xref: /openbmc/linux/drivers/opp/core.c (revision 5a170e9e)
1 /*
2  * Generic OPP Interface
3  *
4  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
5  *	Nishanth Menon
6  *	Romit Dasgupta
7  *	Kevin Hilman
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/pm_domain.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include "opp.h"
26 
27 /*
28  * The root of the list of all opp-tables. All opp_table structures branch off
29  * from here, with each opp_table containing the list of opps it supports in
30  * various states of availability.
31  */
32 LIST_HEAD(opp_tables);
33 /* Lock to allow exclusive modification to the device and opp lists */
34 DEFINE_MUTEX(opp_table_lock);
35 
36 static struct opp_device *_find_opp_dev(const struct device *dev,
37 					struct opp_table *opp_table)
38 {
39 	struct opp_device *opp_dev;
40 
41 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 		if (opp_dev->dev == dev)
43 			return opp_dev;
44 
45 	return NULL;
46 }
47 
48 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
49 {
50 	struct opp_table *opp_table;
51 	bool found;
52 
53 	list_for_each_entry(opp_table, &opp_tables, node) {
54 		mutex_lock(&opp_table->lock);
55 		found = !!_find_opp_dev(dev, opp_table);
56 		mutex_unlock(&opp_table->lock);
57 
58 		if (found) {
59 			_get_opp_table_kref(opp_table);
60 
61 			return opp_table;
62 		}
63 	}
64 
65 	return ERR_PTR(-ENODEV);
66 }
67 
68 /**
69  * _find_opp_table() - find opp_table struct using device pointer
70  * @dev:	device pointer used to lookup OPP table
71  *
72  * Search OPP table for one containing matching device.
73  *
74  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
75  * -EINVAL based on type of error.
76  *
77  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
78  */
79 struct opp_table *_find_opp_table(struct device *dev)
80 {
81 	struct opp_table *opp_table;
82 
83 	if (IS_ERR_OR_NULL(dev)) {
84 		pr_err("%s: Invalid parameters\n", __func__);
85 		return ERR_PTR(-EINVAL);
86 	}
87 
88 	mutex_lock(&opp_table_lock);
89 	opp_table = _find_opp_table_unlocked(dev);
90 	mutex_unlock(&opp_table_lock);
91 
92 	return opp_table;
93 }
94 
95 /**
96  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
97  * @opp:	opp for which voltage has to be returned for
98  *
99  * Return: voltage in micro volt corresponding to the opp, else
100  * return 0
101  *
102  * This is useful only for devices with single power supply.
103  */
104 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
105 {
106 	if (IS_ERR_OR_NULL(opp)) {
107 		pr_err("%s: Invalid parameters\n", __func__);
108 		return 0;
109 	}
110 
111 	return opp->supplies[0].u_volt;
112 }
113 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
114 
115 /**
116  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
117  * @opp:	opp for which frequency has to be returned for
118  *
119  * Return: frequency in hertz corresponding to the opp, else
120  * return 0
121  */
122 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
123 {
124 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
125 		pr_err("%s: Invalid parameters\n", __func__);
126 		return 0;
127 	}
128 
129 	return opp->rate;
130 }
131 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
132 
133 /**
134  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
135  * @opp: opp for which turbo mode is being verified
136  *
137  * Turbo OPPs are not for normal use, and can be enabled (under certain
138  * conditions) for short duration of times to finish high throughput work
139  * quickly. Running on them for longer times may overheat the chip.
140  *
141  * Return: true if opp is turbo opp, else false.
142  */
143 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
144 {
145 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
146 		pr_err("%s: Invalid parameters\n", __func__);
147 		return false;
148 	}
149 
150 	return opp->turbo;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
153 
154 /**
155  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
156  * @dev:	device for which we do this operation
157  *
158  * Return: This function returns the max clock latency in nanoseconds.
159  */
160 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
161 {
162 	struct opp_table *opp_table;
163 	unsigned long clock_latency_ns;
164 
165 	opp_table = _find_opp_table(dev);
166 	if (IS_ERR(opp_table))
167 		return 0;
168 
169 	clock_latency_ns = opp_table->clock_latency_ns_max;
170 
171 	dev_pm_opp_put_opp_table(opp_table);
172 
173 	return clock_latency_ns;
174 }
175 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
176 
177 /**
178  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
179  * @dev: device for which we do this operation
180  *
181  * Return: This function returns the max voltage latency in nanoseconds.
182  */
183 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
184 {
185 	struct opp_table *opp_table;
186 	struct dev_pm_opp *opp;
187 	struct regulator *reg;
188 	unsigned long latency_ns = 0;
189 	int ret, i, count;
190 	struct {
191 		unsigned long min;
192 		unsigned long max;
193 	} *uV;
194 
195 	opp_table = _find_opp_table(dev);
196 	if (IS_ERR(opp_table))
197 		return 0;
198 
199 	/* Regulator may not be required for the device */
200 	if (!opp_table->regulators)
201 		goto put_opp_table;
202 
203 	count = opp_table->regulator_count;
204 
205 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
206 	if (!uV)
207 		goto put_opp_table;
208 
209 	mutex_lock(&opp_table->lock);
210 
211 	for (i = 0; i < count; i++) {
212 		uV[i].min = ~0;
213 		uV[i].max = 0;
214 
215 		list_for_each_entry(opp, &opp_table->opp_list, node) {
216 			if (!opp->available)
217 				continue;
218 
219 			if (opp->supplies[i].u_volt_min < uV[i].min)
220 				uV[i].min = opp->supplies[i].u_volt_min;
221 			if (opp->supplies[i].u_volt_max > uV[i].max)
222 				uV[i].max = opp->supplies[i].u_volt_max;
223 		}
224 	}
225 
226 	mutex_unlock(&opp_table->lock);
227 
228 	/*
229 	 * The caller needs to ensure that opp_table (and hence the regulator)
230 	 * isn't freed, while we are executing this routine.
231 	 */
232 	for (i = 0; i < count; i++) {
233 		reg = opp_table->regulators[i];
234 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
235 		if (ret > 0)
236 			latency_ns += ret * 1000;
237 	}
238 
239 	kfree(uV);
240 put_opp_table:
241 	dev_pm_opp_put_opp_table(opp_table);
242 
243 	return latency_ns;
244 }
245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
246 
247 /**
248  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
249  *					     nanoseconds
250  * @dev: device for which we do this operation
251  *
252  * Return: This function returns the max transition latency, in nanoseconds, to
253  * switch from one OPP to other.
254  */
255 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
256 {
257 	return dev_pm_opp_get_max_volt_latency(dev) +
258 		dev_pm_opp_get_max_clock_latency(dev);
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
261 
262 /**
263  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
264  * @dev:	device for which we do this operation
265  *
266  * Return: This function returns the frequency of the OPP marked as suspend_opp
267  * if one is available, else returns 0;
268  */
269 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
270 {
271 	struct opp_table *opp_table;
272 	unsigned long freq = 0;
273 
274 	opp_table = _find_opp_table(dev);
275 	if (IS_ERR(opp_table))
276 		return 0;
277 
278 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
279 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
280 
281 	dev_pm_opp_put_opp_table(opp_table);
282 
283 	return freq;
284 }
285 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
286 
287 int _get_opp_count(struct opp_table *opp_table)
288 {
289 	struct dev_pm_opp *opp;
290 	int count = 0;
291 
292 	mutex_lock(&opp_table->lock);
293 
294 	list_for_each_entry(opp, &opp_table->opp_list, node) {
295 		if (opp->available)
296 			count++;
297 	}
298 
299 	mutex_unlock(&opp_table->lock);
300 
301 	return count;
302 }
303 
304 /**
305  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
306  * @dev:	device for which we do this operation
307  *
308  * Return: This function returns the number of available opps if there are any,
309  * else returns 0 if none or the corresponding error value.
