1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/export.h> 18 #include <linux/pm_domain.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include <linux/xarray.h> 22 23 #include "opp.h" 24 25 /* 26 * The root of the list of all opp-tables. All opp_table structures branch off 27 * from here, with each opp_table containing the list of opps it supports in 28 * various states of availability. 29 */ 30 LIST_HEAD(opp_tables); 31 32 /* Lock to allow exclusive modification to the device and opp lists */ 33 DEFINE_MUTEX(opp_table_lock); 34 /* Flag indicating that opp_tables list is being updated at the moment */ 35 static bool opp_tables_busy; 36 37 /* OPP ID allocator */ 38 static DEFINE_XARRAY_ALLOC1(opp_configs); 39 40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 41 { 42 struct opp_device *opp_dev; 43 bool found = false; 44 45 mutex_lock(&opp_table->lock); 46 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 47 if (opp_dev->dev == dev) { 48 found = true; 49 break; 50 } 51 52 mutex_unlock(&opp_table->lock); 53 return found; 54 } 55 56 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 57 { 58 struct opp_table *opp_table; 59 60 list_for_each_entry(opp_table, &opp_tables, node) { 61 if (_find_opp_dev(dev, opp_table)) { 62 _get_opp_table_kref(opp_table); 63 return opp_table; 64 } 65 } 66 67 return ERR_PTR(-ENODEV); 68 } 69 70 /** 71 * _find_opp_table() - find opp_table struct using device pointer 72 * @dev: device pointer used to lookup OPP table 73 * 74 * Search OPP table for one containing matching device. 75 * 76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 77 * -EINVAL based on type of error. 78 * 79 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 80 */ 81 struct opp_table *_find_opp_table(struct device *dev) 82 { 83 struct opp_table *opp_table; 84 85 if (IS_ERR_OR_NULL(dev)) { 86 pr_err("%s: Invalid parameters\n", __func__); 87 return ERR_PTR(-EINVAL); 88 } 89 90 mutex_lock(&opp_table_lock); 91 opp_table = _find_opp_table_unlocked(dev); 92 mutex_unlock(&opp_table_lock); 93 94 return opp_table; 95 } 96 97 /* 98 * Returns true if multiple clocks aren't there, else returns false with WARN. 99 * 100 * We don't force clk_count == 1 here as there are users who don't have a clock 101 * representation in the OPP table and manage the clock configuration themselves 102 * in an platform specific way. 103 */ 104 static bool assert_single_clk(struct opp_table *opp_table) 105 { 106 return !WARN_ON(opp_table->clk_count > 1); 107 } 108 109 /** 110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 111 * @opp: opp for which voltage has to be returned for 112 * 113 * Return: voltage in micro volt corresponding to the opp, else 114 * return 0 115 * 116 * This is useful only for devices with single power supply. 117 */ 118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 119 { 120 if (IS_ERR_OR_NULL(opp)) { 121 pr_err("%s: Invalid parameters\n", __func__); 122 return 0; 123 } 124 125 return opp->supplies[0].u_volt; 126 } 127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 128 129 /** 130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp 131 * @opp: opp for which voltage has to be returned for 132 * @supplies: Placeholder for copying the supply information. 133 * 134 * Return: negative error number on failure, 0 otherwise on success after 135 * setting @supplies. 136 * 137 * This can be used for devices with any number of power supplies. The caller 138 * must ensure the @supplies array must contain space for each regulator. 139 */ 140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, 141 struct dev_pm_opp_supply *supplies) 142 { 143 if (IS_ERR_OR_NULL(opp) || !supplies) { 144 pr_err("%s: Invalid parameters\n", __func__); 145 return -EINVAL; 146 } 147 148 memcpy(supplies, opp->supplies, 149 sizeof(*supplies) * opp->opp_table->regulator_count); 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); 153 154 /** 155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 156 * @opp: opp for which power has to be returned for 157 * 158 * Return: power in micro watt corresponding to the opp, else 159 * return 0 160 * 161 * This is useful only for devices with single power supply. 162 */ 163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 164 { 165 unsigned long opp_power = 0; 166 int i; 167 168 if (IS_ERR_OR_NULL(opp)) { 169 pr_err("%s: Invalid parameters\n", __func__); 170 return 0; 171 } 172 for (i = 0; i < opp->opp_table->regulator_count; i++) 173 opp_power += opp->supplies[i].u_watt; 174 175 return opp_power; 176 } 177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 178 179 /** 180 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 181 * @opp: opp for which frequency has to be returned for 182 * 183 * Return: frequency in hertz corresponding to the opp, else 184 * return 0 185 */ 186 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 187 { 188 if (IS_ERR_OR_NULL(opp)) { 189 pr_err("%s: Invalid parameters\n", __func__); 190 return 0; 191 } 192 193 if (!assert_single_clk(opp->opp_table)) 194 return 0; 195 196 return opp->rates[0]; 197 } 198 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 199 200 /** 201 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 202 * @opp: opp for which level value has to be returned for 203 * 204 * Return: level read from device tree corresponding to the opp, else 205 * return 0. 206 */ 207 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 208 { 209 if (IS_ERR_OR_NULL(opp) || !opp->available) { 210 pr_err("%s: Invalid parameters\n", __func__); 211 return 0; 212 } 213 214 return opp->level; 215 } 216 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 217 218 /** 219 * dev_pm_opp_get_required_pstate() - Gets the required performance state 220 * corresponding to an available opp 221 * @opp: opp for which performance state has to be returned for 222 * @index: index of the required opp 223 * 224 * Return: performance state read from device tree corresponding to the 225 * required opp, else return 0. 226 */ 227 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 228 unsigned int index) 229 { 230 struct opp_table *opp_table = opp->opp_table; 231 232 if (IS_ERR_OR_NULL(opp) || !opp->available || 233 index >= opp_table->required_opp_count) { 234 pr_err("%s: Invalid parameters\n", __func__); 235 return 0; 236 } 237 238 /* required-opps not fully initialized yet */ 239 if (lazy_linking_pending(opp_table)) 240 return 0; 241 242 /* The required OPP table must belong to a genpd */ 243 if (unlikely(!opp_table->required_opp_tables[index]->is_genpd)) { 244 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 245 return 0; 246 } 247 248 return opp->required_opps[index]->level; 249 } 250 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 251 252 /** 253 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 254 * @opp: opp for which turbo mode is being verified 255 * 256 * Turbo OPPs are not for normal use, and can be enabled (under certain 257 * conditions) for short duration of times to finish high throughput work 258 * quickly. Running on them for longer times may overheat the chip. 259 * 260 * Return: true if opp is turbo opp, else false. 261 */ 262 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 263 { 264 if (IS_ERR_OR_NULL(opp) || !opp->available) { 265 pr_err("%s: Invalid parameters\n", __func__); 266 return false; 267 } 268 269 return opp->turbo; 270 } 271 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 272 273 /** 274 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 275 * @dev: device for which we do this operation 276 * 277 * Return: This function returns the max clock latency in nanoseconds. 278 */ 279 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 280 { 281 struct opp_table *opp_table; 282 unsigned long clock_latency_ns; 283 284 opp_table = _find_opp_table(dev); 285 if (IS_ERR(opp_table)) 286 return 0; 287 288 clock_latency_ns = opp_table->clock_latency_ns_max; 289 290 dev_pm_opp_put_opp_table(opp_table); 291 292 return clock_latency_ns; 293 } 294 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 295 296 /** 297 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 298 * @dev: device for which we do this operation 299 * 300 * Return: This function returns the max voltage latency in nanoseconds. 301 */ 302 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 303 { 304 struct opp_table *opp_table; 305 struct dev_pm_opp *opp; 306 struct regulator *reg; 307 unsigned long latency_ns = 0; 308 int ret, i, count; 309 struct { 310 unsigned long min; 311 unsigned long max; 312 } *uV; 313 314 opp_table = _find_opp_table(dev); 315 if (IS_ERR(opp_table)) 316 return 0; 317 318 /* Regulator may not be required for the device */ 319 if (!opp_table->regulators) 320 goto put_opp_table; 321 322 count = opp_table->regulator_count; 323 324 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 325 if (!uV) 326 goto put_opp_table; 327 328 mutex_lock(&opp_table->lock); 329 330 for (i = 0; i < count; i++) { 331 uV[i].min = ~0; 332 uV[i].max = 0; 333 334 list_for_each_entry(opp, &opp_table->opp_list, node) { 335 if (!opp->available) 336 continue; 337 338 if (opp->supplies[i].u_volt_min < uV[i].min) 339 uV[i].min = opp->supplies[i].u_volt_min; 340 if (opp->supplies[i].u_volt_max > uV[i].max) 341 uV[i].max = opp->supplies[i].u_volt_max; 342 } 343 } 344 345 mutex_unlock(&opp_table->lock); 346 347 /* 348 * The caller needs to ensure that opp_table (and hence the regulator) 349 * isn't freed, while we are executing this routine. 350 */ 351 for (i = 0; i < count; i++) { 352 reg = opp_table->regulators[i]; 353 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 354 if (ret > 0) 355 latency_ns += ret * 1000; 356 } 357 358 kfree(uV); 359 put_opp_table: 360 dev_pm_opp_put_opp_table(opp_table); 361 362 return latency_ns; 363 } 364 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 365 366 /** 367 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 368 * nanoseconds 369 * @dev: device for which we do this operation 370 * 371 * Return: This function returns the max transition latency, in nanoseconds, to 372 * switch from one OPP to other. 373 */ 374 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 375 { 376 return dev_pm_opp_get_max_volt_latency(dev) + 377 dev_pm_opp_get_max_clock_latency(dev); 378 } 379 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 380 381 /** 382 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 383 * @dev: device for which we do this operation 384 * 385 * Return: This function returns the frequency of the OPP marked as suspend_opp 386 * if one is available, else returns 0; 387 */ 388 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 389 { 390 struct opp_table *opp_table; 391 unsigned long freq = 0; 392 393 opp_table = _find_opp_table(dev); 394 if (IS_ERR(opp_table)) 395 return 0; 396 397 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 398 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 399 400 dev_pm_opp_put_opp_table(opp_table); 401 402 return freq; 403 } 404 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 405 406 int _get_opp_count(struct opp_table *opp_table) 407 { 408 struct dev_pm_opp *opp; 409 int count = 0; 410 411 mutex_lock(&opp_table->lock); 412 413 list_for_each_entry(opp, &opp_table->opp_list, node) { 414 if (opp->available) 415 count++; 416 } 417 418 mutex_unlock(&opp_table->lock); 419 420 return count; 421 } 422 423 /** 424 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 425 * @dev: device for which we do this operation 426 * 427 * Return: This function returns the number of available opps if there are any, 428 * else returns 0 if none or the corresponding error value. 