1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 31 /* OPP tables with uninitialized required OPPs */ 32 LIST_HEAD(lazy_opp_tables); 33 34 /* Lock to allow exclusive modification to the device and opp lists */ 35 DEFINE_MUTEX(opp_table_lock); 36 /* Flag indicating that opp_tables list is being updated at the moment */ 37 static bool opp_tables_busy; 38 39 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 40 { 41 struct opp_device *opp_dev; 42 bool found = false; 43 44 mutex_lock(&opp_table->lock); 45 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 46 if (opp_dev->dev == dev) { 47 found = true; 48 break; 49 } 50 51 mutex_unlock(&opp_table->lock); 52 return found; 53 } 54 55 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 56 { 57 struct opp_table *opp_table; 58 59 list_for_each_entry(opp_table, &opp_tables, node) { 60 if (_find_opp_dev(dev, opp_table)) { 61 _get_opp_table_kref(opp_table); 62 return opp_table; 63 } 64 } 65 66 return ERR_PTR(-ENODEV); 67 } 68 69 /** 70 * _find_opp_table() - find opp_table struct using device pointer 71 * @dev: device pointer used to lookup OPP table 72 * 73 * Search OPP table for one containing matching device. 74 * 75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 76 * -EINVAL based on type of error. 77 * 78 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 79 */ 80 struct opp_table *_find_opp_table(struct device *dev) 81 { 82 struct opp_table *opp_table; 83 84 if (IS_ERR_OR_NULL(dev)) { 85 pr_err("%s: Invalid parameters\n", __func__); 86 return ERR_PTR(-EINVAL); 87 } 88 89 mutex_lock(&opp_table_lock); 90 opp_table = _find_opp_table_unlocked(dev); 91 mutex_unlock(&opp_table_lock); 92 93 return opp_table; 94 } 95 96 /** 97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 98 * @opp: opp for which voltage has to be returned for 99 * 100 * Return: voltage in micro volt corresponding to the opp, else 101 * return 0 102 * 103 * This is useful only for devices with single power supply. 104 */ 105 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 106 { 107 if (IS_ERR_OR_NULL(opp)) { 108 pr_err("%s: Invalid parameters\n", __func__); 109 return 0; 110 } 111 112 return opp->supplies[0].u_volt; 113 } 114 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 115 116 /** 117 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 118 * @opp: opp for which frequency has to be returned for 119 * 120 * Return: frequency in hertz corresponding to the opp, else 121 * return 0 122 */ 123 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 124 { 125 if (IS_ERR_OR_NULL(opp)) { 126 pr_err("%s: Invalid parameters\n", __func__); 127 return 0; 128 } 129 130 return opp->rate; 131 } 132 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 133 134 /** 135 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 136 * @opp: opp for which level value has to be returned for 137 * 138 * Return: level read from device tree corresponding to the opp, else 139 * return 0. 140 */ 141 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 142 { 143 if (IS_ERR_OR_NULL(opp) || !opp->available) { 144 pr_err("%s: Invalid parameters\n", __func__); 145 return 0; 146 } 147 148 return opp->level; 149 } 150 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 151 152 /** 153 * dev_pm_opp_get_required_pstate() - Gets the required performance state 154 * corresponding to an available opp 155 * @opp: opp for which performance state has to be returned for 156 * @index: index of the required opp 157 * 158 * Return: performance state read from device tree corresponding to the 159 * required opp, else return 0. 160 */ 161 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 162 unsigned int index) 163 { 164 if (IS_ERR_OR_NULL(opp) || !opp->available || 165 index >= opp->opp_table->required_opp_count) { 166 pr_err("%s: Invalid parameters\n", __func__); 167 return 0; 168 } 169 170 /* required-opps not fully initialized yet */ 171 if (lazy_linking_pending(opp->opp_table)) 172 return 0; 173 174 return opp->required_opps[index]->pstate; 175 } 176 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 177 178 /** 179 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 180 * @opp: opp for which turbo mode is being verified 181 * 182 * Turbo OPPs are not for normal use, and can be enabled (under certain 183 * conditions) for short duration of times to finish high throughput work 184 * quickly. Running on them for longer times may overheat the chip. 185 * 186 * Return: true if opp is turbo opp, else false. 187 */ 188 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 189 { 190 if (IS_ERR_OR_NULL(opp) || !opp->available) { 191 pr_err("%s: Invalid parameters\n", __func__); 192 return false; 193 } 194 195 return opp->turbo; 196 } 197 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 198 199 /** 200 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 201 * @dev: device for which we do this operation 202 * 203 * Return: This function returns the max clock latency in nanoseconds. 204 */ 205 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 206 { 207 struct opp_table *opp_table; 208 unsigned long clock_latency_ns; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 clock_latency_ns = opp_table->clock_latency_ns_max; 215 216 dev_pm_opp_put_opp_table(opp_table); 217 218 return clock_latency_ns; 219 } 220 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 221 222 /** 223 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 224 * @dev: device for which we do this operation 225 * 226 * Return: This function returns the max voltage latency in nanoseconds. 227 */ 228 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 229 { 230 struct opp_table *opp_table; 231 struct dev_pm_opp *opp; 232 struct regulator *reg; 233 unsigned long latency_ns = 0; 234 int ret, i, count; 235 struct { 236 unsigned long min; 237 unsigned long max; 238 } *uV; 239 240 opp_table = _find_opp_table(dev); 241 if (IS_ERR(opp_table)) 242 return 0; 243 244 /* Regulator may not be required for the device */ 245 if (!opp_table->regulators) 246 goto put_opp_table; 247 248 count = opp_table->regulator_count; 249 250 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 251 if (!uV) 252 goto put_opp_table; 253 254 mutex_lock(&opp_table->lock); 255 256 for (i = 0; i < count; i++) { 257 uV[i].min = ~0; 258 uV[i].max = 0; 259 260 list_for_each_entry(opp, &opp_table->opp_list, node) { 261 if (!opp->available) 262 continue; 263 264 if (opp->supplies[i].u_volt_min < uV[i].min) 265 uV[i].min = opp->supplies[i].u_volt_min; 266 if (opp->supplies[i].u_volt_max > uV[i].max) 267 uV[i].max = opp->supplies[i].u_volt_max; 268 } 269 } 270 271 mutex_unlock(&opp_table->lock); 272 273 /* 274 * The caller needs to ensure that opp_table (and hence the regulator) 275 * isn't freed, while we are executing this routine. 276 */ 277 for (i = 0; i < count; i++) { 278 reg = opp_table->regulators[i]; 279 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 280 if (ret > 0) 281 latency_ns += ret * 1000; 282 } 283 284 kfree(uV); 285 put_opp_table: 286 dev_pm_opp_put_opp_table(opp_table); 287 288 return latency_ns; 289 } 290 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 291 292 /** 293 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 294 * nanoseconds 295 * @dev: device for which we do this operation 296 * 297 * Return: This function returns the max transition latency, in nanoseconds, to 298 * switch from one OPP to other. 299 */ 300 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 301 { 302 return dev_pm_opp_get_max_volt_latency(dev) + 303 dev_pm_opp_get_max_clock_latency(dev); 304 } 305 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 306 307 /** 308 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 309 * @dev: device for which we do this operation 310 * 311 * Return: This function returns the frequency of the OPP marked as suspend_opp 312 * if one is available, else returns 0; 313 */ 314 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 315 { 316 struct opp_table *opp_table; 317 unsigned long freq = 0; 318 319 opp_table = _find_opp_table(dev); 320 if (IS_ERR(opp_table)) 321 return 0; 322 323 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 324 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 325 326 dev_pm_opp_put_opp_table(opp_table); 327 328 return freq; 329 } 330 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 331 332 int _get_opp_count(struct opp_table *opp_table) 333 { 334 struct dev_pm_opp *opp; 335 int count = 0; 336 337 mutex_lock(&opp_table->lock); 338 339 list_for_each_entry(opp, &opp_table->opp_list, node) { 340 if (opp->available) 341 count++; 342 } 343 344 mutex_unlock(&opp_table->lock); 345 346 return count; 347 } 348 349 /** 350 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 351 * @dev: device for which we do this operation 352 * 353 * Return: This function returns the number of available opps if there are any, 354 * else returns 0 if none or the corresponding error value. 355 */ 356 int dev_pm_opp_get_opp_count(struct device *dev) 357 { 358 struct opp_table *opp_table; 359 int count; 360 361 opp_table = _find_opp_table(dev); 362 if (IS_ERR(opp_table)) { 363 count = PTR_ERR(opp_table); 364 dev_dbg(dev, "%s: OPP table not found (%d)\n", 365 __func__, count); 366 return count; 367 } 368 369 count = _get_opp_count(opp_table); 370 dev_pm_opp_put_opp_table(opp_table); 371 372 return count; 373 } 374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 375 376 /** 377 * dev_pm_opp_find_freq_exact() - search for an exact frequency 378 * @dev: device for which we do this operation 379 * @freq: frequency to search for 380 * @available: true/false - match for available opp 381 * 382 * Return: Searches for exact match in the opp table and returns pointer to the 383 * matching opp if found, else returns ERR_PTR in case of error and should 384 * be handled using IS_ERR. Error return values can be: 385 * EINVAL: for bad pointer 386 * ERANGE: no match found for search 387 * ENODEV: if device not found in list of registered devices 388 * 389 * Note: available is a modifier for the search. if available=true, then the 390 * match is for exact matching frequency and is available in the stored OPP 391 * table. if false, the match is for exact frequency which is not available. 