310  */
311 int dev_pm_opp_get_opp_count(struct device *dev)
312 {
313 	struct opp_table *opp_table;
314 	int count;
315 
316 	opp_table = _find_opp_table(dev);
317 	if (IS_ERR(opp_table)) {
318 		count = PTR_ERR(opp_table);
319 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
320 			__func__, count);
321 		return count;
322 	}
323 
324 	count = _get_opp_count(opp_table);
325 	dev_pm_opp_put_opp_table(opp_table);
326 
327 	return count;
328 }
329 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
330 
331 /**
332  * dev_pm_opp_find_freq_exact() - search for an exact frequency
333  * @dev:		device for which we do this operation
334  * @freq:		frequency to search for
335  * @available:		true/false - match for available opp
336  *
337  * Return: Searches for exact match in the opp table and returns pointer to the
338  * matching opp if found, else returns ERR_PTR in case of error and should
339  * be handled using IS_ERR. Error return values can be:
340  * EINVAL:	for bad pointer
341  * ERANGE:	no match found for search
342  * ENODEV:	if device not found in list of registered devices
343  *
344  * Note: available is a modifier for the search. if available=true, then the
345  * match is for exact matching frequency and is available in the stored OPP
346  * table. if false, the match is for exact frequency which is not available.
347  *
348  * This provides a mechanism to enable an opp which is not available currently
349  * or the opposite as well.
350  *
351  * The callers are required to call dev_pm_opp_put() for the returned OPP after
352  * use.
353  */
354 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
355 					      unsigned long freq,
356 					      bool available)
357 {
358 	struct opp_table *opp_table;
359 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
360 
361 	opp_table = _find_opp_table(dev);
362 	if (IS_ERR(opp_table)) {
363 		int r = PTR_ERR(opp_table);
364 
365 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
366 		return ERR_PTR(r);
367 	}
368 
369 	mutex_lock(&opp_table->lock);
370 
371 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
372 		if (temp_opp->available == available &&
373 				temp_opp->rate == freq) {
374 			opp = temp_opp;
375 
376 			/* Increment the reference count of OPP */
377 			dev_pm_opp_get(opp);
378 			break;
379 		}
380 	}
381 
382 	mutex_unlock(&opp_table->lock);
383 	dev_pm_opp_put_opp_table(opp_table);
384 
385 	return opp;
386 }
387 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
388 
389 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
390 						   unsigned long *freq)
391 {
392 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
393 
394 	mutex_lock(&opp_table->lock);
395 
396 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
397 		if (temp_opp->available && temp_opp->rate >= *freq) {
398 			opp = temp_opp;
399 			*freq = opp->rate;
400 
401 			/* Increment the reference count of OPP */
402 			dev_pm_opp_get(opp);
403 			break;
404 		}
405 	}
406 
407 	mutex_unlock(&opp_table->lock);
408 
409 	return opp;
410 }
411 
412 /**
413  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
414  * @dev:	device for which we do this operation
415  * @freq:	Start frequency
416  *
417  * Search for the matching ceil *available* OPP from a starting freq
418  * for a device.
419  *
420  * Return: matching *opp and refreshes *freq accordingly, else returns
421  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
422  * values can be:
423  * EINVAL:	for bad pointer
424  * ERANGE:	no match found for search
425  * ENODEV:	if device not found in list of registered devices
426  *
427  * The callers are required to call dev_pm_opp_put() for the returned OPP after
428  * use.
429  */
430 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
431 					     unsigned long *freq)
432 {
433 	struct opp_table *opp_table;
434 	struct dev_pm_opp *opp;
435 
436 	if (!dev || !freq) {
437 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
438 		return ERR_PTR(-EINVAL);
439 	}
440 
441 	opp_table = _find_opp_table(dev);
442 	if (IS_ERR(opp_table))
443 		return ERR_CAST(opp_table);
444 
445 	opp = _find_freq_ceil(opp_table, freq);
446 
447 	dev_pm_opp_put_opp_table(opp_table);
448 
449 	return opp;
450 }
451 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
452 
453 /**
454  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
455  * @dev:	device for which we do this operation
456  * @freq:	Start frequency
457  *
458  * Search for the matching floor *available* OPP from a starting freq
459  * for a device.
460  *
461  * Return: matching *opp and refreshes *freq accordingly, else returns
462  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
463  * values can be:
464  * EINVAL:	for bad pointer
465  * ERANGE:	no match found for search
466  * ENODEV:	if device not found in list of registered devices
467  *
468  * The callers are required to call dev_pm_opp_put() for the returned OPP after
469  * use.
470  */
471 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
472 					      unsigned long *freq)
473 {
474 	struct opp_table *opp_table;
475 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
476 
477 	if (!dev || !freq) {
478 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
479 		return ERR_PTR(-EINVAL);
480 	}
481 
482 	opp_table = _find_opp_table(dev);
483 	if (IS_ERR(opp_table))
484 		return ERR_CAST(opp_table);
485 
486 	mutex_lock(&opp_table->lock);
487 
488 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
489 		if (temp_opp->available) {
490 			/* go to the next node, before choosing prev */
491 			if (temp_opp->rate > *freq)
492 				break;
493 			else
494 				opp = temp_opp;
495 		}
496 	}
497 
498 	/* Increment the reference count of OPP */
499 	if (!IS_ERR(opp))
500 		dev_pm_opp_get(opp);
501 	mutex_unlock(&opp_table->lock);
502 	dev_pm_opp_put_opp_table(opp_table);
503 
504 	if (!IS_ERR(opp))
505 		*freq = opp->rate;
506 
507 	return opp;
508 }
509 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
510 
511 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
512 			    struct dev_pm_opp_supply *supply)
513 {
514 	int ret;
515 
516 	/* Regulator not available for device */
517 	if (IS_ERR(reg)) {
518 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
519 			PTR_ERR(reg));
520 		return 0;
521 	}
522 
523 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
524 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
525 
526 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
527 					    supply->u_volt, supply->u_volt_max);
528 	if (ret)
529 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
530 			__func__, supply->u_volt_min, supply->u_volt,
531 			supply->u_volt_max, ret);
532 
533 	return ret;
534 }
535 
536 static inline int
537 _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
538 			  unsigned long old_freq, unsigned long freq)
539 {
540 	int ret;
541 
542 	ret = clk_set_rate(clk, freq);
543 	if (ret) {
544 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
545 			ret);
546 	}
547 
548 	return ret;
549 }
550 
551 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
552 				      struct device *dev,
553 				      unsigned long old_freq,
554 				      unsigned long freq,
555 				      struct dev_pm_opp_supply *old_supply,
556 				      struct dev_pm_opp_supply *new_supply)
557 {
558 	struct regulator *reg = opp_table->regulators[0];
559 	int ret;
560 
561 	/* This function only supports single regulator per device */
562 	if (WARN_ON(opp_table->regulator_count > 1)) {
563 		dev_err(dev, "multiple regulators are not supported\n");
564 		return -EINVAL;
565 	}
566 
567 	/* Scaling up? Scale voltage before frequency */
568 	if (freq >= old_freq) {
