1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp) || !opp->available) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 405 unsigned long *freq) 406 { 407 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 408 409 mutex_lock(&opp_table->lock); 410 411 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 412 if (temp_opp->available && temp_opp->rate >= *freq) { 413 opp = temp_opp; 414 *freq = opp->rate; 415 416 /* Increment the reference count of OPP */ 417 dev_pm_opp_get(opp); 418 break; 419 } 420 } 421 422 mutex_unlock(&opp_table->lock); 423 424 return opp; 425 } 426 427 /** 428 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 429 * @dev: device for which we do this operation 430 * @freq: Start frequency 431 * 432 * Search for the matching ceil *available* OPP from a starting freq 433 * for a device. 434 * 435 * Return: matching *opp and refreshes *freq accordingly, else returns 436 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 437 * values can be: 438 * EINVAL: for bad pointer 439 * ERANGE: no match found for search 440 * ENODEV: if device not found in list of registered devices 441 * 442 * The callers are required to call dev_pm_opp_put() for the returned OPP after 443 * use. 444 */ 445 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 446 unsigned long *freq) 447 { 448 struct opp_table *opp_table; 449 struct dev_pm_opp *opp; 450 451 if (!dev || !freq) { 452 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 453 return ERR_PTR(-EINVAL); 454 } 455 456 opp_table = _find_opp_table(dev); 457 if (IS_ERR(opp_table)) 458 return ERR_CAST(opp_table); 459 460 opp = _find_freq_ceil(opp_table, freq); 461 462 dev_pm_opp_put_opp_table(opp_table); 463 464 return opp; 465 } 466 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 467 468 /** 469 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 470 * @dev: device for which we do this operation 471 * @freq: Start frequency 472 * 473 * Search for the matching floor *available* OPP from a starting freq 474 * for a device. 475 * 476 * Return: matching *opp and refreshes *freq accordingly, else returns 477 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 478 * values can be: 479 * EINVAL: for bad pointer 480 * ERANGE: no match found for search 481 * ENODEV: if device not found in list of registered devices 482 * 483 * The callers are required to call dev_pm_opp_put() for the returned OPP after 484 * use. 485 */ 486 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 487 unsigned long *freq) 488 { 489 struct opp_table *opp_table; 490 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 491 492 if (!dev || !freq) { 493 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 494 return ERR_PTR(-EINVAL); 495 } 496 497 opp_table = _find_opp_table(dev); 498 if (IS_ERR(opp_table)) 499 return ERR_CAST(opp_table); 500 501 mutex_lock(&opp_table->lock); 502 503 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 504 if (temp_opp->available) { 505 /* go to the next node, before choosing prev */ 506 if (temp_opp->rate > *freq) 507 break; 508 else 509 opp = temp_opp; 510 } 511 } 512 513 /* Increment the reference count of OPP */ 514 if (!IS_ERR(opp)) 515 dev_pm_opp_get(opp); 516 mutex_unlock(&opp_table->lock); 517 dev_pm_opp_put_opp_table(opp_table); 518 519 if (!IS_ERR(opp)) 520 *freq = opp->rate; 521 522 return opp; 523 } 524 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 525 526 /** 527 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 528 * target voltage. 529 * @dev: Device for which we do this operation. 530 * @u_volt: Target voltage. 531 * 532 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 533 * 534 * Return: matching *opp, else returns ERR_PTR in case of error which should be 535 * handled using IS_ERR. 536 * 537 * Error return values can be: 538 * EINVAL: bad parameters 539 * 540 * The callers are required to call dev_pm_opp_put() for the returned OPP after 541 * use. 542 */ 543 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 544 unsigned long u_volt) 545 { 546 struct opp_table *opp_table; 547 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 548 549 if (!dev || !u_volt) { 550 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 551 u_volt); 552 return ERR_PTR(-EINVAL); 553 } 554 555 opp_table = _find_opp_table(dev); 556 if (IS_ERR(opp_table)) 557 return ERR_CAST(opp_table); 558 559 mutex_lock(&opp_table->lock); 560 561 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 562 if (temp_opp->available) { 563 if (temp_opp->supplies[0].u_volt > u_volt) 564 break; 565 opp = temp_opp; 566 } 567 } 568 569 /* Increment the reference count of OPP */ 570 if (!IS_ERR(opp)) 571 dev_pm_opp_get(opp); 572 573 mutex_unlock(&opp_table->lock); 574 dev_pm_opp_put_opp_table(opp_table); 575 576 return opp; 577 } 578 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 579 580 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 581 struct dev_pm_opp_supply *supply) 582 { 583 int ret; 584 585 /* Regulator not available for device */ 586 if (IS_ERR(reg)) { 587 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 588 PTR_ERR(reg)); 589 return 0; 590 } 591 592 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 593 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 594 595 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 596 supply->u_volt, supply->u_volt_max); 597 if (ret) 598 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 599 __func__, supply->u_volt_min, supply->u_volt, 600 supply->u_volt_max, ret); 601 602 return ret; 603 } 604 605 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 606 unsigned long freq) 607 { 608 int ret; 609 610 ret = clk_set_rate(clk, freq); 611 if (ret) { 612 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 613 ret); 614 } 615 616 return ret; 617 } 618 619 static int _generic_set_opp_regulator(const struct opp_table *opp_table, 620 struct device *dev, 621 unsigned long old_freq, 622 unsigned long freq, 623 struct dev_pm_opp_supply *old_supply, 624 struct dev_pm_opp_supply *new_supply) 625 { 626 struct regulator *reg = opp_table->regulators[0]; 627 int ret; 628 629 /* This function only supports single regulator per device */ 630 if (WARN_ON(opp_table->regulator_count > 1)) { 631 dev_err(dev, "multiple regulators are not supported\n"); 632 return -EINVAL; 633 } 634 635 /* Scaling up? Scale voltage before frequency */ 636 if (freq >= old_freq) { 637 ret = _set_opp_voltage(dev, reg, new_supply); 638 if (ret) 639 goto restore_voltage; 640 } 641 642 /* Change frequency */ 643 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 644 if (ret) 645 goto restore_voltage; 646 647 /* Scaling down? Scale voltage after frequency */ 648 if (freq < old_freq) { 649 ret = _set_opp_voltage(dev, reg, new_supply); 650 if (ret) 651 goto restore_freq; 652 } 653 654 return 0; 655 656 restore_freq: 657 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 658 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 659 __func__, old_freq); 660 restore_voltage: 661 /* This shouldn't harm even if the voltages weren't updated earlier */ 662 if (old_supply) 663 _set_opp_voltage(dev, reg, old_supply); 664 665 return ret; 666 } 667 668 static int _set_opp_custom(const struct opp_table *opp_table, 669 struct device *dev, unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct dev_pm_set_opp_data *data; 675 int size; 676 677 data = opp_table->set_opp_data; 678 data->regulators = opp_table->regulators; 679 data->regulator_count = opp_table->regulator_count; 680 data->clk = opp_table->clk; 681 data->dev = dev; 682 683 data->old_opp.rate = old_freq; 684 size = sizeof(*old_supply) * opp_table->regulator_count; 685 if (IS_ERR(old_supply)) 686 memset(data->old_opp.supplies, 0, size); 687 else 688 memcpy(data->old_opp.supplies, old_supply, size); 689 690 data->new_opp.rate = freq; 691 memcpy(data->new_opp.supplies, new_supply, size); 692 693 return opp_table->set_opp(data); 694 } 695 696 /* This is only called for PM domain for now */ 697 static int _set_required_opps(struct device *dev, 698 struct opp_table *opp_table, 699 struct dev_pm_opp *opp) 700 { 701 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 702 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 703 unsigned int pstate; 704 int i, ret = 0; 705 706 if (!required_opp_tables) 707 return 0; 708 709 /* Single genpd case */ 710 if (!genpd_virt_devs) { 711 pstate = opp->required_opps[0]->pstate; 712 ret = dev_pm_genpd_set_performance_state(dev, pstate); 713 if (ret) { 714 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 715 dev_name(dev), pstate, ret); 716 } 717 return ret; 718 } 719 720 /* Multiple genpd case */ 721 722 /* 723 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 724 * after it is freed from another thread. 