < opp_table->required_opp_count; index++) {
1818 		if (!opp_table->genpd_virt_devs[index])
1819 			continue;
1820 
1821 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1822 		opp_table->genpd_virt_devs[index] = NULL;
1823 	}
1824 
1825 	kfree(opp_table->genpd_virt_devs);
1826 	opp_table->genpd_virt_devs = NULL;
1827 }
1828 
1829 /**
1830  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1831  * @dev: Consumer device for which the genpd is getting attached.
1832  * @names: Null terminated array of pointers containing names of genpd to attach.
1833  * @virt_devs: Pointer to return the array of virtual devices.
1834  *
1835  * Multiple generic power domains for a device are supported with the help of
1836  * virtual genpd devices, which are created for each consumer device - genpd
1837  * pair. These are the device structures which are attached to the power domain
1838  * and are required by the OPP core to set the performance state of the genpd.
1839  * The same API also works for the case where single genpd is available and so
1840  * we don't need to support that separately.
1841  *
1842  * This helper will normally be called by the consumer driver of the device
1843  * "dev", as only that has details of the genpd names.
1844  *
1845  * This helper needs to be called once with a list of all genpd to attach.
1846  * Otherwise the original device structure will be used instead by the OPP core.
1847  *
1848  * The order of entries in the names array must match the order in which
1849  * "required-opps" are added in DT.
1850  */
1851 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1852 		const char **names, struct device ***virt_devs)
1853 {
1854 	struct opp_table *opp_table;
1855 	struct device *virt_dev;
1856 	int index = 0, ret = -EINVAL;
1857 	const char **name = names;
1858 
1859 	opp_table = dev_pm_opp_get_opp_table(dev);
1860 	if (!opp_table)
1861 		return ERR_PTR(-ENOMEM);
1862 
1863 	/*
1864 	 * If the genpd's OPP table isn't already initialized, parsing of the
1865 	 * required-opps fail for dev. We should retry this after genpd's OPP
1866 	 * table is added.
1867 	 */
1868 	if (!opp_table->required_opp_count) {
1869 		ret = -EPROBE_DEFER;
1870 		goto put_table;
1871 	}
1872 
1873 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1874 
1875 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1876 					     sizeof(*opp_table->genpd_virt_devs),
1877 					     GFP_KERNEL);
1878 	if (!opp_table->genpd_virt_devs)
1879 		goto unlock;
1880 
1881 	while (*name) {
1882 		if (index >= opp_table->required_opp_count) {
1883 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1884 				*name, opp_table->required_opp_count, index);
1885 			goto err;
1886 		}
1887 
1888 		if (opp_table->genpd_virt_devs[index]) {
1889 			dev_err(dev, "Genpd virtual device already set %s\n",
1890 				*name);
1891 			goto err;
1892 		}
1893 
1894 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1895 		if (IS_ERR(virt_dev)) {
1896 			ret = PTR_ERR(virt_dev);
1897 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1898 			goto err;
1899 		}
1900 
1901 		opp_table->genpd_virt_devs[index] = virt_dev;
1902 		index++;
1903 		name++;
1904 	}
1905 
1906 	if (virt_devs)
1907 		*virt_devs = opp_table->genpd_virt_devs;
1908 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1909 
1910 	return opp_table;
1911 
1912 err:
1913 	_opp_detach_genpd(opp_table);
1914 unlock:
1915 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1916 
1917 put_table:
1918 	dev_pm_opp_put_opp_table(opp_table);
1919 
1920 	return ERR_PTR(ret);
1921 }
1922 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1923 
1924 /**
1925  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1926  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1927  *
1928  * This detaches the genpd(s), resets the virtual device pointers, and puts the
1929  * OPP table.
1930  */
1931 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1932 {
1933 	/*
1934 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1935 	 * used in parallel.
1936 	 */
1937 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1938 	_opp_detach_genpd(opp_table);
1939 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1940 
1941 	dev_pm_opp_put_opp_table(opp_table);
1942 }
1943 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1944 
1945 /**
1946  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1947  * @src_table: OPP table which has dst_table as one of its required OPP table.
1948  * @dst_table: Required OPP table of the src_table.
1949  * @pstate: Current performance state of the src_table.
1950  *
1951  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1952  * "required-opps" property of the OPP (present in @src_table) which has
1953  * performance state set to @pstate.
1954  *
1955  * Return: Zero or positive performance state on success, otherwise negative
1956  * value on errors.
