xref: /openbmc/linux/drivers/opp/core.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 /*
2  * Generic OPP Interface
3  *
4  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
5  *	Nishanth Menon
6  *	Romit Dasgupta
7  *	Kevin Hilman
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/pm_domain.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include "opp.h"
26 
27 /*
28  * The root of the list of all opp-tables. All opp_table structures branch off
29  * from here, with each opp_table containing the list of opps it supports in
30  * various states of availability.
31  */
32 LIST_HEAD(opp_tables);
33 /* Lock to allow exclusive modification to the device and opp lists */
34 DEFINE_MUTEX(opp_table_lock);
35 
36 static struct opp_device *_find_opp_dev(const struct device *dev,
37 					struct opp_table *opp_table)
38 {
39 	struct opp_device *opp_dev;
40 
41 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 		if (opp_dev->dev == dev)
43 			return opp_dev;
44 
45 	return NULL;
46 }
47 
48 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
49 {
50 	struct opp_table *opp_table;
51 	bool found;
52 
53 	list_for_each_entry(opp_table, &opp_tables, node) {
54 		mutex_lock(&opp_table->lock);
55 		found = !!_find_opp_dev(dev, opp_table);
56 		mutex_unlock(&opp_table->lock);
57 
58 		if (found) {
59 			_get_opp_table_kref(opp_table);
60 
61 			return opp_table;
62 		}
63 	}
64 
65 	return ERR_PTR(-ENODEV);
66 }
67 
68 /**
69  * _find_opp_table() - find opp_table struct using device pointer
70  * @dev:	device pointer used to lookup OPP table
71  *
72  * Search OPP table for one containing matching device.
73  *
74  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
75  * -EINVAL based on type of error.
76  *
77  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
78  */
79 struct opp_table *_find_opp_table(struct device *dev)
80 {
81 	struct opp_table *opp_table;
82 
83 	if (IS_ERR_OR_NULL(dev)) {
84 		pr_err("%s: Invalid parameters\n", __func__);
85 		return ERR_PTR(-EINVAL);
86 	}
87 
88 	mutex_lock(&opp_table_lock);
89 	opp_table = _find_opp_table_unlocked(dev);
90 	mutex_unlock(&opp_table_lock);
91 
92 	return opp_table;
93 }
94 
95 /**
96  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
97  * @opp:	opp for which voltage has to be returned for
98  *
99  * Return: voltage in micro volt corresponding to the opp, else
100  * return 0
101  *
102  * This is useful only for devices with single power supply.
103  */
104 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
105 {
106 	if (IS_ERR_OR_NULL(opp)) {
107 		pr_err("%s: Invalid parameters\n", __func__);
108 		return 0;
109 	}
110 
111 	return opp->supplies[0].u_volt;
112 }
113 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
114 
115 /**
116  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
117  * @opp:	opp for which frequency has to be returned for
118  *
119  * Return: frequency in hertz corresponding to the opp, else
120  * return 0
121  */
122 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
123 {
124 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
125 		pr_err("%s: Invalid parameters\n", __func__);
126 		return 0;
127 	}
128 
129 	return opp->rate;
130 }
131 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
132 
133 /**
134  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
135  * @opp:	opp for which level value has to be returned for
136  *
137  * Return: level read from device tree corresponding to the opp, else
138  * return 0.
139  */
140 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
141 {
142 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
143 		pr_err("%s: Invalid parameters\n", __func__);
144 		return 0;
145 	}
146 
147 	return opp->level;
148 }
149 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
150 
151 /**
152  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
153  * @opp: opp for which turbo mode is being verified
154  *
155  * Turbo OPPs are not for normal use, and can be enabled (under certain
156  * conditions) for short duration of times to finish high throughput work
157  * quickly. Running on them for longer times may overheat the chip.
158  *
159  * Return: true if opp is turbo opp, else false.
160  */
161 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
162 {
163 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
164 		pr_err("%s: Invalid parameters\n", __func__);
165 		return false;
166 	}
167 
168 	return opp->turbo;
169 }
170 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
171 
172 /**
173  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
174  * @dev:	device for which we do this operation
175  *
176  * Return: This function returns the max clock latency in nanoseconds.
177  */
178 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
179 {
180 	struct opp_table *opp_table;
181 	unsigned long clock_latency_ns;
182 
183 	opp_table = _find_opp_table(dev);
184 	if (IS_ERR(opp_table))
185 		return 0;
186 
187 	clock_latency_ns = opp_table->clock_latency_ns_max;
188 
189 	dev_pm_opp_put_opp_table(opp_table);
190 
191 	return clock_latency_ns;
192 }
193 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
194 
195 /**
196  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
197  * @dev: device for which we do this operation
198  *
199  * Return: This function returns the max voltage latency in nanoseconds.
200  */
201 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
202 {
203 	struct opp_table *opp_table;
204 	struct dev_pm_opp *opp;
205 	struct regulator *reg;
206 	unsigned long latency_ns = 0;
207 	int ret, i, count;
208 	struct {
209 		unsigned long min;
210 		unsigned long max;
211 	} *uV;
212 
213 	opp_table = _find_opp_table(dev);
214 	if (IS_ERR(opp_table))
215 		return 0;
216 
217 	/* Regulator may not be required for the device */
218 	if (!opp_table->regulators)
219 		goto put_opp_table;
220 
221 	count = opp_table->regulator_count;
222 
223 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
224 	if (!uV)
225 		goto put_opp_table;
226 
227 	mutex_lock(&opp_table->lock);
228 
229 	for (i = 0; i < count; i++) {
230 		uV[i].min = ~0;
231 		uV[i].max = 0;
232 
233 		list_for_each_entry(opp, &opp_table->opp_list, node) {
234 			if (!opp->available)
235 				continue;
236 
237 			if (opp->supplies[i].u_volt_min < uV[i].min)
238 				uV[i].min = opp->supplies[i].u_volt_min;
239 			if (opp->supplies[i].u_volt_max > uV[i].max)
240 				uV[i].max = opp->supplies[i].u_volt_max;
241 		}
242 	}
243 
244 	mutex_unlock(&opp_table->lock);
245 
246 	/*
247 	 * The caller needs to ensure that opp_table (and hence the regulator)
248 	 * isn't freed, while we are executing this routine.
249 	 */
250 	for (i = 0; i < count; i++) {
251 		reg = opp_table->regulators[i];
252 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
253 		if (ret > 0)
254 			latency_ns += ret * 1000;
255 	}
256 
257 	kfree(uV);
258 put_opp_table:
259 	dev_pm_opp_put_opp_table(opp_table);
260 
261 	return latency_ns;
262 }
263 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
264 
265 /**
266  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
267  *					     nanoseconds
268  * @dev: device for which we do this operation
269  *
270  * Return: This function returns the max transition latency, in nanoseconds, to
271  * switch from one OPP to other.
272  */
273 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
274 {
275 	return dev_pm_opp_get_max_volt_latency(dev) +
276 		dev_pm_opp_get_max_clock_latency(dev);
277 }
278 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
279 
280 /**
281  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
282  * @dev:	device for which we do this operation
283  *
284  * Return: This function returns the frequency of the OPP marked as suspend_opp
285  * if one is available, else returns 0;
286  */
287 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
288 {
289 	struct opp_table *opp_table;
290 	unsigned long freq = 0;
291 
292 	opp_table = _find_opp_table(dev);
293 	if (IS_ERR(opp_table))
294 		return 0;
295 
296 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
297 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
298 
299 	dev_pm_opp_put_opp_table(opp_table);
300 
301 	return freq;
302 }
303 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
304 
305 int _get_opp_count(struct opp_table *opp_table)
306 {
307 	struct dev_pm_opp *opp;
308 	int count = 0;
309 
310 	mutex_lock(&opp_table->lock);
311 
312 	list_for_each_entry(opp, &opp_table->opp_list, node) {
313 		if (opp->available)
314 			count++;
315 	}
316 
317 	mutex_unlock(&opp_table->lock);
318 
319 	return count;
320 }
321 
322 /**
323  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
324  * @dev:	device for which we do this operation
325  *
326  * Return: This function returns the number of available opps if there are any,
327  * else returns 0 if none or the corresponding error value.