725 */ 726 mutex_lock(&opp_table->genpd_virt_dev_lock); 727 728 for (i = 0; i < opp_table->required_opp_count; i++) { 729 pstate = opp->required_opps[i]->pstate; 730 731 if (!genpd_virt_devs[i]) 732 continue; 733 734 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 735 if (ret) { 736 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 737 dev_name(genpd_virt_devs[i]), pstate, ret); 738 break; 739 } 740 } 741 mutex_unlock(&opp_table->genpd_virt_dev_lock); 742 743 return ret; 744 } 745 746 /** 747 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 748 * @dev: device for which we do this operation 749 * @target_freq: frequency to achieve 750 * 751 * This configures the power-supplies and clock source to the levels specified 752 * by the OPP corresponding to the target_freq. 753 */ 754 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 755 { 756 struct opp_table *opp_table; 757 unsigned long freq, old_freq; 758 struct dev_pm_opp *old_opp, *opp; 759 struct clk *clk; 760 int ret; 761 762 if (unlikely(!target_freq)) { 763 dev_err(dev, "%s: Invalid target frequency %lu\n", __func__, 764 target_freq); 765 return -EINVAL; 766 } 767 768 opp_table = _find_opp_table(dev); 769 if (IS_ERR(opp_table)) { 770 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 771 return PTR_ERR(opp_table); 772 } 773 774 clk = opp_table->clk; 775 if (IS_ERR(clk)) { 776 dev_err(dev, "%s: No clock available for the device\n", 777 __func__); 778 ret = PTR_ERR(clk); 779 goto put_opp_table; 780 } 781 782 freq = clk_round_rate(clk, target_freq); 783 if ((long)freq <= 0) 784 freq = target_freq; 785 786 old_freq = clk_get_rate(clk); 787 788 /* Return early if nothing to do */ 789 if (old_freq == freq) { 790 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 791 __func__, freq); 792 ret = 0; 793 goto put_opp_table; 794 } 795 796 old_opp = _find_freq_ceil(opp_table, &old_freq); 797 if (IS_ERR(old_opp)) { 798 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 799 __func__, old_freq, PTR_ERR(old_opp)); 800 } 801 802 opp = _find_freq_ceil(opp_table, &freq); 803 if (IS_ERR(opp)) { 804 ret = PTR_ERR(opp); 805 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 806 __func__, freq, ret); 807 goto put_old_opp; 808 } 809 810 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 811 old_freq, freq); 812 813 /* Scaling up? Configure required OPPs before frequency */ 814 if (freq >= old_freq) { 815 ret = _set_required_opps(dev, opp_table, opp); 816 if (ret) 817 goto put_opp; 818 } 819 820 if (opp_table->set_opp) { 821 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 822 IS_ERR(old_opp) ? NULL : old_opp->supplies, 823 opp->supplies); 824 } else if (opp_table->regulators) { 825 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 826 IS_ERR(old_opp) ? NULL : old_opp->supplies, 827 opp->supplies); 828 } else { 829 /* Only frequency scaling */ 830 ret = _generic_set_opp_clk_only(dev, clk, freq); 831 } 832 833 /* Scaling down? Configure required OPPs after frequency */ 834 if (!ret && freq < old_freq) { 835 ret = _set_required_opps(dev, opp_table, opp); 836 if (ret) 837 dev_err(dev, "Failed to set required opps: %d\n", ret); 838 } 839 840 put_opp: 841 dev_pm_opp_put(opp); 842 put_old_opp: 843 if (!IS_ERR(old_opp)) 844 dev_pm_opp_put(old_opp); 845 put_opp_table: 846 dev_pm_opp_put_opp_table(opp_table); 847 return ret; 848 } 849 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 850 851 /* OPP-dev Helpers */ 852 static void _remove_opp_dev(struct opp_device *opp_dev, 853 struct opp_table *opp_table) 854 { 855 opp_debug_unregister(opp_dev, opp_table); 856 list_del(&opp_dev->node); 857 kfree(opp_dev); 858 } 859 860 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 861 struct opp_table *opp_table) 862 { 863 struct opp_device *opp_dev; 864 865 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 866 if (!opp_dev) 867 return NULL; 868 869 /* Initialize opp-dev */ 870 opp_dev->dev = dev; 871 872 list_add(&opp_dev->node, &opp_table->dev_list); 873 874 /* Create debugfs entries for the opp_table */ 875 opp_debug_register(opp_dev, opp_table); 876 877 return opp_dev; 878 } 879 880 struct opp_device *_add_opp_dev(const struct device *dev, 881 struct opp_table *opp_table) 882 { 883 struct opp_device *opp_dev; 884 885 mutex_lock(&opp_table->lock); 886 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 887 mutex_unlock(&opp_table->lock); 888 889 return opp_dev; 890 } 891 892 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 893 { 894 struct opp_table *opp_table; 895 struct opp_device *opp_dev; 896 int ret; 897 898 /* 899 * Allocate a new OPP table. In the infrequent case where a new 900 * device is needed to be added, we pay this penalty. 