1957  */
1958 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1959 				       struct opp_table *dst_table,
1960 				       unsigned int pstate)
1961 {
1962 	struct dev_pm_opp *opp;
1963 	int dest_pstate = -EINVAL;
1964 	int i;
1965 
1966 	if (!pstate)
1967 		return 0;
1968 
1969 	/*
1970 	 * Normally the src_table will have the "required_opps" property set to
1971 	 * point to one of the OPPs in the dst_table, but in some cases the
1972 	 * genpd and its master have one to one mapping of performance states
1973 	 * and so none of them have the "required-opps" property set. Return the
1974 	 * pstate of the src_table as it is in such cases.
1975 	 */
1976 	if (!src_table->required_opp_count)
1977 		return pstate;
1978 
1979 	for (i = 0; i < src_table->required_opp_count; i++) {
1980 		if (src_table->required_opp_tables[i]->np == dst_table->np)
1981 			break;
1982 	}
1983 
1984 	if (unlikely(i == src_table->required_opp_count)) {
1985 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1986 		       __func__, src_table, dst_table);
1987 		return -EINVAL;
1988 	}
1989 
1990 	mutex_lock(&src_table->lock);
1991 
1992 	list_for_each_entry(opp, &src_table->opp_list, node) {
1993 		if (opp->pstate == pstate) {
1994 			dest_pstate = opp->required_opps[i]->pstate;
1995 			goto unlock;
1996 		}
1997 	}
1998 
1999 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2000 	       dst_table);
2001 
2002 unlock:
2003 	mutex_unlock(&src_table->lock);
2004 
2005 	return dest_pstate;
2006 }
2007 
2008 /**
2009  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2010  * @dev:	device for which we do this operation
2011  * @freq:	Frequency in Hz for this OPP
2012  * @u_volt:	Voltage in uVolts for this OPP
2013  *
2014  * This function adds an opp definition to the opp table and returns status.
2015  * The opp is made available by default and it can be controlled using
2016  * dev_pm_opp_enable/disable functions.
2017  *
2018  * Return:
2019  * 0		On success OR
2020  *		Duplicate OPPs (both freq and volt are same) and opp->available
2021  * -EEXIST	Freq are same and volt are different OR
2022  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2023  * -ENOMEM	Memory allocation failure
2024  */
2025 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2026 {
2027 	struct opp_table *opp_table;
2028 	int ret;
2029 
2030 	opp_table = dev_pm_opp_get_opp_table(dev);
2031 	if (!opp_table)
2032 		return -ENOMEM;
2033 
2034 	/* Fix regulator count for dynamic OPPs */
2035 	opp_table->regulator_count = 1;
2036 
2037 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2038 	if (ret)
2039 		dev_pm_opp_put_opp_table(opp_table);
2040 
2041 	return ret;
2042 }
2043 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2044 
2045 /**
2046  * _opp_set_availability() - helper to set the availability of an opp
2047  * @dev:		device for which we do this operation
2048  * @freq:		OPP frequency to modify availability
2049  * @availability_req:	availability status requested for this opp
2050  *
2051  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2052  * which is isolated here.
2053  *
2054  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2055  * copy operation, returns 0 if no modification was done OR modification was
2056  * successful.
2057  */
2058 static int _opp_set_availability(struct device *dev, unsigned long freq,
2059 				 bool availability_req)
2060 {
2061 	struct opp_table *opp_table;
2062 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2063 	int r = 0;
2064 
2065 	/* Find the opp_table */
2066 	opp_table = _find_opp_table(dev);
2067 	if (IS_ERR(opp_table)) {
2068 		r = PTR_ERR(opp_table);
2069 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2070 		return r;
2071 	}
2072 
2073 	mutex_lock(&opp_table->lock);
2074 
2075 	/* Do we have the frequency? */
2076 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2077 		if (tmp_opp->rate == freq) {
2078 			opp = tmp_opp;
2079 			break;
2080 		}
2081 	}
2082 
2083 	if (IS_ERR(opp)) {
2084 		r = PTR_ERR(opp);
2085 		goto unlock;
2086 	}
2087 
2088 	/* Is update really needed? */
2089 	if (opp->available == availability_req)
2090 		goto unlock;
2091 
2092 	opp->available = availability_req;
2093 
2094 	dev_pm_opp_get(opp);
2095 	mutex_unlock(&opp_table->lock);
2096 
2097 	/* Notify the change of the OPP availability */
2098 	if (availability_req)
2099 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2100 					     opp);
2101 	else
2102 		blocking_notifier_call_chain(&opp_table->head,
2103 					     OPP_EVENT_DISABLE, opp);
2104 
2105 	dev_pm_opp_put(opp);
2106 	goto put_table;
2107 
2108 unlock:
2109 	mutex_unlock(&opp_table->lock);
2110 put_table:
2111 	dev_pm_opp_put_opp_table(opp_table);
2112 	return r;
2113 }
2114 
2115 /**
2116  * dev_pm_opp_enable() - Enable a specific OPP
2117  * @dev:	device for which we do this operation
2118  * @freq:	OPP frequency to enable
2119  *
2120  * Enables a provided opp. If the operation is valid, this returns 0, else the
2121  * corresponding error value. It is meant to be used for users an OPP available
2122  * after being temporarily made unavailable with dev_pm_opp_disable.
