1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/export.h> 18 #include <linux/pm_domain.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include <linux/xarray.h> 22 23 #include "opp.h" 24 25 /* 26 * The root of the list of all opp-tables. All opp_table structures branch off 27 * from here, with each opp_table containing the list of opps it supports in 28 * various states of availability. 29 */ 30 LIST_HEAD(opp_tables); 31 32 /* OPP tables with uninitialized required OPPs */ 33 LIST_HEAD(lazy_opp_tables); 34 35 /* Lock to allow exclusive modification to the device and opp lists */ 36 DEFINE_MUTEX(opp_table_lock); 37 /* Flag indicating that opp_tables list is being updated at the moment */ 38 static bool opp_tables_busy; 39 40 /* OPP ID allocator */ 41 static DEFINE_XARRAY_ALLOC1(opp_configs); 42 43 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 44 { 45 struct opp_device *opp_dev; 46 bool found = false; 47 48 mutex_lock(&opp_table->lock); 49 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 50 if (opp_dev->dev == dev) { 51 found = true; 52 break; 53 } 54 55 mutex_unlock(&opp_table->lock); 56 return found; 57 } 58 59 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 60 { 61 struct opp_table *opp_table; 62 63 list_for_each_entry(opp_table, &opp_tables, node) { 64 if (_find_opp_dev(dev, opp_table)) { 65 _get_opp_table_kref(opp_table); 66 return opp_table; 67 } 68 } 69 70 return ERR_PTR(-ENODEV); 71 } 72 73 /** 74 * _find_opp_table() - find opp_table struct using device pointer 75 * @dev: device pointer used to lookup OPP table 76 * 77 * Search OPP table for one containing matching device. 78 * 79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 80 * -EINVAL based on type of error. 81 * 82 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 83 */ 84 struct opp_table *_find_opp_table(struct device *dev) 85 { 86 struct opp_table *opp_table; 87 88 if (IS_ERR_OR_NULL(dev)) { 89 pr_err("%s: Invalid parameters\n", __func__); 90 return ERR_PTR(-EINVAL); 91 } 92 93 mutex_lock(&opp_table_lock); 94 opp_table = _find_opp_table_unlocked(dev); 95 mutex_unlock(&opp_table_lock); 96 97 return opp_table; 98 } 99 100 /* 101 * Returns true if multiple clocks aren't there, else returns false with WARN. 102 * 103 * We don't force clk_count == 1 here as there are users who don't have a clock 104 * representation in the OPP table and manage the clock configuration themselves 105 * in an platform specific way. 106 */ 107 static bool assert_single_clk(struct opp_table *opp_table) 108 { 109 return !WARN_ON(opp_table->clk_count > 1); 110 } 111 112 /** 113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 114 * @opp: opp for which voltage has to be returned for 115 * 116 * Return: voltage in micro volt corresponding to the opp, else 117 * return 0 118 * 119 * This is useful only for devices with single power supply. 120 */ 121 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 122 { 123 if (IS_ERR_OR_NULL(opp)) { 124 pr_err("%s: Invalid parameters\n", __func__); 125 return 0; 126 } 127 128 return opp->supplies[0].u_volt; 129 } 130 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 131 132 /** 133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp 134 * @opp: opp for which voltage has to be returned for 135 * @supplies: Placeholder for copying the supply information. 136 * 137 * Return: negative error number on failure, 0 otherwise on success after 138 * setting @supplies. 139 * 140 * This can be used for devices with any number of power supplies. The caller 141 * must ensure the @supplies array must contain space for each regulator. 142 */ 143 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, 144 struct dev_pm_opp_supply *supplies) 145 { 146 if (IS_ERR_OR_NULL(opp) || !supplies) { 147 pr_err("%s: Invalid parameters\n", __func__); 148 return -EINVAL; 149 } 150 151 memcpy(supplies, opp->supplies, 152 sizeof(*supplies) * opp->opp_table->regulator_count); 153 return 0; 154 } 155 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); 156 157 /** 158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 159 * @opp: opp for which power has to be returned for 160 * 161 * Return: power in micro watt corresponding to the opp, else 162 * return 0 163 * 164 * This is useful only for devices with single power supply. 165 */ 166 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 167 { 168 unsigned long opp_power = 0; 169 int i; 170 171 if (IS_ERR_OR_NULL(opp)) { 172 pr_err("%s: Invalid parameters\n", __func__); 173 return 0; 174 } 175 for (i = 0; i < opp->opp_table->regulator_count; i++) 176 opp_power += opp->supplies[i].u_watt; 177 178 return opp_power; 179 } 180 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 181 182 /** 183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 184 * @opp: opp for which frequency has to be returned for 185 * 186 * Return: frequency in hertz corresponding to the opp, else 187 * return 0 188 */ 189 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 190 { 191 if (IS_ERR_OR_NULL(opp)) { 192 pr_err("%s: Invalid parameters\n", __func__); 193 return 0; 194 } 195 196 if (!assert_single_clk(opp->opp_table)) 197 return 0; 198 199 return opp->rates[0]; 200 } 201 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 202 203 /** 204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 205 * @opp: opp for which level value has to be returned for 206 * 207 * Return: level read from device tree corresponding to the opp, else 208 * return 0. 209 */ 210 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 211 { 212 if (IS_ERR_OR_NULL(opp) || !opp->available) { 213 pr_err("%s: Invalid parameters\n", __func__); 214 return 0; 215 } 216 217 return opp->level; 218 } 219 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 220 221 /** 222 * dev_pm_opp_get_required_pstate() - Gets the required performance state 223 * corresponding to an available opp 224 * @opp: opp for which performance state has to be returned for 225 * @index: index of the required opp 226 * 227 * Return: performance state read from device tree corresponding to the 228 * required opp, else return 0. 229 */ 230 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 231 unsigned int index) 232 { 233 if (IS_ERR_OR_NULL(opp) || !opp->available || 234 index >= opp->opp_table->required_opp_count) { 235 pr_err("%s: Invalid parameters\n", __func__); 236 return 0; 237 } 238 239 /* required-opps not fully initialized yet */ 240 if (lazy_linking_pending(opp->opp_table)) 241 return 0; 242 243 return opp->required_opps[index]->pstate; 244 } 245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 246 247 /** 248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 249 * @opp: opp for which turbo mode is being verified 250 * 251 * Turbo OPPs are not for normal use, and can be enabled (under certain 252 * conditions) for short duration of times to finish high throughput work 253 * quickly. Running on them for longer times may overheat the chip. 254 * 255 * Return: true if opp is turbo opp, else false. 256 */ 257 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 258 { 259 if (IS_ERR_OR_NULL(opp) || !opp->available) { 260 pr_err("%s: Invalid parameters\n", __func__); 261 return false; 262 } 263 264 return opp->turbo; 265 } 266 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 267 268 /** 269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 270 * @dev: device for which we do this operation 271 * 272 * Return: This function returns the max clock latency in nanoseconds. 273 */ 274 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 275 { 276 struct opp_table *opp_table; 277 unsigned long clock_latency_ns; 278 279 opp_table = _find_opp_table(dev); 280 if (IS_ERR(opp_table)) 281 return 0; 282 283 clock_latency_ns = opp_table->clock_latency_ns_max; 284 285 dev_pm_opp_put_opp_table(opp_table); 286 287 return clock_latency_ns; 288 } 289 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 290 291 /** 292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 293 * @dev: device for which we do this operation 294 * 295 * Return: This function returns the max voltage latency in nanoseconds. 296 */ 297 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 298 { 299 struct opp_table *opp_table; 300 struct dev_pm_opp *opp; 301 struct regulator *reg; 302 unsigned long latency_ns = 0; 303 int ret, i, count; 304 struct { 305 unsigned long min; 306 unsigned long max; 307 } *uV; 308 309 opp_table = _find_opp_table(dev); 310 if (IS_ERR(opp_table)) 311 return 0; 312 313 /* Regulator may not be required for the device */ 314 if (!opp_table->regulators) 315 goto put_opp_table; 316 317 count = opp_table->regulator_count; 318 319 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 320 if (!uV) 321 goto put_opp_table; 322 323 mutex_lock(&opp_table->lock); 324 325 for (i = 0; i < count; i++) { 326 uV[i].min = ~0; 327 uV[i].max = 0; 328 329 list_for_each_entry(opp, &opp_table->opp_list, node) { 330 if (!opp->available) 331 continue; 332 333 if (opp->supplies[i].u_volt_min < uV[i].min) 334 uV[i].min = opp->supplies[i].u_volt_min; 335 if (opp->supplies[i].u_volt_max > uV[i].max) 336 uV[i].max = opp->supplies[i].u_volt_max; 337 } 338 } 339 340 mutex_unlock(&opp_table->lock); 341 342 /* 343 * The caller needs to ensure that opp_table (and hence the regulator) 344 * isn't freed, while we are executing this routine. 345 */ 346 for (i = 0; i < count; i++) { 347 reg = opp_table->regulators[i]; 348 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 349 if (ret > 0) 350 latency_ns += ret * 1000; 351 } 352 353 kfree(uV); 354 put_opp_table: 355 dev_pm_opp_put_opp_table(opp_table); 356 357 return latency_ns; 358 } 359 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 360 361 /** 362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 363 * nanoseconds 364 * @dev: device for which we do this operation 365 * 366 * Return: This function returns the max transition latency, in nanoseconds, to 367 * switch from one OPP to other. 368 */ 369 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 370 { 371 return dev_pm_opp_get_max_volt_latency(dev) + 372 dev_pm_opp_get_max_clock_latency(dev); 373 } 374 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 375 376 /** 377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 378 * @dev: device for which we do this operation 379 * 380 * Return: This function returns the frequency of the OPP marked as suspend_opp 381 * if one is available, else returns 0; 382 */ 383 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 384 { 385 struct opp_table *opp_table; 386 unsigned long freq = 0; 387 388 opp_table = _find_opp_table(dev); 389 if (IS_ERR(opp_table)) 390 return 0; 391 392 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 393 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 394 395 dev_pm_opp_put_opp_table(opp_table); 396 397 return freq; 398 } 399 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 400 401 int _get_opp_count(struct opp_table *opp_table) 402 { 403 struct dev_pm_opp *opp; 404 int count = 0; 405 406 mutex_lock(&opp_table->lock); 407 408 list_for_each_entry(opp, &opp_table->opp_list, node) { 409 if (opp->available) 410 count++; 411 } 412 413 mutex_unlock(&opp_table->lock); 414 415 return count; 416 } 417 418 /** 419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 420 * @dev: device for which we do this operation 421 * 422 * Return: This function returns the number of available opps if there are any, 423 * else returns 0 if none or the corresponding error value. 