xref: /openbmc/linux/drivers/opp/core.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 
31 /* OPP tables with uninitialized required OPPs */
32 LIST_HEAD(lazy_opp_tables);
33 
34 /* Lock to allow exclusive modification to the device and opp lists */
35 DEFINE_MUTEX(opp_table_lock);
36 /* Flag indicating that opp_tables list is being updated at the moment */
37 static bool opp_tables_busy;
38 
39 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40 {
41 	struct opp_device *opp_dev;
42 	bool found = false;
43 
44 	mutex_lock(&opp_table->lock);
45 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 		if (opp_dev->dev == dev) {
47 			found = true;
48 			break;
49 		}
50 
51 	mutex_unlock(&opp_table->lock);
52 	return found;
53 }
54 
55 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56 {
57 	struct opp_table *opp_table;
58 
59 	list_for_each_entry(opp_table, &opp_tables, node) {
60 		if (_find_opp_dev(dev, opp_table)) {
61 			_get_opp_table_kref(opp_table);
62 			return opp_table;
63 		}
64 	}
65 
66 	return ERR_PTR(-ENODEV);
67 }
68 
69 /**
70  * _find_opp_table() - find opp_table struct using device pointer
71  * @dev:	device pointer used to lookup OPP table
72  *
73  * Search OPP table for one containing matching device.
74  *
75  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76  * -EINVAL based on type of error.
77  *
78  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79  */
80 struct opp_table *_find_opp_table(struct device *dev)
81 {
82 	struct opp_table *opp_table;
83 
84 	if (IS_ERR_OR_NULL(dev)) {
85 		pr_err("%s: Invalid parameters\n", __func__);
86 		return ERR_PTR(-EINVAL);
87 	}
88 
89 	mutex_lock(&opp_table_lock);
90 	opp_table = _find_opp_table_unlocked(dev);
91 	mutex_unlock(&opp_table_lock);
92 
93 	return opp_table;
94 }
95 
96 /**
97  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98  * @opp:	opp for which voltage has to be returned for
99  *
100  * Return: voltage in micro volt corresponding to the opp, else
101  * return 0
102  *
103  * This is useful only for devices with single power supply.
104  */
105 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106 {
107 	if (IS_ERR_OR_NULL(opp)) {
108 		pr_err("%s: Invalid parameters\n", __func__);
109 		return 0;
110 	}
111 
112 	return opp->supplies[0].u_volt;
113 }
114 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115 
116 /**
117  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
118  * @opp:	opp for which frequency has to be returned for
119  *
120  * Return: frequency in hertz corresponding to the opp, else
121  * return 0
122  */
123 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
124 {
125 	if (IS_ERR_OR_NULL(opp)) {
126 		pr_err("%s: Invalid parameters\n", __func__);
127 		return 0;
128 	}
129 
130 	return opp->rate;
131 }
132 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
133 
134 /**
135  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
136  * @opp:	opp for which level value has to be returned for
137  *
138  * Return: level read from device tree corresponding to the opp, else
139  * return 0.
140  */
141 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
142 {
143 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
144 		pr_err("%s: Invalid parameters\n", __func__);
145 		return 0;
146 	}
147 
148 	return opp->level;
149 }
150 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
151 
152 /**
153  * dev_pm_opp_get_required_pstate() - Gets the required performance state
154  *                                    corresponding to an available opp
155  * @opp:	opp for which performance state has to be returned for
156  * @index:	index of the required opp
157  *
158  * Return: performance state read from device tree corresponding to the
159  * required opp, else return 0.
160  */
161 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
162 					    unsigned int index)
163 {
164 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
165 	    index >= opp->opp_table->required_opp_count) {
166 		pr_err("%s: Invalid parameters\n", __func__);
167 		return 0;
168 	}
169 
170 	/* required-opps not fully initialized yet */
171 	if (lazy_linking_pending(opp->opp_table))
172 		return 0;
173 
174 	return opp->required_opps[index]->pstate;
175 }
176 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
177 
178 /**
179  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
180  * @opp: opp for which turbo mode is being verified
181  *
182  * Turbo OPPs are not for normal use, and can be enabled (under certain
183  * conditions) for short duration of times to finish high throughput work
184  * quickly. Running on them for longer times may overheat the chip.
185  *
186  * Return: true if opp is turbo opp, else false.
187  */
188 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
189 {
190 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
191 		pr_err("%s: Invalid parameters\n", __func__);
192 		return false;
193 	}
194 
195 	return opp->turbo;
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
198 
199 /**
200  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
201  * @dev:	device for which we do this operation
202  *
203  * Return: This function returns the max clock latency in nanoseconds.
204  */
205 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
206 {
207 	struct opp_table *opp_table;
208 	unsigned long clock_latency_ns;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	clock_latency_ns = opp_table->clock_latency_ns_max;
215 
216 	dev_pm_opp_put_opp_table(opp_table);
217 
218 	return clock_latency_ns;
219 }
220 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
221 
222 /**
223  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
224  * @dev: device for which we do this operation
225  *
226  * Return: This function returns the max voltage latency in nanoseconds.
227  */
228 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
229 {
230 	struct opp_table *opp_table;
231 	struct dev_pm_opp *opp;
232 	struct regulator *reg;
233 	unsigned long latency_ns = 0;
234 	int ret, i, count;
235 	struct {
236 		unsigned long min;
237 		unsigned long max;
238 	} *uV;
239 
240 	opp_table = _find_opp_table(dev);
241 	if (IS_ERR(opp_table))
242 		return 0;
243 
244 	/* Regulator may not be required for the device */
245 	if (!opp_table->regulators)
246 		goto put_opp_table;
247 
248 	count = opp_table->regulator_count;
249 
250 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
251 	if (!uV)
252 		goto put_opp_table;
253 
254 	mutex_lock(&opp_table->lock);
255 
256 	for (i = 0; i < count; i++) {
257 		uV[i].min = ~0;
258 		uV[i].max = 0;
259 
260 		list_for_each_entry(opp, &opp_table->opp_list, node) {
261 			if (!opp->available)
262 				continue;
263 
264 			if (opp->supplies[i].u_volt_min < uV[i].min)
265 				uV[i].min = opp->supplies[i].u_volt_min;
266 			if (opp->supplies[i].u_volt_max > uV[i].max)
267 				uV[i].max = opp->supplies[i].u_volt_max;
268 		}
269 	}
270 
271 	mutex_unlock(&opp_table->lock);
272 
273 	/*
274 	 * The caller needs to ensure that opp_table (and hence the regulator)
275 	 * isn't freed, while we are executing this routine.
276 	 */
277 	for (i = 0; i < count; i++) {
278 		reg = opp_table->regulators[i];
279 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
280 		if (ret > 0)
281 			latency_ns += ret * 1000;
282 	}
283 
284 	kfree(uV);
285 put_opp_table:
286 	dev_pm_opp_put_opp_table(opp_table);
287 
288 	return latency_ns;
289 }
290 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
291 
292 /**
293  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
294  *					     nanoseconds
295  * @dev: device for which we do this operation
296  *
297  * Return: This function returns the max transition latency, in nanoseconds, to
298  * switch from one OPP to other.
299  */
300 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
301 {
302 	return dev_pm_opp_get_max_volt_latency(dev) +
303 		dev_pm_opp_get_max_clock_latency(dev);
304 }
305 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
306 
307 /**
308  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
309  * @dev:	device for which we do this operation
310  *
311  * Return: This function returns the frequency of the OPP marked as suspend_opp
312  * if one is available, else returns 0;
313  */
314 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
315 {
316 	struct opp_table *opp_table;
317 	unsigned long freq = 0;
318 
319 	opp_table = _find_opp_table(dev);
320 	if (IS_ERR(opp_table))
321 		return 0;
322 
323 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
324 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
325 
326 	dev_pm_opp_put_opp_table(opp_table);
327 
328 	return freq;
329 }
330 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
331 
332 int _get_opp_count(struct opp_table *opp_table)
333 {
334 	struct dev_pm_opp *opp;
335 	int count = 0;
336 
337 	mutex_lock(&opp_table->lock);
338 
339 	list_for_each_entry(opp, &opp_table->opp_list, node) {
340 		if (opp->available)
341 			count++;
342 	}
343 
344 	mutex_unlock(&opp_table->lock);
345 
346 	return count;
347 }
348 
349 /**
350  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
351  * @dev:	device for which we do this operation
352  *
353  * Return: This function returns the number of available opps if there are any,
354  * else returns 0 if none or the corresponding error value.
355  */
356 int dev_pm_opp_get_opp_count(struct device *dev)
357 {
358 	struct opp_table *opp_table;
359 	int count;
360 
361 	opp_table = _find_opp_table(dev);
362 	if (IS_ERR(opp_table)) {
363 		count = PTR_ERR(opp_table);
364 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
365 			__func__, count);
366 		return count;
367 	}
368 
369 	count = _get_opp_count(opp_table);
370 	dev_pm_opp_put_opp_table(opp_table);
371 
372 	return count;
373 }
374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
375 
376 /**
377  * dev_pm_opp_find_freq_exact() - search for an exact frequency
378  * @dev:		device for which we do this operation
379  * @freq:		frequency to search for
380  * @available:		true/false - match for available opp
381  *
382  * Return: Searches for exact match in the opp table and returns pointer to the
383  * matching opp if found, else returns ERR_PTR in case of error and should
384  * be handled using IS_ERR. Error return values can be:
385  * EINVAL:	for bad pointer
386  * ERANGE:	no match found for search
387  * ENODEV:	if device not found in list of registered devices
388  *
389  * Note: available is a modifier for the search. if available=true, then the
390  * match is for exact matching frequency and is available in the stored OPP
391  * table. if false, the match is for exact frequency which is not available.
392  *
393  * This provides a mechanism to enable an opp which is not available currently
394  * or the opposite as well.
395  *
396  * The callers are required to call dev_pm_opp_put() for the returned OPP after
397  * use.