392 * 393 * This provides a mechanism to enable an opp which is not available currently 394 * or the opposite as well. 395 * 396 * The callers are required to call dev_pm_opp_put() for the returned OPP after 397 * use. 398 */ 399 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 400 unsigned long freq, 401 bool available) 402 { 403 struct opp_table *opp_table; 404 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 405 406 opp_table = _find_opp_table(dev); 407 if (IS_ERR(opp_table)) { 408 int r = PTR_ERR(opp_table); 409 410 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 411 return ERR_PTR(r); 412 } 413 414 mutex_lock(&opp_table->lock); 415 416 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 417 if (temp_opp->available == available && 418 temp_opp->rate == freq) { 419 opp = temp_opp; 420 421 /* Increment the reference count of OPP */ 422 dev_pm_opp_get(opp); 423 break; 424 } 425 } 426 427 mutex_unlock(&opp_table->lock); 428 dev_pm_opp_put_opp_table(opp_table); 429 430 return opp; 431 } 432 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 433 434 /** 435 * dev_pm_opp_find_level_exact() - search for an exact level 436 * @dev: device for which we do this operation 437 * @level: level to search for 438 * 439 * Return: Searches for exact match in the opp table and returns pointer to the 440 * matching opp if found, else returns ERR_PTR in case of error and should 441 * be handled using IS_ERR. Error return values can be: 442 * EINVAL: for bad pointer 443 * ERANGE: no match found for search 444 * ENODEV: if device not found in list of registered devices 445 * 446 * The callers are required to call dev_pm_opp_put() for the returned OPP after 447 * use. 448 */ 449 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 450 unsigned int level) 451 { 452 struct opp_table *opp_table; 453 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 454 455 opp_table = _find_opp_table(dev); 456 if (IS_ERR(opp_table)) { 457 int r = PTR_ERR(opp_table); 458 459 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 460 return ERR_PTR(r); 461 } 462 463 mutex_lock(&opp_table->lock); 464 465 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 466 if (temp_opp->level == level) { 467 opp = temp_opp; 468 469 /* Increment the reference count of OPP */ 470 dev_pm_opp_get(opp); 471 break; 472 } 473 } 474 475 mutex_unlock(&opp_table->lock); 476 dev_pm_opp_put_opp_table(opp_table); 477 478 return opp; 479 } 480 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 481 482 /** 483 * dev_pm_opp_find_level_ceil() - search for an rounded up level 484 * @dev: device for which we do this operation 485 * @level: level to search for 486 * 487 * Return: Searches for rounded up match in the opp table and returns pointer 488 * to the matching opp if found, else returns ERR_PTR in case of error and 489 * should be handled using IS_ERR. Error return values can be: 490 * EINVAL: for bad pointer 491 * ERANGE: no match found for search 492 * ENODEV: if device not found in list of registered devices 493 * 494 * The callers are required to call dev_pm_opp_put() for the returned OPP after 495 * use. 496 */ 497 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 498 unsigned int *level) 499 { 500 struct opp_table *opp_table; 501 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 502 503 opp_table = _find_opp_table(dev); 504 if (IS_ERR(opp_table)) { 505 int r = PTR_ERR(opp_table); 506 507 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 508 return ERR_PTR(r); 509 } 510 511 mutex_lock(&opp_table->lock); 512 513 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 514 if (temp_opp->available && temp_opp->level >= *level) { 515 opp = temp_opp; 516 *level = opp->level; 517 518 /* Increment the reference count of OPP */ 519 dev_pm_opp_get(opp); 520 break; 521 } 522 } 523 524 mutex_unlock(&opp_table->lock); 525 dev_pm_opp_put_opp_table(opp_table); 526 527 return opp; 528 } 529 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 530 531 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 532 unsigned long *freq) 533 { 534 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 535 536 mutex_lock(&opp_table->lock); 537 538 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 539 if (temp_opp->available && temp_opp->rate >= *freq) { 540 opp = temp_opp; 541 *freq = opp->rate; 542 543 /* Increment the reference count of OPP */ 544 dev_pm_opp_get(opp); 545 break; 546 } 547 } 548 549 mutex_unlock(&opp_table->lock); 550 551 return opp; 552 } 553 554 /** 555 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 556 * @dev: device for which we do this operation 557 * @freq: Start frequency 558 * 559 * Search for the matching ceil *available* OPP from a starting freq 560 * for a device. 561 * 562 * Return: matching *opp and refreshes *freq accordingly, else returns 563 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 564 * values can be: 565 * EINVAL: for bad pointer 566 * ERANGE: no match found for search 567 * ENODEV: if device not found in list of registered devices 568 * 569 * The callers are required to call dev_pm_opp_put() for the returned OPP after 570 * use. 571 */ 572 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 573 unsigned long *freq) 574 { 575 struct opp_table *opp_table; 576 struct dev_pm_opp *opp; 577 578 if (!dev || !freq) { 579 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 580 return ERR_PTR(-EINVAL); 581 } 582 583 opp_table = _find_opp_table(dev); 584 if (IS_ERR(opp_table)) 585 return ERR_CAST(opp_table); 586 587 opp = _find_freq_ceil(opp_table, freq); 588 589 dev_pm_opp_put_opp_table(opp_table); 590 591 return opp; 592 } 593 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 594 595 /** 596 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 597 * @dev: device for which we do this operation 598 * @freq: Start frequency 599 * 600 * Search for the matching floor *available* OPP from a starting freq 601 * for a device. 602 * 603 * Return: matching *opp and refreshes *freq accordingly, else returns 604 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 605 * values can be: 606 * EINVAL: for bad pointer 607 * ERANGE: no match found for search 608 * ENODEV: if device not found in list of registered devices 609 * 610 * The callers are required to call dev_pm_opp_put() for the returned OPP after 611 * use. 612 */ 613 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 614 unsigned long *freq) 615 { 616 struct opp_table *opp_table; 617 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 618 619 if (!dev || !freq) { 620 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 621 return ERR_PTR(-EINVAL); 622 } 623 624 opp_table = _find_opp_table(dev); 625 if (IS_ERR(opp_table)) 626 return ERR_CAST(opp_table); 627 628 mutex_lock(&opp_table->lock); 629 630 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 631 if (temp_opp->available) { 632 /* go to the next node, before choosing prev */ 633 if (temp_opp->rate > *freq) 634 break; 635 else 636 opp = temp_opp; 637 } 638 } 639 640 /* Increment the reference count of OPP */ 641 if (!IS_ERR(opp)) 642 dev_pm_opp_get(opp); 643 mutex_unlock(&opp_table->lock); 644 dev_pm_opp_put_opp_table(opp_table); 645 646 if (!IS_ERR(opp)) 647 *freq = opp->rate; 648 649 return opp; 650 } 651 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 652 653 /** 654 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 655 * target voltage. 656 * @dev: Device for which we do this operation. 657 * @u_volt: Target voltage. 658 * 659 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 660 * 661 * Return: matching *opp, else returns ERR_PTR in case of error which should be 662 * handled using IS_ERR. 663 * 664 * Error return values can be: 665 * EINVAL: bad parameters 666 * 667 * The callers are required to call dev_pm_opp_put() for the returned OPP after 668 * use. 669 */ 670 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 671 unsigned long u_volt) 672 { 673 struct opp_table *opp_table; 674 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 675 676 if (!dev || !u_volt) { 677 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 678 u_volt); 679 return ERR_PTR(-EINVAL); 680 } 681 682 opp_table = _find_opp_table(dev); 683 if (IS_ERR(opp_table)) 684 return ERR_CAST(opp_table); 685 686 mutex_lock(&opp_table->lock); 687 688 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 689 if (temp_opp->available) { 690 if (temp_opp->supplies[0].u_volt > u_volt) 691 break; 692 opp = temp_opp; 693 } 694 } 695 696 /* Increment the reference count of OPP */ 697 if (!IS_ERR(opp)) 698 dev_pm_opp_get(opp); 699 700 mutex_unlock(&opp_table->lock); 701 dev_pm_opp_put_opp_table(opp_table); 702 703 return opp; 704 } 705 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 706 707 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 708 struct dev_pm_opp_supply *supply) 709 { 710 int ret; 711 712 /* Regulator not available for device */ 713 if (IS_ERR(reg)) { 714 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 715 PTR_ERR(reg)); 716 return 0; 717 } 718 719 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 720 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 721 722 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 723 supply->u_volt, supply->u_volt_max); 724 if (ret) 725 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 726 __func__, supply->u_volt_min, supply->u_volt, 727 supply->u_volt_max, ret); 728 729 return ret; 730 } 731 732 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 733 unsigned long freq) 734 { 735 int ret; 736 737 /* We may reach here for devices which don't change frequency */ 738 if (IS_ERR(clk)) 739 return 0; 740 741 ret = clk_set_rate(clk, freq); 742 if (ret) { 743 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 744 ret); 745 } 746 747 return ret; 748 } 749 750 static int _generic_set_opp_regulator(struct opp_table *opp_table, 751 struct device *dev, 752 struct dev_pm_opp *opp, 753 unsigned long freq, 754 int scaling_down) 755 { 756 struct regulator *reg = opp_table->regulators[0]; 757 struct dev_pm_opp *old_opp = opp_table->current_opp; 758 int ret; 759 760 /* This function only supports single regulator per device */ 761 if (WARN_ON(opp_table->regulator_count > 1)) { 762 dev_err(dev, "multiple regulators are not supported\n"); 763 return -EINVAL; 764 } 765 766 /* Scaling up? Scale voltage before frequency */ 767 if (!scaling_down) { 768 ret = _set_opp_voltage(dev, reg, opp->supplies); 769 if (ret) 770 goto restore_voltage; 771 } 772 773 /* Change frequency */ 774 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 775 if (ret) 776 goto restore_voltage; 777 778 /* Scaling down? Scale voltage after frequency */ 779 if (scaling_down) { 780 ret = _set_opp_voltage(dev, reg, opp->supplies); 781 if (ret) 782 goto restore_freq; 783 } 784 785 /* 786 * Enable the regulator after setting its voltages, otherwise it breaks 787 * some boot-enabled regulators. 