424 */ 425 int dev_pm_opp_get_opp_count(struct device *dev) 426 { 427 struct opp_table *opp_table; 428 int count; 429 430 opp_table = _find_opp_table(dev); 431 if (IS_ERR(opp_table)) { 432 count = PTR_ERR(opp_table); 433 dev_dbg(dev, "%s: OPP table not found (%d)\n", 434 __func__, count); 435 return count; 436 } 437 438 count = _get_opp_count(opp_table); 439 dev_pm_opp_put_opp_table(opp_table); 440 441 return count; 442 } 443 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 444 445 /* Helpers to read keys */ 446 static unsigned long _read_freq(struct dev_pm_opp *opp, int index) 447 { 448 return opp->rates[0]; 449 } 450 451 static unsigned long _read_level(struct dev_pm_opp *opp, int index) 452 { 453 return opp->level; 454 } 455 456 static unsigned long _read_bw(struct dev_pm_opp *opp, int index) 457 { 458 return opp->bandwidth[index].peak; 459 } 460 461 /* Generic comparison helpers */ 462 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 463 unsigned long opp_key, unsigned long key) 464 { 465 if (opp_key == key) { 466 *opp = temp_opp; 467 return true; 468 } 469 470 return false; 471 } 472 473 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 474 unsigned long opp_key, unsigned long key) 475 { 476 if (opp_key >= key) { 477 *opp = temp_opp; 478 return true; 479 } 480 481 return false; 482 } 483 484 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 485 unsigned long opp_key, unsigned long key) 486 { 487 if (opp_key > key) 488 return true; 489 490 *opp = temp_opp; 491 return false; 492 } 493 494 /* Generic key finding helpers */ 495 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, 496 unsigned long *key, int index, bool available, 497 unsigned long (*read)(struct dev_pm_opp *opp, int index), 498 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 499 unsigned long opp_key, unsigned long key), 500 bool (*assert)(struct opp_table *opp_table)) 501 { 502 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 503 504 /* Assert that the requirement is met */ 505 if (assert && !assert(opp_table)) 506 return ERR_PTR(-EINVAL); 507 508 mutex_lock(&opp_table->lock); 509 510 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 511 if (temp_opp->available == available) { 512 if (compare(&opp, temp_opp, read(temp_opp, index), *key)) 513 break; 514 } 515 } 516 517 /* Increment the reference count of OPP */ 518 if (!IS_ERR(opp)) { 519 *key = read(opp, index); 520 dev_pm_opp_get(opp); 521 } 522 523 mutex_unlock(&opp_table->lock); 524 525 return opp; 526 } 527 528 static struct dev_pm_opp * 529 _find_key(struct device *dev, unsigned long *key, int index, bool available, 530 unsigned long (*read)(struct dev_pm_opp *opp, int index), 531 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 532 unsigned long opp_key, unsigned long key), 533 bool (*assert)(struct opp_table *opp_table)) 534 { 535 struct opp_table *opp_table; 536 struct dev_pm_opp *opp; 537 538 opp_table = _find_opp_table(dev); 539 if (IS_ERR(opp_table)) { 540 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 541 PTR_ERR(opp_table)); 542 return ERR_CAST(opp_table); 543 } 544 545 opp = _opp_table_find_key(opp_table, key, index, available, read, 546 compare, assert); 547 548 dev_pm_opp_put_opp_table(opp_table); 549 550 return opp; 551 } 552 553 static struct dev_pm_opp *_find_key_exact(struct device *dev, 554 unsigned long key, int index, bool available, 555 unsigned long (*read)(struct dev_pm_opp *opp, int index), 556 bool (*assert)(struct opp_table *opp_table)) 557 { 558 /* 559 * The value of key will be updated here, but will be ignored as the 560 * caller doesn't need it. 561 */ 562 return _find_key(dev, &key, index, available, read, _compare_exact, 563 assert); 564 } 565 566 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, 567 unsigned long *key, int index, bool available, 568 unsigned long (*read)(struct dev_pm_opp *opp, int index), 569 bool (*assert)(struct opp_table *opp_table)) 570 { 571 return _opp_table_find_key(opp_table, key, index, available, read, 572 _compare_ceil, assert); 573 } 574 575 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, 576 int index, bool available, 577 unsigned long (*read)(struct dev_pm_opp *opp, int index), 578 bool (*assert)(struct opp_table *opp_table)) 579 { 580 return _find_key(dev, key, index, available, read, _compare_ceil, 581 assert); 582 } 583 584 static struct dev_pm_opp *_find_key_floor(struct device *dev, 585 unsigned long *key, int index, bool available, 586 unsigned long (*read)(struct dev_pm_opp *opp, int index), 587 bool (*assert)(struct opp_table *opp_table)) 588 { 589 return _find_key(dev, key, index, available, read, _compare_floor, 590 assert); 591 } 592 593 /** 594 * dev_pm_opp_find_freq_exact() - search for an exact frequency 595 * @dev: device for which we do this operation 596 * @freq: frequency to search for 597 * @available: true/false - match for available opp 598 * 599 * Return: Searches for exact match in the opp table and returns pointer to the 600 * matching opp if found, else returns ERR_PTR in case of error and should 601 * be handled using IS_ERR. Error return values can be: 602 * EINVAL: for bad pointer 603 * ERANGE: no match found for search 604 * ENODEV: if device not found in list of registered devices 605 * 606 * Note: available is a modifier for the search. if available=true, then the 607 * match is for exact matching frequency and is available in the stored OPP 608 * table. if false, the match is for exact frequency which is not available. 609 * 610 * This provides a mechanism to enable an opp which is not available currently 611 * or the opposite as well. 612 * 613 * The callers are required to call dev_pm_opp_put() for the returned OPP after 614 * use. 615 */ 616 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 617 unsigned long freq, bool available) 618 { 619 return _find_key_exact(dev, freq, 0, available, _read_freq, 620 assert_single_clk); 621 } 622 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 623 624 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 625 unsigned long *freq) 626 { 627 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, 628 assert_single_clk); 629 } 630 631 /** 632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 633 * @dev: device for which we do this operation 634 * @freq: Start frequency 635 * 636 * Search for the matching ceil *available* OPP from a starting freq 637 * for a device. 638 * 639 * Return: matching *opp and refreshes *freq accordingly, else returns 640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 641 * values can be: 642 * EINVAL: for bad pointer 643 * ERANGE: no match found for search 644 * ENODEV: if device not found in list of registered devices 645 * 646 * The callers are required to call dev_pm_opp_put() for the returned OPP after 647 * use. 648 */ 649 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 650 unsigned long *freq) 651 { 652 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); 653 } 654 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 655 656 /** 657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 658 * @dev: device for which we do this operation 659 * @freq: Start frequency 660 * 661 * Search for the matching floor *available* OPP from a starting freq 662 * for a device. 663 * 664 * Return: matching *opp and refreshes *freq accordingly, else returns 665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 666 * values can be: 667 * EINVAL: for bad pointer 668 * ERANGE: no match found for search 669 * ENODEV: if device not found in list of registered devices 670 * 671 * The callers are required to call dev_pm_opp_put() for the returned OPP after 672 * use. 673 */ 674 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 675 unsigned long *freq) 676 { 677 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); 678 } 679 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 680 681 /** 682 * dev_pm_opp_find_level_exact() - search for an exact level 683 * @dev: device for which we do this operation 684 * @level: level to search for 685 * 686 * Return: Searches for exact match in the opp table and returns pointer to the 687 * matching opp if found, else returns ERR_PTR in case of error and should 688 * be handled using IS_ERR. Error return values can be: 689 * EINVAL: for bad pointer 690 * ERANGE: no match found for search 691 * ENODEV: if device not found in list of registered devices 692 * 693 * The callers are required to call dev_pm_opp_put() for the returned OPP after 694 * use. 695 */ 696 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 697 unsigned int level) 698 { 699 return _find_key_exact(dev, level, 0, true, _read_level, NULL); 700 } 701 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 702 703 /** 704 * dev_pm_opp_find_level_ceil() - search for an rounded up level 705 * @dev: device for which we do this operation 706 * @level: level to search for 707 * 708 * Return: Searches for rounded up match in the opp table and returns pointer 709 * to the matching opp if found, else returns ERR_PTR in case of error and 710 * should be handled using IS_ERR. Error return values can be: 711 * EINVAL: for bad pointer 712 * ERANGE: no match found for search 713 * ENODEV: if device not found in list of registered devices 714 * 715 * The callers are required to call dev_pm_opp_put() for the returned OPP after 716 * use. 717 */ 718 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 719 unsigned int *level) 720 { 721 unsigned long temp = *level; 722 struct dev_pm_opp *opp; 723 724 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); 725 *level = temp; 726 return opp; 727 } 728 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 729 730 /** 731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth 732 * @dev: device for which we do this operation 733 * @bw: start bandwidth 734 * @index: which bandwidth to compare, in case of OPPs with several values 735 * 736 * Search for the matching floor *available* OPP from a starting bandwidth 737 * for a device. 738 * 739 * Return: matching *opp and refreshes *bw accordingly, else returns 740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 741 * values can be: 742 * EINVAL: for bad pointer 743 * ERANGE: no match found for search 744 * ENODEV: if device not found in list of registered devices 745 * 746 * The callers are required to call dev_pm_opp_put() for the returned OPP after 747 * use. 748 */ 749 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, 750 int index) 751 { 752 unsigned long temp = *bw; 753 struct dev_pm_opp *opp; 754 755 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL); 756 *bw = temp; 757 return opp; 758 } 759 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); 760 761 /** 762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth 763 * @dev: device for which we do this operation 764 * @bw: start bandwidth 765 * @index: which bandwidth to compare, in case of OPPs with several values 766 * 767 * Search for the matching floor *available* OPP from a starting bandwidth 768 * for a device. 