429 */ 430 int dev_pm_opp_get_opp_count(struct device *dev) 431 { 432 struct opp_table *opp_table; 433 int count; 434 435 opp_table = _find_opp_table(dev); 436 if (IS_ERR(opp_table)) { 437 count = PTR_ERR(opp_table); 438 dev_dbg(dev, "%s: OPP table not found (%d)\n", 439 __func__, count); 440 return count; 441 } 442 443 count = _get_opp_count(opp_table); 444 dev_pm_opp_put_opp_table(opp_table); 445 446 return count; 447 } 448 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 449 450 /* Helpers to read keys */ 451 static unsigned long _read_freq(struct dev_pm_opp *opp, int index) 452 { 453 return opp->rates[0]; 454 } 455 456 static unsigned long _read_level(struct dev_pm_opp *opp, int index) 457 { 458 return opp->level; 459 } 460 461 static unsigned long _read_bw(struct dev_pm_opp *opp, int index) 462 { 463 return opp->bandwidth[index].peak; 464 } 465 466 /* Generic comparison helpers */ 467 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 468 unsigned long opp_key, unsigned long key) 469 { 470 if (opp_key == key) { 471 *opp = temp_opp; 472 return true; 473 } 474 475 return false; 476 } 477 478 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 479 unsigned long opp_key, unsigned long key) 480 { 481 if (opp_key >= key) { 482 *opp = temp_opp; 483 return true; 484 } 485 486 return false; 487 } 488 489 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 490 unsigned long opp_key, unsigned long key) 491 { 492 if (opp_key > key) 493 return true; 494 495 *opp = temp_opp; 496 return false; 497 } 498 499 /* Generic key finding helpers */ 500 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, 501 unsigned long *key, int index, bool available, 502 unsigned long (*read)(struct dev_pm_opp *opp, int index), 503 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 504 unsigned long opp_key, unsigned long key), 505 bool (*assert)(struct opp_table *opp_table)) 506 { 507 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 508 509 /* Assert that the requirement is met */ 510 if (assert && !assert(opp_table)) 511 return ERR_PTR(-EINVAL); 512 513 mutex_lock(&opp_table->lock); 514 515 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 516 if (temp_opp->available == available) { 517 if (compare(&opp, temp_opp, read(temp_opp, index), *key)) 518 break; 519 } 520 } 521 522 /* Increment the reference count of OPP */ 523 if (!IS_ERR(opp)) { 524 *key = read(opp, index); 525 dev_pm_opp_get(opp); 526 } 527 528 mutex_unlock(&opp_table->lock); 529 530 return opp; 531 } 532 533 static struct dev_pm_opp * 534 _find_key(struct device *dev, unsigned long *key, int index, bool available, 535 unsigned long (*read)(struct dev_pm_opp *opp, int index), 536 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 537 unsigned long opp_key, unsigned long key), 538 bool (*assert)(struct opp_table *opp_table)) 539 { 540 struct opp_table *opp_table; 541 struct dev_pm_opp *opp; 542 543 opp_table = _find_opp_table(dev); 544 if (IS_ERR(opp_table)) { 545 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 546 PTR_ERR(opp_table)); 547 return ERR_CAST(opp_table); 548 } 549 550 opp = _opp_table_find_key(opp_table, key, index, available, read, 551 compare, assert); 552 553 dev_pm_opp_put_opp_table(opp_table); 554 555 return opp; 556 } 557 558 static struct dev_pm_opp *_find_key_exact(struct device *dev, 559 unsigned long key, int index, bool available, 560 unsigned long (*read)(struct dev_pm_opp *opp, int index), 561 bool (*assert)(struct opp_table *opp_table)) 562 { 563 /* 564 * The value of key will be updated here, but will be ignored as the 565 * caller doesn't need it. 566 */ 567 return _find_key(dev, &key, index, available, read, _compare_exact, 568 assert); 569 } 570 571 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, 572 unsigned long *key, int index, bool available, 573 unsigned long (*read)(struct dev_pm_opp *opp, int index), 574 bool (*assert)(struct opp_table *opp_table)) 575 { 576 return _opp_table_find_key(opp_table, key, index, available, read, 577 _compare_ceil, assert); 578 } 579 580 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, 581 int index, bool available, 582 unsigned long (*read)(struct dev_pm_opp *opp, int index), 583 bool (*assert)(struct opp_table *opp_table)) 584 { 585 return _find_key(dev, key, index, available, read, _compare_ceil, 586 assert); 587 } 588 589 static struct dev_pm_opp *_find_key_floor(struct device *dev, 590 unsigned long *key, int index, bool available, 591 unsigned long (*read)(struct dev_pm_opp *opp, int index), 592 bool (*assert)(struct opp_table *opp_table)) 593 { 594 return _find_key(dev, key, index, available, read, _compare_floor, 595 assert); 596 } 597 598 /** 599 * dev_pm_opp_find_freq_exact() - search for an exact frequency 600 * @dev: device for which we do this operation 601 * @freq: frequency to search for 602 * @available: true/false - match for available opp 603 * 604 * Return: Searches for exact match in the opp table and returns pointer to the 605 * matching opp if found, else returns ERR_PTR in case of error and should 606 * be handled using IS_ERR. Error return values can be: 607 * EINVAL: for bad pointer 608 * ERANGE: no match found for search 609 * ENODEV: if device not found in list of registered devices 610 * 611 * Note: available is a modifier for the search. if available=true, then the 612 * match is for exact matching frequency and is available in the stored OPP 613 * table. if false, the match is for exact frequency which is not available. 614 * 615 * This provides a mechanism to enable an opp which is not available currently 616 * or the opposite as well. 617 * 618 * The callers are required to call dev_pm_opp_put() for the returned OPP after 619 * use. 620 */ 621 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 622 unsigned long freq, bool available) 623 { 624 return _find_key_exact(dev, freq, 0, available, _read_freq, 625 assert_single_clk); 626 } 627 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 628 629 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 630 unsigned long *freq) 631 { 632 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, 633 assert_single_clk); 634 } 635 636 /** 637 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 638 * @dev: device for which we do this operation 639 * @freq: Start frequency 640 * 641 * Search for the matching ceil *available* OPP from a starting freq 642 * for a device. 643 * 644 * Return: matching *opp and refreshes *freq accordingly, else returns 645 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 646 * values can be: 647 * EINVAL: for bad pointer 648 * ERANGE: no match found for search 649 * ENODEV: if device not found in list of registered devices 650 * 651 * The callers are required to call dev_pm_opp_put() for the returned OPP after 652 * use. 653 */ 654 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 655 unsigned long *freq) 656 { 657 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); 658 } 659 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 660 661 /** 662 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 663 * @dev: device for which we do this operation 664 * @freq: Start frequency 665 * 666 * Search for the matching floor *available* OPP from a starting freq 667 * for a device. 668 * 669 * Return: matching *opp and refreshes *freq accordingly, else returns 670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 671 * values can be: 672 * EINVAL: for bad pointer 673 * ERANGE: no match found for search 674 * ENODEV: if device not found in list of registered devices 675 * 676 * The callers are required to call dev_pm_opp_put() for the returned OPP after 677 * use. 678 */ 679 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 680 unsigned long *freq) 681 { 682 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); 683 } 684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 685 686 /** 687 * dev_pm_opp_find_level_exact() - search for an exact level 688 * @dev: device for which we do this operation 689 * @level: level to search for 690 * 691 * Return: Searches for exact match in the opp table and returns pointer to the 692 * matching opp if found, else returns ERR_PTR in case of error and should 693 * be handled using IS_ERR. Error return values can be: 694 * EINVAL: for bad pointer 695 * ERANGE: no match found for search 696 * ENODEV: if device not found in list of registered devices 697 * 698 * The callers are required to call dev_pm_opp_put() for the returned OPP after 699 * use. 700 */ 701 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 702 unsigned int level) 703 { 704 return _find_key_exact(dev, level, 0, true, _read_level, NULL); 705 } 706 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 707 708 /** 709 * dev_pm_opp_find_level_ceil() - search for an rounded up level 710 * @dev: device for which we do this operation 711 * @level: level to search for 712 * 713 * Return: Searches for rounded up match in the opp table and returns pointer 714 * to the matching opp if found, else returns ERR_PTR in case of error and 715 * should be handled using IS_ERR. Error return values can be: 716 * EINVAL: for bad pointer 717 * ERANGE: no match found for search 718 * ENODEV: if device not found in list of registered devices 719 * 720 * The callers are required to call dev_pm_opp_put() for the returned OPP after 721 * use. 722 */ 723 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 724 unsigned int *level) 725 { 726 unsigned long temp = *level; 727 struct dev_pm_opp *opp; 728 729 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); 730 *level = temp; 731 return opp; 732 } 733 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 734 735 /** 736 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth 737 * @dev: device for which we do this operation 738 * @bw: start bandwidth 739 * @index: which bandwidth to compare, in case of OPPs with several values 740 * 741 * Search for the matching floor *available* OPP from a starting bandwidth 742 * for a device. 743 * 744 * Return: matching *opp and refreshes *bw accordingly, else returns 745 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 746 * values can be: 747 * EINVAL: for bad pointer 748 * ERANGE: no match found for search 749 * ENODEV: if device not found in list of registered devices 750 * 751 * The callers are required to call dev_pm_opp_put() for the returned OPP after 752 * use. 753 */ 754 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, 755 int index) 756 { 757 unsigned long temp = *bw; 758 struct dev_pm_opp *opp; 759 760 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL); 761 *bw = temp; 762 return opp; 763 } 764 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); 765 766 /** 767 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth 768 * @dev: device for which we do this operation 769 * @bw: start bandwidth 770 * @index: which bandwidth to compare, in case of OPPs with several values 771 * 772 * Search for the matching floor *available* OPP from a starting bandwidth 773 * for a device. 