569 		ret = _set_opp_voltage(dev, reg, new_supply);
570 		if (ret)
571 			goto restore_voltage;
572 	}
573 
574 	/* Change frequency */
575 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, old_freq, freq);
576 	if (ret)
577 		goto restore_voltage;
578 
579 	/* Scaling down? Scale voltage after frequency */
580 	if (freq < old_freq) {
581 		ret = _set_opp_voltage(dev, reg, new_supply);
582 		if (ret)
583 			goto restore_freq;
584 	}
585 
586 	return 0;
587 
588 restore_freq:
589 	if (_generic_set_opp_clk_only(dev, opp_table->clk, freq, old_freq))
590 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
591 			__func__, old_freq);
592 restore_voltage:
593 	/* This shouldn't harm even if the voltages weren't updated earlier */
594 	if (old_supply)
595 		_set_opp_voltage(dev, reg, old_supply);
596 
597 	return ret;
598 }
599 
600 static int _set_opp_custom(const struct opp_table *opp_table,
601 			   struct device *dev, unsigned long old_freq,
602 			   unsigned long freq,
603 			   struct dev_pm_opp_supply *old_supply,
604 			   struct dev_pm_opp_supply *new_supply)
605 {
606 	struct dev_pm_set_opp_data *data;
607 	int size;
608 
609 	data = opp_table->set_opp_data;
610 	data->regulators = opp_table->regulators;
611 	data->regulator_count = opp_table->regulator_count;
612 	data->clk = opp_table->clk;
613 	data->dev = dev;
614 
615 	data->old_opp.rate = old_freq;
616 	size = sizeof(*old_supply) * opp_table->regulator_count;
617 	if (IS_ERR(old_supply))
618 		memset(data->old_opp.supplies, 0, size);
619 	else
620 		memcpy(data->old_opp.supplies, old_supply, size);
621 
622 	data->new_opp.rate = freq;
623 	memcpy(data->new_opp.supplies, new_supply, size);
624 
625 	return opp_table->set_opp(data);
626 }
627 
628 /* This is only called for PM domain for now */
629 static int _set_required_opps(struct device *dev,
630 			      struct opp_table *opp_table,
631 			      struct dev_pm_opp *opp)
632 {
633 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
634 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
635 	unsigned int pstate;
636 	int i, ret = 0;
637 
638 	if (!required_opp_tables)
639 		return 0;
640 
641 	/* Single genpd case */
642 	if (!genpd_virt_devs) {
643 		pstate = opp->required_opps[0]->pstate;
644 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
645 		if (ret) {
646 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
647 				dev_name(dev), pstate, ret);
648 		}
649 		return ret;
650 	}
651 
652 	/* Multiple genpd case */
653 
654 	/*
655 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
656 	 * after it is freed from another thread.
657 	 */
658 	mutex_lock(&opp_table->genpd_virt_dev_lock);
659 
660 	for (i = 0; i < opp_table->required_opp_count; i++) {
661 		pstate = opp->required_opps[i]->pstate;
662 
663 		if (!genpd_virt_devs[i])
664 			continue;
665 
666 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
667 		if (ret) {
668 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
669 				dev_name(genpd_virt_devs[i]), pstate, ret);
670 			break;
671 		}
672 	}
673 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
674 
675 	return ret;
676 }
677 
678 /**
679  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
680  * @dev:	 device for which we do this operation
681  * @target_freq: frequency to achieve
682  *
683  * This configures the power-supplies and clock source to the levels specified
684  * by the OPP corresponding to the target_freq.
685  */
686 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
687 {
688 	struct opp_table *opp_table;
689 	unsigned long freq, old_freq;
690 	struct dev_pm_opp *old_opp, *opp;
691 	struct clk *clk;
692 	int ret;
693 
694 	if (unlikely(!target_freq)) {
695 		dev_err(dev, "%s: Invalid target frequency %lu\n", __func__,
696 			target_freq);
697 		return -EINVAL;
698 	}
699 
700 	opp_table = _find_opp_table(dev);
701 	if (IS_ERR(opp_table)) {
702 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
703 		return PTR_ERR(opp_table);
704 	}
705 
706 	clk = opp_table->clk;
707 	if (IS_ERR(clk)) {
708 		dev_err(dev, "%s: No clock available for the device\n",
709 			__func__);
710 		ret = PTR_ERR(clk);
711 		goto put_opp_table;
712 	}
713 
714 	freq = clk_round_rate(clk, target_freq);
715 	if ((long)freq <= 0)
716 		freq = target_freq;
717 
718 	old_freq = clk_get_rate(clk);
719 
720 	/* Return early if nothing to do */
721 	if (old_freq == freq) {
722 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
723 			__func__, freq);
724 		ret = 0;
725 		goto put_opp_table;
726 	}
727 
728 	old_opp = _find_freq_ceil(opp_table, &old_freq);
729 	if (IS_ERR(old_opp)) {
730 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
731 			__func__, old_freq, PTR_ERR(old_opp));
732 	}
733 
734 	opp = _find_freq_ceil(opp_table, &freq);
735 	if (IS_ERR(opp)) {
736 		ret = PTR_ERR(opp);
737 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
738 			__func__, freq, ret);
739 		goto put_old_opp;
740 	}
741 
742 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
743 		old_freq, freq);
744 
745 	/* Scaling up? Configure required OPPs before frequency */
746 	if (freq > old_freq) {
747 		ret = _set_required_opps(dev, opp_table, opp);
748 		if (ret)
749 			goto put_opp;
750 	}
751 
752 	if (opp_table->set_opp) {
753 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
754 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
755 				      opp->supplies);
756 	} else if (opp_table->regulators) {
757 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
758 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
759 						 opp->supplies);
760 	} else {
761 		/* Only frequency scaling */
762 		ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq);
763 	}
764 
765 	/* Scaling down? Configure required OPPs after frequency */
766 	if (!ret && freq < old_freq) {
767 		ret = _set_required_opps(dev, opp_table, opp);
768 		if (ret)
769 			dev_err(dev, "Failed to set required opps: %d\n", ret);
770 	}
771 
772 put_opp:
773 	dev_pm_opp_put(opp);
774 put_old_opp:
775 	if (!IS_ERR(old_opp))
776 		dev_pm_opp_put(old_opp);
777 put_opp_table:
778 	dev_pm_opp_put_opp_table(opp_table);
779 	return ret;
780 }
781 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
782 
783 /* OPP-dev Helpers */
784 static void _remove_opp_dev(struct opp_device *opp_dev,
785 			    struct opp_table *opp_table)
786 {
787 	opp_debug_unregister(opp_dev, opp_table);
788 	list_del(&opp_dev->node);
789 	kfree(opp_dev);
790 }
791 
792 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
793 						struct opp_table *opp_table)
794 {
795 	struct opp_device *opp_dev;
796 	int ret;
797 
798 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
799 	if (!opp_dev)
800 		return NULL;
801 
802 	/* Initialize opp-dev */
803 	opp_dev->dev = dev;
804 
805 	list_add(&opp_dev->node, &opp_table->dev_list);
806 
807 	/* Create debugfs entries for the opp_table */
808 	ret = opp_debug_register(opp_dev, opp_table);
809 	if (ret)
810 		dev_err(dev, "%s: Failed to register opp debugfs (%d)\n",
811 			__func__, ret);
812 
813 	return opp_dev;
814 }
815 
816 struct opp_device *_add_opp_dev(const struct device *dev,
817 				struct opp_table *opp_table)
818 {
819 	struct opp_device *opp_dev;
820 
821 	mutex_lock(&opp_table->lock);
822 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
823 	mutex_unlock(&opp_table->lock);
824 
825 	return opp_dev;
826 }
827 
828 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
829 {
830 	struct opp_table *opp_table;
831 	struct opp_device *opp_dev;
832 	int ret;
833 
834 	/*
835 	 * Allocate a new OPP table. In the infrequent case where a new
836 	 * device is needed to be added, we pay this penalty.