769 * 770 * Return: matching *opp and refreshes *bw accordingly, else returns 771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 772 * values can be: 773 * EINVAL: for bad pointer 774 * ERANGE: no match found for search 775 * ENODEV: if device not found in list of registered devices 776 * 777 * The callers are required to call dev_pm_opp_put() for the returned OPP after 778 * use. 779 */ 780 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, 781 unsigned int *bw, int index) 782 { 783 unsigned long temp = *bw; 784 struct dev_pm_opp *opp; 785 786 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL); 787 *bw = temp; 788 return opp; 789 } 790 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); 791 792 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 793 struct dev_pm_opp_supply *supply) 794 { 795 int ret; 796 797 /* Regulator not available for device */ 798 if (IS_ERR(reg)) { 799 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 800 PTR_ERR(reg)); 801 return 0; 802 } 803 804 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 805 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 806 807 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 808 supply->u_volt, supply->u_volt_max); 809 if (ret) 810 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 811 __func__, supply->u_volt_min, supply->u_volt, 812 supply->u_volt_max, ret); 813 814 return ret; 815 } 816 817 static int 818 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, 819 struct dev_pm_opp *opp, void *data, bool scaling_down) 820 { 821 unsigned long *target = data; 822 unsigned long freq; 823 int ret; 824 825 /* One of target and opp must be available */ 826 if (target) { 827 freq = *target; 828 } else if (opp) { 829 freq = opp->rates[0]; 830 } else { 831 WARN_ON(1); 832 return -EINVAL; 833 } 834 835 ret = clk_set_rate(opp_table->clk, freq); 836 if (ret) { 837 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 838 ret); 839 } else { 840 opp_table->rate_clk_single = freq; 841 } 842 843 return ret; 844 } 845 846 /* 847 * Simple implementation for configuring multiple clocks. Configure clocks in 848 * the order in which they are present in the array while scaling up. 849 */ 850 int dev_pm_opp_config_clks_simple(struct device *dev, 851 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, 852 bool scaling_down) 853 { 854 int ret, i; 855 856 if (scaling_down) { 857 for (i = opp_table->clk_count - 1; i >= 0; i--) { 858 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 859 if (ret) { 860 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 861 ret); 862 return ret; 863 } 864 } 865 } else { 866 for (i = 0; i < opp_table->clk_count; i++) { 867 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 868 if (ret) { 869 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 870 ret); 871 return ret; 872 } 873 } 874 } 875 876 return 0; 877 } 878 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); 879 880 static int _opp_config_regulator_single(struct device *dev, 881 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, 882 struct regulator **regulators, unsigned int count) 883 { 884 struct regulator *reg = regulators[0]; 885 int ret; 886 887 /* This function only supports single regulator per device */ 888 if (WARN_ON(count > 1)) { 889 dev_err(dev, "multiple regulators are not supported\n"); 890 return -EINVAL; 891 } 892 893 ret = _set_opp_voltage(dev, reg, new_opp->supplies); 894 if (ret) 895 return ret; 896 897 /* 898 * Enable the regulator after setting its voltages, otherwise it breaks 899 * some boot-enabled regulators. 900 */ 901 if (unlikely(!new_opp->opp_table->enabled)) { 902 ret = regulator_enable(reg); 903 if (ret < 0) 904 dev_warn(dev, "Failed to enable regulator: %d", ret); 905 } 906 907 return 0; 908 } 909 910 static int _set_opp_bw(const struct opp_table *opp_table, 911 struct dev_pm_opp *opp, struct device *dev) 912 { 913 u32 avg, peak; 914 int i, ret; 915 916 if (!opp_table->paths) 917 return 0; 918 919 for (i = 0; i < opp_table->path_count; i++) { 920 if (!opp) { 921 avg = 0; 922 peak = 0; 923 } else { 924 avg = opp->bandwidth[i].avg; 925 peak = opp->bandwidth[i].peak; 926 } 927 ret = icc_set_bw(opp_table->paths[i], avg, peak); 928 if (ret) { 929 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 930 opp ? "set" : "remove", i, ret); 931 return ret; 932 } 933 } 934 935 return 0; 936 } 937 938 static int _set_performance_state(struct device *dev, struct device *pd_dev, 939 struct dev_pm_opp *opp, int i) 940 { 941 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 942 int ret; 943 944 if (!pd_dev) 945 return 0; 946 947 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 948 if (ret) { 949 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 950 dev_name(pd_dev), pstate, ret); 951 } 952 953 return ret; 954 } 955 956 static int _opp_set_required_opps_generic(struct device *dev, 957 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down) 958 { 959 dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n"); 960 return -ENOENT; 961 } 962 963 static int _opp_set_required_opps_genpd(struct device *dev, 964 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down) 965 { 966 struct device **genpd_virt_devs = 967 opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev; 968 int i, ret = 0; 969 970 /* 971 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 972 * after it is freed from another thread. 973 */ 974 mutex_lock(&opp_table->genpd_virt_dev_lock); 975 976 /* Scaling up? Set required OPPs in normal order, else reverse */ 977 if (!scaling_down) { 978 for (i = 0; i < opp_table->required_opp_count; i++) { 979 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i); 980 if (ret) 981 break; 982 } 983 } else { 984 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 985 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i); 986 if (ret) 987 break; 988 } 989 } 990 991 mutex_unlock(&opp_table->genpd_virt_dev_lock); 992 993 return ret; 994 } 995 996 /* This is only called for PM domain for now */ 997 static int _set_required_opps(struct device *dev, struct opp_table *opp_table, 998 struct dev_pm_opp *opp, bool up) 999 { 1000 /* required-opps not fully initialized yet */ 1001 if (lazy_linking_pending(opp_table)) 1002 return -EBUSY; 1003 1004 if (opp_table->set_required_opps) 1005 return opp_table->set_required_opps(dev, opp_table, opp, up); 1006 1007 return 0; 1008 } 1009 1010 /* Update set_required_opps handler */ 1011 void _update_set_required_opps(struct opp_table *opp_table) 1012 { 1013 /* Already set */ 1014 if (opp_table->set_required_opps) 1015 return; 1016 1017 /* All required OPPs will belong to genpd or none */ 1018 if (opp_table->required_opp_tables[0]->is_genpd) 1019 opp_table->set_required_opps = _opp_set_required_opps_genpd; 1020 else 1021 opp_table->set_required_opps = _opp_set_required_opps_generic; 1022 } 1023 1024 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 1025 { 1026 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 1027 unsigned long freq; 1028 1029 if (!IS_ERR(opp_table->clk)) { 1030 freq = clk_get_rate(opp_table->clk); 1031 opp = _find_freq_ceil(opp_table, &freq); 1032 } 1033 1034 /* 1035 * Unable to find the current OPP ? Pick the first from the list since 1036 * it is in ascending order, otherwise rest of the code will need to 1037 * make special checks to validate current_opp. 1038 */ 1039 if (IS_ERR(opp)) { 1040 mutex_lock(&opp_table->lock); 1041 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 1042 dev_pm_opp_get(opp); 1043 mutex_unlock(&opp_table->lock); 1044 } 1045 1046 opp_table->current_opp = opp; 1047 } 1048 1049 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 1050 { 1051 int ret; 1052 1053 if (!opp_table->enabled) 1054 return 0; 1055 1056 /* 1057 * Some drivers need to support cases where some platforms may 1058 * have OPP table for the device, while others don't and 1059 * opp_set_rate() just needs to behave like clk_set_rate(). 1060 */ 1061 if (!_get_opp_count(opp_table)) 1062 return 0; 1063 1064 ret = _set_opp_bw(opp_table, NULL, dev); 1065 if (ret) 1066 return ret; 1067 1068 if (opp_table->regulators) 1069 regulator_disable(opp_table->regulators[0]); 1070 1071 ret = _set_required_opps(dev, opp_table, NULL, false); 1072 1073 opp_table->enabled = false; 1074 return ret; 1075 } 1076 1077 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1078 struct dev_pm_opp *opp, void *clk_data, bool forced) 1079 { 1080 struct dev_pm_opp *old_opp; 1081 int scaling_down, ret; 1082 1083 if (unlikely(!opp)) 1084 return _disable_opp_table(dev, opp_table); 1085 1086 /* Find the currently set OPP if we don't know already */ 1087 if (unlikely(!opp_table->current_opp)) 1088 _find_current_opp(dev, opp_table); 1089 1090 old_opp = opp_table->current_opp; 1091 1092 /* Return early if nothing to do */ 1093 if (!forced && old_opp == opp && opp_table->enabled) { 1094 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__); 1095 return 0; 1096 } 1097 1098 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1099 __func__, old_opp->rates[0], opp->rates[0], old_opp->level, 1100 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1101 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1102 1103 scaling_down = _opp_compare_key(opp_table, old_opp, opp); 1104 if (scaling_down == -1) 1105 scaling_down = 0; 1106 1107 /* Scaling up? Configure required OPPs before frequency */ 1108 if (!scaling_down) { 1109 ret = _set_required_opps(dev, opp_table, opp, true); 1110 if (ret) { 1111 dev_err(dev, "Failed to set required opps: %d\n", ret); 1112 return ret; 1113 } 1114 1115 ret = _set_opp_bw(opp_table, opp, dev); 1116 if (ret) { 1117 dev_err(dev, "Failed to set bw: %d\n", ret); 1118 return ret; 1119 } 1120 1121 if (opp_table->config_regulators) { 1122 ret = opp_table->config_regulators(dev, old_opp, opp, 1123 opp_table->regulators, 1124 opp_table->regulator_count); 1125 if (ret) { 1126 dev_err(dev, "Failed to set regulator voltages: %d\n", 1127 ret); 1128 return ret; 1129 } 1130 } 1131 } 1132 1133 if (opp_table->config_clks) { 1134 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); 1135 if (ret) 1136 return ret; 1137 } 1138 1139 /* Scaling down? Configure required OPPs after frequency */ 1140 if (scaling_down) { 1141 if (opp_table->config_regulators) { 1142 ret = opp_table->config_regulators(dev, old_opp, opp, 1143 opp_table->regulators, 1144 opp_table->regulator_count); 1145 if (ret) { 1146 dev_err(dev, "Failed to set regulator voltages: %d\n", 1147 ret); 1148 return ret; 1149 } 1150 } 1151 1152 ret = _set_opp_bw(opp_table, opp, dev); 1153 if (ret) { 1154 dev_err(dev, "Failed to set bw: %d\n", ret); 1155 return ret; 1156 } 1157 1158 ret = _set_required_opps(dev, opp_table, opp, false); 1159 if (ret) { 1160 dev_err(dev, "Failed to set required opps: %d\n", ret); 1161 return ret; 1162 } 1163 } 1164 1165 opp_table->enabled = true; 1166 dev_pm_opp_put(old_opp); 1167 1168 /* Make sure current_opp doesn't get freed */ 1169 dev_pm_opp_get(opp); 1170 opp_table->current_opp = opp; 1171 1172 return ret; 1173 } 1174 1175 /** 1176 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1177 * @dev: device for which we do this operation 1178 * @target_freq: frequency to achieve 1179 * 1180 * This configures the power-supplies to the levels specified by the OPP 1181 * corresponding to the target_freq, and programs the clock to a value <= 1182 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1183 * provided by the opp, should have already rounded to the target OPP's 1184 * frequency. 