901 */ 902 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 903 if (!opp_table) 904 return NULL; 905 906 mutex_init(&opp_table->lock); 907 mutex_init(&opp_table->genpd_virt_dev_lock); 908 INIT_LIST_HEAD(&opp_table->dev_list); 909 910 /* Mark regulator count uninitialized */ 911 opp_table->regulator_count = -1; 912 913 opp_dev = _add_opp_dev(dev, opp_table); 914 if (!opp_dev) { 915 kfree(opp_table); 916 return NULL; 917 } 918 919 _of_init_opp_table(opp_table, dev, index); 920 921 /* Find clk for the device */ 922 opp_table->clk = clk_get(dev, NULL); 923 if (IS_ERR(opp_table->clk)) { 924 ret = PTR_ERR(opp_table->clk); 925 if (ret != -EPROBE_DEFER) 926 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 927 ret); 928 } 929 930 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 931 INIT_LIST_HEAD(&opp_table->opp_list); 932 kref_init(&opp_table->kref); 933 934 /* Secure the device table modification */ 935 list_add(&opp_table->node, &opp_tables); 936 return opp_table; 937 } 938 939 void _get_opp_table_kref(struct opp_table *opp_table) 940 { 941 kref_get(&opp_table->kref); 942 } 943 944 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 945 { 946 struct opp_table *opp_table; 947 948 /* Hold our table modification lock here */ 949 mutex_lock(&opp_table_lock); 950 951 opp_table = _find_opp_table_unlocked(dev); 952 if (!IS_ERR(opp_table)) 953 goto unlock; 954 955 opp_table = _managed_opp(dev, index); 956 if (opp_table) { 957 if (!_add_opp_dev_unlocked(dev, opp_table)) { 958 dev_pm_opp_put_opp_table(opp_table); 959 opp_table = NULL; 960 } 961 goto unlock; 962 } 963 964 opp_table = _allocate_opp_table(dev, index); 965 966 unlock: 967 mutex_unlock(&opp_table_lock); 968 969 return opp_table; 970 } 971 972 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 973 { 974 return _opp_get_opp_table(dev, 0); 975 } 976 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 977 978 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 979 int index) 980 { 981 return _opp_get_opp_table(dev, index); 982 } 983 984 static void _opp_table_kref_release(struct kref *kref) 985 { 986 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 987 struct opp_device *opp_dev, *temp; 988 989 _of_clear_opp_table(opp_table); 990 991 /* Release clk */ 992 if (!IS_ERR(opp_table->clk)) 993 clk_put(opp_table->clk); 994 995 WARN_ON(!list_empty(&opp_table->opp_list)); 996 997 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 998 /* 999 * The OPP table is getting removed, drop the performance state 1000 * constraints. 1001 */ 1002 if (opp_table->genpd_performance_state) 1003 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1004 1005 _remove_opp_dev(opp_dev, opp_table); 1006 } 1007 1008 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1009 mutex_destroy(&opp_table->lock); 1010 list_del(&opp_table->node); 1011 kfree(opp_table); 1012 1013 mutex_unlock(&opp_table_lock); 1014 } 1015 1016 void _opp_remove_all_static(struct opp_table *opp_table) 1017 { 1018 struct dev_pm_opp *opp, *tmp; 1019 1020 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1021 if (!opp->dynamic) 1022 dev_pm_opp_put(opp); 1023 } 1024 1025 opp_table->parsed_static_opps = false; 1026 } 1027 1028 static void _opp_table_list_kref_release(struct kref *kref) 1029 { 1030 struct opp_table *opp_table = container_of(kref, struct opp_table, 1031 list_kref); 1032 1033 _opp_remove_all_static(opp_table); 1034 mutex_unlock(&opp_table_lock); 1035 } 1036 1037 void _put_opp_list_kref(struct opp_table *opp_table) 1038 { 1039 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release, 1040 &opp_table_lock); 1041 } 1042 1043 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1044 { 1045 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1046 &opp_table_lock); 1047 } 1048 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1049 1050 void _opp_free(struct dev_pm_opp *opp) 1051 { 1052 kfree(opp); 1053 } 1054 1055 static void _opp_kref_release(struct dev_pm_opp *opp, 1056 struct opp_table *opp_table) 1057 { 1058 /* 1059 * Notify the changes in the availability of the operable 1060 * frequency/voltage list. 1061 */ 1062 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1063 _of_opp_free_required_opps(opp_table, opp); 1064 opp_debug_remove_one(opp); 1065 list_del(&opp->node); 1066 kfree(opp); 1067 } 1068 1069 static void _opp_kref_release_unlocked(struct kref *kref) 1070 { 1071 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1072 struct opp_table *opp_table = opp->opp_table; 1073 1074 _opp_kref_release(opp, opp_table); 1075 } 1076 1077 static void _opp_kref_release_locked(struct kref *kref) 1078 { 1079 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1080 struct opp_table *opp_table = opp->opp_table; 1081 1082 _opp_kref_release(opp, opp_table); 1083 mutex_unlock(&opp_table->lock); 1084 } 1085 1086 void dev_pm_opp_get(struct dev_pm_opp *opp) 1087 { 1088 kref_get(&opp->kref); 1089 } 1090 1091 void dev_pm_opp_put(struct dev_pm_opp *opp) 1092 { 1093 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1094 &opp->opp_table->lock); 1095 } 1096 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1097 1098 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1099 { 1100 kref_put(&opp->kref, _opp_kref_release_unlocked); 1101 } 1102 1103 /** 1104 * dev_pm_opp_remove() - Remove an OPP from OPP table 1105 * @dev: device for which we do this operation 1106 * @freq: OPP to remove with matching 'freq' 1107 * 1108 * This function removes an opp from the opp table. 