837 	 */
838 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
839 	if (!opp_table)
840 		return NULL;
841 
842 	mutex_init(&opp_table->lock);
843 	mutex_init(&opp_table->genpd_virt_dev_lock);
844 	INIT_LIST_HEAD(&opp_table->dev_list);
845 
846 	/* Mark regulator count uninitialized */
847 	opp_table->regulator_count = -1;
848 
849 	opp_dev = _add_opp_dev(dev, opp_table);
850 	if (!opp_dev) {
851 		kfree(opp_table);
852 		return NULL;
853 	}
854 
855 	_of_init_opp_table(opp_table, dev, index);
856 
857 	/* Find clk for the device */
858 	opp_table->clk = clk_get(dev, NULL);
859 	if (IS_ERR(opp_table->clk)) {
860 		ret = PTR_ERR(opp_table->clk);
861 		if (ret != -EPROBE_DEFER)
862 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
863 				ret);
864 	}
865 
866 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
867 	INIT_LIST_HEAD(&opp_table->opp_list);
868 	kref_init(&opp_table->kref);
869 
870 	/* Secure the device table modification */
871 	list_add(&opp_table->node, &opp_tables);
872 	return opp_table;
873 }
874 
875 void _get_opp_table_kref(struct opp_table *opp_table)
876 {
877 	kref_get(&opp_table->kref);
878 }
879 
880 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
881 {
882 	struct opp_table *opp_table;
883 
884 	/* Hold our table modification lock here */
885 	mutex_lock(&opp_table_lock);
886 
887 	opp_table = _find_opp_table_unlocked(dev);
888 	if (!IS_ERR(opp_table))
889 		goto unlock;
890 
891 	opp_table = _managed_opp(dev, index);
892 	if (opp_table) {
893 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
894 			dev_pm_opp_put_opp_table(opp_table);
895 			opp_table = NULL;
896 		}
897 		goto unlock;
898 	}
899 
900 	opp_table = _allocate_opp_table(dev, index);
901 
902 unlock:
903 	mutex_unlock(&opp_table_lock);
904 
905 	return opp_table;
906 }
907 
908 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
909 {
910 	return _opp_get_opp_table(dev, 0);
911 }
912 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
913 
914 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
915 						   int index)
916 {
917 	return _opp_get_opp_table(dev, index);
918 }
919 
920 static void _opp_table_kref_release(struct kref *kref)
921 {
922 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
923 	struct opp_device *opp_dev, *temp;
924 
925 	_of_clear_opp_table(opp_table);
926 
927 	/* Release clk */
928 	if (!IS_ERR(opp_table->clk))
929 		clk_put(opp_table->clk);
930 
931 	WARN_ON(!list_empty(&opp_table->opp_list));
932 
933 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
934 		/*
935 		 * The OPP table is getting removed, drop the performance state
936 		 * constraints.
937 		 */
938 		if (opp_table->genpd_performance_state)
939 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
940 
941 		_remove_opp_dev(opp_dev, opp_table);
942 	}
943 
944 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
945 	mutex_destroy(&opp_table->lock);
946 	list_del(&opp_table->node);
947 	kfree(opp_table);
948 
949 	mutex_unlock(&opp_table_lock);
950 }
951 
952 void _opp_remove_all_static(struct opp_table *opp_table)
953 {
954 	struct dev_pm_opp *opp, *tmp;
955 
956 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
957 		if (!opp->dynamic)
958 			dev_pm_opp_put(opp);
959 	}
960 
961 	opp_table->parsed_static_opps = false;
962 }
963 
964 static void _opp_table_list_kref_release(struct kref *kref)
965 {
966 	struct opp_table *opp_table = container_of(kref, struct opp_table,
967 						   list_kref);
968 
969 	_opp_remove_all_static(opp_table);
970 	mutex_unlock(&opp_table_lock);
971 }
972 
973 void _put_opp_list_kref(struct opp_table *opp_table)
974 {
975 	kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
976 		       &opp_table_lock);
977 }
978 
979 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
980 {
981 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
982 		       &opp_table_lock);
983 }
984 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
985 
986 void _opp_free(struct dev_pm_opp *opp)
987 {
988 	kfree(opp);
989 }
990 
991 static void _opp_kref_release(struct kref *kref)
992 {
993 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
994 	struct opp_table *opp_table = opp->opp_table;
995 
996 	/*
997 	 * Notify the changes in the availability of the operable
998 	 * frequency/voltage list.
999 	 */
1000 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1001 	_of_opp_free_required_opps(opp_table, opp);
1002 	opp_debug_remove_one(opp);
1003 	list_del(&opp->node);
1004 	kfree(opp);
1005 
1006 	mutex_unlock(&opp_table->lock);
1007 }
1008 
1009 void dev_pm_opp_get(struct dev_pm_opp *opp)
1010 {
1011 	kref_get(&opp->kref);
1012 }
1013 
1014 void dev_pm_opp_put(struct dev_pm_opp *opp)
1015 {
1016 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1017 }
1018 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1019 
1020 /**
1021  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1022  * @dev:	device for which we do this operation
1023  * @freq:	OPP to remove with matching 'freq'
1024  *
1025  * This function removes an opp from the opp table.
1026  */
1027 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1028 {
1029 	struct dev_pm_opp *opp;
1030 	struct opp_table *opp_table;
1031 	bool found = false;
1032 
1033 	opp_table = _find_opp_table(dev);
1034 	if (IS_ERR(opp_table))
1035 		return;
1036 
1037 	mutex_lock(&opp_table->lock);
1038 
1039 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1040 		if (opp->rate == freq) {
1041 			found = true;
1042 			break;
1043 		}
1044 	}
1045 
1046 	mutex_unlock(&opp_table->lock);
1047 
1048 	if (found) {
1049 		dev_pm_opp_put(opp);
1050 
1051 		/* Drop the reference taken by dev_pm_opp_add() */
1052 		dev_pm_opp_put_opp_table(opp_table);
1053 	} else {
1054 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1055 			 __func__, freq);
1056 	}
1057 
1058 	/* Drop the reference taken by _find_opp_table() */
1059 	dev_pm_opp_put_opp_table(opp_table);
1060 }
1061 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1062 
1063 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1064 {
1065 	struct dev_pm_opp *opp;
1066 	int count, supply_size;
1067 
1068 	/* Allocate space for at least one supply */
1069 	count = table->regulator_count > 0 ? table->regulator_count : 1;
1070 	supply_size = sizeof(*opp->supplies) * count;
1071 
1072 	/* allocate new OPP node and supplies structures */
1073 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1074 	if (!opp)
1075 		return NULL;
1076 
1077 	/* Put the supplies at the end of the OPP structure as an empty array */
1078 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1079 	INIT_LIST_HEAD(&opp->node);
1080 
1081 	return opp;
1082 }
1083 
1084 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1085 					 struct opp_table *opp_table)
1086 {
1087 	struct regulator *reg;
1088 	int i;
1089 
1090 	if (!opp_table->regulators)
1091 		return true;
1092 
1093 	for (i = 0; i < opp_table->regulator_count; i++) {
1094 		reg = opp_table->regulators[i];
1095 
1096 		if (!regulator_is_supported_voltage(reg,
1097 					opp->supplies[i].u_volt_min,
1098 					opp->supplies[i].u_volt_max)) {
1099 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1100 				__func__, opp->supplies[i].u_volt_min,
1101 				opp->supplies[i].u_volt_max);
1102 			return false;
1103 		}
1104 	}
1105 
1106 	return true;
1107 }
1108 
1109 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1110 			     struct opp_table *opp_table,
1111 			     struct list_head **head)
1112 {
1113 	struct dev_pm_opp *opp;
1114 
1115 	/*
1116 	 * Insert new OPP in order of increasing frequency and discard if
1117 	 * already present.