328  */
329 int dev_pm_opp_get_opp_count(struct device *dev)
330 {
331 	struct opp_table *opp_table;
332 	int count;
333 
334 	opp_table = _find_opp_table(dev);
335 	if (IS_ERR(opp_table)) {
336 		count = PTR_ERR(opp_table);
337 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
338 			__func__, count);
339 		return count;
340 	}
341 
342 	count = _get_opp_count(opp_table);
343 	dev_pm_opp_put_opp_table(opp_table);
344 
345 	return count;
346 }
347 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
348 
349 /**
350  * dev_pm_opp_find_freq_exact() - search for an exact frequency
351  * @dev:		device for which we do this operation
352  * @freq:		frequency to search for
353  * @available:		true/false - match for available opp
354  *
355  * Return: Searches for exact match in the opp table and returns pointer to the
356  * matching opp if found, else returns ERR_PTR in case of error and should
357  * be handled using IS_ERR. Error return values can be:
358  * EINVAL:	for bad pointer
359  * ERANGE:	no match found for search
360  * ENODEV:	if device not found in list of registered devices
361  *
362  * Note: available is a modifier for the search. if available=true, then the
363  * match is for exact matching frequency and is available in the stored OPP
364  * table. if false, the match is for exact frequency which is not available.
365  *
366  * This provides a mechanism to enable an opp which is not available currently
367  * or the opposite as well.
368  *
369  * The callers are required to call dev_pm_opp_put() for the returned OPP after
370  * use.
371  */
372 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
373 					      unsigned long freq,
374 					      bool available)
375 {
376 	struct opp_table *opp_table;
377 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
378 
379 	opp_table = _find_opp_table(dev);
380 	if (IS_ERR(opp_table)) {
381 		int r = PTR_ERR(opp_table);
382 
383 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
384 		return ERR_PTR(r);
385 	}
386 
387 	mutex_lock(&opp_table->lock);
388 
389 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
390 		if (temp_opp->available == available &&
391 				temp_opp->rate == freq) {
392 			opp = temp_opp;
393 
394 			/* Increment the reference count of OPP */
395 			dev_pm_opp_get(opp);
396 			break;
397 		}
398 	}
399 
400 	mutex_unlock(&opp_table->lock);
401 	dev_pm_opp_put_opp_table(opp_table);
402 
403 	return opp;
404 }
405 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
406 
407 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
408 						   unsigned long *freq)
409 {
410 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
411 
412 	mutex_lock(&opp_table->lock);
413 
414 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
415 		if (temp_opp->available && temp_opp->rate >= *freq) {
416 			opp = temp_opp;
417 			*freq = opp->rate;
418 
419 			/* Increment the reference count of OPP */
420 			dev_pm_opp_get(opp);
421 			break;
422 		}
423 	}
424 
425 	mutex_unlock(&opp_table->lock);
426 
427 	return opp;
428 }
429 
430 /**
431  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
432  * @dev:	device for which we do this operation
433  * @freq:	Start frequency
434  *
435  * Search for the matching ceil *available* OPP from a starting freq
436  * for a device.
437  *
438  * Return: matching *opp and refreshes *freq accordingly, else returns
439  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
440  * values can be:
441  * EINVAL:	for bad pointer
442  * ERANGE:	no match found for search
443  * ENODEV:	if device not found in list of registered devices
444  *
445  * The callers are required to call dev_pm_opp_put() for the returned OPP after
446  * use.
447  */
448 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
449 					     unsigned long *freq)
450 {
451 	struct opp_table *opp_table;
452 	struct dev_pm_opp *opp;
453 
454 	if (!dev || !freq) {
455 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
456 		return ERR_PTR(-EINVAL);
457 	}
458 
459 	opp_table = _find_opp_table(dev);
460 	if (IS_ERR(opp_table))
461 		return ERR_CAST(opp_table);
462 
463 	opp = _find_freq_ceil(opp_table, freq);
464 
465 	dev_pm_opp_put_opp_table(opp_table);
466 
467 	return opp;
468 }
469 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
470 
471 /**
472  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
473  * @dev:	device for which we do this operation
474  * @freq:	Start frequency
475  *
476  * Search for the matching floor *available* OPP from a starting freq
477  * for a device.
478  *
479  * Return: matching *opp and refreshes *freq accordingly, else returns
480  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
481  * values can be:
482  * EINVAL:	for bad pointer
483  * ERANGE:	no match found for search
484  * ENODEV:	if device not found in list of registered devices
485  *
486  * The callers are required to call dev_pm_opp_put() for the returned OPP after
487  * use.
488  */
489 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
490 					      unsigned long *freq)
491 {
492 	struct opp_table *opp_table;
493 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
494 
495 	if (!dev || !freq) {
496 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
497 		return ERR_PTR(-EINVAL);
498 	}
499 
500 	opp_table = _find_opp_table(dev);
501 	if (IS_ERR(opp_table))
502 		return ERR_CAST(opp_table);
503 
504 	mutex_lock(&opp_table->lock);
505 
506 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
507 		if (temp_opp->available) {
508 			/* go to the next node, before choosing prev */
509 			if (temp_opp->rate > *freq)
510 				break;
511 			else
512 				opp = temp_opp;
513 		}
514 	}
515 
516 	/* Increment the reference count of OPP */
517 	if (!IS_ERR(opp))
518 		dev_pm_opp_get(opp);
519 	mutex_unlock(&opp_table->lock);
520 	dev_pm_opp_put_opp_table(opp_table);
521 
522 	if (!IS_ERR(opp))
523 		*freq = opp->rate;
524 
525 	return opp;
526 }
527 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
528 
529 /**
530  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
531  *					 target voltage.
532  * @dev:	Device for which we do this operation.
533  * @u_volt:	Target voltage.
534  *
535  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
536  *
537  * Return: matching *opp, else returns ERR_PTR in case of error which should be
538  * handled using IS_ERR.
539  *
540  * Error return values can be:
541  * EINVAL:	bad parameters
542  *
543  * The callers are required to call dev_pm_opp_put() for the returned OPP after
544  * use.