774 * 775 * Return: matching *opp and refreshes *bw accordingly, else returns 776 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 777 * values can be: 778 * EINVAL: for bad pointer 779 * ERANGE: no match found for search 780 * ENODEV: if device not found in list of registered devices 781 * 782 * The callers are required to call dev_pm_opp_put() for the returned OPP after 783 * use. 784 */ 785 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, 786 unsigned int *bw, int index) 787 { 788 unsigned long temp = *bw; 789 struct dev_pm_opp *opp; 790 791 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL); 792 *bw = temp; 793 return opp; 794 } 795 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); 796 797 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 798 struct dev_pm_opp_supply *supply) 799 { 800 int ret; 801 802 /* Regulator not available for device */ 803 if (IS_ERR(reg)) { 804 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 805 PTR_ERR(reg)); 806 return 0; 807 } 808 809 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 810 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 811 812 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 813 supply->u_volt, supply->u_volt_max); 814 if (ret) 815 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 816 __func__, supply->u_volt_min, supply->u_volt, 817 supply->u_volt_max, ret); 818 819 return ret; 820 } 821 822 static int 823 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, 824 struct dev_pm_opp *opp, void *data, bool scaling_down) 825 { 826 unsigned long *target = data; 827 unsigned long freq; 828 int ret; 829 830 /* One of target and opp must be available */ 831 if (target) { 832 freq = *target; 833 } else if (opp) { 834 freq = opp->rates[0]; 835 } else { 836 WARN_ON(1); 837 return -EINVAL; 838 } 839 840 ret = clk_set_rate(opp_table->clk, freq); 841 if (ret) { 842 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 843 ret); 844 } else { 845 opp_table->rate_clk_single = freq; 846 } 847 848 return ret; 849 } 850 851 /* 852 * Simple implementation for configuring multiple clocks. Configure clocks in 853 * the order in which they are present in the array while scaling up. 854 */ 855 int dev_pm_opp_config_clks_simple(struct device *dev, 856 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, 857 bool scaling_down) 858 { 859 int ret, i; 860 861 if (scaling_down) { 862 for (i = opp_table->clk_count - 1; i >= 0; i--) { 863 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 864 if (ret) { 865 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 866 ret); 867 return ret; 868 } 869 } 870 } else { 871 for (i = 0; i < opp_table->clk_count; i++) { 872 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 873 if (ret) { 874 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 875 ret); 876 return ret; 877 } 878 } 879 } 880 881 return 0; 882 } 883 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); 884 885 static int _opp_config_regulator_single(struct device *dev, 886 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, 887 struct regulator **regulators, unsigned int count) 888 { 889 struct regulator *reg = regulators[0]; 890 int ret; 891 892 /* This function only supports single regulator per device */ 893 if (WARN_ON(count > 1)) { 894 dev_err(dev, "multiple regulators are not supported\n"); 895 return -EINVAL; 896 } 897 898 ret = _set_opp_voltage(dev, reg, new_opp->supplies); 899 if (ret) 900 return ret; 901 902 /* 903 * Enable the regulator after setting its voltages, otherwise it breaks 904 * some boot-enabled regulators. 905 */ 906 if (unlikely(!new_opp->opp_table->enabled)) { 907 ret = regulator_enable(reg); 908 if (ret < 0) 909 dev_warn(dev, "Failed to enable regulator: %d", ret); 910 } 911 912 return 0; 913 } 914 915 static int _set_opp_bw(const struct opp_table *opp_table, 916 struct dev_pm_opp *opp, struct device *dev) 917 { 918 u32 avg, peak; 919 int i, ret; 920 921 if (!opp_table->paths) 922 return 0; 923 924 for (i = 0; i < opp_table->path_count; i++) { 925 if (!opp) { 926 avg = 0; 927 peak = 0; 928 } else { 929 avg = opp->bandwidth[i].avg; 930 peak = opp->bandwidth[i].peak; 931 } 932 ret = icc_set_bw(opp_table->paths[i], avg, peak); 933 if (ret) { 934 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 935 opp ? "set" : "remove", i, ret); 936 return ret; 937 } 938 } 939 940 return 0; 941 } 942 943 static int _set_performance_state(struct device *dev, struct device *pd_dev, 944 struct dev_pm_opp *opp, int i) 945 { 946 unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0; 947 int ret; 948 949 if (!pd_dev) 950 return 0; 951 952 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 953 if (ret) { 954 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 955 dev_name(pd_dev), pstate, ret); 956 } 957 958 return ret; 959 } 960 961 static int _opp_set_required_opps_generic(struct device *dev, 962 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down) 963 { 964 dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n"); 965 return -ENOENT; 966 } 967 968 static int _opp_set_required_opps_genpd(struct device *dev, 969 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down) 970 { 971 struct device **genpd_virt_devs = 972 opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev; 973 int i, ret = 0; 974 975 /* 976 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 977 * after it is freed from another thread. 978 */ 979 mutex_lock(&opp_table->genpd_virt_dev_lock); 980 981 /* Scaling up? Set required OPPs in normal order, else reverse */ 982 if (!scaling_down) { 983 for (i = 0; i < opp_table->required_opp_count; i++) { 984 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i); 985 if (ret) 986 break; 987 } 988 } else { 989 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 990 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i); 991 if (ret) 992 break; 993 } 994 } 995 996 mutex_unlock(&opp_table->genpd_virt_dev_lock); 997 998 return ret; 999 } 1000 1001 /* This is only called for PM domain for now */ 1002 static int _set_required_opps(struct device *dev, struct opp_table *opp_table, 1003 struct dev_pm_opp *opp, bool up) 1004 { 1005 /* required-opps not fully initialized yet */ 1006 if (lazy_linking_pending(opp_table)) 1007 return -EBUSY; 1008 1009 if (opp_table->set_required_opps) 1010 return opp_table->set_required_opps(dev, opp_table, opp, up); 1011 1012 return 0; 1013 } 1014 1015 /* Update set_required_opps handler */ 1016 void _update_set_required_opps(struct opp_table *opp_table) 1017 { 1018 /* Already set */ 1019 if (opp_table->set_required_opps) 1020 return; 1021 1022 /* All required OPPs will belong to genpd or none */ 1023 if (opp_table->required_opp_tables[0]->is_genpd) 1024 opp_table->set_required_opps = _opp_set_required_opps_genpd; 1025 else 1026 opp_table->set_required_opps = _opp_set_required_opps_generic; 1027 } 1028 1029 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 1030 { 1031 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 1032 unsigned long freq; 1033 1034 if (!IS_ERR(opp_table->clk)) { 1035 freq = clk_get_rate(opp_table->clk); 1036 opp = _find_freq_ceil(opp_table, &freq); 1037 } 1038 1039 /* 1040 * Unable to find the current OPP ? Pick the first from the list since 1041 * it is in ascending order, otherwise rest of the code will need to 1042 * make special checks to validate current_opp. 1043 */ 1044 if (IS_ERR(opp)) { 1045 mutex_lock(&opp_table->lock); 1046 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 1047 dev_pm_opp_get(opp); 1048 mutex_unlock(&opp_table->lock); 1049 } 1050 1051 opp_table->current_opp = opp; 1052 } 1053 1054 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 1055 { 1056 int ret; 1057 1058 if (!opp_table->enabled) 1059 return 0; 1060 1061 /* 1062 * Some drivers need to support cases where some platforms may 1063 * have OPP table for the device, while others don't and 1064 * opp_set_rate() just needs to behave like clk_set_rate(). 1065 */ 1066 if (!_get_opp_count(opp_table)) 1067 return 0; 1068 1069 ret = _set_opp_bw(opp_table, NULL, dev); 1070 if (ret) 1071 return ret; 1072 1073 if (opp_table->regulators) 1074 regulator_disable(opp_table->regulators[0]); 1075 1076 ret = _set_required_opps(dev, opp_table, NULL, false); 1077 1078 opp_table->enabled = false; 1079 return ret; 1080 } 1081 1082 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1083 struct dev_pm_opp *opp, void *clk_data, bool forced) 1084 { 1085 struct dev_pm_opp *old_opp; 1086 int scaling_down, ret; 1087 1088 if (unlikely(!opp)) 1089 return _disable_opp_table(dev, opp_table); 1090 1091 /* Find the currently set OPP if we don't know already */ 1092 if (unlikely(!opp_table->current_opp)) 1093 _find_current_opp(dev, opp_table); 1094 1095 old_opp = opp_table->current_opp; 1096 1097 /* Return early if nothing to do */ 1098 if (!forced && old_opp == opp && opp_table->enabled) { 1099 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__); 1100 return 0; 1101 } 1102 1103 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1104 __func__, old_opp->rates[0], opp->rates[0], old_opp->level, 1105 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1106 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1107 1108 scaling_down = _opp_compare_key(opp_table, old_opp, opp); 1109 if (scaling_down == -1) 1110 scaling_down = 0; 1111 1112 /* Scaling up? Configure required OPPs before frequency */ 1113 if (!scaling_down) { 1114 ret = _set_required_opps(dev, opp_table, opp, true); 1115 if (ret) { 1116 dev_err(dev, "Failed to set required opps: %d\n", ret); 1117 return ret; 1118 } 1119 1120 ret = _set_opp_bw(opp_table, opp, dev); 1121 if (ret) { 1122 dev_err(dev, "Failed to set bw: %d\n", ret); 1123 return ret; 1124 } 1125 1126 if (opp_table->config_regulators) { 1127 ret = opp_table->config_regulators(dev, old_opp, opp, 1128 opp_table->regulators, 1129 opp_table->regulator_count); 1130 if (ret) { 1131 dev_err(dev, "Failed to set regulator voltages: %d\n", 1132 ret); 1133 return ret; 1134 } 1135 } 1136 } 1137 1138 if (opp_table->config_clks) { 1139 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); 1140 if (ret) 1141 return ret; 1142 } 1143 1144 /* Scaling down? Configure required OPPs after frequency */ 1145 if (scaling_down) { 1146 if (opp_table->config_regulators) { 1147 ret = opp_table->config_regulators(dev, old_opp, opp, 1148 opp_table->regulators, 1149 opp_table->regulator_count); 1150 if (ret) { 1151 dev_err(dev, "Failed to set regulator voltages: %d\n", 1152 ret); 1153 return ret; 1154 } 1155 } 1156 1157 ret = _set_opp_bw(opp_table, opp, dev); 1158 if (ret) { 1159 dev_err(dev, "Failed to set bw: %d\n", ret); 1160 return ret; 1161 } 1162 1163 ret = _set_required_opps(dev, opp_table, opp, false); 1164 if (ret) { 1165 dev_err(dev, "Failed to set required opps: %d\n", ret); 1166 return ret; 1167 } 1168 } 1169 1170 opp_table->enabled = true; 1171 dev_pm_opp_put(old_opp); 1172 1173 /* Make sure current_opp doesn't get freed */ 1174 dev_pm_opp_get(opp); 1175 opp_table->current_opp = opp; 1176 1177 return ret; 1178 } 1179 1180 /** 1181 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1182 * @dev: device for which we do this operation 1183 * @target_freq: frequency to achieve 1184 * 1185 * This configures the power-supplies to the levels specified by the OPP 1186 * corresponding to the target_freq, and programs the clock to a value <= 1187 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1188 * provided by the opp, should have already rounded to the target OPP's 1189 * frequency. 