788 */ 789 if (unlikely(!opp_table->enabled)) { 790 ret = regulator_enable(reg); 791 if (ret < 0) 792 dev_warn(dev, "Failed to enable regulator: %d", ret); 793 } 794 795 return 0; 796 797 restore_freq: 798 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate)) 799 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 800 __func__, old_opp->rate); 801 restore_voltage: 802 /* This shouldn't harm even if the voltages weren't updated earlier */ 803 _set_opp_voltage(dev, reg, old_opp->supplies); 804 805 return ret; 806 } 807 808 static int _set_opp_bw(const struct opp_table *opp_table, 809 struct dev_pm_opp *opp, struct device *dev) 810 { 811 u32 avg, peak; 812 int i, ret; 813 814 if (!opp_table->paths) 815 return 0; 816 817 for (i = 0; i < opp_table->path_count; i++) { 818 if (!opp) { 819 avg = 0; 820 peak = 0; 821 } else { 822 avg = opp->bandwidth[i].avg; 823 peak = opp->bandwidth[i].peak; 824 } 825 ret = icc_set_bw(opp_table->paths[i], avg, peak); 826 if (ret) { 827 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 828 opp ? "set" : "remove", i, ret); 829 return ret; 830 } 831 } 832 833 return 0; 834 } 835 836 static int _set_opp_custom(const struct opp_table *opp_table, 837 struct device *dev, struct dev_pm_opp *opp, 838 unsigned long freq) 839 { 840 struct dev_pm_set_opp_data *data = opp_table->set_opp_data; 841 struct dev_pm_opp *old_opp = opp_table->current_opp; 842 int size; 843 844 /* 845 * We support this only if dev_pm_opp_set_regulators() was called 846 * earlier. 847 */ 848 if (opp_table->sod_supplies) { 849 size = sizeof(*old_opp->supplies) * opp_table->regulator_count; 850 memcpy(data->old_opp.supplies, old_opp->supplies, size); 851 memcpy(data->new_opp.supplies, opp->supplies, size); 852 data->regulator_count = opp_table->regulator_count; 853 } else { 854 data->regulator_count = 0; 855 } 856 857 data->regulators = opp_table->regulators; 858 data->clk = opp_table->clk; 859 data->dev = dev; 860 data->old_opp.rate = old_opp->rate; 861 data->new_opp.rate = freq; 862 863 return opp_table->set_opp(data); 864 } 865 866 static int _set_required_opp(struct device *dev, struct device *pd_dev, 867 struct dev_pm_opp *opp, int i) 868 { 869 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 870 int ret; 871 872 if (!pd_dev) 873 return 0; 874 875 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 876 if (ret) { 877 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 878 dev_name(pd_dev), pstate, ret); 879 } 880 881 return ret; 882 } 883 884 /* This is only called for PM domain for now */ 885 static int _set_required_opps(struct device *dev, 886 struct opp_table *opp_table, 887 struct dev_pm_opp *opp, bool up) 888 { 889 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 890 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 891 int i, ret = 0; 892 893 if (!required_opp_tables) 894 return 0; 895 896 /* required-opps not fully initialized yet */ 897 if (lazy_linking_pending(opp_table)) 898 return -EBUSY; 899 900 /* 901 * We only support genpd's OPPs in the "required-opps" for now, as we 902 * don't know much about other use cases. Error out if the required OPP 903 * doesn't belong to a genpd. 904 */ 905 if (unlikely(!required_opp_tables[0]->is_genpd)) { 906 dev_err(dev, "required-opps don't belong to a genpd\n"); 907 return -ENOENT; 908 } 909 910 /* Single genpd case */ 911 if (!genpd_virt_devs) 912 return _set_required_opp(dev, dev, opp, 0); 913 914 /* Multiple genpd case */ 915 916 /* 917 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 918 * after it is freed from another thread. 919 */ 920 mutex_lock(&opp_table->genpd_virt_dev_lock); 921 922 /* Scaling up? Set required OPPs in normal order, else reverse */ 923 if (up) { 924 for (i = 0; i < opp_table->required_opp_count; i++) { 925 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 926 if (ret) 927 break; 928 } 929 } else { 930 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 931 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 932 if (ret) 933 break; 934 } 935 } 936 937 mutex_unlock(&opp_table->genpd_virt_dev_lock); 938 939 return ret; 940 } 941 942 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 943 { 944 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 945 unsigned long freq; 946 947 if (!IS_ERR(opp_table->clk)) { 948 freq = clk_get_rate(opp_table->clk); 949 opp = _find_freq_ceil(opp_table, &freq); 950 } 951 952 /* 953 * Unable to find the current OPP ? Pick the first from the list since 954 * it is in ascending order, otherwise rest of the code will need to 955 * make special checks to validate current_opp. 956 */ 957 if (IS_ERR(opp)) { 958 mutex_lock(&opp_table->lock); 959 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 960 dev_pm_opp_get(opp); 961 mutex_unlock(&opp_table->lock); 962 } 963 964 opp_table->current_opp = opp; 965 } 966 967 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 968 { 969 int ret; 970 971 if (!opp_table->enabled) 972 return 0; 973 974 /* 975 * Some drivers need to support cases where some platforms may 976 * have OPP table for the device, while others don't and 977 * opp_set_rate() just needs to behave like clk_set_rate(). 978 */ 979 if (!_get_opp_count(opp_table)) 980 return 0; 981 982 ret = _set_opp_bw(opp_table, NULL, dev); 983 if (ret) 984 return ret; 985 986 if (opp_table->regulators) 987 regulator_disable(opp_table->regulators[0]); 988 989 ret = _set_required_opps(dev, opp_table, NULL, false); 990 991 opp_table->enabled = false; 992 return ret; 993 } 994 995 static int _set_opp(struct device *dev, struct opp_table *opp_table, 996 struct dev_pm_opp *opp, unsigned long freq) 997 { 998 struct dev_pm_opp *old_opp; 999 int scaling_down, ret; 1000 1001 if (unlikely(!opp)) 1002 return _disable_opp_table(dev, opp_table); 1003 1004 /* Find the currently set OPP if we don't know already */ 1005 if (unlikely(!opp_table->current_opp)) 1006 _find_current_opp(dev, opp_table); 1007 1008 old_opp = opp_table->current_opp; 1009 1010 /* Return early if nothing to do */ 1011 if (old_opp == opp && opp_table->current_rate == freq && 1012 opp_table->enabled) { 1013 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__); 1014 return 0; 1015 } 1016 1017 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1018 __func__, opp_table->current_rate, freq, old_opp->level, 1019 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1020 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1021 1022 scaling_down = _opp_compare_key(old_opp, opp); 1023 if (scaling_down == -1) 1024 scaling_down = 0; 1025 1026 /* Scaling up? Configure required OPPs before frequency */ 1027 if (!scaling_down) { 1028 ret = _set_required_opps(dev, opp_table, opp, true); 1029 if (ret) { 1030 dev_err(dev, "Failed to set required opps: %d\n", ret); 1031 return ret; 1032 } 1033 1034 ret = _set_opp_bw(opp_table, opp, dev); 1035 if (ret) { 1036 dev_err(dev, "Failed to set bw: %d\n", ret); 1037 return ret; 1038 } 1039 } 1040 1041 if (opp_table->set_opp) { 1042 ret = _set_opp_custom(opp_table, dev, opp, freq); 1043 } else if (opp_table->regulators) { 1044 ret = _generic_set_opp_regulator(opp_table, dev, opp, freq, 1045 scaling_down); 1046 } else { 1047 /* Only frequency scaling */ 1048 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 1049 } 1050 1051 if (ret) 1052 return ret; 1053 1054 /* Scaling down? Configure required OPPs after frequency */ 1055 if (scaling_down) { 1056 ret = _set_opp_bw(opp_table, opp, dev); 1057 if (ret) { 1058 dev_err(dev, "Failed to set bw: %d\n", ret); 1059 return ret; 1060 } 1061 1062 ret = _set_required_opps(dev, opp_table, opp, false); 1063 if (ret) { 1064 dev_err(dev, "Failed to set required opps: %d\n", ret); 1065 return ret; 1066 } 1067 } 1068 1069 opp_table->enabled = true; 1070 dev_pm_opp_put(old_opp); 1071 1072 /* Make sure current_opp doesn't get freed */ 1073 dev_pm_opp_get(opp); 1074 opp_table->current_opp = opp; 1075 opp_table->current_rate = freq; 1076 1077 return ret; 1078 } 1079 1080 /** 1081 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1082 * @dev: device for which we do this operation 1083 * @target_freq: frequency to achieve 1084 * 1085 * This configures the power-supplies to the levels specified by the OPP 1086 * corresponding to the target_freq, and programs the clock to a value <= 1087 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1088 * provided by the opp, should have already rounded to the target OPP's 1089 * frequency. 1090 */ 1091 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1092 { 1093 struct opp_table *opp_table; 1094 unsigned long freq = 0, temp_freq; 1095 struct dev_pm_opp *opp = NULL; 1096 int ret; 1097 1098 opp_table = _find_opp_table(dev); 1099 if (IS_ERR(opp_table)) { 1100 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1101 return PTR_ERR(opp_table); 1102 } 1103 1104 if (target_freq) { 1105 /* 1106 * For IO devices which require an OPP on some platforms/SoCs 1107 * while just needing to scale the clock on some others 1108 * we look for empty OPP tables with just a clock handle and 1109 * scale only the clk. This makes dev_pm_opp_set_rate() 1110 * equivalent to a clk_set_rate() 1111 */ 1112 if (!_get_opp_count(opp_table)) { 1113 ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq); 1114 goto put_opp_table; 1115 } 1116 1117 freq = clk_round_rate(opp_table->clk, target_freq); 1118 if ((long)freq <= 0) 1119 freq = target_freq; 1120 1121 /* 1122 * The clock driver may support finer resolution of the 1123 * frequencies than the OPP table, don't update the frequency we 1124 * pass to clk_set_rate() here. 1125 */ 1126 temp_freq = freq; 1127 opp = _find_freq_ceil(opp_table, &temp_freq); 1128 if (IS_ERR(opp)) { 1129 ret = PTR_ERR(opp); 1130 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1131 __func__, freq, ret); 1132 goto put_opp_table; 1133 } 1134 } 1135 1136 ret = _set_opp(dev, opp_table, opp, freq); 1137 1138 if (target_freq) 1139 dev_pm_opp_put(opp); 1140 put_opp_table: 1141 dev_pm_opp_put_opp_table(opp_table); 1142 return ret; 1143 } 1144 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1145 1146 /** 1147 * dev_pm_opp_set_opp() - Configure device for OPP 1148 * @dev: device for which we do this operation 1149 * @opp: OPP to set to 1150 * 1151 * This configures the device based on the properties of the OPP passed to this 1152 * routine. 1153 * 1154 * Return: 0 on success, a negative error number otherwise. 