545  */
546 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
547 						     unsigned long u_volt)
548 {
549 	struct opp_table *opp_table;
550 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
551 
552 	if (!dev || !u_volt) {
553 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
554 			u_volt);
555 		return ERR_PTR(-EINVAL);
556 	}
557 
558 	opp_table = _find_opp_table(dev);
559 	if (IS_ERR(opp_table))
560 		return ERR_CAST(opp_table);
561 
562 	mutex_lock(&opp_table->lock);
563 
564 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
565 		if (temp_opp->available) {
566 			if (temp_opp->supplies[0].u_volt > u_volt)
567 				break;
568 			opp = temp_opp;
569 		}
570 	}
571 
572 	/* Increment the reference count of OPP */
573 	if (!IS_ERR(opp))
574 		dev_pm_opp_get(opp);
575 
576 	mutex_unlock(&opp_table->lock);
577 	dev_pm_opp_put_opp_table(opp_table);
578 
579 	return opp;
580 }
581 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
582 
583 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
584 			    struct dev_pm_opp_supply *supply)
585 {
586 	int ret;
587 
588 	/* Regulator not available for device */
589 	if (IS_ERR(reg)) {
590 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
591 			PTR_ERR(reg));
592 		return 0;
593 	}
594 
595 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
596 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
597 
598 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
599 					    supply->u_volt, supply->u_volt_max);
600 	if (ret)
601 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
602 			__func__, supply->u_volt_min, supply->u_volt,
603 			supply->u_volt_max, ret);
604 
605 	return ret;
606 }
607 
608 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
609 					    unsigned long freq)
610 {
611 	int ret;
612 
613 	ret = clk_set_rate(clk, freq);
614 	if (ret) {
615 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
616 			ret);
617 	}
618 
619 	return ret;
620 }
621 
622 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
623 				      struct device *dev,
624 				      unsigned long old_freq,
625 				      unsigned long freq,
626 				      struct dev_pm_opp_supply *old_supply,
627 				      struct dev_pm_opp_supply *new_supply)
628 {
629 	struct regulator *reg = opp_table->regulators[0];
630 	int ret;
631 
632 	/* This function only supports single regulator per device */
633 	if (WARN_ON(opp_table->regulator_count > 1)) {
634 		dev_err(dev, "multiple regulators are not supported\n");
635 		return -EINVAL;
636 	}
637 
638 	/* Scaling up? Scale voltage before frequency */
639 	if (freq >= old_freq) {
640 		ret = _set_opp_voltage(dev, reg, new_supply);
641 		if (ret)
642 			goto restore_voltage;
643 	}
644 
645 	/* Change frequency */
646 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
647 	if (ret)
648 		goto restore_voltage;
649 
650 	/* Scaling down? Scale voltage after frequency */
651 	if (freq < old_freq) {
652 		ret = _set_opp_voltage(dev, reg, new_supply);
653 		if (ret)
654 			goto restore_freq;
655 	}
656 
657 	return 0;
658 
659 restore_freq:
660 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
661 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
662 			__func__, old_freq);
663 restore_voltage:
664 	/* This shouldn't harm even if the voltages weren't updated earlier */
665 	if (old_supply)
666 		_set_opp_voltage(dev, reg, old_supply);
667 
668 	return ret;
669 }
670 
671 static int _set_opp_custom(const struct opp_table *opp_table,
672 			   struct device *dev, unsigned long old_freq,
673 			   unsigned long freq,
674 			   struct dev_pm_opp_supply *old_supply,
675 			   struct dev_pm_opp_supply *new_supply)
676 {
677 	struct dev_pm_set_opp_data *data;
678 	int size;
679 
680 	data = opp_table->set_opp_data;
681 	data->regulators = opp_table->regulators;
682 	data->regulator_count = opp_table->regulator_count;
683 	data->clk = opp_table->clk;
684 	data->dev = dev;
685 
686 	data->old_opp.rate = old_freq;
687 	size = sizeof(*old_supply) * opp_table->regulator_count;
688 	if (IS_ERR(old_supply))
689 		memset(data->old_opp.supplies, 0, size);
690 	else
691 		memcpy(data->old_opp.supplies, old_supply, size);
692 
693 	data->new_opp.rate = freq;
694 	memcpy(data->new_opp.supplies, new_supply, size);
695 
696 	return opp_table->set_opp(data);
697 }
698 
699 /* This is only called for PM domain for now */
700 static int _set_required_opps(struct device *dev,
701 			      struct opp_table *opp_table,
702 			      struct dev_pm_opp *opp)
703 {
704 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
705 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
706 	unsigned int pstate;
707 	int i, ret = 0;
708 
709 	if (!required_opp_tables)
710 		return 0;
711 
712 	/* Single genpd case */
713 	if (!genpd_virt_devs) {
714 		pstate = opp->required_opps[0]->pstate;
715 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
716 		if (ret) {
717 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
718 				dev_name(dev), pstate, ret);
719 		}
720 		return ret;
721 	}
722 
723 	/* Multiple genpd case */
724 
725 	/*
726 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
727 	 * after it is freed from another thread.
728 	 */
729 	mutex_lock(&opp_table->genpd_virt_dev_lock);
730 
731 	for (i = 0; i < opp_table->required_opp_count; i++) {
732 		pstate = opp->required_opps[i]->pstate;
733 
734 		if (!genpd_virt_devs[i])
735 			continue;
736 
737 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
738 		if (ret) {
739 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
740 				dev_name(genpd_virt_devs[i]), pstate, ret);
741 			break;
742 		}
743 	}
744 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
745 
746 	return ret;
747 }
748 
749 /**
750  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
751  * @dev:	 device for which we do this operation
752  * @target_freq: frequency to achieve
753  *
754  * This configures the power-supplies and clock source to the levels specified
755  * by the OPP corresponding to the target_freq.
756  */
757 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
758 {
759 	struct opp_table *opp_table;
760 	unsigned long freq, old_freq;
761 	struct dev_pm_opp *old_opp, *opp;
762 	struct clk *clk;
763 	int ret;
764 
765 	if (unlikely(!target_freq)) {
766 		dev_err(dev, "%s: Invalid target frequency %lu\n", __func__,
767 			target_freq);
768 		return -EINVAL;
769 	}
770 
771 	opp_table = _find_opp_table(dev);
772 	if (IS_ERR(opp_table)) {
773 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
774 		return PTR_ERR(opp_table);
775 	}
776 
777 	clk = opp_table->clk;
778 	if (IS_ERR(clk)) {
779 		dev_err(dev, "%s: No clock available for the device\n",
780 			__func__);
781 		ret = PTR_ERR(clk);
782 		goto put_opp_table;
783 	}
784 
785 	freq = clk_round_rate(clk, target_freq);
786 	if ((long)freq <= 0)
787 		freq = target_freq;
788 
789 	old_freq = clk_get_rate(clk);
790 
791 	/* Return early if nothing to do */
792 	if (old_freq == freq) {
793 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
794 			__func__, freq);
795 		ret = 0;
796 		goto put_opp_table;
797 	}
798 
799 	old_opp = _find_freq_ceil(opp_table, &old_freq);
800 	if (IS_ERR(old_opp)) {
801 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
802 			__func__, old_freq, PTR_ERR(old_opp));
803 	}
804 
805 	opp = _find_freq_ceil(opp_table, &freq);
806 	if (IS_ERR(opp)) {
807 		ret = PTR_ERR(opp);
808 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
809 			__func__, freq, ret);
810 		goto put_old_opp;
811 	}
812 
813 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
814 		old_freq, freq);
815 
816 	/* Scaling up? Configure required OPPs before frequency */
817 	if (freq >= old_freq) {
818 		ret = _set_required_opps(dev, opp_table, opp);
819 		if (ret)
820 			goto put_opp;
821 	}
822 
823 	if (opp_table->set_opp) {
824 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
825 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
826 				      opp->supplies);
827 	} else if (opp_table->regulators) {
828 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
829 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
830 						 opp->supplies);
831 	} else {
832 		/* Only frequency scaling */
833 		ret = _generic_set_opp_clk_only(dev, clk, freq);
834 	}
835 
836 	/* Scaling down? Configure required OPPs after frequency */
837 	if (!ret && freq < old_freq) {
838 		ret = _set_required_opps(dev, opp_table, opp);
839 		if (ret)
840 			dev_err(dev, "Failed to set required opps: %d\n", ret);
841 	}
842 
843 put_opp:
844 	dev_pm_opp_put(opp);
845 put_old_opp:
846 	if (!IS_ERR(old_opp))
847 		dev_pm_opp_put(old_opp);
848 put_opp_table:
849 	dev_pm_opp_put_opp_table(opp_table);
850 	return ret;
851 }
852 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
853 
854 /* OPP-dev Helpers */
855 static void _remove_opp_dev(struct opp_device *opp_dev,
856 			    struct opp_table *opp_table)
857 {
858 	opp_debug_unregister(opp_dev, opp_table);
859 	list_del(&opp_dev->node);
860 	kfree(opp_dev);
861 }
862 
863 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
864 						struct opp_table *opp_table)
865 {
866 	struct opp_device *opp_dev;
867 
868 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
869 	if (!opp_dev)
870 		return NULL;
871 
872 	/* Initialize opp-dev */
873 	opp_dev->dev = dev;
874 
875 	list_add(&opp_dev->node, &opp_table->dev_list);
876 
877 	/* Create debugfs entries for the opp_table */
878 	opp_debug_register(opp_dev, opp_table);
879 
880 	return opp_dev;
881 }
882 
883 struct opp_device *_add_opp_dev(const struct device *dev,
884 				struct opp_table *opp_table)
885 {
886 	struct opp_device *opp_dev;
887 
888 	mutex_lock(&opp_table->lock);
889 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
890 	mutex_unlock(&opp_table->lock);
891 
892 	return opp_dev;
893 }
894 
895 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
896 {
897 	struct opp_table *opp_table;
898 	struct opp_device *opp_dev;
899 	int ret;
900 
901 	/*
902 	 * Allocate a new OPP table. In the infrequent case where a new
903 	 * device is needed to be added, we pay this penalty.