1118 	 *
1119 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1120 	 * loop, don't replace it with head otherwise it will become an infinite
1121 	 * loop.
1122 	 */
1123 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1124 		if (new_opp->rate > opp->rate) {
1125 			*head = &opp->node;
1126 			continue;
1127 		}
1128 
1129 		if (new_opp->rate < opp->rate)
1130 			return 0;
1131 
1132 		/* Duplicate OPPs */
1133 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1134 			 __func__, opp->rate, opp->supplies[0].u_volt,
1135 			 opp->available, new_opp->rate,
1136 			 new_opp->supplies[0].u_volt, new_opp->available);
1137 
1138 		/* Should we compare voltages for all regulators here ? */
1139 		return opp->available &&
1140 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Returns:
1148  * 0: On success. And appropriate error message for duplicate OPPs.
1149  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1150  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1151  *  sure we don't print error messages unnecessarily if different parts of
1152  *  kernel try to initialize the OPP table.
1153  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1154  *  should be considered an error by the callers of _opp_add().
1155  */
1156 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1157 	     struct opp_table *opp_table, bool rate_not_available)
1158 {
1159 	struct list_head *head;
1160 	int ret;
1161 
1162 	mutex_lock(&opp_table->lock);
1163 	head = &opp_table->opp_list;
1164 
1165 	if (likely(!rate_not_available)) {
1166 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1167 		if (ret) {
1168 			mutex_unlock(&opp_table->lock);
1169 			return ret;
1170 		}
1171 	}
1172 
1173 	list_add(&new_opp->node, head);
1174 	mutex_unlock(&opp_table->lock);
1175 
1176 	new_opp->opp_table = opp_table;
1177 	kref_init(&new_opp->kref);
1178 
1179 	ret = opp_debug_create_one(new_opp, opp_table);
1180 	if (ret)
1181 		dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n",
1182 			__func__, ret);
1183 
1184 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1185 		new_opp->available = false;
1186 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1187 			 __func__, new_opp->rate);
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 /**
1194  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1195  * @opp_table:	OPP table
1196  * @dev:	device for which we do this operation
1197  * @freq:	Frequency in Hz for this OPP
1198  * @u_volt:	Voltage in uVolts for this OPP
1199  * @dynamic:	Dynamically added OPPs.
1200  *
1201  * This function adds an opp definition to the opp table and returns status.
1202  * The opp is made available by default and it can be controlled using
1203  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1204  *
1205  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1206  * and freed by dev_pm_opp_of_remove_table.
1207  *
1208  * Return:
1209  * 0		On success OR
1210  *		Duplicate OPPs (both freq and volt are same) and opp->available
1211  * -EEXIST	Freq are same and volt are different OR
1212  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1213  * -ENOMEM	Memory allocation failure
1214  */
1215 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1216 		unsigned long freq, long u_volt, bool dynamic)
1217 {
1218 	struct dev_pm_opp *new_opp;
1219 	unsigned long tol;
1220 	int ret;
1221 
1222 	new_opp = _opp_allocate(opp_table);
1223 	if (!new_opp)
1224 		return -ENOMEM;
1225 
1226 	/* populate the opp table */
1227 	new_opp->rate = freq;
1228 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1229 	new_opp->supplies[0].u_volt = u_volt;
1230 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1231 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1232 	new_opp->available = true;
1233 	new_opp->dynamic = dynamic;
1234 
1235 	ret = _opp_add(dev, new_opp, opp_table, false);
1236 	if (ret) {
1237 		/* Don't return error for duplicate OPPs */
1238 		if (ret == -EBUSY)
1239 			ret = 0;
1240 		goto free_opp;
1241 	}
1242 
1243 	/*
1244 	 * Notify the changes in the availability of the operable
1245 	 * frequency/voltage list.
1246 	 */
1247 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1248 	return 0;
1249 
1250 free_opp:
1251 	_opp_free(new_opp);
1252 
1253 	return ret;
1254 }
1255 
1256 /**
1257  * dev_pm_opp_set_supported_hw() - Set supported platforms
1258  * @dev: Device for which supported-hw has to be set.
1259  * @versions: Array of hierarchy of versions to match.
1260  * @count: Number of elements in the array.
1261  *
1262  * This is required only for the V2 bindings, and it enables a platform to
1263  * specify the hierarchy of versions it supports. OPP layer will then enable
1264  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1265  * property.
1266  */
1267 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1268 			const u32 *versions, unsigned int count)
1269 {
1270 	struct opp_table *opp_table;
1271 
1272 	opp_table = dev_pm_opp_get_opp_table(dev);
1273 	if (!opp_table)
1274 		return ERR_PTR(-ENOMEM);
1275 
1276 	/* Make sure there are no concurrent readers while updating opp_table */
1277 	WARN_ON(!list_empty(&opp_table->opp_list));
1278 
1279 	/* Another CPU that shares the OPP table has set the property ? */
1280 	if (opp_table->supported_hw)
1281 		return opp_table;
1282 
1283 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1284 					GFP_KERNEL);
1285 	if (!opp_table->supported_hw) {
1286 		dev_pm_opp_put_opp_table(opp_table);
1287 		return ERR_PTR(-ENOMEM);
1288 	}
1289 
1290 	opp_table->supported_hw_count = count;
1291 
1292 	return opp_table;
1293 }
1294 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1295 
1296 /**
1297  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1298  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1299  *
1300  * This is required only for the V2 bindings, and is called for a matching
1301  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1302  * will not be freed.
1303  */
1304 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1305 {
1306 	/* Make sure there are no concurrent readers while updating opp_table */
1307 	WARN_ON(!list_empty(&opp_table->opp_list));
1308 
1309 	kfree(opp_table->supported_hw);
1310 	opp_table->supported_hw = NULL;
1311 	opp_table->supported_hw_count = 0;
1312 
1313 	dev_pm_opp_put_opp_table(opp_table);
1314 }
1315 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1316 
1317 /**
1318  * dev_pm_opp_set_prop_name() - Set prop-extn name
1319  * @dev: Device for which the prop-name has to be set.
1320  * @name: name to postfix to properties.
1321  *
1322  * This is required only for the V2 bindings, and it enables a platform to
1323  * specify the extn to be used for certain property names. The properties to
1324  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1325  * should postfix the property name with -<name> while looking for them.