1185 */ 1186 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1187 { 1188 struct opp_table *opp_table; 1189 unsigned long freq = 0, temp_freq; 1190 struct dev_pm_opp *opp = NULL; 1191 bool forced = false; 1192 int ret; 1193 1194 opp_table = _find_opp_table(dev); 1195 if (IS_ERR(opp_table)) { 1196 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1197 return PTR_ERR(opp_table); 1198 } 1199 1200 if (target_freq) { 1201 /* 1202 * For IO devices which require an OPP on some platforms/SoCs 1203 * while just needing to scale the clock on some others 1204 * we look for empty OPP tables with just a clock handle and 1205 * scale only the clk. This makes dev_pm_opp_set_rate() 1206 * equivalent to a clk_set_rate() 1207 */ 1208 if (!_get_opp_count(opp_table)) { 1209 ret = opp_table->config_clks(dev, opp_table, NULL, 1210 &target_freq, false); 1211 goto put_opp_table; 1212 } 1213 1214 freq = clk_round_rate(opp_table->clk, target_freq); 1215 if ((long)freq <= 0) 1216 freq = target_freq; 1217 1218 /* 1219 * The clock driver may support finer resolution of the 1220 * frequencies than the OPP table, don't update the frequency we 1221 * pass to clk_set_rate() here. 1222 */ 1223 temp_freq = freq; 1224 opp = _find_freq_ceil(opp_table, &temp_freq); 1225 if (IS_ERR(opp)) { 1226 ret = PTR_ERR(opp); 1227 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1228 __func__, freq, ret); 1229 goto put_opp_table; 1230 } 1231 1232 /* 1233 * An OPP entry specifies the highest frequency at which other 1234 * properties of the OPP entry apply. Even if the new OPP is 1235 * same as the old one, we may still reach here for a different 1236 * value of the frequency. In such a case, do not abort but 1237 * configure the hardware to the desired frequency forcefully. 1238 */ 1239 forced = opp_table->rate_clk_single != target_freq; 1240 } 1241 1242 ret = _set_opp(dev, opp_table, opp, &target_freq, forced); 1243 1244 if (target_freq) 1245 dev_pm_opp_put(opp); 1246 1247 put_opp_table: 1248 dev_pm_opp_put_opp_table(opp_table); 1249 return ret; 1250 } 1251 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1252 1253 /** 1254 * dev_pm_opp_set_opp() - Configure device for OPP 1255 * @dev: device for which we do this operation 1256 * @opp: OPP to set to 1257 * 1258 * This configures the device based on the properties of the OPP passed to this 1259 * routine. 1260 * 1261 * Return: 0 on success, a negative error number otherwise. 1262 */ 1263 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1264 { 1265 struct opp_table *opp_table; 1266 int ret; 1267 1268 opp_table = _find_opp_table(dev); 1269 if (IS_ERR(opp_table)) { 1270 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1271 return PTR_ERR(opp_table); 1272 } 1273 1274 ret = _set_opp(dev, opp_table, opp, NULL, false); 1275 dev_pm_opp_put_opp_table(opp_table); 1276 1277 return ret; 1278 } 1279 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1280 1281 /* OPP-dev Helpers */ 1282 static void _remove_opp_dev(struct opp_device *opp_dev, 1283 struct opp_table *opp_table) 1284 { 1285 opp_debug_unregister(opp_dev, opp_table); 1286 list_del(&opp_dev->node); 1287 kfree(opp_dev); 1288 } 1289 1290 struct opp_device *_add_opp_dev(const struct device *dev, 1291 struct opp_table *opp_table) 1292 { 1293 struct opp_device *opp_dev; 1294 1295 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1296 if (!opp_dev) 1297 return NULL; 1298 1299 /* Initialize opp-dev */ 1300 opp_dev->dev = dev; 1301 1302 mutex_lock(&opp_table->lock); 1303 list_add(&opp_dev->node, &opp_table->dev_list); 1304 mutex_unlock(&opp_table->lock); 1305 1306 /* Create debugfs entries for the opp_table */ 1307 opp_debug_register(opp_dev, opp_table); 1308 1309 return opp_dev; 1310 } 1311 1312 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1313 { 1314 struct opp_table *opp_table; 1315 struct opp_device *opp_dev; 1316 int ret; 1317 1318 /* 1319 * Allocate a new OPP table. In the infrequent case where a new 1320 * device is needed to be added, we pay this penalty. 1321 */ 1322 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1323 if (!opp_table) 1324 return ERR_PTR(-ENOMEM); 1325 1326 mutex_init(&opp_table->lock); 1327 mutex_init(&opp_table->genpd_virt_dev_lock); 1328 INIT_LIST_HEAD(&opp_table->dev_list); 1329 INIT_LIST_HEAD(&opp_table->lazy); 1330 1331 opp_table->clk = ERR_PTR(-ENODEV); 1332 1333 /* Mark regulator count uninitialized */ 1334 opp_table->regulator_count = -1; 1335 1336 opp_dev = _add_opp_dev(dev, opp_table); 1337 if (!opp_dev) { 1338 ret = -ENOMEM; 1339 goto err; 1340 } 1341 1342 _of_init_opp_table(opp_table, dev, index); 1343 1344 /* Find interconnect path(s) for the device */ 1345 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1346 if (ret) { 1347 if (ret == -EPROBE_DEFER) 1348 goto remove_opp_dev; 1349 1350 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1351 __func__, ret); 1352 } 1353 1354 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1355 INIT_LIST_HEAD(&opp_table->opp_list); 1356 kref_init(&opp_table->kref); 1357 1358 return opp_table; 1359 1360 remove_opp_dev: 1361 _remove_opp_dev(opp_dev, opp_table); 1362 err: 1363 kfree(opp_table); 1364 return ERR_PTR(ret); 1365 } 1366 1367 void _get_opp_table_kref(struct opp_table *opp_table) 1368 { 1369 kref_get(&opp_table->kref); 1370 } 1371 1372 static struct opp_table *_update_opp_table_clk(struct device *dev, 1373 struct opp_table *opp_table, 1374 bool getclk) 1375 { 1376 int ret; 1377 1378 /* 1379 * Return early if we don't need to get clk or we have already done it 1380 * earlier. 1381 */ 1382 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || 1383 opp_table->clks) 1384 return opp_table; 1385 1386 /* Find clk for the device */ 1387 opp_table->clk = clk_get(dev, NULL); 1388 1389 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1390 if (!ret) { 1391 opp_table->config_clks = _opp_config_clk_single; 1392 opp_table->clk_count = 1; 1393 return opp_table; 1394 } 1395 1396 if (ret == -ENOENT) { 1397 /* 1398 * There are few platforms which don't want the OPP core to 1399 * manage device's clock settings. In such cases neither the 1400 * platform provides the clks explicitly to us, nor the DT 1401 * contains a valid clk entry. The OPP nodes in DT may still 1402 * contain "opp-hz" property though, which we need to parse and 1403 * allow the platform to find an OPP based on freq later on. 1404 * 1405 * This is a simple solution to take care of such corner cases, 1406 * i.e. make the clk_count 1, which lets us allocate space for 1407 * frequency in opp->rates and also parse the entries in DT. 1408 */ 1409 opp_table->clk_count = 1; 1410 1411 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1412 return opp_table; 1413 } 1414 1415 dev_pm_opp_put_opp_table(opp_table); 1416 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1417 1418 return ERR_PTR(ret); 1419 } 1420 1421 /* 1422 * We need to make sure that the OPP table for a device doesn't get added twice, 1423 * if this routine gets called in parallel with the same device pointer. 1424 * 1425 * The simplest way to enforce that is to perform everything (find existing 1426 * table and if not found, create a new one) under the opp_table_lock, so only 1427 * one creator gets access to the same. But that expands the critical section 1428 * under the lock and may end up causing circular dependencies with frameworks 1429 * like debugfs, interconnect or clock framework as they may be direct or 1430 * indirect users of OPP core. 1431 * 1432 * And for that reason we have to go for a bit tricky implementation here, which 1433 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1434 * of adding an OPP table and others should wait for it to finish. 1435 */ 1436 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1437 bool getclk) 1438 { 1439 struct opp_table *opp_table; 1440 1441 again: 1442 mutex_lock(&opp_table_lock); 1443 1444 opp_table = _find_opp_table_unlocked(dev); 1445 if (!IS_ERR(opp_table)) 1446 goto unlock; 1447 1448 /* 1449 * The opp_tables list or an OPP table's dev_list is getting updated by 1450 * another user, wait for it to finish. 1451 */ 1452 if (unlikely(opp_tables_busy)) { 1453 mutex_unlock(&opp_table_lock); 1454 cpu_relax(); 1455 goto again; 1456 } 1457 1458 opp_tables_busy = true; 1459 opp_table = _managed_opp(dev, index); 1460 1461 /* Drop the lock to reduce the size of critical section */ 1462 mutex_unlock(&opp_table_lock); 1463 1464 if (opp_table) { 1465 if (!_add_opp_dev(dev, opp_table)) { 1466 dev_pm_opp_put_opp_table(opp_table); 1467 opp_table = ERR_PTR(-ENOMEM); 1468 } 1469 1470 mutex_lock(&opp_table_lock); 1471 } else { 1472 opp_table = _allocate_opp_table(dev, index); 1473 1474 mutex_lock(&opp_table_lock); 1475 if (!IS_ERR(opp_table)) 1476 list_add(&opp_table->node, &opp_tables); 1477 } 1478 1479 opp_tables_busy = false; 1480 1481 unlock: 1482 mutex_unlock(&opp_table_lock); 1483 1484 return _update_opp_table_clk(dev, opp_table, getclk); 1485 } 1486 1487 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1488 { 1489 return _add_opp_table_indexed(dev, 0, getclk); 1490 } 1491 1492 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1493 { 1494 return _find_opp_table(dev); 1495 } 1496 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1497 1498 static void _opp_table_kref_release(struct kref *kref) 1499 { 1500 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1501 struct opp_device *opp_dev, *temp; 1502 int i; 1503 1504 /* Drop the lock as soon as we can */ 1505 list_del(&opp_table->node); 1506 mutex_unlock(&opp_table_lock); 1507 1508 if (opp_table->current_opp) 1509 dev_pm_opp_put(opp_table->current_opp); 1510 1511 _of_clear_opp_table(opp_table); 1512 1513 /* Release automatically acquired single clk */ 1514 if (!IS_ERR(opp_table->clk)) 1515 clk_put(opp_table->clk); 1516 1517 if (opp_table->paths) { 1518 for (i = 0; i < opp_table->path_count; i++) 1519 icc_put(opp_table->paths[i]); 1520 kfree(opp_table->paths); 1521 } 1522 1523 WARN_ON(!list_empty(&opp_table->opp_list)); 1524 1525 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1526 /* 1527 * The OPP table is getting removed, drop the performance state 1528 * constraints. 1529 */ 1530 if (opp_table->genpd_performance_state) 1531 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1532 1533 _remove_opp_dev(opp_dev, opp_table); 1534 } 1535 1536 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1537 mutex_destroy(&opp_table->lock); 1538 kfree(opp_table); 1539 } 1540 1541 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1542 { 1543 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1544 &opp_table_lock); 1545 } 1546 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1547 1548 void _opp_free(struct dev_pm_opp *opp) 1549 { 1550 kfree(opp); 1551 } 1552 1553 static void _opp_kref_release(struct kref *kref) 1554 { 1555 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1556 struct opp_table *opp_table = opp->opp_table; 1557 1558 list_del(&opp->node); 1559 mutex_unlock(&opp_table->lock); 1560 1561 /* 1562 * Notify the changes in the availability of the operable 1563 * frequency/voltage list. 1564 */ 1565 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1566 _of_clear_opp(opp_table, opp); 1567 opp_debug_remove_one(opp); 1568 kfree(opp); 1569 } 1570 1571 void dev_pm_opp_get(struct dev_pm_opp *opp) 1572 { 1573 kref_get(&opp->kref); 1574 } 1575 1576 void dev_pm_opp_put(struct dev_pm_opp *opp) 1577 { 1578 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1579 } 1580 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1581 1582 /** 1583 * dev_pm_opp_remove() - Remove an OPP from OPP table 1584 * @dev: device for which we do this operation 1585 * @freq: OPP to remove with matching 'freq' 1586 * 1587 * This function removes an opp from the opp table. 