1190 */ 1191 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1192 { 1193 struct opp_table *opp_table; 1194 unsigned long freq = 0, temp_freq; 1195 struct dev_pm_opp *opp = NULL; 1196 bool forced = false; 1197 int ret; 1198 1199 opp_table = _find_opp_table(dev); 1200 if (IS_ERR(opp_table)) { 1201 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1202 return PTR_ERR(opp_table); 1203 } 1204 1205 if (target_freq) { 1206 /* 1207 * For IO devices which require an OPP on some platforms/SoCs 1208 * while just needing to scale the clock on some others 1209 * we look for empty OPP tables with just a clock handle and 1210 * scale only the clk. This makes dev_pm_opp_set_rate() 1211 * equivalent to a clk_set_rate() 1212 */ 1213 if (!_get_opp_count(opp_table)) { 1214 ret = opp_table->config_clks(dev, opp_table, NULL, 1215 &target_freq, false); 1216 goto put_opp_table; 1217 } 1218 1219 freq = clk_round_rate(opp_table->clk, target_freq); 1220 if ((long)freq <= 0) 1221 freq = target_freq; 1222 1223 /* 1224 * The clock driver may support finer resolution of the 1225 * frequencies than the OPP table, don't update the frequency we 1226 * pass to clk_set_rate() here. 1227 */ 1228 temp_freq = freq; 1229 opp = _find_freq_ceil(opp_table, &temp_freq); 1230 if (IS_ERR(opp)) { 1231 ret = PTR_ERR(opp); 1232 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1233 __func__, freq, ret); 1234 goto put_opp_table; 1235 } 1236 1237 /* 1238 * An OPP entry specifies the highest frequency at which other 1239 * properties of the OPP entry apply. Even if the new OPP is 1240 * same as the old one, we may still reach here for a different 1241 * value of the frequency. In such a case, do not abort but 1242 * configure the hardware to the desired frequency forcefully. 1243 */ 1244 forced = opp_table->rate_clk_single != target_freq; 1245 } 1246 1247 ret = _set_opp(dev, opp_table, opp, &target_freq, forced); 1248 1249 if (target_freq) 1250 dev_pm_opp_put(opp); 1251 1252 put_opp_table: 1253 dev_pm_opp_put_opp_table(opp_table); 1254 return ret; 1255 } 1256 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1257 1258 /** 1259 * dev_pm_opp_set_opp() - Configure device for OPP 1260 * @dev: device for which we do this operation 1261 * @opp: OPP to set to 1262 * 1263 * This configures the device based on the properties of the OPP passed to this 1264 * routine. 1265 * 1266 * Return: 0 on success, a negative error number otherwise. 1267 */ 1268 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1269 { 1270 struct opp_table *opp_table; 1271 int ret; 1272 1273 opp_table = _find_opp_table(dev); 1274 if (IS_ERR(opp_table)) { 1275 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1276 return PTR_ERR(opp_table); 1277 } 1278 1279 ret = _set_opp(dev, opp_table, opp, NULL, false); 1280 dev_pm_opp_put_opp_table(opp_table); 1281 1282 return ret; 1283 } 1284 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1285 1286 /* OPP-dev Helpers */ 1287 static void _remove_opp_dev(struct opp_device *opp_dev, 1288 struct opp_table *opp_table) 1289 { 1290 opp_debug_unregister(opp_dev, opp_table); 1291 list_del(&opp_dev->node); 1292 kfree(opp_dev); 1293 } 1294 1295 struct opp_device *_add_opp_dev(const struct device *dev, 1296 struct opp_table *opp_table) 1297 { 1298 struct opp_device *opp_dev; 1299 1300 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1301 if (!opp_dev) 1302 return NULL; 1303 1304 /* Initialize opp-dev */ 1305 opp_dev->dev = dev; 1306 1307 mutex_lock(&opp_table->lock); 1308 list_add(&opp_dev->node, &opp_table->dev_list); 1309 mutex_unlock(&opp_table->lock); 1310 1311 /* Create debugfs entries for the opp_table */ 1312 opp_debug_register(opp_dev, opp_table); 1313 1314 return opp_dev; 1315 } 1316 1317 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1318 { 1319 struct opp_table *opp_table; 1320 struct opp_device *opp_dev; 1321 int ret; 1322 1323 /* 1324 * Allocate a new OPP table. In the infrequent case where a new 1325 * device is needed to be added, we pay this penalty. 1326 */ 1327 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1328 if (!opp_table) 1329 return ERR_PTR(-ENOMEM); 1330 1331 mutex_init(&opp_table->lock); 1332 mutex_init(&opp_table->genpd_virt_dev_lock); 1333 INIT_LIST_HEAD(&opp_table->dev_list); 1334 INIT_LIST_HEAD(&opp_table->lazy); 1335 1336 opp_table->clk = ERR_PTR(-ENODEV); 1337 1338 /* Mark regulator count uninitialized */ 1339 opp_table->regulator_count = -1; 1340 1341 opp_dev = _add_opp_dev(dev, opp_table); 1342 if (!opp_dev) { 1343 ret = -ENOMEM; 1344 goto err; 1345 } 1346 1347 _of_init_opp_table(opp_table, dev, index); 1348 1349 /* Find interconnect path(s) for the device */ 1350 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1351 if (ret) { 1352 if (ret == -EPROBE_DEFER) 1353 goto remove_opp_dev; 1354 1355 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1356 __func__, ret); 1357 } 1358 1359 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1360 INIT_LIST_HEAD(&opp_table->opp_list); 1361 kref_init(&opp_table->kref); 1362 1363 return opp_table; 1364 1365 remove_opp_dev: 1366 _of_clear_opp_table(opp_table); 1367 _remove_opp_dev(opp_dev, opp_table); 1368 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1369 mutex_destroy(&opp_table->lock); 1370 err: 1371 kfree(opp_table); 1372 return ERR_PTR(ret); 1373 } 1374 1375 void _get_opp_table_kref(struct opp_table *opp_table) 1376 { 1377 kref_get(&opp_table->kref); 1378 } 1379 1380 static struct opp_table *_update_opp_table_clk(struct device *dev, 1381 struct opp_table *opp_table, 1382 bool getclk) 1383 { 1384 int ret; 1385 1386 /* 1387 * Return early if we don't need to get clk or we have already done it 1388 * earlier. 1389 */ 1390 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || 1391 opp_table->clks) 1392 return opp_table; 1393 1394 /* Find clk for the device */ 1395 opp_table->clk = clk_get(dev, NULL); 1396 1397 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1398 if (!ret) { 1399 opp_table->config_clks = _opp_config_clk_single; 1400 opp_table->clk_count = 1; 1401 return opp_table; 1402 } 1403 1404 if (ret == -ENOENT) { 1405 /* 1406 * There are few platforms which don't want the OPP core to 1407 * manage device's clock settings. In such cases neither the 1408 * platform provides the clks explicitly to us, nor the DT 1409 * contains a valid clk entry. The OPP nodes in DT may still 1410 * contain "opp-hz" property though, which we need to parse and 1411 * allow the platform to find an OPP based on freq later on. 1412 * 1413 * This is a simple solution to take care of such corner cases, 1414 * i.e. make the clk_count 1, which lets us allocate space for 1415 * frequency in opp->rates and also parse the entries in DT. 1416 */ 1417 opp_table->clk_count = 1; 1418 1419 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1420 return opp_table; 1421 } 1422 1423 dev_pm_opp_put_opp_table(opp_table); 1424 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1425 1426 return ERR_PTR(ret); 1427 } 1428 1429 /* 1430 * We need to make sure that the OPP table for a device doesn't get added twice, 1431 * if this routine gets called in parallel with the same device pointer. 1432 * 1433 * The simplest way to enforce that is to perform everything (find existing 1434 * table and if not found, create a new one) under the opp_table_lock, so only 1435 * one creator gets access to the same. But that expands the critical section 1436 * under the lock and may end up causing circular dependencies with frameworks 1437 * like debugfs, interconnect or clock framework as they may be direct or 1438 * indirect users of OPP core. 1439 * 1440 * And for that reason we have to go for a bit tricky implementation here, which 1441 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1442 * of adding an OPP table and others should wait for it to finish. 1443 */ 1444 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1445 bool getclk) 1446 { 1447 struct opp_table *opp_table; 1448 1449 again: 1450 mutex_lock(&opp_table_lock); 1451 1452 opp_table = _find_opp_table_unlocked(dev); 1453 if (!IS_ERR(opp_table)) 1454 goto unlock; 1455 1456 /* 1457 * The opp_tables list or an OPP table's dev_list is getting updated by 1458 * another user, wait for it to finish. 1459 */ 1460 if (unlikely(opp_tables_busy)) { 1461 mutex_unlock(&opp_table_lock); 1462 cpu_relax(); 1463 goto again; 1464 } 1465 1466 opp_tables_busy = true; 1467 opp_table = _managed_opp(dev, index); 1468 1469 /* Drop the lock to reduce the size of critical section */ 1470 mutex_unlock(&opp_table_lock); 1471 1472 if (opp_table) { 1473 if (!_add_opp_dev(dev, opp_table)) { 1474 dev_pm_opp_put_opp_table(opp_table); 1475 opp_table = ERR_PTR(-ENOMEM); 1476 } 1477 1478 mutex_lock(&opp_table_lock); 1479 } else { 1480 opp_table = _allocate_opp_table(dev, index); 1481 1482 mutex_lock(&opp_table_lock); 1483 if (!IS_ERR(opp_table)) 1484 list_add(&opp_table->node, &opp_tables); 1485 } 1486 1487 opp_tables_busy = false; 1488 1489 unlock: 1490 mutex_unlock(&opp_table_lock); 1491 1492 return _update_opp_table_clk(dev, opp_table, getclk); 1493 } 1494 1495 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1496 { 1497 return _add_opp_table_indexed(dev, 0, getclk); 1498 } 1499 1500 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1501 { 1502 return _find_opp_table(dev); 1503 } 1504 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1505 1506 static void _opp_table_kref_release(struct kref *kref) 1507 { 1508 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1509 struct opp_device *opp_dev, *temp; 1510 int i; 1511 1512 /* Drop the lock as soon as we can */ 1513 list_del(&opp_table->node); 1514 mutex_unlock(&opp_table_lock); 1515 1516 if (opp_table->current_opp) 1517 dev_pm_opp_put(opp_table->current_opp); 1518 1519 _of_clear_opp_table(opp_table); 1520 1521 /* Release automatically acquired single clk */ 1522 if (!IS_ERR(opp_table->clk)) 1523 clk_put(opp_table->clk); 1524 1525 if (opp_table->paths) { 1526 for (i = 0; i < opp_table->path_count; i++) 1527 icc_put(opp_table->paths[i]); 1528 kfree(opp_table->paths); 1529 } 1530 1531 WARN_ON(!list_empty(&opp_table->opp_list)); 1532 1533 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) 1534 _remove_opp_dev(opp_dev, opp_table); 1535 1536 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1537 mutex_destroy(&opp_table->lock); 1538 kfree(opp_table); 1539 } 1540 1541 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1542 { 1543 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1544 &opp_table_lock); 1545 } 1546 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1547 1548 void _opp_free(struct dev_pm_opp *opp) 1549 { 1550 kfree(opp); 1551 } 1552 1553 static void _opp_kref_release(struct kref *kref) 1554 { 1555 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1556 struct opp_table *opp_table = opp->opp_table; 1557 1558 list_del(&opp->node); 1559 mutex_unlock(&opp_table->lock); 1560 1561 /* 1562 * Notify the changes in the availability of the operable 1563 * frequency/voltage list. 1564 */ 1565 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1566 _of_clear_opp(opp_table, opp); 1567 opp_debug_remove_one(opp); 1568 kfree(opp); 1569 } 1570 1571 void dev_pm_opp_get(struct dev_pm_opp *opp) 1572 { 1573 kref_get(&opp->kref); 1574 } 1575 1576 void dev_pm_opp_put(struct dev_pm_opp *opp) 1577 { 1578 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1579 } 1580 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1581 1582 /** 1583 * dev_pm_opp_remove() - Remove an OPP from OPP table 1584 * @dev: device for which we do this operation 1585 * @freq: OPP to remove with matching 'freq' 1586 * 1587 * This function removes an opp from the opp table. 