398  */
399 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
400 					      unsigned long freq,
401 					      bool available)
402 {
403 	struct opp_table *opp_table;
404 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
405 
406 	opp_table = _find_opp_table(dev);
407 	if (IS_ERR(opp_table)) {
408 		int r = PTR_ERR(opp_table);
409 
410 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
411 		return ERR_PTR(r);
412 	}
413 
414 	mutex_lock(&opp_table->lock);
415 
416 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
417 		if (temp_opp->available == available &&
418 				temp_opp->rate == freq) {
419 			opp = temp_opp;
420 
421 			/* Increment the reference count of OPP */
422 			dev_pm_opp_get(opp);
423 			break;
424 		}
425 	}
426 
427 	mutex_unlock(&opp_table->lock);
428 	dev_pm_opp_put_opp_table(opp_table);
429 
430 	return opp;
431 }
432 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
433 
434 /**
435  * dev_pm_opp_find_level_exact() - search for an exact level
436  * @dev:		device for which we do this operation
437  * @level:		level to search for
438  *
439  * Return: Searches for exact match in the opp table and returns pointer to the
440  * matching opp if found, else returns ERR_PTR in case of error and should
441  * be handled using IS_ERR. Error return values can be:
442  * EINVAL:	for bad pointer
443  * ERANGE:	no match found for search
444  * ENODEV:	if device not found in list of registered devices
445  *
446  * The callers are required to call dev_pm_opp_put() for the returned OPP after
447  * use.
448  */
449 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
450 					       unsigned int level)
451 {
452 	struct opp_table *opp_table;
453 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
454 
455 	opp_table = _find_opp_table(dev);
456 	if (IS_ERR(opp_table)) {
457 		int r = PTR_ERR(opp_table);
458 
459 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
460 		return ERR_PTR(r);
461 	}
462 
463 	mutex_lock(&opp_table->lock);
464 
465 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
466 		if (temp_opp->level == level) {
467 			opp = temp_opp;
468 
469 			/* Increment the reference count of OPP */
470 			dev_pm_opp_get(opp);
471 			break;
472 		}
473 	}
474 
475 	mutex_unlock(&opp_table->lock);
476 	dev_pm_opp_put_opp_table(opp_table);
477 
478 	return opp;
479 }
480 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
481 
482 /**
483  * dev_pm_opp_find_level_ceil() - search for an rounded up level
484  * @dev:		device for which we do this operation
485  * @level:		level to search for
486  *
487  * Return: Searches for rounded up match in the opp table and returns pointer
488  * to the  matching opp if found, else returns ERR_PTR in case of error and
489  * should be handled using IS_ERR. Error return values can be:
490  * EINVAL:	for bad pointer
491  * ERANGE:	no match found for search
492  * ENODEV:	if device not found in list of registered devices
493  *
494  * The callers are required to call dev_pm_opp_put() for the returned OPP after
495  * use.
496  */
497 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
498 					      unsigned int *level)
499 {
500 	struct opp_table *opp_table;
501 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
502 
503 	opp_table = _find_opp_table(dev);
504 	if (IS_ERR(opp_table)) {
505 		int r = PTR_ERR(opp_table);
506 
507 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
508 		return ERR_PTR(r);
509 	}
510 
511 	mutex_lock(&opp_table->lock);
512 
513 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
514 		if (temp_opp->available && temp_opp->level >= *level) {
515 			opp = temp_opp;
516 			*level = opp->level;
517 
518 			/* Increment the reference count of OPP */
519 			dev_pm_opp_get(opp);
520 			break;
521 		}
522 	}
523 
524 	mutex_unlock(&opp_table->lock);
525 	dev_pm_opp_put_opp_table(opp_table);
526 
527 	return opp;
528 }
529 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
530 
531 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
532 						   unsigned long *freq)
533 {
534 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
535 
536 	mutex_lock(&opp_table->lock);
537 
538 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
539 		if (temp_opp->available && temp_opp->rate >= *freq) {
540 			opp = temp_opp;
541 			*freq = opp->rate;
542 
543 			/* Increment the reference count of OPP */
544 			dev_pm_opp_get(opp);
545 			break;
546 		}
547 	}
548 
549 	mutex_unlock(&opp_table->lock);
550 
551 	return opp;
552 }
553 
554 /**
555  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
556  * @dev:	device for which we do this operation
557  * @freq:	Start frequency
558  *
559  * Search for the matching ceil *available* OPP from a starting freq
560  * for a device.
561  *
562  * Return: matching *opp and refreshes *freq accordingly, else returns
563  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
564  * values can be:
565  * EINVAL:	for bad pointer
566  * ERANGE:	no match found for search
567  * ENODEV:	if device not found in list of registered devices
568  *
569  * The callers are required to call dev_pm_opp_put() for the returned OPP after
570  * use.
571  */
572 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
573 					     unsigned long *freq)
574 {
575 	struct opp_table *opp_table;
576 	struct dev_pm_opp *opp;
577 
578 	if (!dev || !freq) {
579 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
580 		return ERR_PTR(-EINVAL);
581 	}
582 
583 	opp_table = _find_opp_table(dev);
584 	if (IS_ERR(opp_table))
585 		return ERR_CAST(opp_table);
586 
587 	opp = _find_freq_ceil(opp_table, freq);
588 
589 	dev_pm_opp_put_opp_table(opp_table);
590 
591 	return opp;
592 }
593 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
594 
595 /**
596  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
597  * @dev:	device for which we do this operation
598  * @freq:	Start frequency
599  *
600  * Search for the matching floor *available* OPP from a starting freq
601  * for a device.
602  *
603  * Return: matching *opp and refreshes *freq accordingly, else returns
604  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
605  * values can be:
606  * EINVAL:	for bad pointer
607  * ERANGE:	no match found for search
608  * ENODEV:	if device not found in list of registered devices
609  *
610  * The callers are required to call dev_pm_opp_put() for the returned OPP after
611  * use.
612  */
613 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
614 					      unsigned long *freq)
615 {
616 	struct opp_table *opp_table;
617 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
618 
619 	if (!dev || !freq) {
620 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
621 		return ERR_PTR(-EINVAL);
622 	}
623 
624 	opp_table = _find_opp_table(dev);
625 	if (IS_ERR(opp_table))
626 		return ERR_CAST(opp_table);
627 
628 	mutex_lock(&opp_table->lock);
629 
630 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
631 		if (temp_opp->available) {
632 			/* go to the next node, before choosing prev */
633 			if (temp_opp->rate > *freq)
634 				break;
635 			else
636 				opp = temp_opp;
637 		}
638 	}
639 
640 	/* Increment the reference count of OPP */
641 	if (!IS_ERR(opp))
642 		dev_pm_opp_get(opp);
643 	mutex_unlock(&opp_table->lock);
644 	dev_pm_opp_put_opp_table(opp_table);
645 
646 	if (!IS_ERR(opp))
647 		*freq = opp->rate;
648 
649 	return opp;
650 }
651 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
652 
653 /**
654  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
655  *					 target voltage.
656  * @dev:	Device for which we do this operation.
657  * @u_volt:	Target voltage.
658  *
659  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
660  *
661  * Return: matching *opp, else returns ERR_PTR in case of error which should be
662  * handled using IS_ERR.
663  *
664  * Error return values can be:
665  * EINVAL:	bad parameters
666  *
667  * The callers are required to call dev_pm_opp_put() for the returned OPP after
668  * use.
669  */
670 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
671 						     unsigned long u_volt)
672 {
673 	struct opp_table *opp_table;
674 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
675 
676 	if (!dev || !u_volt) {
677 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
678 			u_volt);
679 		return ERR_PTR(-EINVAL);
680 	}
681 
682 	opp_table = _find_opp_table(dev);
683 	if (IS_ERR(opp_table))
684 		return ERR_CAST(opp_table);
685 
686 	mutex_lock(&opp_table->lock);
687 
688 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
689 		if (temp_opp->available) {
690 			if (temp_opp->supplies[0].u_volt > u_volt)
691 				break;
692 			opp = temp_opp;
693 		}
694 	}
695 
696 	/* Increment the reference count of OPP */
697 	if (!IS_ERR(opp))
698 		dev_pm_opp_get(opp);
699 
700 	mutex_unlock(&opp_table->lock);
701 	dev_pm_opp_put_opp_table(opp_table);
702 
703 	return opp;
704 }
705 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
706 
707 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
708 			    struct dev_pm_opp_supply *supply)
709 {
710 	int ret;
711 
712 	/* Regulator not available for device */
713 	if (IS_ERR(reg)) {
714 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
715 			PTR_ERR(reg));
716 		return 0;
717 	}
718 
719 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
720 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
721 
722 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
723 					    supply->u_volt, supply->u_volt_max);
724 	if (ret)
725 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
726 			__func__, supply->u_volt_min, supply->u_volt,
727 			supply->u_volt_max, ret);
728 
729 	return ret;
730 }
731 
732 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
733 					    unsigned long freq)
734 {
735 	int ret;
736 
737 	/* We may reach here for devices which don't change frequency */
738 	if (IS_ERR(clk))
739 		return 0;
740 
741 	ret = clk_set_rate(clk, freq);
742 	if (ret) {
743 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
744 			ret);
745 	}
746 
747 	return ret;
748 }
749 
750 static int _generic_set_opp_regulator(struct opp_table *opp_table,
751 				      struct device *dev,
752 				      struct dev_pm_opp *opp,
753 				      unsigned long freq,
754 				      int scaling_down)
755 {
756 	struct regulator *reg = opp_table->regulators[0];
757 	struct dev_pm_opp *old_opp = opp_table->current_opp;
758 	int ret;
759 
760 	/* This function only supports single regulator per device */
761 	if (WARN_ON(opp_table->regulator_count > 1)) {
762 		dev_err(dev, "multiple regulators are not supported\n");
763 		return -EINVAL;
764 	}
765 
766 	/* Scaling up? Scale voltage before frequency */
767 	if (!scaling_down) {
768 		ret = _set_opp_voltage(dev, reg, opp->supplies);
769 		if (ret)
770 			goto restore_voltage;
771 	}
772 
773 	/* Change frequency */
774 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
775 	if (ret)
776 		goto restore_voltage;
777 
778 	/* Scaling down? Scale voltage after frequency */
779 	if (scaling_down) {
780 		ret = _set_opp_voltage(dev, reg, opp->supplies);
781 		if (ret)
782 			goto restore_freq;
783 	}
784 
785 	/*
786 	 * Enable the regulator after setting its voltages, otherwise it breaks
787 	 * some boot-enabled regulators.