1588 */ 1589 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1590 { 1591 struct dev_pm_opp *opp = NULL, *iter; 1592 struct opp_table *opp_table; 1593 1594 opp_table = _find_opp_table(dev); 1595 if (IS_ERR(opp_table)) 1596 return; 1597 1598 if (!assert_single_clk(opp_table)) 1599 goto put_table; 1600 1601 mutex_lock(&opp_table->lock); 1602 1603 list_for_each_entry(iter, &opp_table->opp_list, node) { 1604 if (iter->rates[0] == freq) { 1605 opp = iter; 1606 break; 1607 } 1608 } 1609 1610 mutex_unlock(&opp_table->lock); 1611 1612 if (opp) { 1613 dev_pm_opp_put(opp); 1614 1615 /* Drop the reference taken by dev_pm_opp_add() */ 1616 dev_pm_opp_put_opp_table(opp_table); 1617 } else { 1618 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1619 __func__, freq); 1620 } 1621 1622 put_table: 1623 /* Drop the reference taken by _find_opp_table() */ 1624 dev_pm_opp_put_opp_table(opp_table); 1625 } 1626 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1627 1628 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1629 bool dynamic) 1630 { 1631 struct dev_pm_opp *opp = NULL, *temp; 1632 1633 mutex_lock(&opp_table->lock); 1634 list_for_each_entry(temp, &opp_table->opp_list, node) { 1635 /* 1636 * Refcount must be dropped only once for each OPP by OPP core, 1637 * do that with help of "removed" flag. 1638 */ 1639 if (!temp->removed && dynamic == temp->dynamic) { 1640 opp = temp; 1641 break; 1642 } 1643 } 1644 1645 mutex_unlock(&opp_table->lock); 1646 return opp; 1647 } 1648 1649 /* 1650 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1651 * happen lock less to avoid circular dependency issues. This routine must be 1652 * called without the opp_table->lock held. 1653 */ 1654 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1655 { 1656 struct dev_pm_opp *opp; 1657 1658 while ((opp = _opp_get_next(opp_table, dynamic))) { 1659 opp->removed = true; 1660 dev_pm_opp_put(opp); 1661 1662 /* Drop the references taken by dev_pm_opp_add() */ 1663 if (dynamic) 1664 dev_pm_opp_put_opp_table(opp_table); 1665 } 1666 } 1667 1668 bool _opp_remove_all_static(struct opp_table *opp_table) 1669 { 1670 mutex_lock(&opp_table->lock); 1671 1672 if (!opp_table->parsed_static_opps) { 1673 mutex_unlock(&opp_table->lock); 1674 return false; 1675 } 1676 1677 if (--opp_table->parsed_static_opps) { 1678 mutex_unlock(&opp_table->lock); 1679 return true; 1680 } 1681 1682 mutex_unlock(&opp_table->lock); 1683 1684 _opp_remove_all(opp_table, false); 1685 return true; 1686 } 1687 1688 /** 1689 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1690 * @dev: device for which we do this operation 1691 * 1692 * This function removes all dynamically created OPPs from the opp table. 1693 */ 1694 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1695 { 1696 struct opp_table *opp_table; 1697 1698 opp_table = _find_opp_table(dev); 1699 if (IS_ERR(opp_table)) 1700 return; 1701 1702 _opp_remove_all(opp_table, true); 1703 1704 /* Drop the reference taken by _find_opp_table() */ 1705 dev_pm_opp_put_opp_table(opp_table); 1706 } 1707 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1708 1709 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) 1710 { 1711 struct dev_pm_opp *opp; 1712 int supply_count, supply_size, icc_size, clk_size; 1713 1714 /* Allocate space for at least one supply */ 1715 supply_count = opp_table->regulator_count > 0 ? 1716 opp_table->regulator_count : 1; 1717 supply_size = sizeof(*opp->supplies) * supply_count; 1718 clk_size = sizeof(*opp->rates) * opp_table->clk_count; 1719 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; 1720 1721 /* allocate new OPP node and supplies structures */ 1722 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); 1723 if (!opp) 1724 return NULL; 1725 1726 /* Put the supplies, bw and clock at the end of the OPP structure */ 1727 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1728 1729 opp->rates = (unsigned long *)(opp->supplies + supply_count); 1730 1731 if (icc_size) 1732 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); 1733 1734 INIT_LIST_HEAD(&opp->node); 1735 1736 return opp; 1737 } 1738 1739 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1740 struct opp_table *opp_table) 1741 { 1742 struct regulator *reg; 1743 int i; 1744 1745 if (!opp_table->regulators) 1746 return true; 1747 1748 for (i = 0; i < opp_table->regulator_count; i++) { 1749 reg = opp_table->regulators[i]; 1750 1751 if (!regulator_is_supported_voltage(reg, 1752 opp->supplies[i].u_volt_min, 1753 opp->supplies[i].u_volt_max)) { 1754 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1755 __func__, opp->supplies[i].u_volt_min, 1756 opp->supplies[i].u_volt_max); 1757 return false; 1758 } 1759 } 1760 1761 return true; 1762 } 1763 1764 static int _opp_compare_rate(struct opp_table *opp_table, 1765 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1766 { 1767 int i; 1768 1769 for (i = 0; i < opp_table->clk_count; i++) { 1770 if (opp1->rates[i] != opp2->rates[i]) 1771 return opp1->rates[i] < opp2->rates[i] ? -1 : 1; 1772 } 1773 1774 /* Same rates for both OPPs */ 1775 return 0; 1776 } 1777 1778 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1779 struct dev_pm_opp *opp2) 1780 { 1781 int i; 1782 1783 for (i = 0; i < opp_table->path_count; i++) { 1784 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) 1785 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; 1786 } 1787 1788 /* Same bw for both OPPs */ 1789 return 0; 1790 } 1791 1792 /* 1793 * Returns 1794 * 0: opp1 == opp2 1795 * 1: opp1 > opp2 1796 * -1: opp1 < opp2 1797 */ 1798 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1799 struct dev_pm_opp *opp2) 1800 { 1801 int ret; 1802 1803 ret = _opp_compare_rate(opp_table, opp1, opp2); 1804 if (ret) 1805 return ret; 1806 1807 ret = _opp_compare_bw(opp_table, opp1, opp2); 1808 if (ret) 1809 return ret; 1810 1811 if (opp1->level != opp2->level) 1812 return opp1->level < opp2->level ? -1 : 1; 1813 1814 /* Duplicate OPPs */ 1815 return 0; 1816 } 1817 1818 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1819 struct opp_table *opp_table, 1820 struct list_head **head) 1821 { 1822 struct dev_pm_opp *opp; 1823 int opp_cmp; 1824 1825 /* 1826 * Insert new OPP in order of increasing frequency and discard if 1827 * already present. 1828 * 1829 * Need to use &opp_table->opp_list in the condition part of the 'for' 1830 * loop, don't replace it with head otherwise it will become an infinite 1831 * loop. 1832 */ 1833 list_for_each_entry(opp, &opp_table->opp_list, node) { 1834 opp_cmp = _opp_compare_key(opp_table, new_opp, opp); 1835 if (opp_cmp > 0) { 1836 *head = &opp->node; 1837 continue; 1838 } 1839 1840 if (opp_cmp < 0) 1841 return 0; 1842 1843 /* Duplicate OPPs */ 1844 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1845 __func__, opp->rates[0], opp->supplies[0].u_volt, 1846 opp->available, new_opp->rates[0], 1847 new_opp->supplies[0].u_volt, new_opp->available); 1848 1849 /* Should we compare voltages for all regulators here ? */ 1850 return opp->available && 1851 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1852 } 1853 1854 return 0; 1855 } 1856 1857 void _required_opps_available(struct dev_pm_opp *opp, int count) 1858 { 1859 int i; 1860 1861 for (i = 0; i < count; i++) { 1862 if (opp->required_opps[i]->available) 1863 continue; 1864 1865 opp->available = false; 1866 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1867 __func__, opp->required_opps[i]->np, opp->rates[0]); 1868 return; 1869 } 1870 } 1871 1872 /* 1873 * Returns: 1874 * 0: On success. And appropriate error message for duplicate OPPs. 1875 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1876 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1877 * sure we don't print error messages unnecessarily if different parts of 1878 * kernel try to initialize the OPP table. 1879 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1880 * should be considered an error by the callers of _opp_add(). 1881 */ 1882 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1883 struct opp_table *opp_table) 1884 { 1885 struct list_head *head; 1886 int ret; 1887 1888 mutex_lock(&opp_table->lock); 1889 head = &opp_table->opp_list; 1890 1891 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1892 if (ret) { 1893 mutex_unlock(&opp_table->lock); 1894 return ret; 1895 } 1896 1897 list_add(&new_opp->node, head); 1898 mutex_unlock(&opp_table->lock); 1899 1900 new_opp->opp_table = opp_table; 1901 kref_init(&new_opp->kref); 1902 1903 opp_debug_create_one(new_opp, opp_table); 1904 1905 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1906 new_opp->available = false; 1907 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1908 __func__, new_opp->rates[0]); 1909 } 1910 1911 /* required-opps not fully initialized yet */ 1912 if (lazy_linking_pending(opp_table)) 1913 return 0; 1914 1915 _required_opps_available(new_opp, opp_table->required_opp_count); 1916 1917 return 0; 1918 } 1919 1920 /** 1921 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1922 * @opp_table: OPP table 1923 * @dev: device for which we do this operation 1924 * @freq: Frequency in Hz for this OPP 1925 * @u_volt: Voltage in uVolts for this OPP 1926 * @dynamic: Dynamically added OPPs. 1927 * 1928 * This function adds an opp definition to the opp table and returns status. 1929 * The opp is made available by default and it can be controlled using 1930 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1931 * 1932 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1933 * and freed by dev_pm_opp_of_remove_table. 1934 * 1935 * Return: 1936 * 0 On success OR 1937 * Duplicate OPPs (both freq and volt are same) and opp->available 1938 * -EEXIST Freq are same and volt are different OR 1939 * Duplicate OPPs (both freq and volt are same) and !opp->available 1940 * -ENOMEM Memory allocation failure 1941 */ 1942 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1943 unsigned long freq, long u_volt, bool dynamic) 1944 { 1945 struct dev_pm_opp *new_opp; 1946 unsigned long tol; 1947 int ret; 1948 1949 if (!assert_single_clk(opp_table)) 1950 return -EINVAL; 1951 1952 new_opp = _opp_allocate(opp_table); 1953 if (!new_opp) 1954 return -ENOMEM; 1955 1956 /* populate the opp table */ 1957 new_opp->rates[0] = freq; 1958 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1959 new_opp->supplies[0].u_volt = u_volt; 1960 new_opp->supplies[0].u_volt_min = u_volt - tol; 1961 new_opp->supplies[0].u_volt_max = u_volt + tol; 1962 new_opp->available = true; 1963 new_opp->dynamic = dynamic; 1964 1965 ret = _opp_add(dev, new_opp, opp_table); 1966 if (ret) { 1967 /* Don't return error for duplicate OPPs */ 1968 if (ret == -EBUSY) 1969 ret = 0; 1970 goto free_opp; 1971 } 1972 1973 /* 1974 * Notify the changes in the availability of the operable 1975 * frequency/voltage list. 1976 */ 1977 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1978 return 0; 1979 1980 free_opp: 1981 _opp_free(new_opp); 1982 1983 return ret; 1984 } 1985 1986 /** 1987 * _opp_set_supported_hw() - Set supported platforms 1988 * @dev: Device for which supported-hw has to be set. 1989 * @versions: Array of hierarchy of versions to match. 