1109 */ 1110 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1111 { 1112 struct dev_pm_opp *opp; 1113 struct opp_table *opp_table; 1114 bool found = false; 1115 1116 opp_table = _find_opp_table(dev); 1117 if (IS_ERR(opp_table)) 1118 return; 1119 1120 mutex_lock(&opp_table->lock); 1121 1122 list_for_each_entry(opp, &opp_table->opp_list, node) { 1123 if (opp->rate == freq) { 1124 found = true; 1125 break; 1126 } 1127 } 1128 1129 mutex_unlock(&opp_table->lock); 1130 1131 if (found) { 1132 dev_pm_opp_put(opp); 1133 1134 /* Drop the reference taken by dev_pm_opp_add() */ 1135 dev_pm_opp_put_opp_table(opp_table); 1136 } else { 1137 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1138 __func__, freq); 1139 } 1140 1141 /* Drop the reference taken by _find_opp_table() */ 1142 dev_pm_opp_put_opp_table(opp_table); 1143 } 1144 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1145 1146 /** 1147 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1148 * @dev: device for which we do this operation 1149 * 1150 * This function removes all dynamically created OPPs from the opp table. 1151 */ 1152 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1153 { 1154 struct opp_table *opp_table; 1155 struct dev_pm_opp *opp, *temp; 1156 int count = 0; 1157 1158 opp_table = _find_opp_table(dev); 1159 if (IS_ERR(opp_table)) 1160 return; 1161 1162 mutex_lock(&opp_table->lock); 1163 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1164 if (opp->dynamic) { 1165 dev_pm_opp_put_unlocked(opp); 1166 count++; 1167 } 1168 } 1169 mutex_unlock(&opp_table->lock); 1170 1171 /* Drop the references taken by dev_pm_opp_add() */ 1172 while (count--) 1173 dev_pm_opp_put_opp_table(opp_table); 1174 1175 /* Drop the reference taken by _find_opp_table() */ 1176 dev_pm_opp_put_opp_table(opp_table); 1177 } 1178 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1179 1180 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1181 { 1182 struct dev_pm_opp *opp; 1183 int count, supply_size; 1184 1185 /* Allocate space for at least one supply */ 1186 count = table->regulator_count > 0 ? table->regulator_count : 1; 1187 supply_size = sizeof(*opp->supplies) * count; 1188 1189 /* allocate new OPP node and supplies structures */ 1190 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); 1191 if (!opp) 1192 return NULL; 1193 1194 /* Put the supplies at the end of the OPP structure as an empty array */ 1195 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1196 INIT_LIST_HEAD(&opp->node); 1197 1198 return opp; 1199 } 1200 1201 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1202 struct opp_table *opp_table) 1203 { 1204 struct regulator *reg; 1205 int i; 1206 1207 if (!opp_table->regulators) 1208 return true; 1209 1210 for (i = 0; i < opp_table->regulator_count; i++) { 1211 reg = opp_table->regulators[i]; 1212 1213 if (!regulator_is_supported_voltage(reg, 1214 opp->supplies[i].u_volt_min, 1215 opp->supplies[i].u_volt_max)) { 1216 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1217 __func__, opp->supplies[i].u_volt_min, 1218 opp->supplies[i].u_volt_max); 1219 return false; 1220 } 1221 } 1222 1223 return true; 1224 } 1225 1226 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1227 struct opp_table *opp_table, 1228 struct list_head **head) 1229 { 1230 struct dev_pm_opp *opp; 1231 1232 /* 1233 * Insert new OPP in order of increasing frequency and discard if 1234 * already present. 1235 * 1236 * Need to use &opp_table->opp_list in the condition part of the 'for' 1237 * loop, don't replace it with head otherwise it will become an infinite 1238 * loop. 1239 */ 1240 list_for_each_entry(opp, &opp_table->opp_list, node) { 1241 if (new_opp->rate > opp->rate) { 1242 *head = &opp->node; 1243 continue; 1244 } 1245 1246 if (new_opp->rate < opp->rate) 1247 return 0; 1248 1249 /* Duplicate OPPs */ 1250 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1251 __func__, opp->rate, opp->supplies[0].u_volt, 1252 opp->available, new_opp->rate, 1253 new_opp->supplies[0].u_volt, new_opp->available); 1254 1255 /* Should we compare voltages for all regulators here ? */ 1256 return opp->available && 1257 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1258 } 1259 1260 return 0; 1261 } 1262 1263 /* 1264 * Returns: 1265 * 0: On success. And appropriate error message for duplicate OPPs. 1266 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1267 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1268 * sure we don't print error messages unnecessarily if different parts of 1269 * kernel try to initialize the OPP table. 