1588 */ 1589 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1590 { 1591 struct dev_pm_opp *opp = NULL, *iter; 1592 struct opp_table *opp_table; 1593 1594 opp_table = _find_opp_table(dev); 1595 if (IS_ERR(opp_table)) 1596 return; 1597 1598 if (!assert_single_clk(opp_table)) 1599 goto put_table; 1600 1601 mutex_lock(&opp_table->lock); 1602 1603 list_for_each_entry(iter, &opp_table->opp_list, node) { 1604 if (iter->rates[0] == freq) { 1605 opp = iter; 1606 break; 1607 } 1608 } 1609 1610 mutex_unlock(&opp_table->lock); 1611 1612 if (opp) { 1613 dev_pm_opp_put(opp); 1614 1615 /* Drop the reference taken by dev_pm_opp_add() */ 1616 dev_pm_opp_put_opp_table(opp_table); 1617 } else { 1618 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1619 __func__, freq); 1620 } 1621 1622 put_table: 1623 /* Drop the reference taken by _find_opp_table() */ 1624 dev_pm_opp_put_opp_table(opp_table); 1625 } 1626 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1627 1628 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1629 bool dynamic) 1630 { 1631 struct dev_pm_opp *opp = NULL, *temp; 1632 1633 mutex_lock(&opp_table->lock); 1634 list_for_each_entry(temp, &opp_table->opp_list, node) { 1635 /* 1636 * Refcount must be dropped only once for each OPP by OPP core, 1637 * do that with help of "removed" flag. 1638 */ 1639 if (!temp->removed && dynamic == temp->dynamic) { 1640 opp = temp; 1641 break; 1642 } 1643 } 1644 1645 mutex_unlock(&opp_table->lock); 1646 return opp; 1647 } 1648 1649 /* 1650 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1651 * happen lock less to avoid circular dependency issues. This routine must be 1652 * called without the opp_table->lock held. 1653 */ 1654 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1655 { 1656 struct dev_pm_opp *opp; 1657 1658 while ((opp = _opp_get_next(opp_table, dynamic))) { 1659 opp->removed = true; 1660 dev_pm_opp_put(opp); 1661 1662 /* Drop the references taken by dev_pm_opp_add() */ 1663 if (dynamic) 1664 dev_pm_opp_put_opp_table(opp_table); 1665 } 1666 } 1667 1668 bool _opp_remove_all_static(struct opp_table *opp_table) 1669 { 1670 mutex_lock(&opp_table->lock); 1671 1672 if (!opp_table->parsed_static_opps) { 1673 mutex_unlock(&opp_table->lock); 1674 return false; 1675 } 1676 1677 if (--opp_table->parsed_static_opps) { 1678 mutex_unlock(&opp_table->lock); 1679 return true; 1680 } 1681 1682 mutex_unlock(&opp_table->lock); 1683 1684 _opp_remove_all(opp_table, false); 1685 return true; 1686 } 1687 1688 /** 1689 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1690 * @dev: device for which we do this operation 1691 * 1692 * This function removes all dynamically created OPPs from the opp table. 1693 */ 1694 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1695 { 1696 struct opp_table *opp_table; 1697 1698 opp_table = _find_opp_table(dev); 1699 if (IS_ERR(opp_table)) 1700 return; 1701 1702 _opp_remove_all(opp_table, true); 1703 1704 /* Drop the reference taken by _find_opp_table() */ 1705 dev_pm_opp_put_opp_table(opp_table); 1706 } 1707 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1708 1709 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) 1710 { 1711 struct dev_pm_opp *opp; 1712 int supply_count, supply_size, icc_size, clk_size; 1713 1714 /* Allocate space for at least one supply */ 1715 supply_count = opp_table->regulator_count > 0 ? 1716 opp_table->regulator_count : 1; 1717 supply_size = sizeof(*opp->supplies) * supply_count; 1718 clk_size = sizeof(*opp->rates) * opp_table->clk_count; 1719 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; 1720 1721 /* allocate new OPP node and supplies structures */ 1722 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); 1723 if (!opp) 1724 return NULL; 1725 1726 /* Put the supplies, bw and clock at the end of the OPP structure */ 1727 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1728 1729 opp->rates = (unsigned long *)(opp->supplies + supply_count); 1730 1731 if (icc_size) 1732 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); 1733 1734 INIT_LIST_HEAD(&opp->node); 1735 1736 return opp; 1737 } 1738 1739 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1740 struct opp_table *opp_table) 1741 { 1742 struct regulator *reg; 1743 int i; 1744 1745 if (!opp_table->regulators) 1746 return true; 1747 1748 for (i = 0; i < opp_table->regulator_count; i++) { 1749 reg = opp_table->regulators[i]; 1750 1751 if (!regulator_is_supported_voltage(reg, 1752 opp->supplies[i].u_volt_min, 1753 opp->supplies[i].u_volt_max)) { 1754 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1755 __func__, opp->supplies[i].u_volt_min, 1756 opp->supplies[i].u_volt_max); 1757 return false; 1758 } 1759 } 1760 1761 return true; 1762 } 1763 1764 static int _opp_compare_rate(struct opp_table *opp_table, 1765 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1766 { 1767 int i; 1768 1769 for (i = 0; i < opp_table->clk_count; i++) { 1770 if (opp1->rates[i] != opp2->rates[i]) 1771 return opp1->rates[i] < opp2->rates[i] ? -1 : 1; 1772 } 1773 1774 /* Same rates for both OPPs */ 1775 return 0; 1776 } 1777 1778 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1779 struct dev_pm_opp *opp2) 1780 { 1781 int i; 1782 1783 for (i = 0; i < opp_table->path_count; i++) { 1784 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) 1785 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; 1786 } 1787 1788 /* Same bw for both OPPs */ 1789 return 0; 1790 } 1791 1792 /* 1793 * Returns 1794 * 0: opp1 == opp2 1795 * 1: opp1 > opp2 1796 * -1: opp1 < opp2 1797 */ 1798 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1799 struct dev_pm_opp *opp2) 1800 { 1801 int ret; 1802 1803 ret = _opp_compare_rate(opp_table, opp1, opp2); 1804 if (ret) 1805 return ret; 1806 1807 ret = _opp_compare_bw(opp_table, opp1, opp2); 1808 if (ret) 1809 return ret; 1810 1811 if (opp1->level != opp2->level) 1812 return opp1->level < opp2->level ? -1 : 1; 1813 1814 /* Duplicate OPPs */ 1815 return 0; 1816 } 1817 1818 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1819 struct opp_table *opp_table, 1820 struct list_head **head) 1821 { 1822 struct dev_pm_opp *opp; 1823 int opp_cmp; 1824 1825 /* 1826 * Insert new OPP in order of increasing frequency and discard if 1827 * already present. 1828 * 1829 * Need to use &opp_table->opp_list in the condition part of the 'for' 1830 * loop, don't replace it with head otherwise it will become an infinite 1831 * loop. 1832 */ 1833 list_for_each_entry(opp, &opp_table->opp_list, node) { 1834 opp_cmp = _opp_compare_key(opp_table, new_opp, opp); 1835 if (opp_cmp > 0) { 1836 *head = &opp->node; 1837 continue; 1838 } 1839 1840 if (opp_cmp < 0) 1841 return 0; 1842 1843 /* Duplicate OPPs */ 1844 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1845 __func__, opp->rates[0], opp->supplies[0].u_volt, 1846 opp->available, new_opp->rates[0], 1847 new_opp->supplies[0].u_volt, new_opp->available); 1848 1849 /* Should we compare voltages for all regulators here ? */ 1850 return opp->available && 1851 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1852 } 1853 1854 return 0; 1855 } 1856 1857 void _required_opps_available(struct dev_pm_opp *opp, int count) 1858 { 1859 int i; 1860 1861 for (i = 0; i < count; i++) { 1862 if (opp->required_opps[i]->available) 1863 continue; 1864 1865 opp->available = false; 1866 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1867 __func__, opp->required_opps[i]->np, opp->rates[0]); 1868 return; 1869 } 1870 } 1871 1872 /* 1873 * Returns: 1874 * 0: On success. And appropriate error message for duplicate OPPs. 1875 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1876 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1877 * sure we don't print error messages unnecessarily if different parts of 1878 * kernel try to initialize the OPP table. 1879 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1880 * should be considered an error by the callers of _opp_add(). 1881 */ 1882 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1883 struct opp_table *opp_table) 1884 { 1885 struct list_head *head; 1886 int ret; 1887 1888 mutex_lock(&opp_table->lock); 1889 head = &opp_table->opp_list; 1890 1891 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1892 if (ret) { 1893 mutex_unlock(&opp_table->lock); 1894 return ret; 1895 } 1896 1897 list_add(&new_opp->node, head); 1898 mutex_unlock(&opp_table->lock); 1899 1900 new_opp->opp_table = opp_table; 1901 kref_init(&new_opp->kref); 1902 1903 opp_debug_create_one(new_opp, opp_table); 1904 1905 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1906 new_opp->available = false; 1907 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1908 __func__, new_opp->rates[0]); 1909 } 1910 1911 /* required-opps not fully initialized yet */ 1912 if (lazy_linking_pending(opp_table)) 1913 return 0; 1914 1915 _required_opps_available(new_opp, opp_table->required_opp_count); 1916 1917 return 0; 1918 } 1919 1920 /** 1921 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1922 * @opp_table: OPP table 1923 * @dev: device for which we do this operation 1924 * @freq: Frequency in Hz for this OPP 1925 * @u_volt: Voltage in uVolts for this OPP 1926 * @dynamic: Dynamically added OPPs. 1927 * 1928 * This function adds an opp definition to the opp table and returns status. 1929 * The opp is made available by default and it can be controlled using 1930 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1931 * 1932 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1933 * and freed by dev_pm_opp_of_remove_table. 1934 * 1935 * Return: 1936 * 0 On success OR 1937 * Duplicate OPPs (both freq and volt are same) and opp->available 1938 * -EEXIST Freq are same and volt are different OR 1939 * Duplicate OPPs (both freq and volt are same) and !opp->available 1940 * -ENOMEM Memory allocation failure 1941 */ 1942 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1943 unsigned long freq, long u_volt, bool dynamic) 1944 { 1945 struct dev_pm_opp *new_opp; 1946 unsigned long tol; 1947 int ret; 1948 1949 if (!assert_single_clk(opp_table)) 1950 return -EINVAL; 1951 1952 new_opp = _opp_allocate(opp_table); 1953 if (!new_opp) 1954 return -ENOMEM; 1955 1956 /* populate the opp table */ 1957 new_opp->rates[0] = freq; 1958 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1959 new_opp->supplies[0].u_volt = u_volt; 1960 new_opp->supplies[0].u_volt_min = u_volt - tol; 1961 new_opp->supplies[0].u_volt_max = u_volt + tol; 1962 new_opp->available = true; 1963 new_opp->dynamic = dynamic; 1964 1965 ret = _opp_add(dev, new_opp, opp_table); 1966 if (ret) { 1967 /* Don't return error for duplicate OPPs */ 1968 if (ret == -EBUSY) 1969 ret = 0; 1970 goto free_opp; 1971 } 1972 1973 /* 1974 * Notify the changes in the availability of the operable 1975 * frequency/voltage list. 1976 */ 1977 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1978 return 0; 1979 1980 free_opp: 1981 _opp_free(new_opp); 1982 1983 return ret; 1984 } 1985 1986 /** 1987 * _opp_set_supported_hw() - Set supported platforms 1988 * @dev: Device for which supported-hw has to be set. 1989 * @versions: Array of hierarchy of versions to match. 