1155 */ 1156 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1157 { 1158 struct opp_table *opp_table; 1159 int ret; 1160 1161 opp_table = _find_opp_table(dev); 1162 if (IS_ERR(opp_table)) { 1163 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1164 return PTR_ERR(opp_table); 1165 } 1166 1167 ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0); 1168 dev_pm_opp_put_opp_table(opp_table); 1169 1170 return ret; 1171 } 1172 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1173 1174 /* OPP-dev Helpers */ 1175 static void _remove_opp_dev(struct opp_device *opp_dev, 1176 struct opp_table *opp_table) 1177 { 1178 opp_debug_unregister(opp_dev, opp_table); 1179 list_del(&opp_dev->node); 1180 kfree(opp_dev); 1181 } 1182 1183 struct opp_device *_add_opp_dev(const struct device *dev, 1184 struct opp_table *opp_table) 1185 { 1186 struct opp_device *opp_dev; 1187 1188 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1189 if (!opp_dev) 1190 return NULL; 1191 1192 /* Initialize opp-dev */ 1193 opp_dev->dev = dev; 1194 1195 mutex_lock(&opp_table->lock); 1196 list_add(&opp_dev->node, &opp_table->dev_list); 1197 mutex_unlock(&opp_table->lock); 1198 1199 /* Create debugfs entries for the opp_table */ 1200 opp_debug_register(opp_dev, opp_table); 1201 1202 return opp_dev; 1203 } 1204 1205 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1206 { 1207 struct opp_table *opp_table; 1208 struct opp_device *opp_dev; 1209 int ret; 1210 1211 /* 1212 * Allocate a new OPP table. In the infrequent case where a new 1213 * device is needed to be added, we pay this penalty. 1214 */ 1215 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1216 if (!opp_table) 1217 return ERR_PTR(-ENOMEM); 1218 1219 mutex_init(&opp_table->lock); 1220 mutex_init(&opp_table->genpd_virt_dev_lock); 1221 INIT_LIST_HEAD(&opp_table->dev_list); 1222 INIT_LIST_HEAD(&opp_table->lazy); 1223 1224 /* Mark regulator count uninitialized */ 1225 opp_table->regulator_count = -1; 1226 1227 opp_dev = _add_opp_dev(dev, opp_table); 1228 if (!opp_dev) { 1229 ret = -ENOMEM; 1230 goto err; 1231 } 1232 1233 _of_init_opp_table(opp_table, dev, index); 1234 1235 /* Find interconnect path(s) for the device */ 1236 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1237 if (ret) { 1238 if (ret == -EPROBE_DEFER) 1239 goto remove_opp_dev; 1240 1241 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1242 __func__, ret); 1243 } 1244 1245 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1246 INIT_LIST_HEAD(&opp_table->opp_list); 1247 kref_init(&opp_table->kref); 1248 1249 return opp_table; 1250 1251 remove_opp_dev: 1252 _remove_opp_dev(opp_dev, opp_table); 1253 err: 1254 kfree(opp_table); 1255 return ERR_PTR(ret); 1256 } 1257 1258 void _get_opp_table_kref(struct opp_table *opp_table) 1259 { 1260 kref_get(&opp_table->kref); 1261 } 1262 1263 static struct opp_table *_update_opp_table_clk(struct device *dev, 1264 struct opp_table *opp_table, 1265 bool getclk) 1266 { 1267 int ret; 1268 1269 /* 1270 * Return early if we don't need to get clk or we have already tried it 1271 * earlier. 1272 */ 1273 if (!getclk || IS_ERR(opp_table) || opp_table->clk) 1274 return opp_table; 1275 1276 /* Find clk for the device */ 1277 opp_table->clk = clk_get(dev, NULL); 1278 1279 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1280 if (!ret) 1281 return opp_table; 1282 1283 if (ret == -ENOENT) { 1284 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1285 return opp_table; 1286 } 1287 1288 dev_pm_opp_put_opp_table(opp_table); 1289 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1290 1291 return ERR_PTR(ret); 1292 } 1293 1294 /* 1295 * We need to make sure that the OPP table for a device doesn't get added twice, 1296 * if this routine gets called in parallel with the same device pointer. 1297 * 1298 * The simplest way to enforce that is to perform everything (find existing 1299 * table and if not found, create a new one) under the opp_table_lock, so only 1300 * one creator gets access to the same. But that expands the critical section 1301 * under the lock and may end up causing circular dependencies with frameworks 1302 * like debugfs, interconnect or clock framework as they may be direct or 1303 * indirect users of OPP core. 1304 * 1305 * And for that reason we have to go for a bit tricky implementation here, which 1306 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1307 * of adding an OPP table and others should wait for it to finish. 1308 */ 1309 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1310 bool getclk) 1311 { 1312 struct opp_table *opp_table; 1313 1314 again: 1315 mutex_lock(&opp_table_lock); 1316 1317 opp_table = _find_opp_table_unlocked(dev); 1318 if (!IS_ERR(opp_table)) 1319 goto unlock; 1320 1321 /* 1322 * The opp_tables list or an OPP table's dev_list is getting updated by 1323 * another user, wait for it to finish. 1324 */ 1325 if (unlikely(opp_tables_busy)) { 1326 mutex_unlock(&opp_table_lock); 1327 cpu_relax(); 1328 goto again; 1329 } 1330 1331 opp_tables_busy = true; 1332 opp_table = _managed_opp(dev, index); 1333 1334 /* Drop the lock to reduce the size of critical section */ 1335 mutex_unlock(&opp_table_lock); 1336 1337 if (opp_table) { 1338 if (!_add_opp_dev(dev, opp_table)) { 1339 dev_pm_opp_put_opp_table(opp_table); 1340 opp_table = ERR_PTR(-ENOMEM); 1341 } 1342 1343 mutex_lock(&opp_table_lock); 1344 } else { 1345 opp_table = _allocate_opp_table(dev, index); 1346 1347 mutex_lock(&opp_table_lock); 1348 if (!IS_ERR(opp_table)) 1349 list_add(&opp_table->node, &opp_tables); 1350 } 1351 1352 opp_tables_busy = false; 1353 1354 unlock: 1355 mutex_unlock(&opp_table_lock); 1356 1357 return _update_opp_table_clk(dev, opp_table, getclk); 1358 } 1359 1360 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1361 { 1362 return _add_opp_table_indexed(dev, 0, getclk); 1363 } 1364 1365 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1366 { 1367 return _find_opp_table(dev); 1368 } 1369 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1370 1371 static void _opp_table_kref_release(struct kref *kref) 1372 { 1373 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1374 struct opp_device *opp_dev, *temp; 1375 int i; 1376 1377 /* Drop the lock as soon as we can */ 1378 list_del(&opp_table->node); 1379 mutex_unlock(&opp_table_lock); 1380 1381 if (opp_table->current_opp) 1382 dev_pm_opp_put(opp_table->current_opp); 1383 1384 _of_clear_opp_table(opp_table); 1385 1386 /* Release clk */ 1387 if (!IS_ERR(opp_table->clk)) 1388 clk_put(opp_table->clk); 1389 1390 if (opp_table->paths) { 1391 for (i = 0; i < opp_table->path_count; i++) 1392 icc_put(opp_table->paths[i]); 1393 kfree(opp_table->paths); 1394 } 1395 1396 WARN_ON(!list_empty(&opp_table->opp_list)); 1397 1398 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1399 /* 1400 * The OPP table is getting removed, drop the performance state 1401 * constraints. 1402 */ 1403 if (opp_table->genpd_performance_state) 1404 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1405 1406 _remove_opp_dev(opp_dev, opp_table); 1407 } 1408 1409 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1410 mutex_destroy(&opp_table->lock); 1411 kfree(opp_table); 1412 } 1413 1414 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1415 { 1416 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1417 &opp_table_lock); 1418 } 1419 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1420 1421 void _opp_free(struct dev_pm_opp *opp) 1422 { 1423 kfree(opp); 1424 } 1425 1426 static void _opp_kref_release(struct kref *kref) 1427 { 1428 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1429 struct opp_table *opp_table = opp->opp_table; 1430 1431 list_del(&opp->node); 1432 mutex_unlock(&opp_table->lock); 1433 1434 /* 1435 * Notify the changes in the availability of the operable 1436 * frequency/voltage list. 1437 */ 1438 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1439 _of_opp_free_required_opps(opp_table, opp); 1440 opp_debug_remove_one(opp); 1441 kfree(opp); 1442 } 1443 1444 void dev_pm_opp_get(struct dev_pm_opp *opp) 1445 { 1446 kref_get(&opp->kref); 1447 } 1448 1449 void dev_pm_opp_put(struct dev_pm_opp *opp) 1450 { 1451 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1452 } 1453 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1454 1455 /** 1456 * dev_pm_opp_remove() - Remove an OPP from OPP table 1457 * @dev: device for which we do this operation 1458 * @freq: OPP to remove with matching 'freq' 1459 * 1460 * This function removes an opp from the opp table. 1461 */ 1462 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1463 { 1464 struct dev_pm_opp *opp; 1465 struct opp_table *opp_table; 1466 bool found = false; 1467 1468 opp_table = _find_opp_table(dev); 1469 if (IS_ERR(opp_table)) 1470 return; 1471 1472 mutex_lock(&opp_table->lock); 1473 1474 list_for_each_entry(opp, &opp_table->opp_list, node) { 1475 if (opp->rate == freq) { 1476 found = true; 1477 break; 1478 } 1479 } 1480 1481 mutex_unlock(&opp_table->lock); 1482 1483 if (found) { 1484 dev_pm_opp_put(opp); 1485 1486 /* Drop the reference taken by dev_pm_opp_add() */ 1487 dev_pm_opp_put_opp_table(opp_table); 1488 } else { 1489 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1490 __func__, freq); 1491 } 1492 1493 /* Drop the reference taken by _find_opp_table() */ 1494 dev_pm_opp_put_opp_table(opp_table); 1495 } 1496 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1497 1498 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1499 bool dynamic) 1500 { 1501 struct dev_pm_opp *opp = NULL, *temp; 1502 1503 mutex_lock(&opp_table->lock); 1504 list_for_each_entry(temp, &opp_table->opp_list, node) { 1505 /* 1506 * Refcount must be dropped only once for each OPP by OPP core, 1507 * do that with help of "removed" flag. 1508 */ 1509 if (!temp->removed && dynamic == temp->dynamic) { 1510 opp = temp; 1511 break; 1512 } 1513 } 1514 1515 mutex_unlock(&opp_table->lock); 1516 return opp; 1517 } 1518 1519 /* 1520 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1521 * happen lock less to avoid circular dependency issues. This routine must be 1522 * called without the opp_table->lock held. 1523 */ 1524 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1525 { 1526 struct dev_pm_opp *opp; 1527 1528 while ((opp = _opp_get_next(opp_table, dynamic))) { 1529 opp->removed = true; 1530 dev_pm_opp_put(opp); 1531 1532 /* Drop the references taken by dev_pm_opp_add() */ 1533 if (dynamic) 1534 dev_pm_opp_put_opp_table(opp_table); 1535 } 1536 } 1537 1538 bool _opp_remove_all_static(struct opp_table *opp_table) 1539 { 1540 mutex_lock(&opp_table->lock); 1541 1542 if (!opp_table->parsed_static_opps) { 1543 mutex_unlock(&opp_table->lock); 1544 return false; 1545 } 1546 1547 if (--opp_table->parsed_static_opps) { 1548 mutex_unlock(&opp_table->lock); 1549 return true; 1550 } 1551 1552 mutex_unlock(&opp_table->lock); 1553 1554 _opp_remove_all(opp_table, false); 1555 return true; 1556 } 1557 1558 /** 1559 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1560 * @dev: device for which we do this operation 1561 * 1562 * This function removes all dynamically created OPPs from the opp table. 