1326  */
1327 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1328 {
1329 	struct opp_table *opp_table;
1330 
1331 	opp_table = dev_pm_opp_get_opp_table(dev);
1332 	if (!opp_table)
1333 		return ERR_PTR(-ENOMEM);
1334 
1335 	/* Make sure there are no concurrent readers while updating opp_table */
1336 	WARN_ON(!list_empty(&opp_table->opp_list));
1337 
1338 	/* Another CPU that shares the OPP table has set the property ? */
1339 	if (opp_table->prop_name)
1340 		return opp_table;
1341 
1342 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1343 	if (!opp_table->prop_name) {
1344 		dev_pm_opp_put_opp_table(opp_table);
1345 		return ERR_PTR(-ENOMEM);
1346 	}
1347 
1348 	return opp_table;
1349 }
1350 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1351 
1352 /**
1353  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1354  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1355  *
1356  * This is required only for the V2 bindings, and is called for a matching
1357  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1358  * will not be freed.
1359  */
1360 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1361 {
1362 	/* Make sure there are no concurrent readers while updating opp_table */
1363 	WARN_ON(!list_empty(&opp_table->opp_list));
1364 
1365 	kfree(opp_table->prop_name);
1366 	opp_table->prop_name = NULL;
1367 
1368 	dev_pm_opp_put_opp_table(opp_table);
1369 }
1370 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1371 
1372 static int _allocate_set_opp_data(struct opp_table *opp_table)
1373 {
1374 	struct dev_pm_set_opp_data *data;
1375 	int len, count = opp_table->regulator_count;
1376 
1377 	if (WARN_ON(!opp_table->regulators))
1378 		return -EINVAL;
1379 
1380 	/* space for set_opp_data */
1381 	len = sizeof(*data);
1382 
1383 	/* space for old_opp.supplies and new_opp.supplies */
1384 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1385 
1386 	data = kzalloc(len, GFP_KERNEL);
1387 	if (!data)
1388 		return -ENOMEM;
1389 
1390 	data->old_opp.supplies = (void *)(data + 1);
1391 	data->new_opp.supplies = data->old_opp.supplies + count;
1392 
1393 	opp_table->set_opp_data = data;
1394 
1395 	return 0;
1396 }
1397 
1398 static void _free_set_opp_data(struct opp_table *opp_table)
1399 {
1400 	kfree(opp_table->set_opp_data);
1401 	opp_table->set_opp_data = NULL;
1402 }
1403 
1404 /**
1405  * dev_pm_opp_set_regulators() - Set regulator names for the device
1406  * @dev: Device for which regulator name is being set.
1407  * @names: Array of pointers to the names of the regulator.
1408  * @count: Number of regulators.
1409  *
1410  * In order to support OPP switching, OPP layer needs to know the name of the
1411  * device's regulators, as the core would be required to switch voltages as
1412  * well.
1413  *
1414  * This must be called before any OPPs are initialized for the device.
1415  */
1416 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1417 					    const char * const names[],
1418 					    unsigned int count)
1419 {
1420 	struct opp_table *opp_table;
1421 	struct regulator *reg;
1422 	int ret, i;
1423 
1424 	opp_table = dev_pm_opp_get_opp_table(dev);
1425 	if (!opp_table)
1426 		return ERR_PTR(-ENOMEM);
1427 
1428 	/* This should be called before OPPs are initialized */
1429 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1430 		ret = -EBUSY;
1431 		goto err;
1432 	}
1433 
1434 	/* Another CPU that shares the OPP table has set the regulators ? */
1435 	if (opp_table->regulators)
1436 		return opp_table;
1437 
1438 	opp_table->regulators = kmalloc_array(count,
1439 					      sizeof(*opp_table->regulators),
1440 					      GFP_KERNEL);
1441 	if (!opp_table->regulators) {
1442 		ret = -ENOMEM;
1443 		goto err;
1444 	}
1445 
1446 	for (i = 0; i < count; i++) {
1447 		reg = regulator_get_optional(dev, names[i]);
1448 		if (IS_ERR(reg)) {
1449 			ret = PTR_ERR(reg);
1450 			if (ret != -EPROBE_DEFER)
1451 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1452 					__func__, names[i], ret);
1453 			goto free_regulators;
1454 		}
1455 
1456 		opp_table->regulators[i] = reg;
1457 	}
1458 
1459 	opp_table->regulator_count = count;
1460 
1461 	/* Allocate block only once to pass to set_opp() routines */
1462 	ret = _allocate_set_opp_data(opp_table);
1463 	if (ret)
1464 		goto free_regulators;
1465 
1466 	return opp_table;
1467 
1468 free_regulators:
1469 	while (i != 0)
1470 		regulator_put(opp_table->regulators[--i]);
1471 
1472 	kfree(opp_table->regulators);
1473 	opp_table->regulators = NULL;
1474 	opp_table->regulator_count = -1;
1475 err:
1476 	dev_pm_opp_put_opp_table(opp_table);
1477 
1478 	return ERR_PTR(ret);
1479 }
1480 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1481 
1482 /**
1483  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1484  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1485  */
1486 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1487 {
1488 	int i;
1489 
1490 	if (!opp_table->regulators)
1491 		goto put_opp_table;
1492 
1493 	/* Make sure there are no concurrent readers while updating opp_table */
1494 	WARN_ON(!list_empty(&opp_table->opp_list));
1495 
1496 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1497 		regulator_put(opp_table->regulators[i]);
1498 
1499 	_free_set_opp_data(opp_table);
1500 
1501 	kfree(opp_table->regulators);
1502 	opp_table->regulators = NULL;
1503 	opp_table->regulator_count = -1;
1504 
1505 put_opp_table:
1506 	dev_pm_opp_put_opp_table(opp_table);
1507 }
1508 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1509 
1510 /**
1511  * dev_pm_opp_set_clkname() - Set clk name for the device
1512  * @dev: Device for which clk name is being set.
1513  * @name: Clk name.
1514  *
1515  * In order to support OPP switching, OPP layer needs to get pointer to the
1516  * clock for the device. Simple cases work fine without using this routine (i.e.
1517  * by passing connection-id as NULL), but for a device with multiple clocks
1518  * available, the OPP core needs to know the exact name of the clk to use.
1519  *
1520  * This must be called before any OPPs are initialized for the device.
1521  */
1522 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1523 {
1524 	struct opp_table *opp_table;
1525 	int ret;
1526 
1527 	opp_table = dev_pm_opp_get_opp_table(dev);
1528 	if (!opp_table)
1529 		return ERR_PTR(-ENOMEM);
1530 
1531 	/* This should be called before OPPs are initialized */
1532 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1533 		ret = -EBUSY;
1534 		goto err;
1535 	}
1536 
1537 	/* Already have default clk set, free it */
1538 	if (!IS_ERR(opp_table->clk))
1539 		clk_put(opp_table->clk);
1540 
1541 	/* Find clk for the device */
1542 	opp_table->clk = clk_get(dev, name);
1543 	if (IS_ERR(opp_table->clk)) {
1544 		ret = PTR_ERR(opp_table->clk);
1545 		if (ret != -EPROBE_DEFER) {
1546 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1547 				ret);
1548 		}
1549 		goto err;
1550 	}
1551 
1552 	return opp_table;
1553 
1554 err:
1555 	dev_pm_opp_put_opp_table(opp_table);
1556 
1557 	return ERR_PTR(ret);
1558 }
1559 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1560 
1561 /**
1562  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1563  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1564  */
1565 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1566 {
1567 	/* Make sure there are no concurrent readers while updating opp_table */
1568 	WARN_ON(!list_empty(&opp_table->opp_list));
1569 
1570 	clk_put(opp_table->clk);
1571 	opp_table->clk = ERR_PTR(-EINVAL);
1572 
1573 	dev_pm_opp_put_opp_table(opp_table);
1574 }
1575 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1576 
1577 /**
1578  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1579  * @dev: Device for which the helper is getting registered.