1990 * @count: Number of elements in the array. 1991 * 1992 * This is required only for the V2 bindings, and it enables a platform to 1993 * specify the hierarchy of versions it supports. OPP layer will then enable 1994 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1995 * property. 1996 */ 1997 static int _opp_set_supported_hw(struct opp_table *opp_table, 1998 const u32 *versions, unsigned int count) 1999 { 2000 /* Another CPU that shares the OPP table has set the property ? */ 2001 if (opp_table->supported_hw) 2002 return 0; 2003 2004 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 2005 GFP_KERNEL); 2006 if (!opp_table->supported_hw) 2007 return -ENOMEM; 2008 2009 opp_table->supported_hw_count = count; 2010 2011 return 0; 2012 } 2013 2014 /** 2015 * _opp_put_supported_hw() - Releases resources blocked for supported hw 2016 * @opp_table: OPP table returned by _opp_set_supported_hw(). 2017 * 2018 * This is required only for the V2 bindings, and is called for a matching 2019 * _opp_set_supported_hw(). Until this is called, the opp_table structure 2020 * will not be freed. 2021 */ 2022 static void _opp_put_supported_hw(struct opp_table *opp_table) 2023 { 2024 if (opp_table->supported_hw) { 2025 kfree(opp_table->supported_hw); 2026 opp_table->supported_hw = NULL; 2027 opp_table->supported_hw_count = 0; 2028 } 2029 } 2030 2031 /** 2032 * _opp_set_prop_name() - Set prop-extn name 2033 * @dev: Device for which the prop-name has to be set. 2034 * @name: name to postfix to properties. 2035 * 2036 * This is required only for the V2 bindings, and it enables a platform to 2037 * specify the extn to be used for certain property names. The properties to 2038 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 2039 * should postfix the property name with -<name> while looking for them. 2040 */ 2041 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) 2042 { 2043 /* Another CPU that shares the OPP table has set the property ? */ 2044 if (!opp_table->prop_name) { 2045 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 2046 if (!opp_table->prop_name) 2047 return -ENOMEM; 2048 } 2049 2050 return 0; 2051 } 2052 2053 /** 2054 * _opp_put_prop_name() - Releases resources blocked for prop-name 2055 * @opp_table: OPP table returned by _opp_set_prop_name(). 2056 * 2057 * This is required only for the V2 bindings, and is called for a matching 2058 * _opp_set_prop_name(). Until this is called, the opp_table structure 2059 * will not be freed. 2060 */ 2061 static void _opp_put_prop_name(struct opp_table *opp_table) 2062 { 2063 if (opp_table->prop_name) { 2064 kfree(opp_table->prop_name); 2065 opp_table->prop_name = NULL; 2066 } 2067 } 2068 2069 /** 2070 * _opp_set_regulators() - Set regulator names for the device 2071 * @dev: Device for which regulator name is being set. 2072 * @names: Array of pointers to the names of the regulator. 2073 * @count: Number of regulators. 2074 * 2075 * In order to support OPP switching, OPP layer needs to know the name of the 2076 * device's regulators, as the core would be required to switch voltages as 2077 * well. 2078 * 2079 * This must be called before any OPPs are initialized for the device. 2080 */ 2081 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, 2082 const char * const names[]) 2083 { 2084 const char * const *temp = names; 2085 struct regulator *reg; 2086 int count = 0, ret, i; 2087 2088 /* Count number of regulators */ 2089 while (*temp++) 2090 count++; 2091 2092 if (!count) 2093 return -EINVAL; 2094 2095 /* Another CPU that shares the OPP table has set the regulators ? */ 2096 if (opp_table->regulators) 2097 return 0; 2098 2099 opp_table->regulators = kmalloc_array(count, 2100 sizeof(*opp_table->regulators), 2101 GFP_KERNEL); 2102 if (!opp_table->regulators) 2103 return -ENOMEM; 2104 2105 for (i = 0; i < count; i++) { 2106 reg = regulator_get_optional(dev, names[i]); 2107 if (IS_ERR(reg)) { 2108 ret = dev_err_probe(dev, PTR_ERR(reg), 2109 "%s: no regulator (%s) found\n", 2110 __func__, names[i]); 2111 goto free_regulators; 2112 } 2113 2114 opp_table->regulators[i] = reg; 2115 } 2116 2117 opp_table->regulator_count = count; 2118 2119 /* Set generic config_regulators() for single regulators here */ 2120 if (count == 1) 2121 opp_table->config_regulators = _opp_config_regulator_single; 2122 2123 return 0; 2124 2125 free_regulators: 2126 while (i != 0) 2127 regulator_put(opp_table->regulators[--i]); 2128 2129 kfree(opp_table->regulators); 2130 opp_table->regulators = NULL; 2131 opp_table->regulator_count = -1; 2132 2133 return ret; 2134 } 2135 2136 /** 2137 * _opp_put_regulators() - Releases resources blocked for regulator 2138 * @opp_table: OPP table returned from _opp_set_regulators(). 2139 */ 2140 static void _opp_put_regulators(struct opp_table *opp_table) 2141 { 2142 int i; 2143 2144 if (!opp_table->regulators) 2145 return; 2146 2147 if (opp_table->enabled) { 2148 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2149 regulator_disable(opp_table->regulators[i]); 2150 } 2151 2152 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2153 regulator_put(opp_table->regulators[i]); 2154 2155 kfree(opp_table->regulators); 2156 opp_table->regulators = NULL; 2157 opp_table->regulator_count = -1; 2158 } 2159 2160 static void _put_clks(struct opp_table *opp_table, int count) 2161 { 2162 int i; 2163 2164 for (i = count - 1; i >= 0; i--) 2165 clk_put(opp_table->clks[i]); 2166 2167 kfree(opp_table->clks); 2168 opp_table->clks = NULL; 2169 } 2170 2171 /** 2172 * _opp_set_clknames() - Set clk names for the device 2173 * @dev: Device for which clk names is being set. 2174 * @names: Clk names. 2175 * 2176 * In order to support OPP switching, OPP layer needs to get pointers to the 2177 * clocks for the device. Simple cases work fine without using this routine 2178 * (i.e. by passing connection-id as NULL), but for a device with multiple 2179 * clocks available, the OPP core needs to know the exact names of the clks to 2180 * use. 2181 * 2182 * This must be called before any OPPs are initialized for the device. 2183 */ 2184 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, 2185 const char * const names[], 2186 config_clks_t config_clks) 2187 { 2188 const char * const *temp = names; 2189 int count = 0, ret, i; 2190 struct clk *clk; 2191 2192 /* Count number of clks */ 2193 while (*temp++) 2194 count++; 2195 2196 /* 2197 * This is a special case where we have a single clock, whose connection 2198 * id name is NULL, i.e. first two entries are NULL in the array. 2199 */ 2200 if (!count && !names[1]) 2201 count = 1; 2202 2203 /* Fail early for invalid configurations */ 2204 if (!count || (!config_clks && count > 1)) 2205 return -EINVAL; 2206 2207 /* Another CPU that shares the OPP table has set the clkname ? */ 2208 if (opp_table->clks) 2209 return 0; 2210 2211 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), 2212 GFP_KERNEL); 2213 if (!opp_table->clks) 2214 return -ENOMEM; 2215 2216 /* Find clks for the device */ 2217 for (i = 0; i < count; i++) { 2218 clk = clk_get(dev, names[i]); 2219 if (IS_ERR(clk)) { 2220 ret = dev_err_probe(dev, PTR_ERR(clk), 2221 "%s: Couldn't find clock with name: %s\n", 2222 __func__, names[i]); 2223 goto free_clks; 2224 } 2225 2226 opp_table->clks[i] = clk; 2227 } 2228 2229 opp_table->clk_count = count; 2230 opp_table->config_clks = config_clks; 2231 2232 /* Set generic single clk set here */ 2233 if (count == 1) { 2234 if (!opp_table->config_clks) 2235 opp_table->config_clks = _opp_config_clk_single; 2236 2237 /* 2238 * We could have just dropped the "clk" field and used "clks" 2239 * everywhere. Instead we kept the "clk" field around for 2240 * following reasons: 2241 * 2242 * - avoiding clks[0] everywhere else. 2243 * - not running single clk helpers for multiple clk usecase by 2244 * mistake. 2245 * 2246 * Since this is single-clk case, just update the clk pointer 2247 * too. 2248 */ 2249 opp_table->clk = opp_table->clks[0]; 2250 } 2251 2252 return 0; 2253 2254 free_clks: 2255 _put_clks(opp_table, i); 2256 return ret; 2257 } 2258 2259 /** 2260 * _opp_put_clknames() - Releases resources blocked for clks. 2261 * @opp_table: OPP table returned from _opp_set_clknames(). 2262 */ 2263 static void _opp_put_clknames(struct opp_table *opp_table) 2264 { 2265 if (!opp_table->clks) 2266 return; 2267 2268 opp_table->config_clks = NULL; 2269 opp_table->clk = ERR_PTR(-ENODEV); 2270 2271 _put_clks(opp_table, opp_table->clk_count); 2272 } 2273 2274 /** 2275 * _opp_set_config_regulators_helper() - Register custom set regulator helper. 2276 * @dev: Device for which the helper is getting registered. 2277 * @config_regulators: Custom set regulator helper. 2278 * 2279 * This is useful to support platforms with multiple regulators per device. 2280 * 2281 * This must be called before any OPPs are initialized for the device. 2282 */ 2283 static int _opp_set_config_regulators_helper(struct opp_table *opp_table, 2284 struct device *dev, config_regulators_t config_regulators) 2285 { 2286 /* Another CPU that shares the OPP table has set the helper ? */ 2287 if (!opp_table->config_regulators) 2288 opp_table->config_regulators = config_regulators; 2289 2290 return 0; 2291 } 2292 2293 /** 2294 * _opp_put_config_regulators_helper() - Releases resources blocked for 2295 * config_regulators helper. 2296 * @opp_table: OPP table returned from _opp_set_config_regulators_helper(). 2297 * 2298 * Release resources blocked for platform specific config_regulators helper. 2299 */ 2300 static void _opp_put_config_regulators_helper(struct opp_table *opp_table) 2301 { 2302 if (opp_table->config_regulators) 2303 opp_table->config_regulators = NULL; 2304 } 2305 2306 static void _detach_genpd(struct opp_table *opp_table) 2307 { 2308 int index; 2309 2310 if (!opp_table->genpd_virt_devs) 2311 return; 2312 2313 for (index = 0; index < opp_table->required_opp_count; index++) { 2314 if (!opp_table->genpd_virt_devs[index]) 2315 continue; 2316 2317 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 2318 opp_table->genpd_virt_devs[index] = NULL; 2319 } 2320 2321 kfree(opp_table->genpd_virt_devs); 2322 opp_table->genpd_virt_devs = NULL; 2323 } 2324 2325 /** 2326 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 2327 * @dev: Consumer device for which the genpd is getting attached. 2328 * @names: Null terminated array of pointers containing names of genpd to attach. 2329 * @virt_devs: Pointer to return the array of virtual devices. 2330 * 2331 * Multiple generic power domains for a device are supported with the help of 2332 * virtual genpd devices, which are created for each consumer device - genpd 2333 * pair. These are the device structures which are attached to the power domain 2334 * and are required by the OPP core to set the performance state of the genpd. 2335 * The same API also works for the case where single genpd is available and so 2336 * we don't need to support that separately. 2337 * 2338 * This helper will normally be called by the consumer driver of the device 2339 * "dev", as only that has details of the genpd names. 