1563 */ 1564 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1565 { 1566 struct opp_table *opp_table; 1567 1568 opp_table = _find_opp_table(dev); 1569 if (IS_ERR(opp_table)) 1570 return; 1571 1572 _opp_remove_all(opp_table, true); 1573 1574 /* Drop the reference taken by _find_opp_table() */ 1575 dev_pm_opp_put_opp_table(opp_table); 1576 } 1577 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1578 1579 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1580 { 1581 struct dev_pm_opp *opp; 1582 int supply_count, supply_size, icc_size; 1583 1584 /* Allocate space for at least one supply */ 1585 supply_count = table->regulator_count > 0 ? table->regulator_count : 1; 1586 supply_size = sizeof(*opp->supplies) * supply_count; 1587 icc_size = sizeof(*opp->bandwidth) * table->path_count; 1588 1589 /* allocate new OPP node and supplies structures */ 1590 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL); 1591 1592 if (!opp) 1593 return NULL; 1594 1595 /* Put the supplies at the end of the OPP structure as an empty array */ 1596 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1597 if (icc_size) 1598 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count); 1599 INIT_LIST_HEAD(&opp->node); 1600 1601 return opp; 1602 } 1603 1604 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1605 struct opp_table *opp_table) 1606 { 1607 struct regulator *reg; 1608 int i; 1609 1610 if (!opp_table->regulators) 1611 return true; 1612 1613 for (i = 0; i < opp_table->regulator_count; i++) { 1614 reg = opp_table->regulators[i]; 1615 1616 if (!regulator_is_supported_voltage(reg, 1617 opp->supplies[i].u_volt_min, 1618 opp->supplies[i].u_volt_max)) { 1619 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1620 __func__, opp->supplies[i].u_volt_min, 1621 opp->supplies[i].u_volt_max); 1622 return false; 1623 } 1624 } 1625 1626 return true; 1627 } 1628 1629 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1630 { 1631 if (opp1->rate != opp2->rate) 1632 return opp1->rate < opp2->rate ? -1 : 1; 1633 if (opp1->bandwidth && opp2->bandwidth && 1634 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak) 1635 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1; 1636 if (opp1->level != opp2->level) 1637 return opp1->level < opp2->level ? -1 : 1; 1638 return 0; 1639 } 1640 1641 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1642 struct opp_table *opp_table, 1643 struct list_head **head) 1644 { 1645 struct dev_pm_opp *opp; 1646 int opp_cmp; 1647 1648 /* 1649 * Insert new OPP in order of increasing frequency and discard if 1650 * already present. 1651 * 1652 * Need to use &opp_table->opp_list in the condition part of the 'for' 1653 * loop, don't replace it with head otherwise it will become an infinite 1654 * loop. 1655 */ 1656 list_for_each_entry(opp, &opp_table->opp_list, node) { 1657 opp_cmp = _opp_compare_key(new_opp, opp); 1658 if (opp_cmp > 0) { 1659 *head = &opp->node; 1660 continue; 1661 } 1662 1663 if (opp_cmp < 0) 1664 return 0; 1665 1666 /* Duplicate OPPs */ 1667 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1668 __func__, opp->rate, opp->supplies[0].u_volt, 1669 opp->available, new_opp->rate, 1670 new_opp->supplies[0].u_volt, new_opp->available); 1671 1672 /* Should we compare voltages for all regulators here ? */ 1673 return opp->available && 1674 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1675 } 1676 1677 return 0; 1678 } 1679 1680 void _required_opps_available(struct dev_pm_opp *opp, int count) 1681 { 1682 int i; 1683 1684 for (i = 0; i < count; i++) { 1685 if (opp->required_opps[i]->available) 1686 continue; 1687 1688 opp->available = false; 1689 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1690 __func__, opp->required_opps[i]->np, opp->rate); 1691 return; 1692 } 1693 } 1694 1695 /* 1696 * Returns: 1697 * 0: On success. And appropriate error message for duplicate OPPs. 1698 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1699 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1700 * sure we don't print error messages unnecessarily if different parts of 1701 * kernel try to initialize the OPP table. 1702 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1703 * should be considered an error by the callers of _opp_add(). 1704 */ 1705 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1706 struct opp_table *opp_table, bool rate_not_available) 1707 { 1708 struct list_head *head; 1709 int ret; 1710 1711 mutex_lock(&opp_table->lock); 1712 head = &opp_table->opp_list; 1713 1714 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1715 if (ret) { 1716 mutex_unlock(&opp_table->lock); 1717 return ret; 1718 } 1719 1720 list_add(&new_opp->node, head); 1721 mutex_unlock(&opp_table->lock); 1722 1723 new_opp->opp_table = opp_table; 1724 kref_init(&new_opp->kref); 1725 1726 opp_debug_create_one(new_opp, opp_table); 1727 1728 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1729 new_opp->available = false; 1730 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1731 __func__, new_opp->rate); 1732 } 1733 1734 /* required-opps not fully initialized yet */ 1735 if (lazy_linking_pending(opp_table)) 1736 return 0; 1737 1738 _required_opps_available(new_opp, opp_table->required_opp_count); 1739 1740 return 0; 1741 } 1742 1743 /** 1744 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1745 * @opp_table: OPP table 1746 * @dev: device for which we do this operation 1747 * @freq: Frequency in Hz for this OPP 1748 * @u_volt: Voltage in uVolts for this OPP 1749 * @dynamic: Dynamically added OPPs. 1750 * 1751 * This function adds an opp definition to the opp table and returns status. 1752 * The opp is made available by default and it can be controlled using 1753 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1754 * 1755 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1756 * and freed by dev_pm_opp_of_remove_table. 1757 * 1758 * Return: 1759 * 0 On success OR 1760 * Duplicate OPPs (both freq and volt are same) and opp->available 1761 * -EEXIST Freq are same and volt are different OR 1762 * Duplicate OPPs (both freq and volt are same) and !opp->available 1763 * -ENOMEM Memory allocation failure 1764 */ 1765 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1766 unsigned long freq, long u_volt, bool dynamic) 1767 { 1768 struct dev_pm_opp *new_opp; 1769 unsigned long tol; 1770 int ret; 1771 1772 new_opp = _opp_allocate(opp_table); 1773 if (!new_opp) 1774 return -ENOMEM; 1775 1776 /* populate the opp table */ 1777 new_opp->rate = freq; 1778 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1779 new_opp->supplies[0].u_volt = u_volt; 1780 new_opp->supplies[0].u_volt_min = u_volt - tol; 1781 new_opp->supplies[0].u_volt_max = u_volt + tol; 1782 new_opp->available = true; 1783 new_opp->dynamic = dynamic; 1784 1785 ret = _opp_add(dev, new_opp, opp_table, false); 1786 if (ret) { 1787 /* Don't return error for duplicate OPPs */ 1788 if (ret == -EBUSY) 1789 ret = 0; 1790 goto free_opp; 1791 } 1792 1793 /* 1794 * Notify the changes in the availability of the operable 1795 * frequency/voltage list. 1796 */ 1797 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1798 return 0; 1799 1800 free_opp: 1801 _opp_free(new_opp); 1802 1803 return ret; 1804 } 1805 1806 /** 1807 * dev_pm_opp_set_supported_hw() - Set supported platforms 1808 * @dev: Device for which supported-hw has to be set. 1809 * @versions: Array of hierarchy of versions to match. 1810 * @count: Number of elements in the array. 1811 * 1812 * This is required only for the V2 bindings, and it enables a platform to 1813 * specify the hierarchy of versions it supports. OPP layer will then enable 1814 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1815 * property. 1816 */ 1817 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1818 const u32 *versions, unsigned int count) 1819 { 1820 struct opp_table *opp_table; 1821 1822 opp_table = _add_opp_table(dev, false); 1823 if (IS_ERR(opp_table)) 1824 return opp_table; 1825 1826 /* Make sure there are no concurrent readers while updating opp_table */ 1827 WARN_ON(!list_empty(&opp_table->opp_list)); 1828 1829 /* Another CPU that shares the OPP table has set the property ? */ 1830 if (opp_table->supported_hw) 1831 return opp_table; 1832 1833 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1834 GFP_KERNEL); 1835 if (!opp_table->supported_hw) { 1836 dev_pm_opp_put_opp_table(opp_table); 1837 return ERR_PTR(-ENOMEM); 1838 } 1839 1840 opp_table->supported_hw_count = count; 1841 1842 return opp_table; 1843 } 1844 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1845 1846 /** 1847 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1848 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1849 * 1850 * This is required only for the V2 bindings, and is called for a matching 1851 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1852 * will not be freed. 1853 */ 1854 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1855 { 1856 if (unlikely(!opp_table)) 1857 return; 1858 1859 kfree(opp_table->supported_hw); 1860 opp_table->supported_hw = NULL; 1861 opp_table->supported_hw_count = 0; 1862 1863 dev_pm_opp_put_opp_table(opp_table); 1864 } 1865 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1866 1867 static void devm_pm_opp_supported_hw_release(void *data) 1868 { 1869 dev_pm_opp_put_supported_hw(data); 1870 } 1871 1872 /** 1873 * devm_pm_opp_set_supported_hw() - Set supported platforms 1874 * @dev: Device for which supported-hw has to be set. 1875 * @versions: Array of hierarchy of versions to match. 1876 * @count: Number of elements in the array. 1877 * 1878 * This is a resource-managed variant of dev_pm_opp_set_supported_hw(). 1879 * 1880 * Return: 0 on success and errorno otherwise. 1881 */ 1882 int devm_pm_opp_set_supported_hw(struct device *dev, const u32 *versions, 1883 unsigned int count) 1884 { 1885 struct opp_table *opp_table; 1886 1887 opp_table = dev_pm_opp_set_supported_hw(dev, versions, count); 1888 if (IS_ERR(opp_table)) 1889 return PTR_ERR(opp_table); 1890 1891 return devm_add_action_or_reset(dev, devm_pm_opp_supported_hw_release, 1892 opp_table); 1893 } 1894 EXPORT_SYMBOL_GPL(devm_pm_opp_set_supported_hw); 1895 1896 /** 1897 * dev_pm_opp_set_prop_name() - Set prop-extn name 1898 * @dev: Device for which the prop-name has to be set. 1899 * @name: name to postfix to properties. 