1990 * @count: Number of elements in the array. 1991 * 1992 * This is required only for the V2 bindings, and it enables a platform to 1993 * specify the hierarchy of versions it supports. OPP layer will then enable 1994 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1995 * property. 1996 */ 1997 static int _opp_set_supported_hw(struct opp_table *opp_table, 1998 const u32 *versions, unsigned int count) 1999 { 2000 /* Another CPU that shares the OPP table has set the property ? */ 2001 if (opp_table->supported_hw) 2002 return 0; 2003 2004 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 2005 GFP_KERNEL); 2006 if (!opp_table->supported_hw) 2007 return -ENOMEM; 2008 2009 opp_table->supported_hw_count = count; 2010 2011 return 0; 2012 } 2013 2014 /** 2015 * _opp_put_supported_hw() - Releases resources blocked for supported hw 2016 * @opp_table: OPP table returned by _opp_set_supported_hw(). 2017 * 2018 * This is required only for the V2 bindings, and is called for a matching 2019 * _opp_set_supported_hw(). Until this is called, the opp_table structure 2020 * will not be freed. 2021 */ 2022 static void _opp_put_supported_hw(struct opp_table *opp_table) 2023 { 2024 if (opp_table->supported_hw) { 2025 kfree(opp_table->supported_hw); 2026 opp_table->supported_hw = NULL; 2027 opp_table->supported_hw_count = 0; 2028 } 2029 } 2030 2031 /** 2032 * _opp_set_prop_name() - Set prop-extn name 2033 * @dev: Device for which the prop-name has to be set. 2034 * @name: name to postfix to properties. 2035 * 2036 * This is required only for the V2 bindings, and it enables a platform to 2037 * specify the extn to be used for certain property names. The properties to 2038 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 2039 * should postfix the property name with -<name> while looking for them. 2040 */ 2041 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) 2042 { 2043 /* Another CPU that shares the OPP table has set the property ? */ 2044 if (!opp_table->prop_name) { 2045 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 2046 if (!opp_table->prop_name) 2047 return -ENOMEM; 2048 } 2049 2050 return 0; 2051 } 2052 2053 /** 2054 * _opp_put_prop_name() - Releases resources blocked for prop-name 2055 * @opp_table: OPP table returned by _opp_set_prop_name(). 2056 * 2057 * This is required only for the V2 bindings, and is called for a matching 2058 * _opp_set_prop_name(). Until this is called, the opp_table structure 2059 * will not be freed. 2060 */ 2061 static void _opp_put_prop_name(struct opp_table *opp_table) 2062 { 2063 if (opp_table->prop_name) { 2064 kfree(opp_table->prop_name); 2065 opp_table->prop_name = NULL; 2066 } 2067 } 2068 2069 /** 2070 * _opp_set_regulators() - Set regulator names for the device 2071 * @dev: Device for which regulator name is being set. 2072 * @names: Array of pointers to the names of the regulator. 2073 * @count: Number of regulators. 2074 * 2075 * In order to support OPP switching, OPP layer needs to know the name of the 2076 * device's regulators, as the core would be required to switch voltages as 2077 * well. 2078 * 2079 * This must be called before any OPPs are initialized for the device. 2080 */ 2081 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, 2082 const char * const names[]) 2083 { 2084 const char * const *temp = names; 2085 struct regulator *reg; 2086 int count = 0, ret, i; 2087 2088 /* Count number of regulators */ 2089 while (*temp++) 2090 count++; 2091 2092 if (!count) 2093 return -EINVAL; 2094 2095 /* Another CPU that shares the OPP table has set the regulators ? */ 2096 if (opp_table->regulators) 2097 return 0; 2098 2099 opp_table->regulators = kmalloc_array(count, 2100 sizeof(*opp_table->regulators), 2101 GFP_KERNEL); 2102 if (!opp_table->regulators) 2103 return -ENOMEM; 2104 2105 for (i = 0; i < count; i++) { 2106 reg = regulator_get_optional(dev, names[i]); 2107 if (IS_ERR(reg)) { 2108 ret = dev_err_probe(dev, PTR_ERR(reg), 2109 "%s: no regulator (%s) found\n", 2110 __func__, names[i]); 2111 goto free_regulators; 2112 } 2113 2114 opp_table->regulators[i] = reg; 2115 } 2116 2117 opp_table->regulator_count = count; 2118 2119 /* Set generic config_regulators() for single regulators here */ 2120 if (count == 1) 2121 opp_table->config_regulators = _opp_config_regulator_single; 2122 2123 return 0; 2124 2125 free_regulators: 2126 while (i != 0) 2127 regulator_put(opp_table->regulators[--i]); 2128 2129 kfree(opp_table->regulators); 2130 opp_table->regulators = NULL; 2131 opp_table->regulator_count = -1; 2132 2133 return ret; 2134 } 2135 2136 /** 2137 * _opp_put_regulators() - Releases resources blocked for regulator 2138 * @opp_table: OPP table returned from _opp_set_regulators(). 2139 */ 2140 static void _opp_put_regulators(struct opp_table *opp_table) 2141 { 2142 int i; 2143 2144 if (!opp_table->regulators) 2145 return; 2146 2147 if (opp_table->enabled) { 2148 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2149 regulator_disable(opp_table->regulators[i]); 2150 } 2151 2152 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2153 regulator_put(opp_table->regulators[i]); 2154 2155 kfree(opp_table->regulators); 2156 opp_table->regulators = NULL; 2157 opp_table->regulator_count = -1; 2158 } 2159 2160 static void _put_clks(struct opp_table *opp_table, int count) 2161 { 2162 int i; 2163 2164 for (i = count - 1; i >= 0; i--) 2165 clk_put(opp_table->clks[i]); 2166 2167 kfree(opp_table->clks); 2168 opp_table->clks = NULL; 2169 } 2170 2171 /** 2172 * _opp_set_clknames() - Set clk names for the device 2173 * @dev: Device for which clk names is being set. 2174 * @names: Clk names. 2175 * 2176 * In order to support OPP switching, OPP layer needs to get pointers to the 2177 * clocks for the device. Simple cases work fine without using this routine 2178 * (i.e. by passing connection-id as NULL), but for a device with multiple 2179 * clocks available, the OPP core needs to know the exact names of the clks to 2180 * use. 2181 * 2182 * This must be called before any OPPs are initialized for the device. 2183 */ 2184 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, 2185 const char * const names[], 2186 config_clks_t config_clks) 2187 { 2188 const char * const *temp = names; 2189 int count = 0, ret, i; 2190 struct clk *clk; 2191 2192 /* Count number of clks */ 2193 while (*temp++) 2194 count++; 2195 2196 /* 2197 * This is a special case where we have a single clock, whose connection 2198 * id name is NULL, i.e. first two entries are NULL in the array. 2199 */ 2200 if (!count && !names[1]) 2201 count = 1; 2202 2203 /* Fail early for invalid configurations */ 2204 if (!count || (!config_clks && count > 1)) 2205 return -EINVAL; 2206 2207 /* Another CPU that shares the OPP table has set the clkname ? */ 2208 if (opp_table->clks) 2209 return 0; 2210 2211 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), 2212 GFP_KERNEL); 2213 if (!opp_table->clks) 2214 return -ENOMEM; 2215 2216 /* Find clks for the device */ 2217 for (i = 0; i < count; i++) { 2218 clk = clk_get(dev, names[i]); 2219 if (IS_ERR(clk)) { 2220 ret = dev_err_probe(dev, PTR_ERR(clk), 2221 "%s: Couldn't find clock with name: %s\n", 2222 __func__, names[i]); 2223 goto free_clks; 2224 } 2225 2226 opp_table->clks[i] = clk; 2227 } 2228 2229 opp_table->clk_count = count; 2230 opp_table->config_clks = config_clks; 2231 2232 /* Set generic single clk set here */ 2233 if (count == 1) { 2234 if (!opp_table->config_clks) 2235 opp_table->config_clks = _opp_config_clk_single; 2236 2237 /* 2238 * We could have just dropped the "clk" field and used "clks" 2239 * everywhere. Instead we kept the "clk" field around for 2240 * following reasons: 2241 * 2242 * - avoiding clks[0] everywhere else. 2243 * - not running single clk helpers for multiple clk usecase by 2244 * mistake. 2245 * 2246 * Since this is single-clk case, just update the clk pointer 2247 * too. 2248 */ 2249 opp_table->clk = opp_table->clks[0]; 2250 } 2251 2252 return 0; 2253 2254 free_clks: 2255 _put_clks(opp_table, i); 2256 return ret; 2257 } 2258 2259 /** 2260 * _opp_put_clknames() - Releases resources blocked for clks. 2261 * @opp_table: OPP table returned from _opp_set_clknames(). 2262 */ 2263 static void _opp_put_clknames(struct opp_table *opp_table) 2264 { 2265 if (!opp_table->clks) 2266 return; 2267 2268 opp_table->config_clks = NULL; 2269 opp_table->clk = ERR_PTR(-ENODEV); 2270 2271 _put_clks(opp_table, opp_table->clk_count); 2272 } 2273 2274 /** 2275 * _opp_set_config_regulators_helper() - Register custom set regulator helper. 2276 * @dev: Device for which the helper is getting registered. 2277 * @config_regulators: Custom set regulator helper. 2278 * 2279 * This is useful to support platforms with multiple regulators per device. 2280 * 2281 * This must be called before any OPPs are initialized for the device. 2282 */ 2283 static int _opp_set_config_regulators_helper(struct opp_table *opp_table, 2284 struct device *dev, config_regulators_t config_regulators) 2285 { 2286 /* Another CPU that shares the OPP table has set the helper ? */ 2287 if (!opp_table->config_regulators) 2288 opp_table->config_regulators = config_regulators; 2289 2290 return 0; 2291 } 2292 2293 /** 2294 * _opp_put_config_regulators_helper() - Releases resources blocked for 2295 * config_regulators helper. 2296 * @opp_table: OPP table returned from _opp_set_config_regulators_helper(). 2297 * 2298 * Release resources blocked for platform specific config_regulators helper. 2299 */ 2300 static void _opp_put_config_regulators_helper(struct opp_table *opp_table) 2301 { 2302 if (opp_table->config_regulators) 2303 opp_table->config_regulators = NULL; 2304 } 2305 2306 static void _detach_genpd(struct opp_table *opp_table) 2307 { 2308 int index; 2309 2310 if (!opp_table->genpd_virt_devs) 2311 return; 2312 2313 for (index = 0; index < opp_table->required_opp_count; index++) { 2314 if (!opp_table->genpd_virt_devs[index]) 2315 continue; 2316 2317 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 2318 opp_table->genpd_virt_devs[index] = NULL; 2319 } 2320 2321 kfree(opp_table->genpd_virt_devs); 2322 opp_table->genpd_virt_devs = NULL; 2323 } 2324 2325 /** 2326 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 2327 * @dev: Consumer device for which the genpd is getting attached. 2328 * @names: Null terminated array of pointers containing names of genpd to attach. 2329 * @virt_devs: Pointer to return the array of virtual devices. 2330 * 2331 * Multiple generic power domains for a device are supported with the help of 2332 * virtual genpd devices, which are created for each consumer device - genpd 2333 * pair. These are the device structures which are attached to the power domain 2334 * and are required by the OPP core to set the performance state of the genpd. 2335 * The same API also works for the case where single genpd is available and so 2336 * we don't need to support that separately. 