788 	 */
789 	if (unlikely(!opp_table->enabled)) {
790 		ret = regulator_enable(reg);
791 		if (ret < 0)
792 			dev_warn(dev, "Failed to enable regulator: %d", ret);
793 	}
794 
795 	return 0;
796 
797 restore_freq:
798 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
799 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
800 			__func__, old_opp->rate);
801 restore_voltage:
802 	/* This shouldn't harm even if the voltages weren't updated earlier */
803 	_set_opp_voltage(dev, reg, old_opp->supplies);
804 
805 	return ret;
806 }
807 
808 static int _set_opp_bw(const struct opp_table *opp_table,
809 		       struct dev_pm_opp *opp, struct device *dev)
810 {
811 	u32 avg, peak;
812 	int i, ret;
813 
814 	if (!opp_table->paths)
815 		return 0;
816 
817 	for (i = 0; i < opp_table->path_count; i++) {
818 		if (!opp) {
819 			avg = 0;
820 			peak = 0;
821 		} else {
822 			avg = opp->bandwidth[i].avg;
823 			peak = opp->bandwidth[i].peak;
824 		}
825 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
826 		if (ret) {
827 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
828 				opp ? "set" : "remove", i, ret);
829 			return ret;
830 		}
831 	}
832 
833 	return 0;
834 }
835 
836 static int _set_opp_custom(const struct opp_table *opp_table,
837 			   struct device *dev, struct dev_pm_opp *opp,
838 			   unsigned long freq)
839 {
840 	struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
841 	struct dev_pm_opp *old_opp = opp_table->current_opp;
842 	int size;
843 
844 	/*
845 	 * We support this only if dev_pm_opp_set_regulators() was called
846 	 * earlier.
847 	 */
848 	if (opp_table->sod_supplies) {
849 		size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
850 		memcpy(data->old_opp.supplies, old_opp->supplies, size);
851 		memcpy(data->new_opp.supplies, opp->supplies, size);
852 		data->regulator_count = opp_table->regulator_count;
853 	} else {
854 		data->regulator_count = 0;
855 	}
856 
857 	data->regulators = opp_table->regulators;
858 	data->clk = opp_table->clk;
859 	data->dev = dev;
860 	data->old_opp.rate = old_opp->rate;
861 	data->new_opp.rate = freq;
862 
863 	return opp_table->set_opp(data);
864 }
865 
866 static int _set_required_opp(struct device *dev, struct device *pd_dev,
867 			     struct dev_pm_opp *opp, int i)
868 {
869 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
870 	int ret;
871 
872 	if (!pd_dev)
873 		return 0;
874 
875 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
876 	if (ret) {
877 		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
878 			dev_name(pd_dev), pstate, ret);
879 	}
880 
881 	return ret;
882 }
883 
884 /* This is only called for PM domain for now */
885 static int _set_required_opps(struct device *dev,
886 			      struct opp_table *opp_table,
887 			      struct dev_pm_opp *opp, bool up)
888 {
889 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
890 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
891 	int i, ret = 0;
892 
893 	if (!required_opp_tables)
894 		return 0;
895 
896 	/* required-opps not fully initialized yet */
897 	if (lazy_linking_pending(opp_table))
898 		return -EBUSY;
899 
900 	/* Single genpd case */
901 	if (!genpd_virt_devs)
902 		return _set_required_opp(dev, dev, opp, 0);
903 
904 	/* Multiple genpd case */
905 
906 	/*
907 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
908 	 * after it is freed from another thread.
909 	 */
910 	mutex_lock(&opp_table->genpd_virt_dev_lock);
911 
912 	/* Scaling up? Set required OPPs in normal order, else reverse */
913 	if (up) {
914 		for (i = 0; i < opp_table->required_opp_count; i++) {
915 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
916 			if (ret)
917 				break;
918 		}
919 	} else {
920 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
921 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
922 			if (ret)
923 				break;
924 		}
925 	}
926 
927 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
928 
929 	return ret;
930 }
931 
932 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
933 {
934 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
935 	unsigned long freq;
936 
937 	if (!IS_ERR(opp_table->clk)) {
938 		freq = clk_get_rate(opp_table->clk);
939 		opp = _find_freq_ceil(opp_table, &freq);
940 	}
941 
942 	/*
943 	 * Unable to find the current OPP ? Pick the first from the list since
944 	 * it is in ascending order, otherwise rest of the code will need to
945 	 * make special checks to validate current_opp.
946 	 */
947 	if (IS_ERR(opp)) {
948 		mutex_lock(&opp_table->lock);
949 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
950 		dev_pm_opp_get(opp);
951 		mutex_unlock(&opp_table->lock);
952 	}
953 
954 	opp_table->current_opp = opp;
955 }
956 
957 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
958 {
959 	int ret;
960 
961 	if (!opp_table->enabled)
962 		return 0;
963 
964 	/*
965 	 * Some drivers need to support cases where some platforms may
966 	 * have OPP table for the device, while others don't and
967 	 * opp_set_rate() just needs to behave like clk_set_rate().
968 	 */
969 	if (!_get_opp_count(opp_table))
970 		return 0;
971 
972 	ret = _set_opp_bw(opp_table, NULL, dev);
973 	if (ret)
974 		return ret;
975 
976 	if (opp_table->regulators)
977 		regulator_disable(opp_table->regulators[0]);
978 
979 	ret = _set_required_opps(dev, opp_table, NULL, false);
980 
981 	opp_table->enabled = false;
982 	return ret;
983 }
984 
985 static int _set_opp(struct device *dev, struct opp_table *opp_table,
986 		    struct dev_pm_opp *opp, unsigned long freq)
987 {
988 	struct dev_pm_opp *old_opp;
989 	int scaling_down, ret;
990 
991 	if (unlikely(!opp))
992 		return _disable_opp_table(dev, opp_table);
993 
994 	/* Find the currently set OPP if we don't know already */
995 	if (unlikely(!opp_table->current_opp))
996 		_find_current_opp(dev, opp_table);
997 
998 	old_opp = opp_table->current_opp;
999 
1000 	/* Return early if nothing to do */
1001 	if (old_opp == opp && opp_table->current_rate == freq &&
1002 	    opp_table->enabled) {
1003 		dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1004 		return 0;
1005 	}
1006 
1007 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1008 		__func__, opp_table->current_rate, freq, old_opp->level,
1009 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1010 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1011 
1012 	scaling_down = _opp_compare_key(old_opp, opp);
1013 	if (scaling_down == -1)
1014 		scaling_down = 0;
1015 
1016 	/* Scaling up? Configure required OPPs before frequency */
1017 	if (!scaling_down) {
1018 		ret = _set_required_opps(dev, opp_table, opp, true);
1019 		if (ret) {
1020 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1021 			return ret;
1022 		}
1023 
1024 		ret = _set_opp_bw(opp_table, opp, dev);
1025 		if (ret) {
1026 			dev_err(dev, "Failed to set bw: %d\n", ret);
1027 			return ret;
1028 		}
1029 	}
1030 
1031 	if (opp_table->set_opp) {
1032 		ret = _set_opp_custom(opp_table, dev, opp, freq);
1033 	} else if (opp_table->regulators) {
1034 		ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1035 						 scaling_down);
1036 	} else {
1037 		/* Only frequency scaling */
1038 		ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1039 	}
1040 
1041 	if (ret)
1042 		return ret;
1043 
1044 	/* Scaling down? Configure required OPPs after frequency */
1045 	if (scaling_down) {
1046 		ret = _set_opp_bw(opp_table, opp, dev);
1047 		if (ret) {
1048 			dev_err(dev, "Failed to set bw: %d\n", ret);
1049 			return ret;
1050 		}
1051 
1052 		ret = _set_required_opps(dev, opp_table, opp, false);
1053 		if (ret) {
1054 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1055 			return ret;
1056 		}
1057 	}
1058 
1059 	opp_table->enabled = true;
1060 	dev_pm_opp_put(old_opp);
1061 
1062 	/* Make sure current_opp doesn't get freed */
1063 	dev_pm_opp_get(opp);
1064 	opp_table->current_opp = opp;
1065 	opp_table->current_rate = freq;
1066 
1067 	return ret;
1068 }
1069 
1070 /**
1071  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1072  * @dev:	 device for which we do this operation
1073  * @target_freq: frequency to achieve
1074  *
1075  * This configures the power-supplies to the levels specified by the OPP
1076  * corresponding to the target_freq, and programs the clock to a value <=
1077  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1078  * provided by the opp, should have already rounded to the target OPP's
1079  * frequency.
1080  */
1081 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1082 {
1083 	struct opp_table *opp_table;
1084 	unsigned long freq = 0, temp_freq;
1085 	struct dev_pm_opp *opp = NULL;
1086 	int ret;
1087 
1088 	opp_table = _find_opp_table(dev);
1089 	if (IS_ERR(opp_table)) {
1090 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1091 		return PTR_ERR(opp_table);
1092 	}
1093 
1094 	if (target_freq) {
1095 		/*
1096 		 * For IO devices which require an OPP on some platforms/SoCs
1097 		 * while just needing to scale the clock on some others
1098 		 * we look for empty OPP tables with just a clock handle and
1099 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1100 		 * equivalent to a clk_set_rate()
1101 		 */
1102 		if (!_get_opp_count(opp_table)) {
1103 			ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1104 			goto put_opp_table;
1105 		}
1106 
1107 		freq = clk_round_rate(opp_table->clk, target_freq);
1108 		if ((long)freq <= 0)
1109 			freq = target_freq;
1110 
1111 		/*
1112 		 * The clock driver may support finer resolution of the
1113 		 * frequencies than the OPP table, don't update the frequency we
1114 		 * pass to clk_set_rate() here.
1115 		 */
1116 		temp_freq = freq;
1117 		opp = _find_freq_ceil(opp_table, &temp_freq);
1118 		if (IS_ERR(opp)) {
1119 			ret = PTR_ERR(opp);
1120 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1121 				__func__, freq, ret);
1122 			goto put_opp_table;
1123 		}
1124 	}
1125 
1126 	ret = _set_opp(dev, opp_table, opp, freq);
1127 
1128 	if (target_freq)
1129 		dev_pm_opp_put(opp);
1130 put_opp_table:
1131 	dev_pm_opp_put_opp_table(opp_table);
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1135 
1136 /**
1137  * dev_pm_opp_set_opp() - Configure device for OPP
1138  * @dev: device for which we do this operation
1139  * @opp: OPP to set to
1140  *
1141  * This configures the device based on the properties of the OPP passed to this
1142  * routine.
1143  *
1144  * Return: 0 on success, a negative error number otherwise.