904 	 */
905 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
906 	if (!opp_table)
907 		return NULL;
908 
909 	mutex_init(&opp_table->lock);
910 	mutex_init(&opp_table->genpd_virt_dev_lock);
911 	INIT_LIST_HEAD(&opp_table->dev_list);
912 
913 	/* Mark regulator count uninitialized */
914 	opp_table->regulator_count = -1;
915 
916 	opp_dev = _add_opp_dev(dev, opp_table);
917 	if (!opp_dev) {
918 		kfree(opp_table);
919 		return NULL;
920 	}
921 
922 	_of_init_opp_table(opp_table, dev, index);
923 
924 	/* Find clk for the device */
925 	opp_table->clk = clk_get(dev, NULL);
926 	if (IS_ERR(opp_table->clk)) {
927 		ret = PTR_ERR(opp_table->clk);
928 		if (ret != -EPROBE_DEFER)
929 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
930 				ret);
931 	}
932 
933 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
934 	INIT_LIST_HEAD(&opp_table->opp_list);
935 	kref_init(&opp_table->kref);
936 
937 	/* Secure the device table modification */
938 	list_add(&opp_table->node, &opp_tables);
939 	return opp_table;
940 }
941 
942 void _get_opp_table_kref(struct opp_table *opp_table)
943 {
944 	kref_get(&opp_table->kref);
945 }
946 
947 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
948 {
949 	struct opp_table *opp_table;
950 
951 	/* Hold our table modification lock here */
952 	mutex_lock(&opp_table_lock);
953 
954 	opp_table = _find_opp_table_unlocked(dev);
955 	if (!IS_ERR(opp_table))
956 		goto unlock;
957 
958 	opp_table = _managed_opp(dev, index);
959 	if (opp_table) {
960 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
961 			dev_pm_opp_put_opp_table(opp_table);
962 			opp_table = NULL;
963 		}
964 		goto unlock;
965 	}
966 
967 	opp_table = _allocate_opp_table(dev, index);
968 
969 unlock:
970 	mutex_unlock(&opp_table_lock);
971 
972 	return opp_table;
973 }
974 
975 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
976 {
977 	return _opp_get_opp_table(dev, 0);
978 }
979 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
980 
981 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
982 						   int index)
983 {
984 	return _opp_get_opp_table(dev, index);
985 }
986 
987 static void _opp_table_kref_release(struct kref *kref)
988 {
989 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
990 	struct opp_device *opp_dev, *temp;
991 
992 	_of_clear_opp_table(opp_table);
993 
994 	/* Release clk */
995 	if (!IS_ERR(opp_table->clk))
996 		clk_put(opp_table->clk);
997 
998 	WARN_ON(!list_empty(&opp_table->opp_list));
999 
1000 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1001 		/*
1002 		 * The OPP table is getting removed, drop the performance state
1003 		 * constraints.
1004 		 */
1005 		if (opp_table->genpd_performance_state)
1006 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1007 
1008 		_remove_opp_dev(opp_dev, opp_table);
1009 	}
1010 
1011 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1012 	mutex_destroy(&opp_table->lock);
1013 	list_del(&opp_table->node);
1014 	kfree(opp_table);
1015 
1016 	mutex_unlock(&opp_table_lock);
1017 }
1018 
1019 void _opp_remove_all_static(struct opp_table *opp_table)
1020 {
1021 	struct dev_pm_opp *opp, *tmp;
1022 
1023 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1024 		if (!opp->dynamic)
1025 			dev_pm_opp_put(opp);
1026 	}
1027 
1028 	opp_table->parsed_static_opps = false;
1029 }
1030 
1031 static void _opp_table_list_kref_release(struct kref *kref)
1032 {
1033 	struct opp_table *opp_table = container_of(kref, struct opp_table,
1034 						   list_kref);
1035 
1036 	_opp_remove_all_static(opp_table);
1037 	mutex_unlock(&opp_table_lock);
1038 }
1039 
1040 void _put_opp_list_kref(struct opp_table *opp_table)
1041 {
1042 	kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1043 		       &opp_table_lock);
1044 }
1045 
1046 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1047 {
1048 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1049 		       &opp_table_lock);
1050 }
1051 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1052 
1053 void _opp_free(struct dev_pm_opp *opp)
1054 {
1055 	kfree(opp);
1056 }
1057 
1058 static void _opp_kref_release(struct dev_pm_opp *opp,
1059 			      struct opp_table *opp_table)
1060 {
1061 	/*
1062 	 * Notify the changes in the availability of the operable
1063 	 * frequency/voltage list.
1064 	 */
1065 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1066 	_of_opp_free_required_opps(opp_table, opp);
1067 	opp_debug_remove_one(opp);
1068 	list_del(&opp->node);
1069 	kfree(opp);
1070 }
1071 
1072 static void _opp_kref_release_unlocked(struct kref *kref)
1073 {
1074 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1075 	struct opp_table *opp_table = opp->opp_table;
1076 
1077 	_opp_kref_release(opp, opp_table);
1078 }
1079 
1080 static void _opp_kref_release_locked(struct kref *kref)
1081 {
1082 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1083 	struct opp_table *opp_table = opp->opp_table;
1084 
1085 	_opp_kref_release(opp, opp_table);
1086 	mutex_unlock(&opp_table->lock);
1087 }
1088 
1089 void dev_pm_opp_get(struct dev_pm_opp *opp)
1090 {
1091 	kref_get(&opp->kref);
1092 }
1093 
1094 void dev_pm_opp_put(struct dev_pm_opp *opp)
1095 {
1096 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1097 		       &opp->opp_table->lock);
1098 }
1099 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1100 
1101 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1102 {
1103 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1104 }
1105 
1106 /**
1107  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1108  * @dev:	device for which we do this operation
1109  * @freq:	OPP to remove with matching 'freq'
1110  *
1111  * This function removes an opp from the opp table.
1112  */
1113 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1114 {
1115 	struct dev_pm_opp *opp;
1116 	struct opp_table *opp_table;
1117 	bool found = false;
1118 
1119 	opp_table = _find_opp_table(dev);
1120 	if (IS_ERR(opp_table))
1121 		return;
1122 
1123 	mutex_lock(&opp_table->lock);
1124 
1125 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1126 		if (opp->rate == freq) {
1127 			found = true;
1128 			break;
1129 		}
1130 	}
1131 
1132 	mutex_unlock(&opp_table->lock);
1133 
1134 	if (found) {
1135 		dev_pm_opp_put(opp);
1136 
1137 		/* Drop the reference taken by dev_pm_opp_add() */
1138 		dev_pm_opp_put_opp_table(opp_table);
1139 	} else {
1140 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1141 			 __func__, freq);
1142 	}
1143 
1144 	/* Drop the reference taken by _find_opp_table() */
1145 	dev_pm_opp_put_opp_table(opp_table);
1146 }
1147 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1148 
1149 /**
1150  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1151  * @dev:	device for which we do this operation
1152  *
1153  * This function removes all dynamically created OPPs from the opp table.