1580  * @set_opp: Custom set OPP helper.
1581  *
1582  * This is useful to support complex platforms (like platforms with multiple
1583  * regulators per device), instead of the generic OPP set rate helper.
1584  *
1585  * This must be called before any OPPs are initialized for the device.
1586  */
1587 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1588 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1589 {
1590 	struct opp_table *opp_table;
1591 
1592 	if (!set_opp)
1593 		return ERR_PTR(-EINVAL);
1594 
1595 	opp_table = dev_pm_opp_get_opp_table(dev);
1596 	if (!opp_table)
1597 		return ERR_PTR(-ENOMEM);
1598 
1599 	/* This should be called before OPPs are initialized */
1600 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1601 		dev_pm_opp_put_opp_table(opp_table);
1602 		return ERR_PTR(-EBUSY);
1603 	}
1604 
1605 	/* Another CPU that shares the OPP table has set the helper ? */
1606 	if (!opp_table->set_opp)
1607 		opp_table->set_opp = set_opp;
1608 
1609 	return opp_table;
1610 }
1611 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1612 
1613 /**
1614  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1615  *					   set_opp helper
1616  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1617  *
1618  * Release resources blocked for platform specific set_opp helper.
1619  */
1620 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1621 {
1622 	/* Make sure there are no concurrent readers while updating opp_table */
1623 	WARN_ON(!list_empty(&opp_table->opp_list));
1624 
1625 	opp_table->set_opp = NULL;
1626 	dev_pm_opp_put_opp_table(opp_table);
1627 }
1628 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1629 
1630 /**
1631  * dev_pm_opp_set_genpd_virt_dev - Set virtual genpd device for an index
1632  * @dev: Consumer device for which the genpd device is getting set.
1633  * @virt_dev: virtual genpd device.
1634  * @index: index.
1635  *
1636  * Multiple generic power domains for a device are supported with the help of
1637  * virtual genpd devices, which are created for each consumer device - genpd
1638  * pair. These are the device structures which are attached to the power domain
1639  * and are required by the OPP core to set the performance state of the genpd.
1640  *
1641  * This helper will normally be called by the consumer driver of the device
1642  * "dev", as only that has details of the genpd devices.
1643  *
1644  * This helper needs to be called once for each of those virtual devices, but
1645  * only if multiple domains are available for a device. Otherwise the original
1646  * device structure will be used instead by the OPP core.
1647  */
1648 struct opp_table *dev_pm_opp_set_genpd_virt_dev(struct device *dev,
1649 						struct device *virt_dev,
1650 						int index)
1651 {
1652 	struct opp_table *opp_table;
1653 
1654 	opp_table = dev_pm_opp_get_opp_table(dev);
1655 	if (!opp_table)
1656 		return ERR_PTR(-ENOMEM);
1657 
1658 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1659 
1660 	if (unlikely(!opp_table->genpd_virt_devs ||
1661 		     index >= opp_table->required_opp_count ||
1662 		     opp_table->genpd_virt_devs[index])) {
1663 
1664 		dev_err(dev, "Invalid request to set required device\n");
1665 		dev_pm_opp_put_opp_table(opp_table);
1666 		mutex_unlock(&opp_table->genpd_virt_dev_lock);
1667 
1668 		return ERR_PTR(-EINVAL);
1669 	}
1670 
1671 	opp_table->genpd_virt_devs[index] = virt_dev;
1672 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1673 
1674 	return opp_table;
1675 }
1676 
1677 /**
1678  * dev_pm_opp_put_genpd_virt_dev() - Releases resources blocked for genpd device.
1679  * @opp_table: OPP table returned by dev_pm_opp_set_genpd_virt_dev().
1680  * @virt_dev: virtual genpd device.
1681  *
1682  * This releases the resource previously acquired with a call to
1683  * dev_pm_opp_set_genpd_virt_dev(). The consumer driver shall call this helper
1684  * if it doesn't want OPP core to update performance state of a power domain
1685  * anymore.
1686  */
1687 void dev_pm_opp_put_genpd_virt_dev(struct opp_table *opp_table,
1688 				   struct device *virt_dev)
1689 {
1690 	int i;
1691 
1692 	/*
1693 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1694 	 * used in parallel.
1695 	 */
1696 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1697 
1698 	for (i = 0; i < opp_table->required_opp_count; i++) {
1699 		if (opp_table->genpd_virt_devs[i] != virt_dev)
1700 			continue;
1701 
1702 		opp_table->genpd_virt_devs[i] = NULL;
1703 		dev_pm_opp_put_opp_table(opp_table);
1704 
1705 		/* Drop the vote */
1706 		dev_pm_genpd_set_performance_state(virt_dev, 0);
1707 		break;
1708 	}
1709 
1710 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1711 
1712 	if (unlikely(i == opp_table->required_opp_count))
1713 		dev_err(virt_dev, "Failed to find required device entry\n");
1714 }
1715 
1716 /**
1717  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1718  * @src_table: OPP table which has dst_table as one of its required OPP table.
1719  * @dst_table: Required OPP table of the src_table.
1720  * @pstate: Current performance state of the src_table.
1721  *
1722  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1723  * "required-opps" property of the OPP (present in @src_table) which has
1724  * performance state set to @pstate.
1725  *
1726  * Return: Zero or positive performance state on success, otherwise negative
1727  * value on errors.
1728  */
1729 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1730 				       struct opp_table *dst_table,
1731 				       unsigned int pstate)
1732 {
1733 	struct dev_pm_opp *opp;
1734 	int dest_pstate = -EINVAL;
1735 	int i;
1736 
1737 	if (!pstate)
1738 		return 0;
1739 
1740 	/*
1741 	 * Normally the src_table will have the "required_opps" property set to
1742 	 * point to one of the OPPs in the dst_table, but in some cases the
1743 	 * genpd and its master have one to one mapping of performance states
1744 	 * and so none of them have the "required-opps" property set. Return the
1745 	 * pstate of the src_table as it is in such cases.
1746 	 */
1747 	if (!src_table->required_opp_count)
1748 		return pstate;
1749 
1750 	for (i = 0; i < src_table->required_opp_count; i++) {
1751 		if (src_table->required_opp_tables[i]->np == dst_table->np)
1752 			break;
1753 	}
1754 
1755 	if (unlikely(i == src_table->required_opp_count)) {
1756 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1757 		       __func__, src_table, dst_table);
1758 		return -EINVAL;
1759 	}
1760 
1761 	mutex_lock(&src_table->lock);
1762 
1763 	list_for_each_entry(opp, &src_table->opp_list, node) {
1764 		if (opp->pstate == pstate) {
1765 			dest_pstate = opp->required_opps[i]->pstate;
1766 			goto unlock;
1767 		}
1768 	}
1769 
1770 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1771 	       dst_table);
1772 
1773 unlock:
1774 	mutex_unlock(&src_table->lock);
1775 
1776 	return dest_pstate;
1777 }
1778 
1779 /**
1780  * dev_pm_opp_add()  - Add an OPP table from a table definitions
1781  * @dev:	device for which we do this operation
1782  * @freq:	Frequency in Hz for this OPP
1783  * @u_volt:	Voltage in uVolts for this OPP
1784  *
1785  * This function adds an opp definition to the opp table and returns status.