1145  */
1146 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1147 {
1148 	struct opp_table *opp_table;
1149 	int ret;
1150 
1151 	opp_table = _find_opp_table(dev);
1152 	if (IS_ERR(opp_table)) {
1153 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1154 		return PTR_ERR(opp_table);
1155 	}
1156 
1157 	ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1158 	dev_pm_opp_put_opp_table(opp_table);
1159 
1160 	return ret;
1161 }
1162 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1163 
1164 /* OPP-dev Helpers */
1165 static void _remove_opp_dev(struct opp_device *opp_dev,
1166 			    struct opp_table *opp_table)
1167 {
1168 	opp_debug_unregister(opp_dev, opp_table);
1169 	list_del(&opp_dev->node);
1170 	kfree(opp_dev);
1171 }
1172 
1173 struct opp_device *_add_opp_dev(const struct device *dev,
1174 				struct opp_table *opp_table)
1175 {
1176 	struct opp_device *opp_dev;
1177 
1178 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1179 	if (!opp_dev)
1180 		return NULL;
1181 
1182 	/* Initialize opp-dev */
1183 	opp_dev->dev = dev;
1184 
1185 	mutex_lock(&opp_table->lock);
1186 	list_add(&opp_dev->node, &opp_table->dev_list);
1187 	mutex_unlock(&opp_table->lock);
1188 
1189 	/* Create debugfs entries for the opp_table */
1190 	opp_debug_register(opp_dev, opp_table);
1191 
1192 	return opp_dev;
1193 }
1194 
1195 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1196 {
1197 	struct opp_table *opp_table;
1198 	struct opp_device *opp_dev;
1199 	int ret;
1200 
1201 	/*
1202 	 * Allocate a new OPP table. In the infrequent case where a new
1203 	 * device is needed to be added, we pay this penalty.
1204 	 */
1205 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1206 	if (!opp_table)
1207 		return ERR_PTR(-ENOMEM);
1208 
1209 	mutex_init(&opp_table->lock);
1210 	mutex_init(&opp_table->genpd_virt_dev_lock);
1211 	INIT_LIST_HEAD(&opp_table->dev_list);
1212 	INIT_LIST_HEAD(&opp_table->lazy);
1213 
1214 	/* Mark regulator count uninitialized */
1215 	opp_table->regulator_count = -1;
1216 
1217 	opp_dev = _add_opp_dev(dev, opp_table);
1218 	if (!opp_dev) {
1219 		ret = -ENOMEM;
1220 		goto err;
1221 	}
1222 
1223 	_of_init_opp_table(opp_table, dev, index);
1224 
1225 	/* Find interconnect path(s) for the device */
1226 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1227 	if (ret) {
1228 		if (ret == -EPROBE_DEFER)
1229 			goto remove_opp_dev;
1230 
1231 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1232 			 __func__, ret);
1233 	}
1234 
1235 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1236 	INIT_LIST_HEAD(&opp_table->opp_list);
1237 	kref_init(&opp_table->kref);
1238 
1239 	return opp_table;
1240 
1241 remove_opp_dev:
1242 	_remove_opp_dev(opp_dev, opp_table);
1243 err:
1244 	kfree(opp_table);
1245 	return ERR_PTR(ret);
1246 }
1247 
1248 void _get_opp_table_kref(struct opp_table *opp_table)
1249 {
1250 	kref_get(&opp_table->kref);
1251 }
1252 
1253 static struct opp_table *_update_opp_table_clk(struct device *dev,
1254 					       struct opp_table *opp_table,
1255 					       bool getclk)
1256 {
1257 	int ret;
1258 
1259 	/*
1260 	 * Return early if we don't need to get clk or we have already tried it
1261 	 * earlier.
1262 	 */
1263 	if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1264 		return opp_table;
1265 
1266 	/* Find clk for the device */
1267 	opp_table->clk = clk_get(dev, NULL);
1268 
1269 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1270 	if (!ret)
1271 		return opp_table;
1272 
1273 	if (ret == -ENOENT) {
1274 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1275 		return opp_table;
1276 	}
1277 
1278 	dev_pm_opp_put_opp_table(opp_table);
1279 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1280 
1281 	return ERR_PTR(ret);
1282 }
1283 
1284 /*
1285  * We need to make sure that the OPP table for a device doesn't get added twice,
1286  * if this routine gets called in parallel with the same device pointer.
1287  *
1288  * The simplest way to enforce that is to perform everything (find existing
1289  * table and if not found, create a new one) under the opp_table_lock, so only
1290  * one creator gets access to the same. But that expands the critical section
1291  * under the lock and may end up causing circular dependencies with frameworks
1292  * like debugfs, interconnect or clock framework as they may be direct or
1293  * indirect users of OPP core.
1294  *
1295  * And for that reason we have to go for a bit tricky implementation here, which
1296  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1297  * of adding an OPP table and others should wait for it to finish.
1298  */
1299 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1300 					 bool getclk)
1301 {
1302 	struct opp_table *opp_table;
1303 
1304 again:
1305 	mutex_lock(&opp_table_lock);
1306 
1307 	opp_table = _find_opp_table_unlocked(dev);
1308 	if (!IS_ERR(opp_table))
1309 		goto unlock;
1310 
1311 	/*
1312 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1313 	 * another user, wait for it to finish.
1314 	 */
1315 	if (unlikely(opp_tables_busy)) {
1316 		mutex_unlock(&opp_table_lock);
1317 		cpu_relax();
1318 		goto again;
1319 	}
1320 
1321 	opp_tables_busy = true;
1322 	opp_table = _managed_opp(dev, index);
1323 
1324 	/* Drop the lock to reduce the size of critical section */
1325 	mutex_unlock(&opp_table_lock);
1326 
1327 	if (opp_table) {
1328 		if (!_add_opp_dev(dev, opp_table)) {
1329 			dev_pm_opp_put_opp_table(opp_table);
1330 			opp_table = ERR_PTR(-ENOMEM);
1331 		}
1332 
1333 		mutex_lock(&opp_table_lock);
1334 	} else {
1335 		opp_table = _allocate_opp_table(dev, index);
1336 
1337 		mutex_lock(&opp_table_lock);
1338 		if (!IS_ERR(opp_table))
1339 			list_add(&opp_table->node, &opp_tables);
1340 	}
1341 
1342 	opp_tables_busy = false;
1343 
1344 unlock:
1345 	mutex_unlock(&opp_table_lock);
1346 
1347 	return _update_opp_table_clk(dev, opp_table, getclk);
1348 }
1349 
1350 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1351 {
1352 	return _add_opp_table_indexed(dev, 0, getclk);
1353 }
1354 
1355 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1356 {
1357 	return _find_opp_table(dev);
1358 }
1359 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1360 
1361 static void _opp_table_kref_release(struct kref *kref)
1362 {
1363 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1364 	struct opp_device *opp_dev, *temp;
1365 	int i;
1366 
1367 	/* Drop the lock as soon as we can */
1368 	list_del(&opp_table->node);
1369 	mutex_unlock(&opp_table_lock);
1370 
1371 	if (opp_table->current_opp)
1372 		dev_pm_opp_put(opp_table->current_opp);
1373 
1374 	_of_clear_opp_table(opp_table);
1375 
1376 	/* Release clk */
1377 	if (!IS_ERR(opp_table->clk))
1378 		clk_put(opp_table->clk);
1379 
1380 	if (opp_table->paths) {
1381 		for (i = 0; i < opp_table->path_count; i++)
1382 			icc_put(opp_table->paths[i]);
1383 		kfree(opp_table->paths);
1384 	}
1385 
1386 	WARN_ON(!list_empty(&opp_table->opp_list));
1387 
1388 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1389 		/*
1390 		 * The OPP table is getting removed, drop the performance state
1391 		 * constraints.
1392 		 */
1393 		if (opp_table->genpd_performance_state)
1394 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1395 
1396 		_remove_opp_dev(opp_dev, opp_table);
1397 	}
1398 
1399 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1400 	mutex_destroy(&opp_table->lock);
1401 	kfree(opp_table);
1402 }
1403 
1404 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1405 {
1406 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1407 		       &opp_table_lock);
1408 }
1409 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1410 
1411 void _opp_free(struct dev_pm_opp *opp)
1412 {
1413 	kfree(opp);
1414 }
1415 
1416 static void _opp_kref_release(struct kref *kref)
1417 {
1418 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1419 	struct opp_table *opp_table = opp->opp_table;
1420 
1421 	list_del(&opp->node);
1422 	mutex_unlock(&opp_table->lock);
1423 
1424 	/*
1425 	 * Notify the changes in the availability of the operable
1426 	 * frequency/voltage list.
1427 	 */
1428 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1429 	_of_opp_free_required_opps(opp_table, opp);
1430 	opp_debug_remove_one(opp);
1431 	kfree(opp);
1432 }
1433 
1434 void dev_pm_opp_get(struct dev_pm_opp *opp)
1435 {
1436 	kref_get(&opp->kref);
1437 }
1438 
1439 void dev_pm_opp_put(struct dev_pm_opp *opp)
1440 {
1441 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1442 }
1443 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1444 
1445 /**
1446  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1447  * @dev:	device for which we do this operation
1448  * @freq:	OPP to remove with matching 'freq'
1449  *
1450  * This function removes an opp from the opp table.
1451  */
1452 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1453 {
1454 	struct dev_pm_opp *opp;
1455 	struct opp_table *opp_table;
1456 	bool found = false;
1457 
1458 	opp_table = _find_opp_table(dev);
1459 	if (IS_ERR(opp_table))
1460 		return;
1461 
1462 	mutex_lock(&opp_table->lock);
1463 
1464 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1465 		if (opp->rate == freq) {
1466 			found = true;
1467 			break;
1468 		}
1469 	}
1470 
1471 	mutex_unlock(&opp_table->lock);
1472 
1473 	if (found) {
1474 		dev_pm_opp_put(opp);
1475 
1476 		/* Drop the reference taken by dev_pm_opp_add() */
1477 		dev_pm_opp_put_opp_table(opp_table);
1478 	} else {
1479 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1480 			 __func__, freq);
1481 	}
1482 
1483 	/* Drop the reference taken by _find_opp_table() */
1484 	dev_pm_opp_put_opp_table(opp_table);
1485 }
1486 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1487 
1488 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1489 					bool dynamic)
1490 {
1491 	struct dev_pm_opp *opp = NULL, *temp;
1492 
1493 	mutex_lock(&opp_table->lock);
1494 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1495 		if (dynamic == temp->dynamic) {
1496 			opp = temp;
1497 			break;
1498 		}
1499 	}
1500 
1501 	mutex_unlock(&opp_table->lock);
1502 	return opp;
1503 }
1504 
1505 bool _opp_remove_all_static(struct opp_table *opp_table)
1506 {
1507 	struct dev_pm_opp *opp;
1508 
1509 	mutex_lock(&opp_table->lock);
1510 
1511 	if (!opp_table->parsed_static_opps) {
1512 		mutex_unlock(&opp_table->lock);
1513 		return false;
1514 	}
1515 
1516 	if (--opp_table->parsed_static_opps) {
1517 		mutex_unlock(&opp_table->lock);
1518 		return true;
1519 	}
1520 
1521 	mutex_unlock(&opp_table->lock);
1522 
1523 	/*
1524 	 * Can't remove the OPP from under the lock, debugfs removal needs to
1525 	 * happen lock less to avoid circular dependency issues.