1270 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1271 * should be considered an error by the callers of _opp_add(). 1272 */ 1273 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1274 struct opp_table *opp_table, bool rate_not_available) 1275 { 1276 struct list_head *head; 1277 int ret; 1278 1279 mutex_lock(&opp_table->lock); 1280 head = &opp_table->opp_list; 1281 1282 if (likely(!rate_not_available)) { 1283 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1284 if (ret) { 1285 mutex_unlock(&opp_table->lock); 1286 return ret; 1287 } 1288 } 1289 1290 list_add(&new_opp->node, head); 1291 mutex_unlock(&opp_table->lock); 1292 1293 new_opp->opp_table = opp_table; 1294 kref_init(&new_opp->kref); 1295 1296 opp_debug_create_one(new_opp, opp_table); 1297 1298 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1299 new_opp->available = false; 1300 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1301 __func__, new_opp->rate); 1302 } 1303 1304 return 0; 1305 } 1306 1307 /** 1308 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1309 * @opp_table: OPP table 1310 * @dev: device for which we do this operation 1311 * @freq: Frequency in Hz for this OPP 1312 * @u_volt: Voltage in uVolts for this OPP 1313 * @dynamic: Dynamically added OPPs. 1314 * 1315 * This function adds an opp definition to the opp table and returns status. 1316 * The opp is made available by default and it can be controlled using 1317 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1318 * 1319 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1320 * and freed by dev_pm_opp_of_remove_table. 1321 * 1322 * Return: 1323 * 0 On success OR 1324 * Duplicate OPPs (both freq and volt are same) and opp->available 1325 * -EEXIST Freq are same and volt are different OR 1326 * Duplicate OPPs (both freq and volt are same) and !opp->available 1327 * -ENOMEM Memory allocation failure 1328 */ 1329 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1330 unsigned long freq, long u_volt, bool dynamic) 1331 { 1332 struct dev_pm_opp *new_opp; 1333 unsigned long tol; 1334 int ret; 1335 1336 new_opp = _opp_allocate(opp_table); 1337 if (!new_opp) 1338 return -ENOMEM; 1339 1340 /* populate the opp table */ 1341 new_opp->rate = freq; 1342 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1343 new_opp->supplies[0].u_volt = u_volt; 1344 new_opp->supplies[0].u_volt_min = u_volt - tol; 1345 new_opp->supplies[0].u_volt_max = u_volt + tol; 1346 new_opp->available = true; 1347 new_opp->dynamic = dynamic; 1348 1349 ret = _opp_add(dev, new_opp, opp_table, false); 1350 if (ret) { 1351 /* Don't return error for duplicate OPPs */ 1352 if (ret == -EBUSY) 1353 ret = 0; 1354 goto free_opp; 1355 } 1356 1357 /* 1358 * Notify the changes in the availability of the operable 1359 * frequency/voltage list. 1360 */ 1361 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1362 return 0; 1363 1364 free_opp: 1365 _opp_free(new_opp); 1366 1367 return ret; 1368 } 1369 1370 /** 1371 * dev_pm_opp_set_supported_hw() - Set supported platforms 1372 * @dev: Device for which supported-hw has to be set. 1373 * @versions: Array of hierarchy of versions to match. 1374 * @count: Number of elements in the array. 1375 * 1376 * This is required only for the V2 bindings, and it enables a platform to 1377 * specify the hierarchy of versions it supports. OPP layer will then enable 1378 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1379 * property. 1380 */ 1381 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1382 const u32 *versions, unsigned int count) 1383 { 1384 struct opp_table *opp_table; 1385 1386 opp_table = dev_pm_opp_get_opp_table(dev); 1387 if (!opp_table) 1388 return ERR_PTR(-ENOMEM); 1389 1390 /* Make sure there are no concurrent readers while updating opp_table */ 1391 WARN_ON(!list_empty(&opp_table->opp_list)); 1392 1393 /* Another CPU that shares the OPP table has set the property ? */ 1394 if (opp_table->supported_hw) 1395 return opp_table; 1396 1397 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1398 GFP_KERNEL); 1399 if (!opp_table->supported_hw) { 1400 dev_pm_opp_put_opp_table(opp_table); 1401 return ERR_PTR(-ENOMEM); 1402 } 1403 1404 opp_table->supported_hw_count = count; 1405 1406 return opp_table; 1407 } 1408 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1409 1410 /** 1411 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1412 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1413 * 1414 * This is required only for the V2 bindings, and is called for a matching 1415 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1416 * will not be freed. 