1154  */
1155 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1156 {
1157 	struct opp_table *opp_table;
1158 	struct dev_pm_opp *opp, *temp;
1159 	int count = 0;
1160 
1161 	opp_table = _find_opp_table(dev);
1162 	if (IS_ERR(opp_table))
1163 		return;
1164 
1165 	mutex_lock(&opp_table->lock);
1166 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1167 		if (opp->dynamic) {
1168 			dev_pm_opp_put_unlocked(opp);
1169 			count++;
1170 		}
1171 	}
1172 	mutex_unlock(&opp_table->lock);
1173 
1174 	/* Drop the references taken by dev_pm_opp_add() */
1175 	while (count--)
1176 		dev_pm_opp_put_opp_table(opp_table);
1177 
1178 	/* Drop the reference taken by _find_opp_table() */
1179 	dev_pm_opp_put_opp_table(opp_table);
1180 }
1181 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1182 
1183 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1184 {
1185 	struct dev_pm_opp *opp;
1186 	int count, supply_size;
1187 
1188 	/* Allocate space for at least one supply */
1189 	count = table->regulator_count > 0 ? table->regulator_count : 1;
1190 	supply_size = sizeof(*opp->supplies) * count;
1191 
1192 	/* allocate new OPP node and supplies structures */
1193 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1194 	if (!opp)
1195 		return NULL;
1196 
1197 	/* Put the supplies at the end of the OPP structure as an empty array */
1198 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1199 	INIT_LIST_HEAD(&opp->node);
1200 
1201 	return opp;
1202 }
1203 
1204 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1205 					 struct opp_table *opp_table)
1206 {
1207 	struct regulator *reg;
1208 	int i;
1209 
1210 	if (!opp_table->regulators)
1211 		return true;
1212 
1213 	for (i = 0; i < opp_table->regulator_count; i++) {
1214 		reg = opp_table->regulators[i];
1215 
1216 		if (!regulator_is_supported_voltage(reg,
1217 					opp->supplies[i].u_volt_min,
1218 					opp->supplies[i].u_volt_max)) {
1219 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1220 				__func__, opp->supplies[i].u_volt_min,
1221 				opp->supplies[i].u_volt_max);
1222 			return false;
1223 		}
1224 	}
1225 
1226 	return true;
1227 }
1228 
1229 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1230 			     struct opp_table *opp_table,
1231 			     struct list_head **head)
1232 {
1233 	struct dev_pm_opp *opp;
1234 
1235 	/*
1236 	 * Insert new OPP in order of increasing frequency and discard if
1237 	 * already present.
1238 	 *
1239 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1240 	 * loop, don't replace it with head otherwise it will become an infinite
1241 	 * loop.
1242 	 */
1243 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1244 		if (new_opp->rate > opp->rate) {
1245 			*head = &opp->node;
1246 			continue;
1247 		}
1248 
1249 		if (new_opp->rate < opp->rate)
1250 			return 0;
1251 
1252 		/* Duplicate OPPs */
1253 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1254 			 __func__, opp->rate, opp->supplies[0].u_volt,
1255 			 opp->available, new_opp->rate,
1256 			 new_opp->supplies[0].u_volt, new_opp->available);
1257 
1258 		/* Should we compare voltages for all regulators here ? */
1259 		return opp->available &&
1260 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Returns:
1268  * 0: On success. And appropriate error message for duplicate OPPs.
1269  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1270  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1271  *  sure we don't print error messages unnecessarily if different parts of
1272  *  kernel try to initialize the OPP table.
1273  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1274  *  should be considered an error by the callers of _opp_add().
1275  */
1276 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1277 	     struct opp_table *opp_table, bool rate_not_available)
1278 {
1279 	struct list_head *head;
1280 	int ret;
1281 
1282 	mutex_lock(&opp_table->lock);
1283 	head = &opp_table->opp_list;
1284 
1285 	if (likely(!rate_not_available)) {
1286 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1287 		if (ret) {
1288 			mutex_unlock(&opp_table->lock);
1289 			return ret;
1290 		}
1291 	}
1292 
1293 	list_add(&new_opp->node, head);
1294 	mutex_unlock(&opp_table->lock);
1295 
1296 	new_opp->opp_table = opp_table;
1297 	kref_init(&new_opp->kref);
1298 
1299 	opp_debug_create_one(new_opp, opp_table);
1300 
1301 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1302 		new_opp->available = false;
1303 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1304 			 __func__, new_opp->rate);
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1312  * @opp_table:	OPP table
1313  * @dev:	device for which we do this operation
1314  * @freq:	Frequency in Hz for this OPP
1315  * @u_volt:	Voltage in uVolts for this OPP
1316  * @dynamic:	Dynamically added OPPs.
1317  *
1318  * This function adds an opp definition to the opp table and returns status.
1319  * The opp is made available by default and it can be controlled using
1320  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1321  *
1322  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1323  * and freed by dev_pm_opp_of_remove_table.
1324  *
1325  * Return:
1326  * 0		On success OR
1327  *		Duplicate OPPs (both freq and volt are same) and opp->available
1328  * -EEXIST	Freq are same and volt are different OR
1329  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1330  * -ENOMEM	Memory allocation failure
1331  */
1332 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1333 		unsigned long freq, long u_volt, bool dynamic)
1334 {
1335 	struct dev_pm_opp *new_opp;
1336 	unsigned long tol;
1337 	int ret;
1338 
1339 	new_opp = _opp_allocate(opp_table);
1340 	if (!new_opp)
1341 		return -ENOMEM;
1342 
1343 	/* populate the opp table */
1344 	new_opp->rate = freq;
1345 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1346 	new_opp->supplies[0].u_volt = u_volt;
1347 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1348 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1349 	new_opp->available = true;
1350 	new_opp->dynamic = dynamic;
1351 
1352 	ret = _opp_add(dev, new_opp, opp_table, false);
1353 	if (ret) {
1354 		/* Don't return error for duplicate OPPs */
1355 		if (ret == -EBUSY)
1356 			ret = 0;
1357 		goto free_opp;
1358 	}
1359 
1360 	/*
1361 	 * Notify the changes in the availability of the operable
1362 	 * frequency/voltage list.
1363 	 */
1364 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1365 	return 0;
1366 
1367 free_opp:
1368 	_opp_free(new_opp);
1369 
1370 	return ret;
1371 }
1372 
1373 /**
1374  * dev_pm_opp_set_supported_hw() - Set supported platforms
1375  * @dev: Device for which supported-hw has to be set.
1376  * @versions: Array of hierarchy of versions to match.
1377  * @count: Number of elements in the array.
1378  *
1379  * This is required only for the V2 bindings, and it enables a platform to
1380  * specify the hierarchy of versions it supports. OPP layer will then enable
1381  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1382  * property.
1383  */
1384 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1385 			const u32 *versions, unsigned int count)
1386 {
1387 	struct opp_table *opp_table;
1388 
1389 	opp_table = dev_pm_opp_get_opp_table(dev);
1390 	if (!opp_table)
1391 		return ERR_PTR(-ENOMEM);
1392 
1393 	/* Make sure there are no concurrent readers while updating opp_table */
1394 	WARN_ON(!list_empty(&opp_table->opp_list));
1395 
1396 	/* Another CPU that shares the OPP table has set the property ? */
1397 	if (opp_table->supported_hw)
1398 		return opp_table;
1399 
1400 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1401 					GFP_KERNEL);
1402 	if (!opp_table->supported_hw) {
1403 		dev_pm_opp_put_opp_table(opp_table);
1404 		return ERR_PTR(-ENOMEM);
1405 	}
1406 
1407 	opp_table->supported_hw_count = count;
1408 
1409 	return opp_table;
1410 }
1411 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1412 
1413 /**
1414  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1415  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1416  *
1417  * This is required only for the V2 bindings, and is called for a matching
1418  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1419  * will not be freed.