1526 	 */
1527 	while ((opp = _opp_get_next(opp_table, false)))
1528 		dev_pm_opp_put(opp);
1529 
1530 	return true;
1531 }
1532 
1533 /**
1534  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1535  * @dev:	device for which we do this operation
1536  *
1537  * This function removes all dynamically created OPPs from the opp table.
1538  */
1539 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1540 {
1541 	struct opp_table *opp_table;
1542 	struct dev_pm_opp *opp;
1543 	int count = 0;
1544 
1545 	opp_table = _find_opp_table(dev);
1546 	if (IS_ERR(opp_table))
1547 		return;
1548 
1549 	/*
1550 	 * Can't remove the OPP from under the lock, debugfs removal needs to
1551 	 * happen lock less to avoid circular dependency issues.
1552 	 */
1553 	while ((opp = _opp_get_next(opp_table, true))) {
1554 		dev_pm_opp_put(opp);
1555 		count++;
1556 	}
1557 
1558 	/* Drop the references taken by dev_pm_opp_add() */
1559 	while (count--)
1560 		dev_pm_opp_put_opp_table(opp_table);
1561 
1562 	/* Drop the reference taken by _find_opp_table() */
1563 	dev_pm_opp_put_opp_table(opp_table);
1564 }
1565 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1566 
1567 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1568 {
1569 	struct dev_pm_opp *opp;
1570 	int supply_count, supply_size, icc_size;
1571 
1572 	/* Allocate space for at least one supply */
1573 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1574 	supply_size = sizeof(*opp->supplies) * supply_count;
1575 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1576 
1577 	/* allocate new OPP node and supplies structures */
1578 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1579 
1580 	if (!opp)
1581 		return NULL;
1582 
1583 	/* Put the supplies at the end of the OPP structure as an empty array */
1584 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1585 	if (icc_size)
1586 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1587 	INIT_LIST_HEAD(&opp->node);
1588 
1589 	return opp;
1590 }
1591 
1592 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1593 					 struct opp_table *opp_table)
1594 {
1595 	struct regulator *reg;
1596 	int i;
1597 
1598 	if (!opp_table->regulators)
1599 		return true;
1600 
1601 	for (i = 0; i < opp_table->regulator_count; i++) {
1602 		reg = opp_table->regulators[i];
1603 
1604 		if (!regulator_is_supported_voltage(reg,
1605 					opp->supplies[i].u_volt_min,
1606 					opp->supplies[i].u_volt_max)) {
1607 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1608 				__func__, opp->supplies[i].u_volt_min,
1609 				opp->supplies[i].u_volt_max);
1610 			return false;
1611 		}
1612 	}
1613 
1614 	return true;
1615 }
1616 
1617 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1618 {
1619 	if (opp1->rate != opp2->rate)
1620 		return opp1->rate < opp2->rate ? -1 : 1;
1621 	if (opp1->bandwidth && opp2->bandwidth &&
1622 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1623 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1624 	if (opp1->level != opp2->level)
1625 		return opp1->level < opp2->level ? -1 : 1;
1626 	return 0;
1627 }
1628 
1629 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1630 			     struct opp_table *opp_table,
1631 			     struct list_head **head)
1632 {
1633 	struct dev_pm_opp *opp;
1634 	int opp_cmp;
1635 
1636 	/*
1637 	 * Insert new OPP in order of increasing frequency and discard if
1638 	 * already present.
1639 	 *
1640 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1641 	 * loop, don't replace it with head otherwise it will become an infinite
1642 	 * loop.
1643 	 */
1644 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1645 		opp_cmp = _opp_compare_key(new_opp, opp);
1646 		if (opp_cmp > 0) {
1647 			*head = &opp->node;
1648 			continue;
1649 		}
1650 
1651 		if (opp_cmp < 0)
1652 			return 0;
1653 
1654 		/* Duplicate OPPs */
1655 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1656 			 __func__, opp->rate, opp->supplies[0].u_volt,
1657 			 opp->available, new_opp->rate,
1658 			 new_opp->supplies[0].u_volt, new_opp->available);
1659 
1660 		/* Should we compare voltages for all regulators here ? */
1661 		return opp->available &&
1662 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 void _required_opps_available(struct dev_pm_opp *opp, int count)
1669 {
1670 	int i;
1671 
1672 	for (i = 0; i < count; i++) {
1673 		if (opp->required_opps[i]->available)
1674 			continue;
1675 
1676 		opp->available = false;
1677 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1678 			 __func__, opp->required_opps[i]->np, opp->rate);
1679 		return;
1680 	}
1681 }
1682 
1683 /*
1684  * Returns:
1685  * 0: On success. And appropriate error message for duplicate OPPs.
1686  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1687  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1688  *  sure we don't print error messages unnecessarily if different parts of
1689  *  kernel try to initialize the OPP table.
1690  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1691  *  should be considered an error by the callers of _opp_add().
1692  */
1693 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1694 	     struct opp_table *opp_table, bool rate_not_available)
1695 {
1696 	struct list_head *head;
1697 	int ret;
1698 
1699 	mutex_lock(&opp_table->lock);
1700 	head = &opp_table->opp_list;
1701 
1702 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1703 	if (ret) {
1704 		mutex_unlock(&opp_table->lock);
1705 		return ret;
1706 	}
1707 
1708 	list_add(&new_opp->node, head);
1709 	mutex_unlock(&opp_table->lock);
1710 
1711 	new_opp->opp_table = opp_table;
1712 	kref_init(&new_opp->kref);
1713 
1714 	opp_debug_create_one(new_opp, opp_table);
1715 
1716 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1717 		new_opp->available = false;
1718 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1719 			 __func__, new_opp->rate);
1720 	}
1721 
1722 	/* required-opps not fully initialized yet */
1723 	if (lazy_linking_pending(opp_table))
1724 		return 0;
1725 
1726 	_required_opps_available(new_opp, opp_table->required_opp_count);
1727 
1728 	return 0;
1729 }
1730 
1731 /**
1732  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1733  * @opp_table:	OPP table
1734  * @dev:	device for which we do this operation
1735  * @freq:	Frequency in Hz for this OPP
1736  * @u_volt:	Voltage in uVolts for this OPP
1737  * @dynamic:	Dynamically added OPPs.
1738  *
1739  * This function adds an opp definition to the opp table and returns status.
1740  * The opp is made available by default and it can be controlled using
1741  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1742  *
1743  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1744  * and freed by dev_pm_opp_of_remove_table.
1745  *
1746  * Return:
1747  * 0		On success OR
1748  *		Duplicate OPPs (both freq and volt are same) and opp->available
1749  * -EEXIST	Freq are same and volt are different OR
1750  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1751  * -ENOMEM	Memory allocation failure
1752  */
1753 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1754 		unsigned long freq, long u_volt, bool dynamic)
1755 {
1756 	struct dev_pm_opp *new_opp;
1757 	unsigned long tol;
1758 	int ret;
1759 
1760 	new_opp = _opp_allocate(opp_table);
1761 	if (!new_opp)
1762 		return -ENOMEM;
1763 
1764 	/* populate the opp table */
1765 	new_opp->rate = freq;
1766 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1767 	new_opp->supplies[0].u_volt = u_volt;
1768 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1769 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1770 	new_opp->available = true;
1771 	new_opp->dynamic = dynamic;
1772 
1773 	ret = _opp_add(dev, new_opp, opp_table, false);
1774 	if (ret) {
1775 		/* Don't return error for duplicate OPPs */
1776 		if (ret == -EBUSY)
1777 			ret = 0;
1778 		goto free_opp;
1779 	}
1780 
1781 	/*
1782 	 * Notify the changes in the availability of the operable
1783 	 * frequency/voltage list.
1784 	 */
1785 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1786 	return 0;
1787 
1788 free_opp:
1789 	_opp_free(new_opp);
1790 
1791 	return ret;
1792 }
1793 
1794 /**
1795  * dev_pm_opp_set_supported_hw() - Set supported platforms
1796  * @dev: Device for which supported-hw has to be set.
1797  * @versions: Array of hierarchy of versions to match.
1798  * @count: Number of elements in the array.
1799  *
1800  * This is required only for the V2 bindings, and it enables a platform to
1801  * specify the hierarchy of versions it supports. OPP layer will then enable
1802  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1803  * property.
1804  */
1805 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1806 			const u32 *versions, unsigned int count)
1807 {
1808 	struct opp_table *opp_table;
1809 
1810 	opp_table = _add_opp_table(dev, false);
1811 	if (IS_ERR(opp_table))
1812 		return opp_table;
1813 
1814 	/* Make sure there are no concurrent readers while updating opp_table */
1815 	WARN_ON(!list_empty(&opp_table->opp_list));
1816 
1817 	/* Another CPU that shares the OPP table has set the property ? */
1818 	if (opp_table->supported_hw)
1819 		return opp_table;
1820 
1821 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1822 					GFP_KERNEL);
1823 	if (!opp_table->supported_hw) {
1824 		dev_pm_opp_put_opp_table(opp_table);
1825 		return ERR_PTR(-ENOMEM);
1826 	}
1827 
1828 	opp_table->supported_hw_count = count;
1829 
1830 	return opp_table;
1831 }
1832 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1833 
1834 /**
1835  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1836  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1837  *
1838  * This is required only for the V2 bindings, and is called for a matching
1839  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1840  * will not be freed.