1417 */ 1418 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1419 { 1420 /* Make sure there are no concurrent readers while updating opp_table */ 1421 WARN_ON(!list_empty(&opp_table->opp_list)); 1422 1423 kfree(opp_table->supported_hw); 1424 opp_table->supported_hw = NULL; 1425 opp_table->supported_hw_count = 0; 1426 1427 dev_pm_opp_put_opp_table(opp_table); 1428 } 1429 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1430 1431 /** 1432 * dev_pm_opp_set_prop_name() - Set prop-extn name 1433 * @dev: Device for which the prop-name has to be set. 1434 * @name: name to postfix to properties. 1435 * 1436 * This is required only for the V2 bindings, and it enables a platform to 1437 * specify the extn to be used for certain property names. The properties to 1438 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1439 * should postfix the property name with -<name> while looking for them. 1440 */ 1441 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1442 { 1443 struct opp_table *opp_table; 1444 1445 opp_table = dev_pm_opp_get_opp_table(dev); 1446 if (!opp_table) 1447 return ERR_PTR(-ENOMEM); 1448 1449 /* Make sure there are no concurrent readers while updating opp_table */ 1450 WARN_ON(!list_empty(&opp_table->opp_list)); 1451 1452 /* Another CPU that shares the OPP table has set the property ? */ 1453 if (opp_table->prop_name) 1454 return opp_table; 1455 1456 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1457 if (!opp_table->prop_name) { 1458 dev_pm_opp_put_opp_table(opp_table); 1459 return ERR_PTR(-ENOMEM); 1460 } 1461 1462 return opp_table; 1463 } 1464 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1465 1466 /** 1467 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1468 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1469 * 1470 * This is required only for the V2 bindings, and is called for a matching 1471 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1472 * will not be freed. 1473 */ 1474 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1475 { 1476 /* Make sure there are no concurrent readers while updating opp_table */ 1477 WARN_ON(!list_empty(&opp_table->opp_list)); 1478 1479 kfree(opp_table->prop_name); 1480 opp_table->prop_name = NULL; 1481 1482 dev_pm_opp_put_opp_table(opp_table); 1483 } 1484 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1485 1486 static int _allocate_set_opp_data(struct opp_table *opp_table) 1487 { 1488 struct dev_pm_set_opp_data *data; 1489 int len, count = opp_table->regulator_count; 1490 1491 if (WARN_ON(!opp_table->regulators)) 1492 return -EINVAL; 1493 1494 /* space for set_opp_data */ 1495 len = sizeof(*data); 1496 1497 /* space for old_opp.supplies and new_opp.supplies */ 1498 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1499 1500 data = kzalloc(len, GFP_KERNEL); 1501 if (!data) 1502 return -ENOMEM; 1503 1504 data->old_opp.supplies = (void *)(data + 1); 1505 data->new_opp.supplies = data->old_opp.supplies + count; 1506 1507 opp_table->set_opp_data = data; 1508 1509 return 0; 1510 } 1511 1512 static void _free_set_opp_data(struct opp_table *opp_table) 1513 { 1514 kfree(opp_table->set_opp_data); 1515 opp_table->set_opp_data = NULL; 1516 } 1517 1518 /** 1519 * dev_pm_opp_set_regulators() - Set regulator names for the device 1520 * @dev: Device for which regulator name is being set. 1521 * @names: Array of pointers to the names of the regulator. 1522 * @count: Number of regulators. 1523 * 1524 * In order to support OPP switching, OPP layer needs to know the name of the 1525 * device's regulators, as the core would be required to switch voltages as 1526 * well. 1527 * 1528 * This must be called before any OPPs are initialized for the device. 