2340 * 2341 * This helper needs to be called once with a list of all genpd to attach. 2342 * Otherwise the original device structure will be used instead by the OPP core. 2343 * 2344 * The order of entries in the names array must match the order in which 2345 * "required-opps" are added in DT. 2346 */ 2347 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev, 2348 const char * const *names, struct device ***virt_devs) 2349 { 2350 struct device *virt_dev; 2351 int index = 0, ret = -EINVAL; 2352 const char * const *name = names; 2353 2354 if (opp_table->genpd_virt_devs) 2355 return 0; 2356 2357 /* 2358 * If the genpd's OPP table isn't already initialized, parsing of the 2359 * required-opps fail for dev. We should retry this after genpd's OPP 2360 * table is added. 2361 */ 2362 if (!opp_table->required_opp_count) 2363 return -EPROBE_DEFER; 2364 2365 mutex_lock(&opp_table->genpd_virt_dev_lock); 2366 2367 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2368 sizeof(*opp_table->genpd_virt_devs), 2369 GFP_KERNEL); 2370 if (!opp_table->genpd_virt_devs) 2371 goto unlock; 2372 2373 while (*name) { 2374 if (index >= opp_table->required_opp_count) { 2375 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2376 *name, opp_table->required_opp_count, index); 2377 goto err; 2378 } 2379 2380 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2381 if (IS_ERR_OR_NULL(virt_dev)) { 2382 ret = PTR_ERR(virt_dev) ? : -ENODEV; 2383 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2384 goto err; 2385 } 2386 2387 opp_table->genpd_virt_devs[index] = virt_dev; 2388 index++; 2389 name++; 2390 } 2391 2392 if (virt_devs) 2393 *virt_devs = opp_table->genpd_virt_devs; 2394 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2395 2396 return 0; 2397 2398 err: 2399 _detach_genpd(opp_table); 2400 unlock: 2401 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2402 return ret; 2403 2404 } 2405 2406 /** 2407 * _opp_detach_genpd() - Detach genpd(s) from the device. 2408 * @opp_table: OPP table returned by _opp_attach_genpd(). 2409 * 2410 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2411 * OPP table. 2412 */ 2413 static void _opp_detach_genpd(struct opp_table *opp_table) 2414 { 2415 /* 2416 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2417 * used in parallel. 2418 */ 2419 mutex_lock(&opp_table->genpd_virt_dev_lock); 2420 _detach_genpd(opp_table); 2421 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2422 } 2423 2424 static void _opp_clear_config(struct opp_config_data *data) 2425 { 2426 if (data->flags & OPP_CONFIG_GENPD) 2427 _opp_detach_genpd(data->opp_table); 2428 if (data->flags & OPP_CONFIG_REGULATOR) 2429 _opp_put_regulators(data->opp_table); 2430 if (data->flags & OPP_CONFIG_SUPPORTED_HW) 2431 _opp_put_supported_hw(data->opp_table); 2432 if (data->flags & OPP_CONFIG_REGULATOR_HELPER) 2433 _opp_put_config_regulators_helper(data->opp_table); 2434 if (data->flags & OPP_CONFIG_PROP_NAME) 2435 _opp_put_prop_name(data->opp_table); 2436 if (data->flags & OPP_CONFIG_CLK) 2437 _opp_put_clknames(data->opp_table); 2438 2439 dev_pm_opp_put_opp_table(data->opp_table); 2440 kfree(data); 2441 } 2442 2443 /** 2444 * dev_pm_opp_set_config() - Set OPP configuration for the device. 2445 * @dev: Device for which configuration is being set. 2446 * @config: OPP configuration. 2447 * 2448 * This allows all device OPP configurations to be performed at once. 2449 * 2450 * This must be called before any OPPs are initialized for the device. This may 2451 * be called multiple times for the same OPP table, for example once for each 2452 * CPU that share the same table. This must be balanced by the same number of 2453 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. 2454 * 2455 * This returns a token to the caller, which must be passed to 2456 * dev_pm_opp_clear_config() to free the resources later. The value of the 2457 * returned token will be >= 1 for success and negative for errors. The minimum 2458 * value of 1 is chosen here to make it easy for callers to manage the resource. 2459 */ 2460 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2461 { 2462 struct opp_table *opp_table; 2463 struct opp_config_data *data; 2464 unsigned int id; 2465 int ret; 2466 2467 data = kmalloc(sizeof(*data), GFP_KERNEL); 2468 if (!data) 2469 return -ENOMEM; 2470 2471 opp_table = _add_opp_table(dev, false); 2472 if (IS_ERR(opp_table)) { 2473 kfree(data); 2474 return PTR_ERR(opp_table); 2475 } 2476 2477 data->opp_table = opp_table; 2478 data->flags = 0; 2479 2480 /* This should be called before OPPs are initialized */ 2481 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2482 ret = -EBUSY; 2483 goto err; 2484 } 2485 2486 /* Configure clocks */ 2487 if (config->clk_names) { 2488 ret = _opp_set_clknames(opp_table, dev, config->clk_names, 2489 config->config_clks); 2490 if (ret) 2491 goto err; 2492 2493 data->flags |= OPP_CONFIG_CLK; 2494 } else if (config->config_clks) { 2495 /* Don't allow config callback without clocks */ 2496 ret = -EINVAL; 2497 goto err; 2498 } 2499 2500 /* Configure property names */ 2501 if (config->prop_name) { 2502 ret = _opp_set_prop_name(opp_table, config->prop_name); 2503 if (ret) 2504 goto err; 2505 2506 data->flags |= OPP_CONFIG_PROP_NAME; 2507 } 2508 2509 /* Configure config_regulators helper */ 2510 if (config->config_regulators) { 2511 ret = _opp_set_config_regulators_helper(opp_table, dev, 2512 config->config_regulators); 2513 if (ret) 2514 goto err; 2515 2516 data->flags |= OPP_CONFIG_REGULATOR_HELPER; 2517 } 2518 2519 /* Configure supported hardware */ 2520 if (config->supported_hw) { 2521 ret = _opp_set_supported_hw(opp_table, config->supported_hw, 2522 config->supported_hw_count); 2523 if (ret) 2524 goto err; 2525 2526 data->flags |= OPP_CONFIG_SUPPORTED_HW; 2527 } 2528 2529 /* Configure supplies */ 2530 if (config->regulator_names) { 2531 ret = _opp_set_regulators(opp_table, dev, 2532 config->regulator_names); 2533 if (ret) 2534 goto err; 2535 2536 data->flags |= OPP_CONFIG_REGULATOR; 2537 } 2538 2539 /* Attach genpds */ 2540 if (config->genpd_names) { 2541 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names, 2542 config->virt_devs); 2543 if (ret) 2544 goto err; 2545 2546 data->flags |= OPP_CONFIG_GENPD; 2547 } 2548 2549 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), 2550 GFP_KERNEL); 2551 if (ret) 2552 goto err; 2553 2554 return id; 2555 2556 err: 2557 _opp_clear_config(data); 2558 return ret; 2559 } 2560 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); 2561 2562 /** 2563 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. 2564 * @opp_table: OPP table returned from dev_pm_opp_set_config(). 2565 * 2566 * This allows all device OPP configurations to be cleared at once. This must be 2567 * called once for each call made to dev_pm_opp_set_config(), in order to free 2568 * the OPPs properly. 2569 * 2570 * Currently the first call itself ends up freeing all the OPP configurations, 2571 * while the later ones only drop the OPP table reference. This works well for 2572 * now as we would never want to use an half initialized OPP table and want to 2573 * remove the configurations together. 2574 */ 2575 void dev_pm_opp_clear_config(int token) 2576 { 2577 struct opp_config_data *data; 2578 2579 /* 2580 * This lets the callers call this unconditionally and keep their code 2581 * simple. 2582 */ 2583 if (unlikely(token <= 0)) 2584 return; 2585 2586 data = xa_erase(&opp_configs, token); 2587 if (WARN_ON(!data)) 2588 return; 2589 2590 _opp_clear_config(data); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); 2593 2594 static void devm_pm_opp_config_release(void *token) 2595 { 2596 dev_pm_opp_clear_config((unsigned long)token); 2597 } 2598 2599 /** 2600 * devm_pm_opp_set_config() - Set OPP configuration for the device. 2601 * @dev: Device for which configuration is being set. 2602 * @config: OPP configuration. 2603 * 2604 * This allows all device OPP configurations to be performed at once. 2605 * This is a resource-managed variant of dev_pm_opp_set_config(). 2606 * 2607 * Return: 0 on success and errorno otherwise. 2608 */ 2609 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2610 { 2611 int token = dev_pm_opp_set_config(dev, config); 2612 2613 if (token < 0) 2614 return token; 2615 2616 return devm_add_action_or_reset(dev, devm_pm_opp_config_release, 2617 (void *) ((unsigned long) token)); 2618 } 2619 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); 2620 2621 /** 2622 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2623 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2624 * @dst_table: Required OPP table of the @src_table. 2625 * @src_opp: OPP from the @src_table. 2626 * 2627 * This function returns the OPP (present in @dst_table) pointed out by the 2628 * "required-opps" property of the @src_opp (present in @src_table). 2629 * 2630 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2631 * use. 2632 * 2633 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2634 */ 2635 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2636 struct opp_table *dst_table, 2637 struct dev_pm_opp *src_opp) 2638 { 2639 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2640 int i; 2641 2642 if (!src_table || !dst_table || !src_opp || 2643 !src_table->required_opp_tables) 2644 return ERR_PTR(-EINVAL); 2645 2646 /* required-opps not fully initialized yet */ 2647 if (lazy_linking_pending(src_table)) 2648 return ERR_PTR(-EBUSY); 2649 2650 for (i = 0; i < src_table->required_opp_count; i++) { 2651 if (src_table->required_opp_tables[i] == dst_table) { 2652 mutex_lock(&src_table->lock); 2653 2654 list_for_each_entry(opp, &src_table->opp_list, node) { 2655 if (opp == src_opp) { 2656 dest_opp = opp->required_opps[i]; 2657 dev_pm_opp_get(dest_opp); 2658 break; 2659 } 2660 } 2661 2662 mutex_unlock(&src_table->lock); 2663 break; 2664 } 2665 } 2666 2667 if (IS_ERR(dest_opp)) { 2668 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2669 src_table, dst_table); 2670 } 2671 2672 return dest_opp; 2673 } 2674 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2675 2676 /** 2677 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2678 * @src_table: OPP table which has dst_table as one of its required OPP table. 2679 * @dst_table: Required OPP table of the src_table. 2680 * @pstate: Current performance state of the src_table. 2681 * 2682 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2683 * "required-opps" property of the OPP (present in @src_table) which has 2684 * performance state set to @pstate. 2685 * 2686 * Return: Zero or positive performance state on success, otherwise negative 2687 * value on errors. 2688 */ 2689 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2690 struct opp_table *dst_table, 2691 unsigned int pstate) 2692 { 2693 struct dev_pm_opp *opp; 2694 int dest_pstate = -EINVAL; 2695 int i; 2696 2697 /* 2698 * Normally the src_table will have the "required_opps" property set to 2699 * point to one of the OPPs in the dst_table, but in some cases the 2700 * genpd and its master have one to one mapping of performance states 2701 * and so none of them have the "required-opps" property set. Return the 2702 * pstate of the src_table as it is in such cases. 