1841  */
1842 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1843 {
1844 	if (unlikely(!opp_table))
1845 		return;
1846 
1847 	/* Make sure there are no concurrent readers while updating opp_table */
1848 	WARN_ON(!list_empty(&opp_table->opp_list));
1849 
1850 	kfree(opp_table->supported_hw);
1851 	opp_table->supported_hw = NULL;
1852 	opp_table->supported_hw_count = 0;
1853 
1854 	dev_pm_opp_put_opp_table(opp_table);
1855 }
1856 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1857 
1858 /**
1859  * dev_pm_opp_set_prop_name() - Set prop-extn name
1860  * @dev: Device for which the prop-name has to be set.
1861  * @name: name to postfix to properties.
1862  *
1863  * This is required only for the V2 bindings, and it enables a platform to
1864  * specify the extn to be used for certain property names. The properties to
1865  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1866  * should postfix the property name with -<name> while looking for them.
1867  */
1868 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1869 {
1870 	struct opp_table *opp_table;
1871 
1872 	opp_table = _add_opp_table(dev, false);
1873 	if (IS_ERR(opp_table))
1874 		return opp_table;
1875 
1876 	/* Make sure there are no concurrent readers while updating opp_table */
1877 	WARN_ON(!list_empty(&opp_table->opp_list));
1878 
1879 	/* Another CPU that shares the OPP table has set the property ? */
1880 	if (opp_table->prop_name)
1881 		return opp_table;
1882 
1883 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1884 	if (!opp_table->prop_name) {
1885 		dev_pm_opp_put_opp_table(opp_table);
1886 		return ERR_PTR(-ENOMEM);
1887 	}
1888 
1889 	return opp_table;
1890 }
1891 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1892 
1893 /**
1894  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1895  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1896  *
1897  * This is required only for the V2 bindings, and is called for a matching
1898  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1899  * will not be freed.
1900  */
1901 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1902 {
1903 	if (unlikely(!opp_table))
1904 		return;
1905 
1906 	/* Make sure there are no concurrent readers while updating opp_table */
1907 	WARN_ON(!list_empty(&opp_table->opp_list));
1908 
1909 	kfree(opp_table->prop_name);
1910 	opp_table->prop_name = NULL;
1911 
1912 	dev_pm_opp_put_opp_table(opp_table);
1913 }
1914 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1915 
1916 /**
1917  * dev_pm_opp_set_regulators() - Set regulator names for the device
1918  * @dev: Device for which regulator name is being set.
1919  * @names: Array of pointers to the names of the regulator.
1920  * @count: Number of regulators.
1921  *
1922  * In order to support OPP switching, OPP layer needs to know the name of the
1923  * device's regulators, as the core would be required to switch voltages as
1924  * well.
1925  *
1926  * This must be called before any OPPs are initialized for the device.
1927  */
1928 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1929 					    const char * const names[],
1930 					    unsigned int count)
1931 {
1932 	struct dev_pm_opp_supply *supplies;
1933 	struct opp_table *opp_table;
1934 	struct regulator *reg;
1935 	int ret, i;
1936 
1937 	opp_table = _add_opp_table(dev, false);
1938 	if (IS_ERR(opp_table))
1939 		return opp_table;
1940 
1941 	/* This should be called before OPPs are initialized */
1942 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1943 		ret = -EBUSY;
1944 		goto err;
1945 	}
1946 
1947 	/* Another CPU that shares the OPP table has set the regulators ? */
1948 	if (opp_table->regulators)
1949 		return opp_table;
1950 
1951 	opp_table->regulators = kmalloc_array(count,
1952 					      sizeof(*opp_table->regulators),
1953 					      GFP_KERNEL);
1954 	if (!opp_table->regulators) {
1955 		ret = -ENOMEM;
1956 		goto err;
1957 	}
1958 
1959 	for (i = 0; i < count; i++) {
1960 		reg = regulator_get_optional(dev, names[i]);
1961 		if (IS_ERR(reg)) {
1962 			ret = PTR_ERR(reg);
1963 			if (ret != -EPROBE_DEFER)
1964 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1965 					__func__, names[i], ret);
1966 			goto free_regulators;
1967 		}
1968 
1969 		opp_table->regulators[i] = reg;
1970 	}
1971 
1972 	opp_table->regulator_count = count;
1973 
1974 	supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
1975 	if (!supplies) {
1976 		ret = -ENOMEM;
1977 		goto free_regulators;
1978 	}
1979 
1980 	mutex_lock(&opp_table->lock);
1981 	opp_table->sod_supplies = supplies;
1982 	if (opp_table->set_opp_data) {
1983 		opp_table->set_opp_data->old_opp.supplies = supplies;
1984 		opp_table->set_opp_data->new_opp.supplies = supplies + count;
1985 	}
1986 	mutex_unlock(&opp_table->lock);
1987 
1988 	return opp_table;
1989 
1990 free_regulators:
1991 	while (i != 0)
1992 		regulator_put(opp_table->regulators[--i]);
1993 
1994 	kfree(opp_table->regulators);
1995 	opp_table->regulators = NULL;
1996 	opp_table->regulator_count = -1;
1997 err:
1998 	dev_pm_opp_put_opp_table(opp_table);
1999 
2000 	return ERR_PTR(ret);
2001 }
2002 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2003 
2004 /**
2005  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2006  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2007  */
2008 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2009 {
2010 	int i;
2011 
2012 	if (unlikely(!opp_table))
2013 		return;
2014 
2015 	if (!opp_table->regulators)
2016 		goto put_opp_table;
2017 
2018 	/* Make sure there are no concurrent readers while updating opp_table */
2019 	WARN_ON(!list_empty(&opp_table->opp_list));
2020 
2021 	if (opp_table->enabled) {
2022 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2023 			regulator_disable(opp_table->regulators[i]);
2024 	}
2025 
2026 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2027 		regulator_put(opp_table->regulators[i]);
2028 
2029 	mutex_lock(&opp_table->lock);
2030 	if (opp_table->set_opp_data) {
2031 		opp_table->set_opp_data->old_opp.supplies = NULL;
2032 		opp_table->set_opp_data->new_opp.supplies = NULL;
2033 	}
2034 
2035 	kfree(opp_table->sod_supplies);
2036 	opp_table->sod_supplies = NULL;
2037 	mutex_unlock(&opp_table->lock);
2038 
2039 	kfree(opp_table->regulators);
2040 	opp_table->regulators = NULL;
2041 	opp_table->regulator_count = -1;
2042 
2043 put_opp_table:
2044 	dev_pm_opp_put_opp_table(opp_table);
2045 }
2046 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2047 
2048 /**
2049  * dev_pm_opp_set_clkname() - Set clk name for the device
2050  * @dev: Device for which clk name is being set.
2051  * @name: Clk name.
2052  *
2053  * In order to support OPP switching, OPP layer needs to get pointer to the
2054  * clock for the device. Simple cases work fine without using this routine (i.e.
2055  * by passing connection-id as NULL), but for a device with multiple clocks
2056  * available, the OPP core needs to know the exact name of the clk to use.
2057  *
2058  * This must be called before any OPPs are initialized for the device.
2059  */
2060 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2061 {
2062 	struct opp_table *opp_table;
2063 	int ret;
2064 
2065 	opp_table = _add_opp_table(dev, false);
2066 	if (IS_ERR(opp_table))
2067 		return opp_table;
2068 
2069 	/* This should be called before OPPs are initialized */
2070 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2071 		ret = -EBUSY;
2072 		goto err;
2073 	}
2074 
2075 	/* clk shouldn't be initialized at this point */
2076 	if (WARN_ON(opp_table->clk)) {
2077 		ret = -EBUSY;
2078 		goto err;
2079 	}
2080 
2081 	/* Find clk for the device */
2082 	opp_table->clk = clk_get(dev, name);
2083 	if (IS_ERR(opp_table->clk)) {
2084 		ret = PTR_ERR(opp_table->clk);
2085 		if (ret != -EPROBE_DEFER) {
2086 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2087 				ret);
2088 		}
2089 		goto err;
2090 	}
2091 
2092 	return opp_table;
2093 
2094 err:
2095 	dev_pm_opp_put_opp_table(opp_table);
2096 
2097 	return ERR_PTR(ret);
2098 }
2099 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2100 
2101 /**
2102  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2103  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2104  */
2105 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2106 {
2107 	if (unlikely(!opp_table))
2108 		return;
2109 
2110 	/* Make sure there are no concurrent readers while updating opp_table */
2111 	WARN_ON(!list_empty(&opp_table->opp_list));
2112 
2113 	clk_put(opp_table->clk);
2114 	opp_table->clk = ERR_PTR(-EINVAL);
2115 
2116 	dev_pm_opp_put_opp_table(opp_table);
2117 }
2118 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2119 
2120 /**
2121  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2122  * @dev: Device for which the helper is getting registered.
2123  * @set_opp: Custom set OPP helper.
2124  *
2125  * This is useful to support complex platforms (like platforms with multiple
2126  * regulators per device), instead of the generic OPP set rate helper.
2127  *
2128  * This must be called before any OPPs are initialized for the device.
2129  */
2130 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2131 			int (*set_opp)(struct dev_pm_set_opp_data *data))
2132 {
2133 	struct dev_pm_set_opp_data *data;
2134 	struct opp_table *opp_table;
2135 
2136 	if (!set_opp)
2137 		return ERR_PTR(-EINVAL);
2138 
2139 	opp_table = _add_opp_table(dev, false);
2140 	if (IS_ERR(opp_table))
2141 		return opp_table;
2142 
2143 	/* This should be called before OPPs are initialized */
2144 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2145 		dev_pm_opp_put_opp_table(opp_table);
2146 		return ERR_PTR(-EBUSY);
2147 	}
2148 
2149 	/* Another CPU that shares the OPP table has set the helper ? */
2150 	if (opp_table->set_opp)
2151 		return opp_table;
2152 
2153 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2154 	if (!data)
2155 		return ERR_PTR(-ENOMEM);
2156 
2157 	mutex_lock(&opp_table->lock);
2158 	opp_table->set_opp_data = data;
2159 	if (opp_table->sod_supplies) {
2160 		data->old_opp.supplies = opp_table->sod_supplies;
2161 		data->new_opp.supplies = opp_table->sod_supplies +
2162 					 opp_table->regulator_count;
2163 	}
2164 	mutex_unlock(&opp_table->lock);
2165 
2166 	opp_table->set_opp = set_opp;
2167 
2168 	return opp_table;
2169 }
2170 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2171 
2172 /**
2173  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2174  *					   set_opp helper
2175  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2176  *
2177  * Release resources blocked for platform specific set_opp helper.