2337 * 2338 * This helper will normally be called by the consumer driver of the device 2339 * "dev", as only that has details of the genpd names. 2340 * 2341 * This helper needs to be called once with a list of all genpd to attach. 2342 * Otherwise the original device structure will be used instead by the OPP core. 2343 * 2344 * The order of entries in the names array must match the order in which 2345 * "required-opps" are added in DT. 2346 */ 2347 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev, 2348 const char * const *names, struct device ***virt_devs) 2349 { 2350 struct device *virt_dev; 2351 int index = 0, ret = -EINVAL; 2352 const char * const *name = names; 2353 2354 if (opp_table->genpd_virt_devs) 2355 return 0; 2356 2357 /* 2358 * If the genpd's OPP table isn't already initialized, parsing of the 2359 * required-opps fail for dev. We should retry this after genpd's OPP 2360 * table is added. 2361 */ 2362 if (!opp_table->required_opp_count) 2363 return -EPROBE_DEFER; 2364 2365 mutex_lock(&opp_table->genpd_virt_dev_lock); 2366 2367 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2368 sizeof(*opp_table->genpd_virt_devs), 2369 GFP_KERNEL); 2370 if (!opp_table->genpd_virt_devs) 2371 goto unlock; 2372 2373 while (*name) { 2374 if (index >= opp_table->required_opp_count) { 2375 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2376 *name, opp_table->required_opp_count, index); 2377 goto err; 2378 } 2379 2380 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2381 if (IS_ERR_OR_NULL(virt_dev)) { 2382 ret = PTR_ERR(virt_dev) ? : -ENODEV; 2383 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2384 goto err; 2385 } 2386 2387 opp_table->genpd_virt_devs[index] = virt_dev; 2388 index++; 2389 name++; 2390 } 2391 2392 if (virt_devs) 2393 *virt_devs = opp_table->genpd_virt_devs; 2394 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2395 2396 return 0; 2397 2398 err: 2399 _detach_genpd(opp_table); 2400 unlock: 2401 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2402 return ret; 2403 2404 } 2405 2406 /** 2407 * _opp_detach_genpd() - Detach genpd(s) from the device. 2408 * @opp_table: OPP table returned by _opp_attach_genpd(). 2409 * 2410 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2411 * OPP table. 2412 */ 2413 static void _opp_detach_genpd(struct opp_table *opp_table) 2414 { 2415 /* 2416 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2417 * used in parallel. 2418 */ 2419 mutex_lock(&opp_table->genpd_virt_dev_lock); 2420 _detach_genpd(opp_table); 2421 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2422 } 2423 2424 static void _opp_clear_config(struct opp_config_data *data) 2425 { 2426 if (data->flags & OPP_CONFIG_GENPD) 2427 _opp_detach_genpd(data->opp_table); 2428 if (data->flags & OPP_CONFIG_REGULATOR) 2429 _opp_put_regulators(data->opp_table); 2430 if (data->flags & OPP_CONFIG_SUPPORTED_HW) 2431 _opp_put_supported_hw(data->opp_table); 2432 if (data->flags & OPP_CONFIG_REGULATOR_HELPER) 2433 _opp_put_config_regulators_helper(data->opp_table); 2434 if (data->flags & OPP_CONFIG_PROP_NAME) 2435 _opp_put_prop_name(data->opp_table); 2436 if (data->flags & OPP_CONFIG_CLK) 2437 _opp_put_clknames(data->opp_table); 2438 2439 dev_pm_opp_put_opp_table(data->opp_table); 2440 kfree(data); 2441 } 2442 2443 /** 2444 * dev_pm_opp_set_config() - Set OPP configuration for the device. 2445 * @dev: Device for which configuration is being set. 2446 * @config: OPP configuration. 2447 * 2448 * This allows all device OPP configurations to be performed at once. 2449 * 2450 * This must be called before any OPPs are initialized for the device. This may 2451 * be called multiple times for the same OPP table, for example once for each 2452 * CPU that share the same table. This must be balanced by the same number of 2453 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. 2454 * 2455 * This returns a token to the caller, which must be passed to 2456 * dev_pm_opp_clear_config() to free the resources later. The value of the 2457 * returned token will be >= 1 for success and negative for errors. The minimum 2458 * value of 1 is chosen here to make it easy for callers to manage the resource. 2459 */ 2460 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2461 { 2462 struct opp_table *opp_table; 2463 struct opp_config_data *data; 2464 unsigned int id; 2465 int ret; 2466 2467 data = kmalloc(sizeof(*data), GFP_KERNEL); 2468 if (!data) 2469 return -ENOMEM; 2470 2471 opp_table = _add_opp_table(dev, false); 2472 if (IS_ERR(opp_table)) { 2473 kfree(data); 2474 return PTR_ERR(opp_table); 2475 } 2476 2477 data->opp_table = opp_table; 2478 data->flags = 0; 2479 2480 /* This should be called before OPPs are initialized */ 2481 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2482 ret = -EBUSY; 2483 goto err; 2484 } 2485 2486 /* Configure clocks */ 2487 if (config->clk_names) { 2488 ret = _opp_set_clknames(opp_table, dev, config->clk_names, 2489 config->config_clks); 2490 if (ret) 2491 goto err; 2492 2493 data->flags |= OPP_CONFIG_CLK; 2494 } else if (config->config_clks) { 2495 /* Don't allow config callback without clocks */ 2496 ret = -EINVAL; 2497 goto err; 2498 } 2499 2500 /* Configure property names */ 2501 if (config->prop_name) { 2502 ret = _opp_set_prop_name(opp_table, config->prop_name); 2503 if (ret) 2504 goto err; 2505 2506 data->flags |= OPP_CONFIG_PROP_NAME; 2507 } 2508 2509 /* Configure config_regulators helper */ 2510 if (config->config_regulators) { 2511 ret = _opp_set_config_regulators_helper(opp_table, dev, 2512 config->config_regulators); 2513 if (ret) 2514 goto err; 2515 2516 data->flags |= OPP_CONFIG_REGULATOR_HELPER; 2517 } 2518 2519 /* Configure supported hardware */ 2520 if (config->supported_hw) { 2521 ret = _opp_set_supported_hw(opp_table, config->supported_hw, 2522 config->supported_hw_count); 2523 if (ret) 2524 goto err; 2525 2526 data->flags |= OPP_CONFIG_SUPPORTED_HW; 2527 } 2528 2529 /* Configure supplies */ 2530 if (config->regulator_names) { 2531 ret = _opp_set_regulators(opp_table, dev, 2532 config->regulator_names); 2533 if (ret) 2534 goto err; 2535 2536 data->flags |= OPP_CONFIG_REGULATOR; 2537 } 2538 2539 /* Attach genpds */ 2540 if (config->genpd_names) { 2541 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names, 2542 config->virt_devs); 2543 if (ret) 2544 goto err; 2545 2546 data->flags |= OPP_CONFIG_GENPD; 2547 } 2548 2549 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), 2550 GFP_KERNEL); 2551 if (ret) 2552 goto err; 2553 2554 return id; 2555 2556 err: 2557 _opp_clear_config(data); 2558 return ret; 2559 } 2560 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); 2561 2562 /** 2563 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. 2564 * @opp_table: OPP table returned from dev_pm_opp_set_config(). 2565 * 2566 * This allows all device OPP configurations to be cleared at once. This must be 2567 * called once for each call made to dev_pm_opp_set_config(), in order to free 2568 * the OPPs properly. 2569 * 2570 * Currently the first call itself ends up freeing all the OPP configurations, 2571 * while the later ones only drop the OPP table reference. This works well for 2572 * now as we would never want to use an half initialized OPP table and want to 2573 * remove the configurations together. 2574 */ 2575 void dev_pm_opp_clear_config(int token) 2576 { 2577 struct opp_config_data *data; 2578 2579 /* 2580 * This lets the callers call this unconditionally and keep their code 2581 * simple. 2582 */ 2583 if (unlikely(token <= 0)) 2584 return; 2585 2586 data = xa_erase(&opp_configs, token); 2587 if (WARN_ON(!data)) 2588 return; 2589 2590 _opp_clear_config(data); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); 2593 2594 static void devm_pm_opp_config_release(void *token) 2595 { 2596 dev_pm_opp_clear_config((unsigned long)token); 2597 } 2598 2599 /** 2600 * devm_pm_opp_set_config() - Set OPP configuration for the device. 2601 * @dev: Device for which configuration is being set. 2602 * @config: OPP configuration. 2603 * 2604 * This allows all device OPP configurations to be performed at once. 2605 * This is a resource-managed variant of dev_pm_opp_set_config(). 2606 * 2607 * Return: 0 on success and errorno otherwise. 2608 */ 2609 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2610 { 2611 int token = dev_pm_opp_set_config(dev, config); 2612 2613 if (token < 0) 2614 return token; 2615 2616 return devm_add_action_or_reset(dev, devm_pm_opp_config_release, 2617 (void *) ((unsigned long) token)); 2618 } 2619 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); 2620 2621 /** 2622 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2623 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2624 * @dst_table: Required OPP table of the @src_table. 2625 * @src_opp: OPP from the @src_table. 2626 * 2627 * This function returns the OPP (present in @dst_table) pointed out by the 2628 * "required-opps" property of the @src_opp (present in @src_table). 2629 * 2630 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2631 * use. 2632 * 2633 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2634 */ 2635 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2636 struct opp_table *dst_table, 2637 struct dev_pm_opp *src_opp) 2638 { 2639 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2640 int i; 2641 2642 if (!src_table || !dst_table || !src_opp || 2643 !src_table->required_opp_tables) 2644 return ERR_PTR(-EINVAL); 2645 2646 /* required-opps not fully initialized yet */ 2647 if (lazy_linking_pending(src_table)) 2648 return ERR_PTR(-EBUSY); 2649 2650 for (i = 0; i < src_table->required_opp_count; i++) { 2651 if (src_table->required_opp_tables[i] == dst_table) { 2652 mutex_lock(&src_table->lock); 2653 2654 list_for_each_entry(opp, &src_table->opp_list, node) { 2655 if (opp == src_opp) { 2656 dest_opp = opp->required_opps[i]; 2657 dev_pm_opp_get(dest_opp); 2658 break; 2659 } 2660 } 2661 2662 mutex_unlock(&src_table->lock); 2663 break; 2664 } 2665 } 2666 2667 if (IS_ERR(dest_opp)) { 2668 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2669 src_table, dst_table); 2670 } 2671 2672 return dest_opp; 2673 } 2674 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2675 2676 /** 2677 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2678 * @src_table: OPP table which has dst_table as one of its required OPP table. 2679 * @dst_table: Required OPP table of the src_table. 2680 * @pstate: Current performance state of the src_table. 2681 * 2682 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2683 * "required-opps" property of the OPP (present in @src_table) which has 2684 * performance state set to @pstate. 2685 * 2686 * Return: Zero or positive performance state on success, otherwise negative 2687 * value on errors. 2688 */ 2689 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2690 struct opp_table *dst_table, 2691 unsigned int pstate) 2692 { 2693 struct dev_pm_opp *opp; 2694 int dest_pstate = -EINVAL; 2695 int i; 2696 2697 /* 2698 * Normally the src_table will have the "required_opps" property set to 2699 * point to one of the OPPs in the dst_table, but in some cases the 2700 * genpd and its master have one to one mapping of performance states 2701 * and so none of them have the "required-opps" property set. Return the 2702 * pstate of the src_table as it is in such cases. 