1786  * The opp is made available by default and it can be controlled using
1787  * dev_pm_opp_enable/disable functions.
1788  *
1789  * Return:
1790  * 0		On success OR
1791  *		Duplicate OPPs (both freq and volt are same) and opp->available
1792  * -EEXIST	Freq are same and volt are different OR
1793  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1794  * -ENOMEM	Memory allocation failure
1795  */
1796 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1797 {
1798 	struct opp_table *opp_table;
1799 	int ret;
1800 
1801 	opp_table = dev_pm_opp_get_opp_table(dev);
1802 	if (!opp_table)
1803 		return -ENOMEM;
1804 
1805 	/* Fix regulator count for dynamic OPPs */
1806 	opp_table->regulator_count = 1;
1807 
1808 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1809 	if (ret)
1810 		dev_pm_opp_put_opp_table(opp_table);
1811 
1812 	return ret;
1813 }
1814 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1815 
1816 /**
1817  * _opp_set_availability() - helper to set the availability of an opp
1818  * @dev:		device for which we do this operation
1819  * @freq:		OPP frequency to modify availability
1820  * @availability_req:	availability status requested for this opp
1821  *
1822  * Set the availability of an OPP, opp_{enable,disable} share a common logic
1823  * which is isolated here.
1824  *
1825  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1826  * copy operation, returns 0 if no modification was done OR modification was
1827  * successful.
1828  */
1829 static int _opp_set_availability(struct device *dev, unsigned long freq,
1830 				 bool availability_req)
1831 {
1832 	struct opp_table *opp_table;
1833 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
1834 	int r = 0;
1835 
1836 	/* Find the opp_table */
1837 	opp_table = _find_opp_table(dev);
1838 	if (IS_ERR(opp_table)) {
1839 		r = PTR_ERR(opp_table);
1840 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
1841 		return r;
1842 	}
1843 
1844 	mutex_lock(&opp_table->lock);
1845 
1846 	/* Do we have the frequency? */
1847 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
1848 		if (tmp_opp->rate == freq) {
1849 			opp = tmp_opp;
1850 			break;
1851 		}
1852 	}
1853 
1854 	if (IS_ERR(opp)) {
1855 		r = PTR_ERR(opp);
1856 		goto unlock;
1857 	}
1858 
1859 	/* Is update really needed? */
1860 	if (opp->available == availability_req)
1861 		goto unlock;
1862 
1863 	opp->available = availability_req;
1864 
1865 	dev_pm_opp_get(opp);
1866 	mutex_unlock(&opp_table->lock);
1867 
1868 	/* Notify the change of the OPP availability */
1869 	if (availability_req)
1870 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
1871 					     opp);
1872 	else
1873 		blocking_notifier_call_chain(&opp_table->head,
1874 					     OPP_EVENT_DISABLE, opp);
1875 
1876 	dev_pm_opp_put(opp);
1877 	goto put_table;
1878 
1879 unlock:
1880 	mutex_unlock(&opp_table->lock);
1881 put_table:
1882 	dev_pm_opp_put_opp_table(opp_table);
1883 	return r;
1884 }
1885 
1886 /**
1887  * dev_pm_opp_enable() - Enable a specific OPP
1888  * @dev:	device for which we do this operation
1889  * @freq:	OPP frequency to enable
1890  *
1891  * Enables a provided opp. If the operation is valid, this returns 0, else the
1892  * corresponding error value. It is meant to be used for users an OPP available
1893  * after being temporarily made unavailable with dev_pm_opp_disable.
1894  *
1895  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1896  * copy operation, returns 0 if no modification was done OR modification was
1897  * successful.
1898  */
1899 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
1900 {
1901 	return _opp_set_availability(dev, freq, true);
1902 }
1903 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
1904 
1905 /**
1906  * dev_pm_opp_disable() - Disable a specific OPP
1907  * @dev:	device for which we do this operation
1908  * @freq:	OPP frequency to disable
1909  *
1910  * Disables a provided opp. If the operation is valid, this returns
1911  * 0, else the corresponding error value. It is meant to be a temporary
1912  * control by users to make this OPP not available until the circumstances are
1913  * right to make it available again (with a call to dev_pm_opp_enable).
1914  *
1915  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1916  * copy operation, returns 0 if no modification was done OR modification was
1917  * successful.
1918  */
1919 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
1920 {
1921 	return _opp_set_availability(dev, freq, false);
1922 }
1923 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
1924 
1925 /**
1926  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
1927  * @dev:	Device for which notifier needs to be registered
1928  * @nb:		Notifier block to be registered
1929  *
1930  * Return: 0 on success or a negative error value.
1931  */
1932 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
1933 {
1934 	struct opp_table *opp_table;
1935 	int ret;
1936 
1937 	opp_table = _find_opp_table(dev);
1938 	if (IS_ERR(opp_table))
1939 		return PTR_ERR(opp_table);
1940 
1941 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
1942 
1943 	dev_pm_opp_put_opp_table(opp_table);
1944 
1945 	return ret;
1946 }
1947 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
1948 
1949 /**
1950  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
1951  * @dev:	Device for which notifier needs to be unregistered
1952  * @nb:		Notifier block to be unregistered
1953  *
1954  * Return: 0 on success or a negative error value.
1955  */
1956 int dev_pm_opp_unregister_notifier(struct device *dev,
1957 				   struct notifier_block *nb)
1958 {
1959 	struct opp_table *opp_table;
1960 	int ret;
1961 
1962 	opp_table = _find_opp_table(dev);
1963 	if (IS_ERR(opp_table))
1964 		return PTR_ERR(opp_table);
1965 
1966 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
1967 
1968 	dev_pm_opp_put_opp_table(opp_table);
1969 
1970 	return ret;
1971 }
1972 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
1973 
1974 void _dev_pm_opp_find_and_remove_table(struct device *dev)
1975 {
1976 	struct opp_table *opp_table;
1977 
1978 	/* Check for existing table for 'dev' */
1979 	opp_table = _find_opp_table(dev);
1980 	if (IS_ERR(opp_table)) {
1981 		int error = PTR_ERR(opp_table);
1982 
1983 		if (error != -ENODEV)
1984 			WARN(1, "%s: opp_table: %d\n",
1985 			     IS_ERR_OR_NULL(dev) ?
1986 					"Invalid device" : dev_name(dev),
1987 			     error);
1988 		return;
1989 	}
1990 
1991 	_put_opp_list_kref(opp_table);
1992 
1993 	/* Drop reference taken by _find_opp_table() */
1994 	dev_pm_opp_put_opp_table(opp_table);
1995 
1996 	/* Drop reference taken while the OPP table was added */
1997 	dev_pm_opp_put_opp_table(opp_table);
1998 }
1999 
2000 /**
2001  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2002  * @dev:	device pointer used to lookup OPP table.
2003  *
2004  * Free both OPPs created using static entries present in DT and the
2005  * dynamically added entries.
2006  */
2007 void dev_pm_opp_remove_table(struct device *dev)
2008 {
2009 	_dev_pm_opp_find_and_remove_table(dev);
2010 }
2011 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2012