2178  */
2179 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2180 {
2181 	if (unlikely(!opp_table))
2182 		return;
2183 
2184 	/* Make sure there are no concurrent readers while updating opp_table */
2185 	WARN_ON(!list_empty(&opp_table->opp_list));
2186 
2187 	opp_table->set_opp = NULL;
2188 
2189 	mutex_lock(&opp_table->lock);
2190 	kfree(opp_table->set_opp_data);
2191 	opp_table->set_opp_data = NULL;
2192 	mutex_unlock(&opp_table->lock);
2193 
2194 	dev_pm_opp_put_opp_table(opp_table);
2195 }
2196 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2197 
2198 static void devm_pm_opp_unregister_set_opp_helper(void *data)
2199 {
2200 	dev_pm_opp_unregister_set_opp_helper(data);
2201 }
2202 
2203 /**
2204  * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2205  * @dev: Device for which the helper is getting registered.
2206  * @set_opp: Custom set OPP helper.
2207  *
2208  * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2209  *
2210  * Return: pointer to 'struct opp_table' on success and errorno otherwise.
2211  */
2212 struct opp_table *
2213 devm_pm_opp_register_set_opp_helper(struct device *dev,
2214 				    int (*set_opp)(struct dev_pm_set_opp_data *data))
2215 {
2216 	struct opp_table *opp_table;
2217 	int err;
2218 
2219 	opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2220 	if (IS_ERR(opp_table))
2221 		return opp_table;
2222 
2223 	err = devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2224 				       opp_table);
2225 	if (err)
2226 		return ERR_PTR(err);
2227 
2228 	return opp_table;
2229 }
2230 EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2231 
2232 static void _opp_detach_genpd(struct opp_table *opp_table)
2233 {
2234 	int index;
2235 
2236 	if (!opp_table->genpd_virt_devs)
2237 		return;
2238 
2239 	for (index = 0; index < opp_table->required_opp_count; index++) {
2240 		if (!opp_table->genpd_virt_devs[index])
2241 			continue;
2242 
2243 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2244 		opp_table->genpd_virt_devs[index] = NULL;
2245 	}
2246 
2247 	kfree(opp_table->genpd_virt_devs);
2248 	opp_table->genpd_virt_devs = NULL;
2249 }
2250 
2251 /**
2252  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2253  * @dev: Consumer device for which the genpd is getting attached.
2254  * @names: Null terminated array of pointers containing names of genpd to attach.
2255  * @virt_devs: Pointer to return the array of virtual devices.
2256  *
2257  * Multiple generic power domains for a device are supported with the help of
2258  * virtual genpd devices, which are created for each consumer device - genpd
2259  * pair. These are the device structures which are attached to the power domain
2260  * and are required by the OPP core to set the performance state of the genpd.
2261  * The same API also works for the case where single genpd is available and so
2262  * we don't need to support that separately.
2263  *
2264  * This helper will normally be called by the consumer driver of the device
2265  * "dev", as only that has details of the genpd names.
2266  *
2267  * This helper needs to be called once with a list of all genpd to attach.
2268  * Otherwise the original device structure will be used instead by the OPP core.
2269  *
2270  * The order of entries in the names array must match the order in which
2271  * "required-opps" are added in DT.
2272  */
2273 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2274 		const char **names, struct device ***virt_devs)
2275 {
2276 	struct opp_table *opp_table;
2277 	struct device *virt_dev;
2278 	int index = 0, ret = -EINVAL;
2279 	const char **name = names;
2280 
2281 	opp_table = _add_opp_table(dev, false);
2282 	if (IS_ERR(opp_table))
2283 		return opp_table;
2284 
2285 	if (opp_table->genpd_virt_devs)
2286 		return opp_table;
2287 
2288 	/*
2289 	 * If the genpd's OPP table isn't already initialized, parsing of the
2290 	 * required-opps fail for dev. We should retry this after genpd's OPP
2291 	 * table is added.
2292 	 */
2293 	if (!opp_table->required_opp_count) {
2294 		ret = -EPROBE_DEFER;
2295 		goto put_table;
2296 	}
2297 
2298 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2299 
2300 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2301 					     sizeof(*opp_table->genpd_virt_devs),
2302 					     GFP_KERNEL);
2303 	if (!opp_table->genpd_virt_devs)
2304 		goto unlock;
2305 
2306 	while (*name) {
2307 		if (index >= opp_table->required_opp_count) {
2308 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2309 				*name, opp_table->required_opp_count, index);
2310 			goto err;
2311 		}
2312 
2313 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2314 		if (IS_ERR(virt_dev)) {
2315 			ret = PTR_ERR(virt_dev);
2316 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2317 			goto err;
2318 		}
2319 
2320 		opp_table->genpd_virt_devs[index] = virt_dev;
2321 		index++;
2322 		name++;
2323 	}
2324 
2325 	if (virt_devs)
2326 		*virt_devs = opp_table->genpd_virt_devs;
2327 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2328 
2329 	return opp_table;
2330 
2331 err:
2332 	_opp_detach_genpd(opp_table);
2333 unlock:
2334 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2335 
2336 put_table:
2337 	dev_pm_opp_put_opp_table(opp_table);
2338 
2339 	return ERR_PTR(ret);
2340 }
2341 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2342 
2343 /**
2344  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2345  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2346  *
2347  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2348  * OPP table.
2349  */
2350 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2351 {
2352 	if (unlikely(!opp_table))
2353 		return;
2354 
2355 	/*
2356 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2357 	 * used in parallel.
2358 	 */
2359 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2360 	_opp_detach_genpd(opp_table);
2361 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2362 
2363 	dev_pm_opp_put_opp_table(opp_table);
2364 }
2365 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2366 
2367 static void devm_pm_opp_detach_genpd(void *data)
2368 {
2369 	dev_pm_opp_detach_genpd(data);
2370 }
2371 
2372 /**
2373  * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2374  *			      device pointer
2375  * @dev: Consumer device for which the genpd is getting attached.
2376  * @names: Null terminated array of pointers containing names of genpd to attach.
2377  * @virt_devs: Pointer to return the array of virtual devices.
2378  *
2379  * This is a resource-managed version of dev_pm_opp_attach_genpd().
2380  *
2381  * Return: pointer to 'struct opp_table' on success and errorno otherwise.
2382  */
2383 struct opp_table *
2384 devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2385 			 struct device ***virt_devs)
2386 {
2387 	struct opp_table *opp_table;
2388 	int err;
2389 
2390 	opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2391 	if (IS_ERR(opp_table))
2392 		return opp_table;
2393 
2394 	err = devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2395 				       opp_table);
2396 	if (err)
2397 		return ERR_PTR(err);
2398 
2399 	return opp_table;
2400 }
2401 EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2402 
2403 /**
2404  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2405  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2406  * @dst_table: Required OPP table of the @src_table.
2407  * @src_opp: OPP from the @src_table.
2408  *
2409  * This function returns the OPP (present in @dst_table) pointed out by the
2410  * "required-opps" property of the @src_opp (present in @src_table).
2411  *
2412  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2413  * use.
2414  *
2415  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2416  */
2417 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2418 						 struct opp_table *dst_table,
2419 						 struct dev_pm_opp *src_opp)
2420 {
2421 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2422 	int i;
2423 
2424 	if (!src_table || !dst_table || !src_opp ||
2425 	    !src_table->required_opp_tables)
2426 		return ERR_PTR(-EINVAL);
2427 
2428 	/* required-opps not fully initialized yet */
2429 	if (lazy_linking_pending(src_table))
2430 		return ERR_PTR(-EBUSY);
2431 
2432 	for (i = 0; i < src_table->required_opp_count; i++) {
2433 		if (src_table->required_opp_tables[i] == dst_table) {
2434 			mutex_lock(&src_table->lock);
2435 
2436 			list_for_each_entry(opp, &src_table->opp_list, node) {
2437 				if (opp == src_opp) {
2438 					dest_opp = opp->required_opps[i];
2439 					dev_pm_opp_get(dest_opp);
2440 					break;
2441 				}
2442 			}
2443 
2444 			mutex_unlock(&src_table->lock);
2445 			break;
2446 		}
2447 	}
2448 
2449 	if (IS_ERR(dest_opp)) {
2450 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2451 		       src_table, dst_table);
2452 	}
2453 
2454 	return dest_opp;
2455 }
2456 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2457 
2458 /**
2459  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2460  * @src_table: OPP table which has dst_table as one of its required OPP table.
2461  * @dst_table: Required OPP table of the src_table.
2462  * @pstate: Current performance state of the src_table.
2463  *
2464  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2465  * "required-opps" property of the OPP (present in @src_table) which has
2466  * performance state set to @pstate.
2467  *
2468  * Return: Zero or positive performance state on success, otherwise negative
2469  * value on errors.
2470  */
2471 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2472 				       struct opp_table *dst_table,
2473 				       unsigned int pstate)
2474 {
2475 	struct dev_pm_opp *opp;
2476 	int dest_pstate = -EINVAL;
2477 	int i;
2478 
2479 	/*
2480 	 * Normally the src_table will have the "required_opps" property set to
2481 	 * point to one of the OPPs in the dst_table, but in some cases the
2482 	 * genpd and its master have one to one mapping of performance states
2483 	 * and so none of them have the "required-opps" property set. Return the
2484 	 * pstate of the src_table as it is in such cases.
2485 	 */
2486 	if (!src_table || !src_table->required_opp_count)
2487 		return pstate;
2488 
2489 	/* required-opps not fully initialized yet */
2490 	if (lazy_linking_pending(src_table))
2491 		return -EBUSY;
2492 
2493 	for (i = 0; i < src_table->required_opp_count; i++) {
2494 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2495 			break;
2496 	}
2497 
2498 	if (unlikely(i == src_table->required_opp_count)) {
2499 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2500 		       __func__, src_table, dst_table);
2501 		return -EINVAL;
2502 	}
2503 
2504 	mutex_lock(&src_table->lock);
2505 
2506 	list_for_each_entry(opp, &src_table->opp_list, node) {
2507 		if (opp->pstate == pstate) {
2508 			dest_pstate = opp->required_opps[i]->pstate;
2509 			goto unlock;
2510 		}
2511 	}
2512 
2513 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2514 	       dst_table);
2515 
2516 unlock:
2517 	mutex_unlock(&src_table->lock);
2518 
2519 	return dest_pstate;
2520 }
2521 
2522 /**
2523  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2524  * @dev:	device for which we do this operation
2525  * @freq:	Frequency in Hz for this OPP
2526  * @u_volt:	Voltage in uVolts for this OPP
2527  *
2528  * This function adds an opp definition to the opp table and returns status.