1420  */
1421 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1422 {
1423 	/* Make sure there are no concurrent readers while updating opp_table */
1424 	WARN_ON(!list_empty(&opp_table->opp_list));
1425 
1426 	kfree(opp_table->supported_hw);
1427 	opp_table->supported_hw = NULL;
1428 	opp_table->supported_hw_count = 0;
1429 
1430 	dev_pm_opp_put_opp_table(opp_table);
1431 }
1432 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1433 
1434 /**
1435  * dev_pm_opp_set_prop_name() - Set prop-extn name
1436  * @dev: Device for which the prop-name has to be set.
1437  * @name: name to postfix to properties.
1438  *
1439  * This is required only for the V2 bindings, and it enables a platform to
1440  * specify the extn to be used for certain property names. The properties to
1441  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1442  * should postfix the property name with -<name> while looking for them.
1443  */
1444 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1445 {
1446 	struct opp_table *opp_table;
1447 
1448 	opp_table = dev_pm_opp_get_opp_table(dev);
1449 	if (!opp_table)
1450 		return ERR_PTR(-ENOMEM);
1451 
1452 	/* Make sure there are no concurrent readers while updating opp_table */
1453 	WARN_ON(!list_empty(&opp_table->opp_list));
1454 
1455 	/* Another CPU that shares the OPP table has set the property ? */
1456 	if (opp_table->prop_name)
1457 		return opp_table;
1458 
1459 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1460 	if (!opp_table->prop_name) {
1461 		dev_pm_opp_put_opp_table(opp_table);
1462 		return ERR_PTR(-ENOMEM);
1463 	}
1464 
1465 	return opp_table;
1466 }
1467 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1468 
1469 /**
1470  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1471  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1472  *
1473  * This is required only for the V2 bindings, and is called for a matching
1474  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1475  * will not be freed.
1476  */
1477 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1478 {
1479 	/* Make sure there are no concurrent readers while updating opp_table */
1480 	WARN_ON(!list_empty(&opp_table->opp_list));
1481 
1482 	kfree(opp_table->prop_name);
1483 	opp_table->prop_name = NULL;
1484 
1485 	dev_pm_opp_put_opp_table(opp_table);
1486 }
1487 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1488 
1489 static int _allocate_set_opp_data(struct opp_table *opp_table)
1490 {
1491 	struct dev_pm_set_opp_data *data;
1492 	int len, count = opp_table->regulator_count;
1493 
1494 	if (WARN_ON(!opp_table->regulators))
1495 		return -EINVAL;
1496 
1497 	/* space for set_opp_data */
1498 	len = sizeof(*data);
1499 
1500 	/* space for old_opp.supplies and new_opp.supplies */
1501 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1502 
1503 	data = kzalloc(len, GFP_KERNEL);
1504 	if (!data)
1505 		return -ENOMEM;
1506 
1507 	data->old_opp.supplies = (void *)(data + 1);
1508 	data->new_opp.supplies = data->old_opp.supplies + count;
1509 
1510 	opp_table->set_opp_data = data;
1511 
1512 	return 0;
1513 }
1514 
1515 static void _free_set_opp_data(struct opp_table *opp_table)
1516 {
1517 	kfree(opp_table->set_opp_data);
1518 	opp_table->set_opp_data = NULL;
1519 }
1520 
1521 /**
1522  * dev_pm_opp_set_regulators() - Set regulator names for the device
1523  * @dev: Device for which regulator name is being set.
1524  * @names: Array of pointers to the names of the regulator.
1525  * @count: Number of regulators.
1526  *
1527  * In order to support OPP switching, OPP layer needs to know the name of the
1528  * device's regulators, as the core would be required to switch voltages as
1529  * well.
1530  *
1531  * This must be called before any OPPs are initialized for the device.
1532  */
1533 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1534 					    const char * const names[],
1535 					    unsigned int count)
1536 {
1537 	struct opp_table *opp_table;
1538 	struct regulator *reg;
1539 	int ret, i;
1540 
1541 	opp_table = dev_pm_opp_get_opp_table(dev);
1542 	if (!opp_table)
1543 		return ERR_PTR(-ENOMEM);
1544 
1545 	/* This should be called before OPPs are initialized */
1546 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1547 		ret = -EBUSY;
1548 		goto err;
1549 	}
1550 
1551 	/* Another CPU that shares the OPP table has set the regulators ? */
1552 	if (opp_table->regulators)
1553 		return opp_table;
1554 
1555 	opp_table->regulators = kmalloc_array(count,
1556 					      sizeof(*opp_table->regulators),
1557 					      GFP_KERNEL);
1558 	if (!opp_table->regulators) {
1559 		ret = -ENOMEM;
1560 		goto err;
1561 	}
1562 
1563 	for (i = 0; i < count; i++) {
1564 		reg = regulator_get_optional(dev, names[i]);
1565 		if (IS_ERR(reg)) {
1566 			ret = PTR_ERR(reg);
1567 			if (ret != -EPROBE_DEFER)
1568 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1569 					__func__, names[i], ret);
1570 			goto free_regulators;
1571 		}
1572 
1573 		opp_table->regulators[i] = reg;
1574 	}
1575 
1576 	opp_table->regulator_count = count;
1577 
1578 	/* Allocate block only once to pass to set_opp() routines */
1579 	ret = _allocate_set_opp_data(opp_table);
1580 	if (ret)
1581 		goto free_regulators;
1582 
1583 	return opp_table;
1584 
1585 free_regulators:
1586 	while (i != 0)
1587 		regulator_put(opp_table->regulators[--i]);
1588 
1589 	kfree(opp_table->regulators);
1590 	opp_table->regulators = NULL;
1591 	opp_table->regulator_count = -1;
1592 err:
1593 	dev_pm_opp_put_opp_table(opp_table);
1594 
1595 	return ERR_PTR(ret);
1596 }
1597 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1598 
1599 /**
1600  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1601  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1602  */
1603 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1604 {
1605 	int i;
1606 
1607 	if (!opp_table->regulators)
1608 		goto put_opp_table;
1609 
1610 	/* Make sure there are no concurrent readers while updating opp_table */
1611 	WARN_ON(!list_empty(&opp_table->opp_list));
1612 
1613 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1614 		regulator_put(opp_table->regulators[i]);
1615 
1616 	_free_set_opp_data(opp_table);
1617 
1618 	kfree(opp_table->regulators);
1619 	opp_table->regulators = NULL;
1620 	opp_table->regulator_count = -1;
1621 
1622 put_opp_table:
1623 	dev_pm_opp_put_opp_table(opp_table);
1624 }
1625 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1626 
1627 /**
1628  * dev_pm_opp_set_clkname() - Set clk name for the device
1629  * @dev: Device for which clk name is being set.
1630  * @name: Clk name.
1631  *
1632  * In order to support OPP switching, OPP layer needs to get pointer to the
1633  * clock for the device. Simple cases work fine without using this routine (i.e.
1634  * by passing connection-id as NULL), but for a device with multiple clocks
1635  * available, the OPP core needs to know the exact name of the clk to use.
1636  *
1637  * This must be called before any OPPs are initialized for the device.