2123  *
2124  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2125  * copy operation, returns 0 if no modification was done OR modification was
2126  * successful.
2127  */
2128 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2129 {
2130 	return _opp_set_availability(dev, freq, true);
2131 }
2132 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2133 
2134 /**
2135  * dev_pm_opp_disable() - Disable a specific OPP
2136  * @dev:	device for which we do this operation
2137  * @freq:	OPP frequency to disable
2138  *
2139  * Disables a provided opp. If the operation is valid, this returns
2140  * 0, else the corresponding error value. It is meant to be a temporary
2141  * control by users to make this OPP not available until the circumstances are
2142  * right to make it available again (with a call to dev_pm_opp_enable).
2143  *
2144  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2145  * copy operation, returns 0 if no modification was done OR modification was
2146  * successful.
2147  */
2148 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2149 {
2150 	return _opp_set_availability(dev, freq, false);
2151 }
2152 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2153 
2154 /**
2155  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2156  * @dev:	Device for which notifier needs to be registered
2157  * @nb:		Notifier block to be registered
2158  *
2159  * Return: 0 on success or a negative error value.
2160  */
2161 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2162 {
2163 	struct opp_table *opp_table;
2164 	int ret;
2165 
2166 	opp_table = _find_opp_table(dev);
2167 	if (IS_ERR(opp_table))
2168 		return PTR_ERR(opp_table);
2169 
2170 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2171 
2172 	dev_pm_opp_put_opp_table(opp_table);
2173 
2174 	return ret;
2175 }
2176 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2177 
2178 /**
2179  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2180  * @dev:	Device for which notifier needs to be unregistered
2181  * @nb:		Notifier block to be unregistered
2182  *
2183  * Return: 0 on success or a negative error value.
2184  */
2185 int dev_pm_opp_unregister_notifier(struct device *dev,
2186 				   struct notifier_block *nb)
2187 {
2188 	struct opp_table *opp_table;
2189 	int ret;
2190 
2191 	opp_table = _find_opp_table(dev);
2192 	if (IS_ERR(opp_table))
2193 		return PTR_ERR(opp_table);
2194 
2195 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2196 
2197 	dev_pm_opp_put_opp_table(opp_table);
2198 
2199 	return ret;
2200 }
2201 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2202 
2203 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2204 {
2205 	struct opp_table *opp_table;
2206 
2207 	/* Check for existing table for 'dev' */
2208 	opp_table = _find_opp_table(dev);
2209 	if (IS_ERR(opp_table)) {
2210 		int error = PTR_ERR(opp_table);
2211 
2212 		if (error != -ENODEV)
2213 			WARN(1, "%s: opp_table: %d\n",
2214 			     IS_ERR_OR_NULL(dev) ?
2215 					"Invalid device" : dev_name(dev),
2216 			     error);
2217 		return;
2218 	}
2219 
2220 	_put_opp_list_kref(opp_table);
2221 
2222 	/* Drop reference taken by _find_opp_table() */
2223 	dev_pm_opp_put_opp_table(opp_table);
2224 
2225 	/* Drop reference taken while the OPP table was added */
2226 	dev_pm_opp_put_opp_table(opp_table);
2227 }
2228 
2229 /**
2230  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2231  * @dev:	device pointer used to lookup OPP table.
2232  *
2233  * Free both OPPs created using static entries present in DT and the
2234  * dynamically added entries.
2235  */
2236 void dev_pm_opp_remove_table(struct device *dev)
2237 {
2238 	_dev_pm_opp_find_and_remove_table(dev);
2239 }
2240 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2241