2529  * The opp is made available by default and it can be controlled using
2530  * dev_pm_opp_enable/disable functions.
2531  *
2532  * Return:
2533  * 0		On success OR
2534  *		Duplicate OPPs (both freq and volt are same) and opp->available
2535  * -EEXIST	Freq are same and volt are different OR
2536  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2537  * -ENOMEM	Memory allocation failure
2538  */
2539 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2540 {
2541 	struct opp_table *opp_table;
2542 	int ret;
2543 
2544 	opp_table = _add_opp_table(dev, true);
2545 	if (IS_ERR(opp_table))
2546 		return PTR_ERR(opp_table);
2547 
2548 	/* Fix regulator count for dynamic OPPs */
2549 	opp_table->regulator_count = 1;
2550 
2551 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2552 	if (ret)
2553 		dev_pm_opp_put_opp_table(opp_table);
2554 
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2558 
2559 /**
2560  * _opp_set_availability() - helper to set the availability of an opp
2561  * @dev:		device for which we do this operation
2562  * @freq:		OPP frequency to modify availability
2563  * @availability_req:	availability status requested for this opp
2564  *
2565  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2566  * which is isolated here.
2567  *
2568  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2569  * copy operation, returns 0 if no modification was done OR modification was
2570  * successful.
2571  */
2572 static int _opp_set_availability(struct device *dev, unsigned long freq,
2573 				 bool availability_req)
2574 {
2575 	struct opp_table *opp_table;
2576 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2577 	int r = 0;
2578 
2579 	/* Find the opp_table */
2580 	opp_table = _find_opp_table(dev);
2581 	if (IS_ERR(opp_table)) {
2582 		r = PTR_ERR(opp_table);
2583 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2584 		return r;
2585 	}
2586 
2587 	mutex_lock(&opp_table->lock);
2588 
2589 	/* Do we have the frequency? */
2590 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2591 		if (tmp_opp->rate == freq) {
2592 			opp = tmp_opp;
2593 			break;
2594 		}
2595 	}
2596 
2597 	if (IS_ERR(opp)) {
2598 		r = PTR_ERR(opp);
2599 		goto unlock;
2600 	}
2601 
2602 	/* Is update really needed? */
2603 	if (opp->available == availability_req)
2604 		goto unlock;
2605 
2606 	opp->available = availability_req;
2607 
2608 	dev_pm_opp_get(opp);
2609 	mutex_unlock(&opp_table->lock);
2610 
2611 	/* Notify the change of the OPP availability */
2612 	if (availability_req)
2613 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2614 					     opp);
2615 	else
2616 		blocking_notifier_call_chain(&opp_table->head,
2617 					     OPP_EVENT_DISABLE, opp);
2618 
2619 	dev_pm_opp_put(opp);
2620 	goto put_table;
2621 
2622 unlock:
2623 	mutex_unlock(&opp_table->lock);
2624 put_table:
2625 	dev_pm_opp_put_opp_table(opp_table);
2626 	return r;
2627 }
2628 
2629 /**
2630  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2631  * @dev:		device for which we do this operation
2632  * @freq:		OPP frequency to adjust voltage of
2633  * @u_volt:		new OPP target voltage
2634  * @u_volt_min:		new OPP min voltage
2635  * @u_volt_max:		new OPP max voltage
2636  *
2637  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2638  * copy operation, returns 0 if no modifcation was done OR modification was
2639  * successful.
2640  */
2641 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2642 			      unsigned long u_volt, unsigned long u_volt_min,
2643 			      unsigned long u_volt_max)
2644 
2645 {
2646 	struct opp_table *opp_table;
2647 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2648 	int r = 0;
2649 
2650 	/* Find the opp_table */
2651 	opp_table = _find_opp_table(dev);
2652 	if (IS_ERR(opp_table)) {
2653 		r = PTR_ERR(opp_table);
2654 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2655 		return r;
2656 	}
2657 
2658 	mutex_lock(&opp_table->lock);
2659 
2660 	/* Do we have the frequency? */
2661 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2662 		if (tmp_opp->rate == freq) {
2663 			opp = tmp_opp;
2664 			break;
2665 		}
2666 	}
2667 
2668 	if (IS_ERR(opp)) {
2669 		r = PTR_ERR(opp);
2670 		goto adjust_unlock;
2671 	}
2672 
2673 	/* Is update really needed? */
2674 	if (opp->supplies->u_volt == u_volt)
2675 		goto adjust_unlock;
2676 
2677 	opp->supplies->u_volt = u_volt;
2678 	opp->supplies->u_volt_min = u_volt_min;
2679 	opp->supplies->u_volt_max = u_volt_max;
2680 
2681 	dev_pm_opp_get(opp);
2682 	mutex_unlock(&opp_table->lock);
2683 
2684 	/* Notify the voltage change of the OPP */
2685 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2686 				     opp);
2687 
2688 	dev_pm_opp_put(opp);
2689 	goto adjust_put_table;
2690 
2691 adjust_unlock:
2692 	mutex_unlock(&opp_table->lock);
2693 adjust_put_table:
2694 	dev_pm_opp_put_opp_table(opp_table);
2695 	return r;
2696 }
2697 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2698 
2699 /**
2700  * dev_pm_opp_enable() - Enable a specific OPP
2701  * @dev:	device for which we do this operation
2702  * @freq:	OPP frequency to enable
2703  *
2704  * Enables a provided opp. If the operation is valid, this returns 0, else the
2705  * corresponding error value. It is meant to be used for users an OPP available
2706  * after being temporarily made unavailable with dev_pm_opp_disable.
2707  *
2708  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2709  * copy operation, returns 0 if no modification was done OR modification was
2710  * successful.
2711  */
2712 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2713 {
2714 	return _opp_set_availability(dev, freq, true);
2715 }
2716 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2717 
2718 /**
2719  * dev_pm_opp_disable() - Disable a specific OPP
2720  * @dev:	device for which we do this operation
2721  * @freq:	OPP frequency to disable
2722  *
2723  * Disables a provided opp. If the operation is valid, this returns
2724  * 0, else the corresponding error value. It is meant to be a temporary
2725  * control by users to make this OPP not available until the circumstances are
2726  * right to make it available again (with a call to dev_pm_opp_enable).
2727  *
2728  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2729  * copy operation, returns 0 if no modification was done OR modification was
2730  * successful.
2731  */
2732 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2733 {
2734 	return _opp_set_availability(dev, freq, false);
2735 }
2736 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2737 
2738 /**
2739  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2740  * @dev:	Device for which notifier needs to be registered
2741  * @nb:		Notifier block to be registered
2742  *
2743  * Return: 0 on success or a negative error value.
2744  */
2745 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2746 {
2747 	struct opp_table *opp_table;
2748 	int ret;
2749 
2750 	opp_table = _find_opp_table(dev);
2751 	if (IS_ERR(opp_table))
2752 		return PTR_ERR(opp_table);
2753 
2754 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2755 
2756 	dev_pm_opp_put_opp_table(opp_table);
2757 
2758 	return ret;
2759 }
2760 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2761 
2762 /**
2763  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2764  * @dev:	Device for which notifier needs to be unregistered
2765  * @nb:		Notifier block to be unregistered
2766  *
2767  * Return: 0 on success or a negative error value.
2768  */
2769 int dev_pm_opp_unregister_notifier(struct device *dev,
2770 				   struct notifier_block *nb)
2771 {
2772 	struct opp_table *opp_table;
2773 	int ret;
2774 
2775 	opp_table = _find_opp_table(dev);
2776 	if (IS_ERR(opp_table))
2777 		return PTR_ERR(opp_table);
2778 
2779 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2780 
2781 	dev_pm_opp_put_opp_table(opp_table);
2782 
2783 	return ret;
2784 }
2785 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2786 
2787 /**
2788  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2789  * @dev:	device pointer used to lookup OPP table.
2790  *
2791  * Free both OPPs created using static entries present in DT and the
2792  * dynamically added entries.
2793  */
2794 void dev_pm_opp_remove_table(struct device *dev)
2795 {
2796 	struct opp_table *opp_table;
2797 
2798 	/* Check for existing table for 'dev' */
2799 	opp_table = _find_opp_table(dev);
2800 	if (IS_ERR(opp_table)) {
2801 		int error = PTR_ERR(opp_table);
2802 
2803 		if (error != -ENODEV)
2804 			WARN(1, "%s: opp_table: %d\n",
2805 			     IS_ERR_OR_NULL(dev) ?
2806 					"Invalid device" : dev_name(dev),
2807 			     error);
2808 		return;
2809 	}
2810 
2811 	/*
2812 	 * Drop the extra reference only if the OPP table was successfully added
2813 	 * with dev_pm_opp_of_add_table() earlier.
2814 	 **/
2815 	if (_opp_remove_all_static(opp_table))
2816 		dev_pm_opp_put_opp_table(opp_table);
2817 
2818 	/* Drop reference taken by _find_opp_table() */
2819 	dev_pm_opp_put_opp_table(opp_table);
2820 }
2821 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2822 
2823 /**
2824  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2825  * @dev:	device for which we do this operation
2826  *
2827  * Sync voltage state of the OPP table regulators.
2828  *
2829  * Return: 0 on success or a negative error value.
2830  */
2831 int dev_pm_opp_sync_regulators(struct device *dev)
2832 {
2833 	struct opp_table *opp_table;
2834 	struct regulator *reg;
2835 	int i, ret = 0;
2836 
2837 	/* Device may not have OPP table */
2838 	opp_table = _find_opp_table(dev);
2839 	if (IS_ERR(opp_table))
2840 		return 0;
2841 
2842 	/* Regulator may not be required for the device */
2843 	if (unlikely(!opp_table->regulators))
2844 		goto put_table;
2845 
2846 	/* Nothing to sync if voltage wasn't changed */
2847 	if (!opp_table->enabled)
2848 		goto put_table;
2849 
2850 	for (i = 0; i < opp_table->regulator_count; i++) {
2851 		reg = opp_table->regulators[i];
2852 		ret = regulator_sync_voltage(reg);
2853 		if (ret)
2854 			break;
2855 	}
2856 put_table:
2857 	/* Drop reference taken by _find_opp_table() */
2858 	dev_pm_opp_put_opp_table(opp_table);
2859 
2860 	return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2863