1638  */
1639 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1640 {
1641 	struct opp_table *opp_table;
1642 	int ret;
1643 
1644 	opp_table = dev_pm_opp_get_opp_table(dev);
1645 	if (!opp_table)
1646 		return ERR_PTR(-ENOMEM);
1647 
1648 	/* This should be called before OPPs are initialized */
1649 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1650 		ret = -EBUSY;
1651 		goto err;
1652 	}
1653 
1654 	/* Already have default clk set, free it */
1655 	if (!IS_ERR(opp_table->clk))
1656 		clk_put(opp_table->clk);
1657 
1658 	/* Find clk for the device */
1659 	opp_table->clk = clk_get(dev, name);
1660 	if (IS_ERR(opp_table->clk)) {
1661 		ret = PTR_ERR(opp_table->clk);
1662 		if (ret != -EPROBE_DEFER) {
1663 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1664 				ret);
1665 		}
1666 		goto err;
1667 	}
1668 
1669 	return opp_table;
1670 
1671 err:
1672 	dev_pm_opp_put_opp_table(opp_table);
1673 
1674 	return ERR_PTR(ret);
1675 }
1676 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1677 
1678 /**
1679  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1680  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1681  */
1682 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1683 {
1684 	/* Make sure there are no concurrent readers while updating opp_table */
1685 	WARN_ON(!list_empty(&opp_table->opp_list));
1686 
1687 	clk_put(opp_table->clk);
1688 	opp_table->clk = ERR_PTR(-EINVAL);
1689 
1690 	dev_pm_opp_put_opp_table(opp_table);
1691 }
1692 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1693 
1694 /**
1695  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1696  * @dev: Device for which the helper is getting registered.
1697  * @set_opp: Custom set OPP helper.
1698  *
1699  * This is useful to support complex platforms (like platforms with multiple
1700  * regulators per device), instead of the generic OPP set rate helper.
1701  *
1702  * This must be called before any OPPs are initialized for the device.
1703  */
1704 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1705 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1706 {
1707 	struct opp_table *opp_table;
1708 
1709 	if (!set_opp)
1710 		return ERR_PTR(-EINVAL);
1711 
1712 	opp_table = dev_pm_opp_get_opp_table(dev);
1713 	if (!opp_table)
1714 		return ERR_PTR(-ENOMEM);
1715 
1716 	/* This should be called before OPPs are initialized */
1717 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1718 		dev_pm_opp_put_opp_table(opp_table);
1719 		return ERR_PTR(-EBUSY);
1720 	}
1721 
1722 	/* Another CPU that shares the OPP table has set the helper ? */
1723 	if (!opp_table->set_opp)
1724 		opp_table->set_opp = set_opp;
1725 
1726 	return opp_table;
1727 }
1728 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1729 
1730 /**
1731  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1732  *					   set_opp helper
1733  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1734  *
1735  * Release resources blocked for platform specific set_opp helper.
1736  */
1737 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1738 {
1739 	/* Make sure there are no concurrent readers while updating opp_table */
1740 	WARN_ON(!list_empty(&opp_table->opp_list));
1741 
1742 	opp_table->set_opp = NULL;
1743 	dev_pm_opp_put_opp_table(opp_table);
1744 }
1745 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1746 
1747 /**
1748  * dev_pm_opp_set_genpd_virt_dev - Set virtual genpd device for an index
1749  * @dev: Consumer device for which the genpd device is getting set.
1750  * @virt_dev: virtual genpd device.
1751  * @index: index.
1752  *
1753  * Multiple generic power domains for a device are supported with the help of
1754  * virtual genpd devices, which are created for each consumer device - genpd
1755  * pair. These are the device structures which are attached to the power domain
1756  * and are required by the OPP core to set the performance state of the genpd.
1757  *
1758  * This helper will normally be called by the consumer driver of the device
1759  * "dev", as only that has details of the genpd devices.
1760  *
1761  * This helper needs to be called once for each of those virtual devices, but
1762  * only if multiple domains are available for a device. Otherwise the original
1763  * device structure will be used instead by the OPP core.
1764  */
1765 struct opp_table *dev_pm_opp_set_genpd_virt_dev(struct device *dev,
1766 						struct device *virt_dev,
1767 						int index)
1768 {
1769 	struct opp_table *opp_table;
1770 
1771 	opp_table = dev_pm_opp_get_opp_table(dev);
1772 	if (!opp_table)
1773 		return ERR_PTR(-ENOMEM);
1774 
1775 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1776 
1777 	if (unlikely(!opp_table->genpd_virt_devs ||
1778 		     index >= opp_table->required_opp_count ||
1779 		     opp_table->genpd_virt_devs[index])) {
1780 
1781 		dev_err(dev, "Invalid request to set required device\n");
1782 		dev_pm_opp_put_opp_table(opp_table);
1783 		mutex_unlock(&opp_table->genpd_virt_dev_lock);
1784 
1785 		return ERR_PTR(-EINVAL);
1786 	}
1787 
1788 	opp_table->genpd_virt_devs[index] = virt_dev;
1789 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1790 
1791 	return opp_table;
1792 }
1793 
1794 /**
1795  * dev_pm_opp_put_genpd_virt_dev() - Releases resources blocked for genpd device.
1796  * @opp_table: OPP table returned by dev_pm_opp_set_genpd_virt_dev().
1797  * @virt_dev: virtual genpd device.
1798  *
1799  * This releases the resource previously acquired with a call to
1800  * dev_pm_opp_set_genpd_virt_dev(). The consumer driver shall call this helper
1801  * if it doesn't want OPP core to update performance state of a power domain
1802  * anymore.
1803  */
1804 void dev_pm_opp_put_genpd_virt_dev(struct opp_table *opp_table,
1805 				   struct device *virt_dev)
1806 {
1807 	int i;
1808 
1809 	/*
1810 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1811 	 * used in parallel.
1812 	 */
1813 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1814 
1815 	for (i = 0; i < opp_table->required_opp_count; i++) {
1816 		if (opp_table->genpd_virt_devs[i] != virt_dev)
1817 			continue;
1818 
1819 		opp_table->genpd_virt_devs[i] = NULL;
1820 		dev_pm_opp_put_opp_table(opp_table);
1821 
1822 		/* Drop the vote */
1823 		dev_pm_genpd_set_performance_state(virt_dev, 0);
1824 		break;
1825 	}
1826 
1827 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1828 
1829 	if (unlikely(i == opp_table->required_opp_count))
1830 		dev_err(virt_dev, "Failed to find required device entry\n");
1831 }
1832 
1833 /**
1834  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1835  * @src_table: OPP table which has dst_table as one of its required OPP table.
1836  * @dst_table: Required OPP table of the src_table.
1837  * @pstate: Current performance state of the src_table.
1838  *
1839  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1840  * "required-opps" property of the OPP (present in @src_table) which has
1841  * performance state set to @pstate.
1842  *
1843  * Return: Zero or positive performance state on success, otherwise negative
1844  * value on errors.
1845  */
1846 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1847 				       struct opp_table *dst_table,
1848 				       unsigned int pstate)
1849 {
1850 	struct dev_pm_opp *opp;
1851 	int dest_pstate = -EINVAL;
1852 	int i;
1853 
1854 	if (!pstate)
1855 		return 0;
1856 
1857 	/*
1858 	 * Normally the src_table will have the "required_opps" property set to
1859 	 * point to one of the OPPs in the dst_table, but in some cases the
1860 	 * genpd and its master have one to one mapping of performance states
1861 	 * and so none of them have the "required-opps" property set. Return the
1862 	 * pstate of the src_table as it is in such cases.