2703 */ 2704 if (!src_table || !src_table->required_opp_count) 2705 return pstate; 2706 2707 /* required-opps not fully initialized yet */ 2708 if (lazy_linking_pending(src_table)) 2709 return -EBUSY; 2710 2711 for (i = 0; i < src_table->required_opp_count; i++) { 2712 if (src_table->required_opp_tables[i]->np == dst_table->np) 2713 break; 2714 } 2715 2716 if (unlikely(i == src_table->required_opp_count)) { 2717 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2718 __func__, src_table, dst_table); 2719 return -EINVAL; 2720 } 2721 2722 mutex_lock(&src_table->lock); 2723 2724 list_for_each_entry(opp, &src_table->opp_list, node) { 2725 if (opp->pstate == pstate) { 2726 dest_pstate = opp->required_opps[i]->pstate; 2727 goto unlock; 2728 } 2729 } 2730 2731 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2732 dst_table); 2733 2734 unlock: 2735 mutex_unlock(&src_table->lock); 2736 2737 return dest_pstate; 2738 } 2739 2740 /** 2741 * dev_pm_opp_add() - Add an OPP table from a table definitions 2742 * @dev: device for which we do this operation 2743 * @freq: Frequency in Hz for this OPP 2744 * @u_volt: Voltage in uVolts for this OPP 2745 * 2746 * This function adds an opp definition to the opp table and returns status. 2747 * The opp is made available by default and it can be controlled using 2748 * dev_pm_opp_enable/disable functions. 2749 * 2750 * Return: 2751 * 0 On success OR 2752 * Duplicate OPPs (both freq and volt are same) and opp->available 2753 * -EEXIST Freq are same and volt are different OR 2754 * Duplicate OPPs (both freq and volt are same) and !opp->available 2755 * -ENOMEM Memory allocation failure 2756 */ 2757 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2758 { 2759 struct opp_table *opp_table; 2760 int ret; 2761 2762 opp_table = _add_opp_table(dev, true); 2763 if (IS_ERR(opp_table)) 2764 return PTR_ERR(opp_table); 2765 2766 /* Fix regulator count for dynamic OPPs */ 2767 opp_table->regulator_count = 1; 2768 2769 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2770 if (ret) 2771 dev_pm_opp_put_opp_table(opp_table); 2772 2773 return ret; 2774 } 2775 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2776 2777 /** 2778 * _opp_set_availability() - helper to set the availability of an opp 2779 * @dev: device for which we do this operation 2780 * @freq: OPP frequency to modify availability 2781 * @availability_req: availability status requested for this opp 2782 * 2783 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2784 * which is isolated here. 2785 * 2786 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2787 * copy operation, returns 0 if no modification was done OR modification was 2788 * successful. 2789 */ 2790 static int _opp_set_availability(struct device *dev, unsigned long freq, 2791 bool availability_req) 2792 { 2793 struct opp_table *opp_table; 2794 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2795 int r = 0; 2796 2797 /* Find the opp_table */ 2798 opp_table = _find_opp_table(dev); 2799 if (IS_ERR(opp_table)) { 2800 r = PTR_ERR(opp_table); 2801 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2802 return r; 2803 } 2804 2805 if (!assert_single_clk(opp_table)) { 2806 r = -EINVAL; 2807 goto put_table; 2808 } 2809 2810 mutex_lock(&opp_table->lock); 2811 2812 /* Do we have the frequency? */ 2813 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2814 if (tmp_opp->rates[0] == freq) { 2815 opp = tmp_opp; 2816 break; 2817 } 2818 } 2819 2820 if (IS_ERR(opp)) { 2821 r = PTR_ERR(opp); 2822 goto unlock; 2823 } 2824 2825 /* Is update really needed? */ 2826 if (opp->available == availability_req) 2827 goto unlock; 2828 2829 opp->available = availability_req; 2830 2831 dev_pm_opp_get(opp); 2832 mutex_unlock(&opp_table->lock); 2833 2834 /* Notify the change of the OPP availability */ 2835 if (availability_req) 2836 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2837 opp); 2838 else 2839 blocking_notifier_call_chain(&opp_table->head, 2840 OPP_EVENT_DISABLE, opp); 2841 2842 dev_pm_opp_put(opp); 2843 goto put_table; 2844 2845 unlock: 2846 mutex_unlock(&opp_table->lock); 2847 put_table: 2848 dev_pm_opp_put_opp_table(opp_table); 2849 return r; 2850 } 2851 2852 /** 2853 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2854 * @dev: device for which we do this operation 2855 * @freq: OPP frequency to adjust voltage of 2856 * @u_volt: new OPP target voltage 2857 * @u_volt_min: new OPP min voltage 2858 * @u_volt_max: new OPP max voltage 2859 * 2860 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2861 * copy operation, returns 0 if no modifcation was done OR modification was 2862 * successful. 2863 */ 2864 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2865 unsigned long u_volt, unsigned long u_volt_min, 2866 unsigned long u_volt_max) 2867 2868 { 2869 struct opp_table *opp_table; 2870 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2871 int r = 0; 2872 2873 /* Find the opp_table */ 2874 opp_table = _find_opp_table(dev); 2875 if (IS_ERR(opp_table)) { 2876 r = PTR_ERR(opp_table); 2877 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2878 return r; 2879 } 2880 2881 if (!assert_single_clk(opp_table)) { 2882 r = -EINVAL; 2883 goto put_table; 2884 } 2885 2886 mutex_lock(&opp_table->lock); 2887 2888 /* Do we have the frequency? */ 2889 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2890 if (tmp_opp->rates[0] == freq) { 2891 opp = tmp_opp; 2892 break; 2893 } 2894 } 2895 2896 if (IS_ERR(opp)) { 2897 r = PTR_ERR(opp); 2898 goto adjust_unlock; 2899 } 2900 2901 /* Is update really needed? */ 2902 if (opp->supplies->u_volt == u_volt) 2903 goto adjust_unlock; 2904 2905 opp->supplies->u_volt = u_volt; 2906 opp->supplies->u_volt_min = u_volt_min; 2907 opp->supplies->u_volt_max = u_volt_max; 2908 2909 dev_pm_opp_get(opp); 2910 mutex_unlock(&opp_table->lock); 2911 2912 /* Notify the voltage change of the OPP */ 2913 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2914 opp); 2915 2916 dev_pm_opp_put(opp); 2917 goto put_table; 2918 2919 adjust_unlock: 2920 mutex_unlock(&opp_table->lock); 2921 put_table: 2922 dev_pm_opp_put_opp_table(opp_table); 2923 return r; 2924 } 2925 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2926 2927 /** 2928 * dev_pm_opp_enable() - Enable a specific OPP 2929 * @dev: device for which we do this operation 2930 * @freq: OPP frequency to enable 2931 * 2932 * Enables a provided opp. If the operation is valid, this returns 0, else the 2933 * corresponding error value. It is meant to be used for users an OPP available 2934 * after being temporarily made unavailable with dev_pm_opp_disable. 2935 * 2936 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2937 * copy operation, returns 0 if no modification was done OR modification was 2938 * successful. 2939 */ 2940 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2941 { 2942 return _opp_set_availability(dev, freq, true); 2943 } 2944 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2945 2946 /** 2947 * dev_pm_opp_disable() - Disable a specific OPP 2948 * @dev: device for which we do this operation 2949 * @freq: OPP frequency to disable 2950 * 2951 * Disables a provided opp. If the operation is valid, this returns 2952 * 0, else the corresponding error value. It is meant to be a temporary 2953 * control by users to make this OPP not available until the circumstances are 2954 * right to make it available again (with a call to dev_pm_opp_enable). 2955 * 2956 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2957 * copy operation, returns 0 if no modification was done OR modification was 2958 * successful. 2959 */ 2960 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2961 { 2962 return _opp_set_availability(dev, freq, false); 2963 } 2964 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2965 2966 /** 2967 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2968 * @dev: Device for which notifier needs to be registered 2969 * @nb: Notifier block to be registered 2970 * 2971 * Return: 0 on success or a negative error value. 2972 */ 2973 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2974 { 2975 struct opp_table *opp_table; 2976 int ret; 2977 2978 opp_table = _find_opp_table(dev); 2979 if (IS_ERR(opp_table)) 2980 return PTR_ERR(opp_table); 2981 2982 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2983 2984 dev_pm_opp_put_opp_table(opp_table); 2985 2986 return ret; 2987 } 2988 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2989 2990 /** 2991 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2992 * @dev: Device for which notifier needs to be unregistered 2993 * @nb: Notifier block to be unregistered 2994 * 2995 * Return: 0 on success or a negative error value. 2996 */ 2997 int dev_pm_opp_unregister_notifier(struct device *dev, 2998 struct notifier_block *nb) 2999 { 3000 struct opp_table *opp_table; 3001 int ret; 3002 3003 opp_table = _find_opp_table(dev); 3004 if (IS_ERR(opp_table)) 3005 return PTR_ERR(opp_table); 3006 3007 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 3008 3009 dev_pm_opp_put_opp_table(opp_table); 3010 3011 return ret; 3012 } 3013 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 3014 3015 /** 3016 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 3017 * @dev: device pointer used to lookup OPP table. 3018 * 3019 * Free both OPPs created using static entries present in DT and the 3020 * dynamically added entries. 3021 */ 3022 void dev_pm_opp_remove_table(struct device *dev) 3023 { 3024 struct opp_table *opp_table; 3025 3026 /* Check for existing table for 'dev' */ 3027 opp_table = _find_opp_table(dev); 3028 if (IS_ERR(opp_table)) { 3029 int error = PTR_ERR(opp_table); 3030 3031 if (error != -ENODEV) 3032 WARN(1, "%s: opp_table: %d\n", 3033 IS_ERR_OR_NULL(dev) ? 3034 "Invalid device" : dev_name(dev), 3035 error); 3036 return; 3037 } 3038 3039 /* 3040 * Drop the extra reference only if the OPP table was successfully added 3041 * with dev_pm_opp_of_add_table() earlier. 3042 **/ 3043 if (_opp_remove_all_static(opp_table)) 3044 dev_pm_opp_put_opp_table(opp_table); 3045 3046 /* Drop reference taken by _find_opp_table() */ 3047 dev_pm_opp_put_opp_table(opp_table); 3048 } 3049 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 3050 3051 /** 3052 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 3053 * @dev: device for which we do this operation 3054 * 3055 * Sync voltage state of the OPP table regulators. 3056 * 3057 * Return: 0 on success or a negative error value. 3058 */ 3059 int dev_pm_opp_sync_regulators(struct device *dev) 3060 { 3061 struct opp_table *opp_table; 3062 struct regulator *reg; 3063 int i, ret = 0; 3064 3065 /* Device may not have OPP table */ 3066 opp_table = _find_opp_table(dev); 3067 if (IS_ERR(opp_table)) 3068 return 0; 3069 3070 /* Regulator may not be required for the device */ 3071 if (unlikely(!opp_table->regulators)) 3072 goto put_table; 3073 3074 /* Nothing to sync if voltage wasn't changed */ 3075 if (!opp_table->enabled) 3076 goto put_table; 3077 3078 for (i = 0; i < opp_table->regulator_count; i++) { 3079 reg = opp_table->regulators[i]; 3080 ret = regulator_sync_voltage(reg); 3081 if (ret) 3082 break; 3083 } 3084 put_table: 3085 /* Drop reference taken by _find_opp_table() */ 3086 dev_pm_opp_put_opp_table(opp_table); 3087 3088 return ret; 3089 } 3090 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 3091