1900 * 1901 * This is required only for the V2 bindings, and it enables a platform to 1902 * specify the extn to be used for certain property names. The properties to 1903 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1904 * should postfix the property name with -<name> while looking for them. 1905 */ 1906 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1907 { 1908 struct opp_table *opp_table; 1909 1910 opp_table = _add_opp_table(dev, false); 1911 if (IS_ERR(opp_table)) 1912 return opp_table; 1913 1914 /* Make sure there are no concurrent readers while updating opp_table */ 1915 WARN_ON(!list_empty(&opp_table->opp_list)); 1916 1917 /* Another CPU that shares the OPP table has set the property ? */ 1918 if (opp_table->prop_name) 1919 return opp_table; 1920 1921 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1922 if (!opp_table->prop_name) { 1923 dev_pm_opp_put_opp_table(opp_table); 1924 return ERR_PTR(-ENOMEM); 1925 } 1926 1927 return opp_table; 1928 } 1929 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1930 1931 /** 1932 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1933 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1934 * 1935 * This is required only for the V2 bindings, and is called for a matching 1936 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1937 * will not be freed. 1938 */ 1939 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1940 { 1941 if (unlikely(!opp_table)) 1942 return; 1943 1944 kfree(opp_table->prop_name); 1945 opp_table->prop_name = NULL; 1946 1947 dev_pm_opp_put_opp_table(opp_table); 1948 } 1949 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1950 1951 /** 1952 * dev_pm_opp_set_regulators() - Set regulator names for the device 1953 * @dev: Device for which regulator name is being set. 1954 * @names: Array of pointers to the names of the regulator. 1955 * @count: Number of regulators. 1956 * 1957 * In order to support OPP switching, OPP layer needs to know the name of the 1958 * device's regulators, as the core would be required to switch voltages as 1959 * well. 1960 * 1961 * This must be called before any OPPs are initialized for the device. 1962 */ 1963 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1964 const char * const names[], 1965 unsigned int count) 1966 { 1967 struct dev_pm_opp_supply *supplies; 1968 struct opp_table *opp_table; 1969 struct regulator *reg; 1970 int ret, i; 1971 1972 opp_table = _add_opp_table(dev, false); 1973 if (IS_ERR(opp_table)) 1974 return opp_table; 1975 1976 /* This should be called before OPPs are initialized */ 1977 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1978 ret = -EBUSY; 1979 goto err; 1980 } 1981 1982 /* Another CPU that shares the OPP table has set the regulators ? */ 1983 if (opp_table->regulators) 1984 return opp_table; 1985 1986 opp_table->regulators = kmalloc_array(count, 1987 sizeof(*opp_table->regulators), 1988 GFP_KERNEL); 1989 if (!opp_table->regulators) { 1990 ret = -ENOMEM; 1991 goto err; 1992 } 1993 1994 for (i = 0; i < count; i++) { 1995 reg = regulator_get_optional(dev, names[i]); 1996 if (IS_ERR(reg)) { 1997 ret = PTR_ERR(reg); 1998 if (ret != -EPROBE_DEFER) 1999 dev_err(dev, "%s: no regulator (%s) found: %d\n", 2000 __func__, names[i], ret); 2001 goto free_regulators; 2002 } 2003 2004 opp_table->regulators[i] = reg; 2005 } 2006 2007 opp_table->regulator_count = count; 2008 2009 supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL); 2010 if (!supplies) { 2011 ret = -ENOMEM; 2012 goto free_regulators; 2013 } 2014 2015 mutex_lock(&opp_table->lock); 2016 opp_table->sod_supplies = supplies; 2017 if (opp_table->set_opp_data) { 2018 opp_table->set_opp_data->old_opp.supplies = supplies; 2019 opp_table->set_opp_data->new_opp.supplies = supplies + count; 2020 } 2021 mutex_unlock(&opp_table->lock); 2022 2023 return opp_table; 2024 2025 free_regulators: 2026 while (i != 0) 2027 regulator_put(opp_table->regulators[--i]); 2028 2029 kfree(opp_table->regulators); 2030 opp_table->regulators = NULL; 2031 opp_table->regulator_count = -1; 2032 err: 2033 dev_pm_opp_put_opp_table(opp_table); 2034 2035 return ERR_PTR(ret); 2036 } 2037 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 2038 2039 /** 2040 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 2041 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 2042 */ 2043 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 2044 { 2045 int i; 2046 2047 if (unlikely(!opp_table)) 2048 return; 2049 2050 if (!opp_table->regulators) 2051 goto put_opp_table; 2052 2053 if (opp_table->enabled) { 2054 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2055 regulator_disable(opp_table->regulators[i]); 2056 } 2057 2058 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2059 regulator_put(opp_table->regulators[i]); 2060 2061 mutex_lock(&opp_table->lock); 2062 if (opp_table->set_opp_data) { 2063 opp_table->set_opp_data->old_opp.supplies = NULL; 2064 opp_table->set_opp_data->new_opp.supplies = NULL; 2065 } 2066 2067 kfree(opp_table->sod_supplies); 2068 opp_table->sod_supplies = NULL; 2069 mutex_unlock(&opp_table->lock); 2070 2071 kfree(opp_table->regulators); 2072 opp_table->regulators = NULL; 2073 opp_table->regulator_count = -1; 2074 2075 put_opp_table: 2076 dev_pm_opp_put_opp_table(opp_table); 2077 } 2078 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 2079 2080 static void devm_pm_opp_regulators_release(void *data) 2081 { 2082 dev_pm_opp_put_regulators(data); 2083 } 2084 2085 /** 2086 * devm_pm_opp_set_regulators() - Set regulator names for the device 2087 * @dev: Device for which regulator name is being set. 2088 * @names: Array of pointers to the names of the regulator. 2089 * @count: Number of regulators. 2090 * 2091 * This is a resource-managed variant of dev_pm_opp_set_regulators(). 2092 * 2093 * Return: 0 on success and errorno otherwise. 2094 */ 2095 int devm_pm_opp_set_regulators(struct device *dev, 2096 const char * const names[], 2097 unsigned int count) 2098 { 2099 struct opp_table *opp_table; 2100 2101 opp_table = dev_pm_opp_set_regulators(dev, names, count); 2102 if (IS_ERR(opp_table)) 2103 return PTR_ERR(opp_table); 2104 2105 return devm_add_action_or_reset(dev, devm_pm_opp_regulators_release, 2106 opp_table); 2107 } 2108 EXPORT_SYMBOL_GPL(devm_pm_opp_set_regulators); 2109 2110 /** 2111 * dev_pm_opp_set_clkname() - Set clk name for the device 2112 * @dev: Device for which clk name is being set. 2113 * @name: Clk name. 2114 * 2115 * In order to support OPP switching, OPP layer needs to get pointer to the 2116 * clock for the device. Simple cases work fine without using this routine (i.e. 2117 * by passing connection-id as NULL), but for a device with multiple clocks 2118 * available, the OPP core needs to know the exact name of the clk to use. 2119 * 2120 * This must be called before any OPPs are initialized for the device. 2121 */ 2122 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 2123 { 2124 struct opp_table *opp_table; 2125 int ret; 2126 2127 opp_table = _add_opp_table(dev, false); 2128 if (IS_ERR(opp_table)) 2129 return opp_table; 2130 2131 /* This should be called before OPPs are initialized */ 2132 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2133 ret = -EBUSY; 2134 goto err; 2135 } 2136 2137 /* clk shouldn't be initialized at this point */ 2138 if (WARN_ON(opp_table->clk)) { 2139 ret = -EBUSY; 2140 goto err; 2141 } 2142 2143 /* Find clk for the device */ 2144 opp_table->clk = clk_get(dev, name); 2145 if (IS_ERR(opp_table->clk)) { 2146 ret = PTR_ERR(opp_table->clk); 2147 if (ret != -EPROBE_DEFER) { 2148 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 2149 ret); 2150 } 2151 goto err; 2152 } 2153 2154 return opp_table; 2155 2156 err: 2157 dev_pm_opp_put_opp_table(opp_table); 2158 2159 return ERR_PTR(ret); 2160 } 2161 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 2162 2163 /** 2164 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 2165 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 2166 */ 2167 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 2168 { 2169 if (unlikely(!opp_table)) 2170 return; 2171 2172 clk_put(opp_table->clk); 2173 opp_table->clk = ERR_PTR(-EINVAL); 2174 2175 dev_pm_opp_put_opp_table(opp_table); 2176 } 2177 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 2178 2179 static void devm_pm_opp_clkname_release(void *data) 2180 { 2181 dev_pm_opp_put_clkname(data); 2182 } 2183 2184 /** 2185 * devm_pm_opp_set_clkname() - Set clk name for the device 2186 * @dev: Device for which clk name is being set. 2187 * @name: Clk name. 2188 * 2189 * This is a resource-managed variant of dev_pm_opp_set_clkname(). 2190 * 2191 * Return: 0 on success and errorno otherwise. 2192 */ 2193 int devm_pm_opp_set_clkname(struct device *dev, const char *name) 2194 { 2195 struct opp_table *opp_table; 2196 2197 opp_table = dev_pm_opp_set_clkname(dev, name); 2198 if (IS_ERR(opp_table)) 2199 return PTR_ERR(opp_table); 2200 2201 return devm_add_action_or_reset(dev, devm_pm_opp_clkname_release, 2202 opp_table); 2203 } 2204 EXPORT_SYMBOL_GPL(devm_pm_opp_set_clkname); 2205 2206 /** 2207 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 2208 * @dev: Device for which the helper is getting registered. 2209 * @set_opp: Custom set OPP helper. 2210 * 2211 * This is useful to support complex platforms (like platforms with multiple 2212 * regulators per device), instead of the generic OPP set rate helper. 2213 * 2214 * This must be called before any OPPs are initialized for the device. 2215 */ 2216 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 2217 int (*set_opp)(struct dev_pm_set_opp_data *data)) 2218 { 2219 struct dev_pm_set_opp_data *data; 2220 struct opp_table *opp_table; 2221 2222 if (!set_opp) 2223 return ERR_PTR(-EINVAL); 2224 2225 opp_table = _add_opp_table(dev, false); 2226 if (IS_ERR(opp_table)) 2227 return opp_table; 2228 2229 /* This should be called before OPPs are initialized */ 2230 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2231 dev_pm_opp_put_opp_table(opp_table); 2232 return ERR_PTR(-EBUSY); 2233 } 2234 2235 /* Another CPU that shares the OPP table has set the helper ? */ 2236 if (opp_table->set_opp) 2237 return opp_table; 2238 2239 data = kzalloc(sizeof(*data), GFP_KERNEL); 2240 if (!data) 2241 return ERR_PTR(-ENOMEM); 2242 2243 mutex_lock(&opp_table->lock); 2244 opp_table->set_opp_data = data; 2245 if (opp_table->sod_supplies) { 2246 data->old_opp.supplies = opp_table->sod_supplies; 2247 data->new_opp.supplies = opp_table->sod_supplies + 2248 opp_table->regulator_count; 2249 } 2250 mutex_unlock(&opp_table->lock); 2251 2252 opp_table->set_opp = set_opp; 2253 2254 return opp_table; 2255 } 2256 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 2257 2258 /** 2259 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 2260 * set_opp helper 2261 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 2262 * 2263 * Release resources blocked for platform specific set_opp helper. 