1863 	 */
1864 	if (!src_table->required_opp_count)
1865 		return pstate;
1866 
1867 	for (i = 0; i < src_table->required_opp_count; i++) {
1868 		if (src_table->required_opp_tables[i]->np == dst_table->np)
1869 			break;
1870 	}
1871 
1872 	if (unlikely(i == src_table->required_opp_count)) {
1873 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1874 		       __func__, src_table, dst_table);
1875 		return -EINVAL;
1876 	}
1877 
1878 	mutex_lock(&src_table->lock);
1879 
1880 	list_for_each_entry(opp, &src_table->opp_list, node) {
1881 		if (opp->pstate == pstate) {
1882 			dest_pstate = opp->required_opps[i]->pstate;
1883 			goto unlock;
1884 		}
1885 	}
1886 
1887 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1888 	       dst_table);
1889 
1890 unlock:
1891 	mutex_unlock(&src_table->lock);
1892 
1893 	return dest_pstate;
1894 }
1895 
1896 /**
1897  * dev_pm_opp_add()  - Add an OPP table from a table definitions
1898  * @dev:	device for which we do this operation
1899  * @freq:	Frequency in Hz for this OPP
1900  * @u_volt:	Voltage in uVolts for this OPP
1901  *
1902  * This function adds an opp definition to the opp table and returns status.
1903  * The opp is made available by default and it can be controlled using
1904  * dev_pm_opp_enable/disable functions.
1905  *
1906  * Return:
1907  * 0		On success OR
1908  *		Duplicate OPPs (both freq and volt are same) and opp->available
1909  * -EEXIST	Freq are same and volt are different OR
1910  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1911  * -ENOMEM	Memory allocation failure
1912  */
1913 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1914 {
1915 	struct opp_table *opp_table;
1916 	int ret;
1917 
1918 	opp_table = dev_pm_opp_get_opp_table(dev);
1919 	if (!opp_table)
1920 		return -ENOMEM;
1921 
1922 	/* Fix regulator count for dynamic OPPs */
1923 	opp_table->regulator_count = 1;
1924 
1925 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1926 	if (ret)
1927 		dev_pm_opp_put_opp_table(opp_table);
1928 
1929 	return ret;
1930 }
1931 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1932 
1933 /**
1934  * _opp_set_availability() - helper to set the availability of an opp
1935  * @dev:		device for which we do this operation
1936  * @freq:		OPP frequency to modify availability
1937  * @availability_req:	availability status requested for this opp
1938  *
1939  * Set the availability of an OPP, opp_{enable,disable} share a common logic
1940  * which is isolated here.
1941  *
1942  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1943  * copy operation, returns 0 if no modification was done OR modification was
1944  * successful.
1945  */
1946 static int _opp_set_availability(struct device *dev, unsigned long freq,
1947 				 bool availability_req)
1948 {
1949 	struct opp_table *opp_table;
1950 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
1951 	int r = 0;
1952 
1953 	/* Find the opp_table */
1954 	opp_table = _find_opp_table(dev);
1955 	if (IS_ERR(opp_table)) {
1956 		r = PTR_ERR(opp_table);
1957 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
1958 		return r;
1959 	}
1960 
1961 	mutex_lock(&opp_table->lock);
1962 
1963 	/* Do we have the frequency? */
1964 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
1965 		if (tmp_opp->rate == freq) {
1966 			opp = tmp_opp;
1967 			break;
1968 		}
1969 	}
1970 
1971 	if (IS_ERR(opp)) {
1972 		r = PTR_ERR(opp);
1973 		goto unlock;
1974 	}
1975 
1976 	/* Is update really needed? */
1977 	if (opp->available == availability_req)
1978 		goto unlock;
1979 
1980 	opp->available = availability_req;
1981 
1982 	dev_pm_opp_get(opp);
1983 	mutex_unlock(&opp_table->lock);
1984 
1985 	/* Notify the change of the OPP availability */
1986 	if (availability_req)
1987 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
1988 					     opp);
1989 	else
1990 		blocking_notifier_call_chain(&opp_table->head,
1991 					     OPP_EVENT_DISABLE, opp);
1992 
1993 	dev_pm_opp_put(opp);
1994 	goto put_table;
1995 
1996 unlock:
1997 	mutex_unlock(&opp_table->lock);
1998 put_table:
1999 	dev_pm_opp_put_opp_table(opp_table);
2000 	return r;
2001 }
2002 
2003 /**
2004  * dev_pm_opp_enable() - Enable a specific OPP
2005  * @dev:	device for which we do this operation
2006  * @freq:	OPP frequency to enable
2007  *
2008  * Enables a provided opp. If the operation is valid, this returns 0, else the
2009  * corresponding error value. It is meant to be used for users an OPP available
2010  * after being temporarily made unavailable with dev_pm_opp_disable.
2011  *
2012  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2013  * copy operation, returns 0 if no modification was done OR modification was
2014  * successful.
2015  */
2016 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2017 {
2018 	return _opp_set_availability(dev, freq, true);
2019 }
2020 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2021 
2022 /**
2023  * dev_pm_opp_disable() - Disable a specific OPP
2024  * @dev:	device for which we do this operation
2025  * @freq:	OPP frequency to disable
2026  *
2027  * Disables a provided opp. If the operation is valid, this returns
2028  * 0, else the corresponding error value. It is meant to be a temporary
2029  * control by users to make this OPP not available until the circumstances are
2030  * right to make it available again (with a call to dev_pm_opp_enable).
2031  *
2032  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2033  * copy operation, returns 0 if no modification was done OR modification was
2034  * successful.
2035  */
2036 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2037 {
2038 	return _opp_set_availability(dev, freq, false);
2039 }
2040 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2041 
2042 /**
2043  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2044  * @dev:	Device for which notifier needs to be registered
2045  * @nb:		Notifier block to be registered
2046  *
2047  * Return: 0 on success or a negative error value.
2048  */
2049 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2050 {
2051 	struct opp_table *opp_table;
2052 	int ret;
2053 
2054 	opp_table = _find_opp_table(dev);
2055 	if (IS_ERR(opp_table))
2056 		return PTR_ERR(opp_table);
2057 
2058 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2059 
2060 	dev_pm_opp_put_opp_table(opp_table);
2061 
2062 	return ret;
2063 }
2064 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2065 
2066 /**
2067  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2068  * @dev:	Device for which notifier needs to be unregistered
2069  * @nb:		Notifier block to be unregistered
2070  *
2071  * Return: 0 on success or a negative error value.
2072  */
2073 int dev_pm_opp_unregister_notifier(struct device *dev,
2074 				   struct notifier_block *nb)
2075 {
2076 	struct opp_table *opp_table;
2077 	int ret;
2078 
2079 	opp_table = _find_opp_table(dev);
2080 	if (IS_ERR(opp_table))
2081 		return PTR_ERR(opp_table);
2082 
2083 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2084 
2085 	dev_pm_opp_put_opp_table(opp_table);
2086 
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2090 
2091 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2092 {
2093 	struct opp_table *opp_table;
2094 
2095 	/* Check for existing table for 'dev' */
2096 	opp_table = _find_opp_table(dev);
2097 	if (IS_ERR(opp_table)) {
2098 		int error = PTR_ERR(opp_table);
2099 
2100 		if (error != -ENODEV)
2101 			WARN(1, "%s: opp_table: %d\n",
2102 			     IS_ERR_OR_NULL(dev) ?
2103 					"Invalid device" : dev_name(dev),
2104 			     error);
2105 		return;
2106 	}
2107 
2108 	_put_opp_list_kref(opp_table);
2109 
2110 	/* Drop reference taken by _find_opp_table() */
2111 	dev_pm_opp_put_opp_table(opp_table);
2112 
2113 	/* Drop reference taken while the OPP table was added */
2114 	dev_pm_opp_put_opp_table(opp_table);
2115 }
2116 
2117 /**
2118  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2119  * @dev:	device pointer used to lookup OPP table.
2120  *
2121  * Free both OPPs created using static entries present in DT and the
2122  * dynamically added entries.
2123  */
2124 void dev_pm_opp_remove_table(struct device *dev)
2125 {
2126 	_dev_pm_opp_find_and_remove_table(dev);
2127 }
2128 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2129