2703 */ 2704 if (!src_table || !src_table->required_opp_count) 2705 return pstate; 2706 2707 /* Both OPP tables must belong to genpds */ 2708 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) { 2709 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 2710 return -EINVAL; 2711 } 2712 2713 /* required-opps not fully initialized yet */ 2714 if (lazy_linking_pending(src_table)) 2715 return -EBUSY; 2716 2717 for (i = 0; i < src_table->required_opp_count; i++) { 2718 if (src_table->required_opp_tables[i]->np == dst_table->np) 2719 break; 2720 } 2721 2722 if (unlikely(i == src_table->required_opp_count)) { 2723 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2724 __func__, src_table, dst_table); 2725 return -EINVAL; 2726 } 2727 2728 mutex_lock(&src_table->lock); 2729 2730 list_for_each_entry(opp, &src_table->opp_list, node) { 2731 if (opp->level == pstate) { 2732 dest_pstate = opp->required_opps[i]->level; 2733 goto unlock; 2734 } 2735 } 2736 2737 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2738 dst_table); 2739 2740 unlock: 2741 mutex_unlock(&src_table->lock); 2742 2743 return dest_pstate; 2744 } 2745 2746 /** 2747 * dev_pm_opp_add() - Add an OPP table from a table definitions 2748 * @dev: device for which we do this operation 2749 * @freq: Frequency in Hz for this OPP 2750 * @u_volt: Voltage in uVolts for this OPP 2751 * 2752 * This function adds an opp definition to the opp table and returns status. 2753 * The opp is made available by default and it can be controlled using 2754 * dev_pm_opp_enable/disable functions. 2755 * 2756 * Return: 2757 * 0 On success OR 2758 * Duplicate OPPs (both freq and volt are same) and opp->available 2759 * -EEXIST Freq are same and volt are different OR 2760 * Duplicate OPPs (both freq and volt are same) and !opp->available 2761 * -ENOMEM Memory allocation failure 2762 */ 2763 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2764 { 2765 struct opp_table *opp_table; 2766 int ret; 2767 2768 opp_table = _add_opp_table(dev, true); 2769 if (IS_ERR(opp_table)) 2770 return PTR_ERR(opp_table); 2771 2772 /* Fix regulator count for dynamic OPPs */ 2773 opp_table->regulator_count = 1; 2774 2775 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2776 if (ret) 2777 dev_pm_opp_put_opp_table(opp_table); 2778 2779 return ret; 2780 } 2781 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2782 2783 /** 2784 * _opp_set_availability() - helper to set the availability of an opp 2785 * @dev: device for which we do this operation 2786 * @freq: OPP frequency to modify availability 2787 * @availability_req: availability status requested for this opp 2788 * 2789 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2790 * which is isolated here. 2791 * 2792 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2793 * copy operation, returns 0 if no modification was done OR modification was 2794 * successful. 2795 */ 2796 static int _opp_set_availability(struct device *dev, unsigned long freq, 2797 bool availability_req) 2798 { 2799 struct opp_table *opp_table; 2800 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2801 int r = 0; 2802 2803 /* Find the opp_table */ 2804 opp_table = _find_opp_table(dev); 2805 if (IS_ERR(opp_table)) { 2806 r = PTR_ERR(opp_table); 2807 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2808 return r; 2809 } 2810 2811 if (!assert_single_clk(opp_table)) { 2812 r = -EINVAL; 2813 goto put_table; 2814 } 2815 2816 mutex_lock(&opp_table->lock); 2817 2818 /* Do we have the frequency? */ 2819 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2820 if (tmp_opp->rates[0] == freq) { 2821 opp = tmp_opp; 2822 break; 2823 } 2824 } 2825 2826 if (IS_ERR(opp)) { 2827 r = PTR_ERR(opp); 2828 goto unlock; 2829 } 2830 2831 /* Is update really needed? */ 2832 if (opp->available == availability_req) 2833 goto unlock; 2834 2835 opp->available = availability_req; 2836 2837 dev_pm_opp_get(opp); 2838 mutex_unlock(&opp_table->lock); 2839 2840 /* Notify the change of the OPP availability */ 2841 if (availability_req) 2842 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2843 opp); 2844 else 2845 blocking_notifier_call_chain(&opp_table->head, 2846 OPP_EVENT_DISABLE, opp); 2847 2848 dev_pm_opp_put(opp); 2849 goto put_table; 2850 2851 unlock: 2852 mutex_unlock(&opp_table->lock); 2853 put_table: 2854 dev_pm_opp_put_opp_table(opp_table); 2855 return r; 2856 } 2857 2858 /** 2859 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2860 * @dev: device for which we do this operation 2861 * @freq: OPP frequency to adjust voltage of 2862 * @u_volt: new OPP target voltage 2863 * @u_volt_min: new OPP min voltage 2864 * @u_volt_max: new OPP max voltage 2865 * 2866 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2867 * copy operation, returns 0 if no modifcation was done OR modification was 2868 * successful. 2869 */ 2870 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2871 unsigned long u_volt, unsigned long u_volt_min, 2872 unsigned long u_volt_max) 2873 2874 { 2875 struct opp_table *opp_table; 2876 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2877 int r = 0; 2878 2879 /* Find the opp_table */ 2880 opp_table = _find_opp_table(dev); 2881 if (IS_ERR(opp_table)) { 2882 r = PTR_ERR(opp_table); 2883 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2884 return r; 2885 } 2886 2887 if (!assert_single_clk(opp_table)) { 2888 r = -EINVAL; 2889 goto put_table; 2890 } 2891 2892 mutex_lock(&opp_table->lock); 2893 2894 /* Do we have the frequency? */ 2895 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2896 if (tmp_opp->rates[0] == freq) { 2897 opp = tmp_opp; 2898 break; 2899 } 2900 } 2901 2902 if (IS_ERR(opp)) { 2903 r = PTR_ERR(opp); 2904 goto adjust_unlock; 2905 } 2906 2907 /* Is update really needed? */ 2908 if (opp->supplies->u_volt == u_volt) 2909 goto adjust_unlock; 2910 2911 opp->supplies->u_volt = u_volt; 2912 opp->supplies->u_volt_min = u_volt_min; 2913 opp->supplies->u_volt_max = u_volt_max; 2914 2915 dev_pm_opp_get(opp); 2916 mutex_unlock(&opp_table->lock); 2917 2918 /* Notify the voltage change of the OPP */ 2919 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2920 opp); 2921 2922 dev_pm_opp_put(opp); 2923 goto put_table; 2924 2925 adjust_unlock: 2926 mutex_unlock(&opp_table->lock); 2927 put_table: 2928 dev_pm_opp_put_opp_table(opp_table); 2929 return r; 2930 } 2931 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2932 2933 /** 2934 * dev_pm_opp_enable() - Enable a specific OPP 2935 * @dev: device for which we do this operation 2936 * @freq: OPP frequency to enable 2937 * 2938 * Enables a provided opp. If the operation is valid, this returns 0, else the 2939 * corresponding error value. It is meant to be used for users an OPP available 2940 * after being temporarily made unavailable with dev_pm_opp_disable. 2941 * 2942 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2943 * copy operation, returns 0 if no modification was done OR modification was 2944 * successful. 2945 */ 2946 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2947 { 2948 return _opp_set_availability(dev, freq, true); 2949 } 2950 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2951 2952 /** 2953 * dev_pm_opp_disable() - Disable a specific OPP 2954 * @dev: device for which we do this operation 2955 * @freq: OPP frequency to disable 2956 * 2957 * Disables a provided opp. If the operation is valid, this returns 2958 * 0, else the corresponding error value. It is meant to be a temporary 2959 * control by users to make this OPP not available until the circumstances are 2960 * right to make it available again (with a call to dev_pm_opp_enable). 2961 * 2962 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2963 * copy operation, returns 0 if no modification was done OR modification was 2964 * successful. 2965 */ 2966 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2967 { 2968 return _opp_set_availability(dev, freq, false); 2969 } 2970 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2971 2972 /** 2973 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2974 * @dev: Device for which notifier needs to be registered 2975 * @nb: Notifier block to be registered 2976 * 2977 * Return: 0 on success or a negative error value. 2978 */ 2979 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2980 { 2981 struct opp_table *opp_table; 2982 int ret; 2983 2984 opp_table = _find_opp_table(dev); 2985 if (IS_ERR(opp_table)) 2986 return PTR_ERR(opp_table); 2987 2988 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2989 2990 dev_pm_opp_put_opp_table(opp_table); 2991 2992 return ret; 2993 } 2994 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2995 2996 /** 2997 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2998 * @dev: Device for which notifier needs to be unregistered 2999 * @nb: Notifier block to be unregistered 3000 * 3001 * Return: 0 on success or a negative error value. 3002 */ 3003 int dev_pm_opp_unregister_notifier(struct device *dev, 3004 struct notifier_block *nb) 3005 { 3006 struct opp_table *opp_table; 3007 int ret; 3008 3009 opp_table = _find_opp_table(dev); 3010 if (IS_ERR(opp_table)) 3011 return PTR_ERR(opp_table); 3012 3013 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 3014 3015 dev_pm_opp_put_opp_table(opp_table); 3016 3017 return ret; 3018 } 3019 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 3020 3021 /** 3022 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 3023 * @dev: device pointer used to lookup OPP table. 3024 * 3025 * Free both OPPs created using static entries present in DT and the 3026 * dynamically added entries. 3027 */ 3028 void dev_pm_opp_remove_table(struct device *dev) 3029 { 3030 struct opp_table *opp_table; 3031 3032 /* Check for existing table for 'dev' */ 3033 opp_table = _find_opp_table(dev); 3034 if (IS_ERR(opp_table)) { 3035 int error = PTR_ERR(opp_table); 3036 3037 if (error != -ENODEV) 3038 WARN(1, "%s: opp_table: %d\n", 3039 IS_ERR_OR_NULL(dev) ? 3040 "Invalid device" : dev_name(dev), 3041 error); 3042 return; 3043 } 3044 3045 /* 3046 * Drop the extra reference only if the OPP table was successfully added 3047 * with dev_pm_opp_of_add_table() earlier. 3048 **/ 3049 if (_opp_remove_all_static(opp_table)) 3050 dev_pm_opp_put_opp_table(opp_table); 3051 3052 /* Drop reference taken by _find_opp_table() */ 3053 dev_pm_opp_put_opp_table(opp_table); 3054 } 3055 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 3056 3057 /** 3058 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 3059 * @dev: device for which we do this operation 3060 * 3061 * Sync voltage state of the OPP table regulators. 3062 * 3063 * Return: 0 on success or a negative error value. 3064 */ 3065 int dev_pm_opp_sync_regulators(struct device *dev) 3066 { 3067 struct opp_table *opp_table; 3068 struct regulator *reg; 3069 int i, ret = 0; 3070 3071 /* Device may not have OPP table */ 3072 opp_table = _find_opp_table(dev); 3073 if (IS_ERR(opp_table)) 3074 return 0; 3075 3076 /* Regulator may not be required for the device */ 3077 if (unlikely(!opp_table->regulators)) 3078 goto put_table; 3079 3080 /* Nothing to sync if voltage wasn't changed */ 3081 if (!opp_table->enabled) 3082 goto put_table; 3083 3084 for (i = 0; i < opp_table->regulator_count; i++) { 3085 reg = opp_table->regulators[i]; 3086 ret = regulator_sync_voltage(reg); 3087 if (ret) 3088 break; 3089 } 3090 put_table: 3091 /* Drop reference taken by _find_opp_table() */ 3092 dev_pm_opp_put_opp_table(opp_table); 3093 3094 return ret; 3095 } 3096 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 3097