2264 */ 2265 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 2266 { 2267 if (unlikely(!opp_table)) 2268 return; 2269 2270 opp_table->set_opp = NULL; 2271 2272 mutex_lock(&opp_table->lock); 2273 kfree(opp_table->set_opp_data); 2274 opp_table->set_opp_data = NULL; 2275 mutex_unlock(&opp_table->lock); 2276 2277 dev_pm_opp_put_opp_table(opp_table); 2278 } 2279 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 2280 2281 static void devm_pm_opp_unregister_set_opp_helper(void *data) 2282 { 2283 dev_pm_opp_unregister_set_opp_helper(data); 2284 } 2285 2286 /** 2287 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper 2288 * @dev: Device for which the helper is getting registered. 2289 * @set_opp: Custom set OPP helper. 2290 * 2291 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper(). 2292 * 2293 * Return: 0 on success and errorno otherwise. 2294 */ 2295 int devm_pm_opp_register_set_opp_helper(struct device *dev, 2296 int (*set_opp)(struct dev_pm_set_opp_data *data)) 2297 { 2298 struct opp_table *opp_table; 2299 2300 opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp); 2301 if (IS_ERR(opp_table)) 2302 return PTR_ERR(opp_table); 2303 2304 return devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper, 2305 opp_table); 2306 } 2307 EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper); 2308 2309 static void _opp_detach_genpd(struct opp_table *opp_table) 2310 { 2311 int index; 2312 2313 if (!opp_table->genpd_virt_devs) 2314 return; 2315 2316 for (index = 0; index < opp_table->required_opp_count; index++) { 2317 if (!opp_table->genpd_virt_devs[index]) 2318 continue; 2319 2320 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 2321 opp_table->genpd_virt_devs[index] = NULL; 2322 } 2323 2324 kfree(opp_table->genpd_virt_devs); 2325 opp_table->genpd_virt_devs = NULL; 2326 } 2327 2328 /** 2329 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 2330 * @dev: Consumer device for which the genpd is getting attached. 2331 * @names: Null terminated array of pointers containing names of genpd to attach. 2332 * @virt_devs: Pointer to return the array of virtual devices. 2333 * 2334 * Multiple generic power domains for a device are supported with the help of 2335 * virtual genpd devices, which are created for each consumer device - genpd 2336 * pair. These are the device structures which are attached to the power domain 2337 * and are required by the OPP core to set the performance state of the genpd. 2338 * The same API also works for the case where single genpd is available and so 2339 * we don't need to support that separately. 2340 * 2341 * This helper will normally be called by the consumer driver of the device 2342 * "dev", as only that has details of the genpd names. 2343 * 2344 * This helper needs to be called once with a list of all genpd to attach. 2345 * Otherwise the original device structure will be used instead by the OPP core. 2346 * 2347 * The order of entries in the names array must match the order in which 2348 * "required-opps" are added in DT. 2349 */ 2350 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 2351 const char **names, struct device ***virt_devs) 2352 { 2353 struct opp_table *opp_table; 2354 struct device *virt_dev; 2355 int index = 0, ret = -EINVAL; 2356 const char **name = names; 2357 2358 opp_table = _add_opp_table(dev, false); 2359 if (IS_ERR(opp_table)) 2360 return opp_table; 2361 2362 if (opp_table->genpd_virt_devs) 2363 return opp_table; 2364 2365 /* 2366 * If the genpd's OPP table isn't already initialized, parsing of the 2367 * required-opps fail for dev. We should retry this after genpd's OPP 2368 * table is added. 2369 */ 2370 if (!opp_table->required_opp_count) { 2371 ret = -EPROBE_DEFER; 2372 goto put_table; 2373 } 2374 2375 mutex_lock(&opp_table->genpd_virt_dev_lock); 2376 2377 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2378 sizeof(*opp_table->genpd_virt_devs), 2379 GFP_KERNEL); 2380 if (!opp_table->genpd_virt_devs) 2381 goto unlock; 2382 2383 while (*name) { 2384 if (index >= opp_table->required_opp_count) { 2385 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2386 *name, opp_table->required_opp_count, index); 2387 goto err; 2388 } 2389 2390 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2391 if (IS_ERR(virt_dev)) { 2392 ret = PTR_ERR(virt_dev); 2393 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2394 goto err; 2395 } 2396 2397 opp_table->genpd_virt_devs[index] = virt_dev; 2398 index++; 2399 name++; 2400 } 2401 2402 if (virt_devs) 2403 *virt_devs = opp_table->genpd_virt_devs; 2404 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2405 2406 return opp_table; 2407 2408 err: 2409 _opp_detach_genpd(opp_table); 2410 unlock: 2411 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2412 2413 put_table: 2414 dev_pm_opp_put_opp_table(opp_table); 2415 2416 return ERR_PTR(ret); 2417 } 2418 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 2419 2420 /** 2421 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 2422 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 2423 * 2424 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2425 * OPP table. 2426 */ 2427 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 2428 { 2429 if (unlikely(!opp_table)) 2430 return; 2431 2432 /* 2433 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2434 * used in parallel. 2435 */ 2436 mutex_lock(&opp_table->genpd_virt_dev_lock); 2437 _opp_detach_genpd(opp_table); 2438 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2439 2440 dev_pm_opp_put_opp_table(opp_table); 2441 } 2442 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 2443 2444 static void devm_pm_opp_detach_genpd(void *data) 2445 { 2446 dev_pm_opp_detach_genpd(data); 2447 } 2448 2449 /** 2450 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual 2451 * device pointer 2452 * @dev: Consumer device for which the genpd is getting attached. 2453 * @names: Null terminated array of pointers containing names of genpd to attach. 2454 * @virt_devs: Pointer to return the array of virtual devices. 2455 * 2456 * This is a resource-managed version of dev_pm_opp_attach_genpd(). 2457 * 2458 * Return: 0 on success and errorno otherwise. 2459 */ 2460 int devm_pm_opp_attach_genpd(struct device *dev, const char **names, 2461 struct device ***virt_devs) 2462 { 2463 struct opp_table *opp_table; 2464 2465 opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs); 2466 if (IS_ERR(opp_table)) 2467 return PTR_ERR(opp_table); 2468 2469 return devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd, 2470 opp_table); 2471 } 2472 EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd); 2473 2474 /** 2475 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2476 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2477 * @dst_table: Required OPP table of the @src_table. 2478 * @src_opp: OPP from the @src_table. 2479 * 2480 * This function returns the OPP (present in @dst_table) pointed out by the 2481 * "required-opps" property of the @src_opp (present in @src_table). 2482 * 2483 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2484 * use. 2485 * 2486 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2487 */ 2488 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2489 struct opp_table *dst_table, 2490 struct dev_pm_opp *src_opp) 2491 { 2492 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2493 int i; 2494 2495 if (!src_table || !dst_table || !src_opp || 2496 !src_table->required_opp_tables) 2497 return ERR_PTR(-EINVAL); 2498 2499 /* required-opps not fully initialized yet */ 2500 if (lazy_linking_pending(src_table)) 2501 return ERR_PTR(-EBUSY); 2502 2503 for (i = 0; i < src_table->required_opp_count; i++) { 2504 if (src_table->required_opp_tables[i] == dst_table) { 2505 mutex_lock(&src_table->lock); 2506 2507 list_for_each_entry(opp, &src_table->opp_list, node) { 2508 if (opp == src_opp) { 2509 dest_opp = opp->required_opps[i]; 2510 dev_pm_opp_get(dest_opp); 2511 break; 2512 } 2513 } 2514 2515 mutex_unlock(&src_table->lock); 2516 break; 2517 } 2518 } 2519 2520 if (IS_ERR(dest_opp)) { 2521 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2522 src_table, dst_table); 2523 } 2524 2525 return dest_opp; 2526 } 2527 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2528 2529 /** 2530 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2531 * @src_table: OPP table which has dst_table as one of its required OPP table. 2532 * @dst_table: Required OPP table of the src_table. 2533 * @pstate: Current performance state of the src_table. 2534 * 2535 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2536 * "required-opps" property of the OPP (present in @src_table) which has 2537 * performance state set to @pstate. 2538 * 2539 * Return: Zero or positive performance state on success, otherwise negative 2540 * value on errors. 2541 */ 2542 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2543 struct opp_table *dst_table, 2544 unsigned int pstate) 2545 { 2546 struct dev_pm_opp *opp; 2547 int dest_pstate = -EINVAL; 2548 int i; 2549 2550 /* 2551 * Normally the src_table will have the "required_opps" property set to 2552 * point to one of the OPPs in the dst_table, but in some cases the 2553 * genpd and its master have one to one mapping of performance states 2554 * and so none of them have the "required-opps" property set. Return the 2555 * pstate of the src_table as it is in such cases. 2556 */ 2557 if (!src_table || !src_table->required_opp_count) 2558 return pstate; 2559 2560 /* required-opps not fully initialized yet */ 2561 if (lazy_linking_pending(src_table)) 2562 return -EBUSY; 2563 2564 for (i = 0; i < src_table->required_opp_count; i++) { 2565 if (src_table->required_opp_tables[i]->np == dst_table->np) 2566 break; 2567 } 2568 2569 if (unlikely(i == src_table->required_opp_count)) { 2570 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2571 __func__, src_table, dst_table); 2572 return -EINVAL; 2573 } 2574 2575 mutex_lock(&src_table->lock); 2576 2577 list_for_each_entry(opp, &src_table->opp_list, node) { 2578 if (opp->pstate == pstate) { 2579 dest_pstate = opp->required_opps[i]->pstate; 2580 goto unlock; 2581 } 2582 } 2583 2584 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2585 dst_table); 2586 2587 unlock: 2588 mutex_unlock(&src_table->lock); 2589 2590 return dest_pstate; 2591 } 2592 2593 /** 2594 * dev_pm_opp_add() - Add an OPP table from a table definitions 2595 * @dev: device for which we do this operation 2596 * @freq: Frequency in Hz for this OPP 2597 * @u_volt: Voltage in uVolts for this OPP 2598 * 2599 * This function adds an opp definition to the opp table and returns status. 2600 * The opp is made available by default and it can be controlled using 2601 * dev_pm_opp_enable/disable functions. 2602 * 2603 * Return: 2604 * 0 On success OR 2605 * Duplicate OPPs (both freq and volt are same) and opp->available 2606 * -EEXIST Freq are same and volt are different OR 2607 * Duplicate OPPs (both freq and volt are same) and !opp->available 2608 * -ENOMEM Memory allocation failure 2609 */ 2610 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2611 { 2612 struct opp_table *opp_table; 2613 int ret; 2614 2615 opp_table = _add_opp_table(dev, true); 2616 if (IS_ERR(opp_table)) 2617 return PTR_ERR(opp_table); 2618 2619 /* Fix regulator count for dynamic OPPs */ 2620 opp_table->regulator_count = 1; 2621 2622 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2623 if (ret) 2624 dev_pm_opp_put_opp_table(opp_table); 2625 2626 return ret; 2627 } 2628 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2629 2630 /** 2631 * _opp_set_availability() - helper to set the availability of an opp 2632 * @dev: device for which we do this operation 2633 * @freq: OPP frequency to modify availability 2634 * @availability_req: availability status requested for this opp 2635 * 2636 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2637 * which is isolated here. 2638 * 2639 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2640 * copy operation, returns 0 if no modification was done OR modification was 2641 * successful. 2642 */ 2643 static int _opp_set_availability(struct device *dev, unsigned long freq, 2644 bool availability_req) 2645 { 2646 struct opp_table *opp_table; 2647 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2648 int r = 0; 2649 2650 /* Find the opp_table */ 2651 opp_table = _find_opp_table(dev); 2652 if (IS_ERR(opp_table)) { 2653 r = PTR_ERR(opp_table); 2654 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2655 return r; 2656 } 2657 2658 mutex_lock(&opp_table->lock); 2659 2660 /* Do we have the frequency? */ 2661 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2662 if (tmp_opp->rate == freq) { 2663 opp = tmp_opp; 2664 break; 2665 } 2666 } 2667 2668 if (IS_ERR(opp)) { 2669 r = PTR_ERR(opp); 2670 goto unlock; 2671 } 2672 2673 /* Is update really needed? */ 2674 if (opp->available == availability_req) 2675 goto unlock; 2676 2677 opp->available = availability_req; 2678 2679 dev_pm_opp_get(opp); 2680 mutex_unlock(&opp_table->lock); 2681 2682 /* Notify the change of the OPP availability */ 2683 if (availability_req) 2684 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2685 opp); 2686 else 2687 blocking_notifier_call_chain(&opp_table->head, 2688 OPP_EVENT_DISABLE, opp); 2689 2690 dev_pm_opp_put(opp); 2691 goto put_table; 2692 2693 unlock: 2694 mutex_unlock(&opp_table->lock); 2695 put_table: 2696 dev_pm_opp_put_opp_table(opp_table); 2697 return r; 2698 } 2699 2700 /** 2701 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2702 * @dev: device for which we do this operation 2703 * @freq: OPP frequency to adjust voltage of 2704 * @u_volt: new OPP target voltage 2705 * @u_volt_min: new OPP min voltage 2706 * @u_volt_max: new OPP max voltage 2707 * 2708 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2709 * copy operation, returns 0 if no modifcation was done OR modification was 2710 * successful. 2711 */ 2712 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2713 unsigned long u_volt, unsigned long u_volt_min, 2714 unsigned long u_volt_max) 2715 2716 { 2717 struct opp_table *opp_table; 2718 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2719 int r = 0; 2720 2721 /* Find the opp_table */ 2722 opp_table = _find_opp_table(dev); 2723 if (IS_ERR(opp_table)) { 2724 r = PTR_ERR(opp_table); 2725 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2726 return r; 2727 } 2728 2729 mutex_lock(&opp_table->lock); 2730 2731 /* Do we have the frequency? */ 2732 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2733 if (tmp_opp->rate == freq) { 2734 opp = tmp_opp; 2735 break; 2736 } 2737 } 2738 2739 if (IS_ERR(opp)) { 2740 r = PTR_ERR(opp); 2741 goto adjust_unlock; 2742 } 2743 2744 /* Is update really needed? */ 2745 if (opp->supplies->u_volt == u_volt) 2746 goto adjust_unlock; 2747 2748 opp->supplies->u_volt = u_volt; 2749 opp->supplies->u_volt_min = u_volt_min; 2750 opp->supplies->u_volt_max = u_volt_max; 2751 2752 dev_pm_opp_get(opp); 2753 mutex_unlock(&opp_table->lock); 2754 2755 /* Notify the voltage change of the OPP */ 2756 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2757 opp); 2758 2759 dev_pm_opp_put(opp); 2760 goto adjust_put_table; 2761 2762 adjust_unlock: 2763 mutex_unlock(&opp_table->lock); 2764 adjust_put_table: 2765 dev_pm_opp_put_opp_table(opp_table); 2766 return r; 2767 } 2768 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2769 2770 /** 2771 * dev_pm_opp_enable() - Enable a specific OPP 2772 * @dev: device for which we do this operation 2773 * @freq: OPP frequency to enable 2774 * 2775 * Enables a provided opp. If the operation is valid, this returns 0, else the 2776 * corresponding error value. It is meant to be used for users an OPP available 2777 * after being temporarily made unavailable with dev_pm_opp_disable. 2778 * 2779 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2780 * copy operation, returns 0 if no modification was done OR modification was 2781 * successful. 2782 */ 2783 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2784 { 2785 return _opp_set_availability(dev, freq, true); 2786 } 2787 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2788 2789 /** 2790 * dev_pm_opp_disable() - Disable a specific OPP 2791 * @dev: device for which we do this operation 2792 * @freq: OPP frequency to disable 2793 * 2794 * Disables a provided opp. If the operation is valid, this returns 2795 * 0, else the corresponding error value. It is meant to be a temporary 2796 * control by users to make this OPP not available until the circumstances are 2797 * right to make it available again (with a call to dev_pm_opp_enable). 2798 * 2799 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2800 * copy operation, returns 0 if no modification was done OR modification was 2801 * successful. 2802 */ 2803 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2804 { 2805 return _opp_set_availability(dev, freq, false); 2806 } 2807 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2808 2809 /** 2810 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2811 * @dev: Device for which notifier needs to be registered 2812 * @nb: Notifier block to be registered 2813 * 2814 * Return: 0 on success or a negative error value. 2815 */ 2816 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2817 { 2818 struct opp_table *opp_table; 2819 int ret; 2820 2821 opp_table = _find_opp_table(dev); 2822 if (IS_ERR(opp_table)) 2823 return PTR_ERR(opp_table); 2824 2825 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2826 2827 dev_pm_opp_put_opp_table(opp_table); 2828 2829 return ret; 2830 } 2831 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2832 2833 /** 2834 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2835 * @dev: Device for which notifier needs to be unregistered 2836 * @nb: Notifier block to be unregistered 2837 * 2838 * Return: 0 on success or a negative error value. 2839 */ 2840 int dev_pm_opp_unregister_notifier(struct device *dev, 2841 struct notifier_block *nb) 2842 { 2843 struct opp_table *opp_table; 2844 int ret; 2845 2846 opp_table = _find_opp_table(dev); 2847 if (IS_ERR(opp_table)) 2848 return PTR_ERR(opp_table); 2849 2850 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2851 2852 dev_pm_opp_put_opp_table(opp_table); 2853 2854 return ret; 2855 } 2856 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2857 2858 /** 2859 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2860 * @dev: device pointer used to lookup OPP table. 2861 * 2862 * Free both OPPs created using static entries present in DT and the 2863 * dynamically added entries. 2864 */ 2865 void dev_pm_opp_remove_table(struct device *dev) 2866 { 2867 struct opp_table *opp_table; 2868 2869 /* Check for existing table for 'dev' */ 2870 opp_table = _find_opp_table(dev); 2871 if (IS_ERR(opp_table)) { 2872 int error = PTR_ERR(opp_table); 2873 2874 if (error != -ENODEV) 2875 WARN(1, "%s: opp_table: %d\n", 2876 IS_ERR_OR_NULL(dev) ? 2877 "Invalid device" : dev_name(dev), 2878 error); 2879 return; 2880 } 2881 2882 /* 2883 * Drop the extra reference only if the OPP table was successfully added 2884 * with dev_pm_opp_of_add_table() earlier. 2885 **/ 2886 if (_opp_remove_all_static(opp_table)) 2887 dev_pm_opp_put_opp_table(opp_table); 2888 2889 /* Drop reference taken by _find_opp_table() */ 2890 dev_pm_opp_put_opp_table(opp_table); 2891 } 2892 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2893 2894 /** 2895 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 2896 * @dev: device for which we do this operation 2897 * 2898 * Sync voltage state of the OPP table regulators. 2899 * 2900 * Return: 0 on success or a negative error value. 2901 */ 2902 int dev_pm_opp_sync_regulators(struct device *dev) 2903 { 2904 struct opp_table *opp_table; 2905 struct regulator *reg; 2906 int i, ret = 0; 2907 2908 /* Device may not have OPP table */ 2909 opp_table = _find_opp_table(dev); 2910 if (IS_ERR(opp_table)) 2911 return 0; 2912 2913 /* Regulator may not be required for the device */ 2914 if (unlikely(!opp_table->regulators)) 2915 goto put_table; 2916 2917 /* Nothing to sync if voltage wasn't changed */ 2918 if (!opp_table->enabled) 2919 goto put_table; 2920 2921 for (i = 0; i < opp_table->regulator_count; i++) { 2922 reg = opp_table->regulators[i]; 2923 ret = regulator_sync_voltage(reg); 2924 if (ret) 2925 break; 2926 } 2927 put_table: 2928 /* Drop reference taken by _find_opp_table() */ 2929 dev_pm_opp_put_opp_table(opp_table); 2930 2931 return ret; 2932 } 2933 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 2934