1529 */ 1530 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1531 const char * const names[], 1532 unsigned int count) 1533 { 1534 struct opp_table *opp_table; 1535 struct regulator *reg; 1536 int ret, i; 1537 1538 opp_table = dev_pm_opp_get_opp_table(dev); 1539 if (!opp_table) 1540 return ERR_PTR(-ENOMEM); 1541 1542 /* This should be called before OPPs are initialized */ 1543 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1544 ret = -EBUSY; 1545 goto err; 1546 } 1547 1548 /* Another CPU that shares the OPP table has set the regulators ? */ 1549 if (opp_table->regulators) 1550 return opp_table; 1551 1552 opp_table->regulators = kmalloc_array(count, 1553 sizeof(*opp_table->regulators), 1554 GFP_KERNEL); 1555 if (!opp_table->regulators) { 1556 ret = -ENOMEM; 1557 goto err; 1558 } 1559 1560 for (i = 0; i < count; i++) { 1561 reg = regulator_get_optional(dev, names[i]); 1562 if (IS_ERR(reg)) { 1563 ret = PTR_ERR(reg); 1564 if (ret != -EPROBE_DEFER) 1565 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1566 __func__, names[i], ret); 1567 goto free_regulators; 1568 } 1569 1570 opp_table->regulators[i] = reg; 1571 } 1572 1573 opp_table->regulator_count = count; 1574 1575 /* Allocate block only once to pass to set_opp() routines */ 1576 ret = _allocate_set_opp_data(opp_table); 1577 if (ret) 1578 goto free_regulators; 1579 1580 return opp_table; 1581 1582 free_regulators: 1583 while (i != 0) 1584 regulator_put(opp_table->regulators[--i]); 1585 1586 kfree(opp_table->regulators); 1587 opp_table->regulators = NULL; 1588 opp_table->regulator_count = -1; 1589 err: 1590 dev_pm_opp_put_opp_table(opp_table); 1591 1592 return ERR_PTR(ret); 1593 } 1594 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1595 1596 /** 1597 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1598 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1599 */ 1600 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1601 { 1602 int i; 1603 1604 if (!opp_table->regulators) 1605 goto put_opp_table; 1606 1607 /* Make sure there are no concurrent readers while updating opp_table */ 1608 WARN_ON(!list_empty(&opp_table->opp_list)); 1609 1610 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1611 regulator_put(opp_table->regulators[i]); 1612 1613 _free_set_opp_data(opp_table); 1614 1615 kfree(opp_table->regulators); 1616 opp_table->regulators = NULL; 1617 opp_table->regulator_count = -1; 1618 1619 put_opp_table: 1620 dev_pm_opp_put_opp_table(opp_table); 1621 } 1622 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1623 1624 /** 1625 * dev_pm_opp_set_clkname() - Set clk name for the device 1626 * @dev: Device for which clk name is being set. 1627 * @name: Clk name. 1628 * 1629 * In order to support OPP switching, OPP layer needs to get pointer to the 1630 * clock for the device. Simple cases work fine without using this routine (i.e. 1631 * by passing connection-id as NULL), but for a device with multiple clocks 1632 * available, the OPP core needs to know the exact name of the clk to use. 1633 * 1634 * This must be called before any OPPs are initialized for the device. 1635 */ 1636 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1637 { 1638 struct opp_table *opp_table; 1639 int ret; 1640 1641 opp_table = dev_pm_opp_get_opp_table(dev); 1642 if (!opp_table) 1643 return ERR_PTR(-ENOMEM); 1644 1645 /* This should be called before OPPs are initialized */ 1646 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1647 ret = -EBUSY; 1648 goto err; 1649 } 1650 1651 /* Already have default clk set, free it */ 1652 if (!IS_ERR(opp_table->clk)) 1653 clk_put(opp_table->clk); 1654 1655 /* Find clk for the device */ 1656 opp_table->clk = clk_get(dev, name); 1657 if (IS_ERR(opp_table->clk)) { 1658 ret = PTR_ERR(opp_table->clk); 1659 if (ret != -EPROBE_DEFER) { 1660 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1661 ret); 1662 } 1663 goto err; 1664 } 1665 1666 return opp_table; 1667 1668 err: 1669 dev_pm_opp_put_opp_table(opp_table); 1670 1671 return ERR_PTR(ret); 1672 } 1673 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1674 1675 /** 1676 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1677 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1678 */ 1679 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1680 { 1681 /* Make sure there are no concurrent readers while updating opp_table */ 1682 WARN_ON(!list_empty(&opp_table->opp_list)); 1683 1684 clk_put(opp_table->clk); 1685 opp_table->clk = ERR_PTR(-EINVAL); 1686 1687 dev_pm_opp_put_opp_table(opp_table); 1688 } 1689 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1690 1691 /** 1692 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1693 * @dev: Device for which the helper is getting registered. 1694 * @set_opp: Custom set OPP helper. 1695 * 1696 * This is useful to support complex platforms (like platforms with multiple 1697 * regulators per device), instead of the generic OPP set rate helper. 1698 * 1699 * This must be called before any OPPs are initialized for the device. 1700 */ 1701 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1702 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1703 { 1704 struct opp_table *opp_table; 1705 1706 if (!set_opp) 1707 return ERR_PTR(-EINVAL); 1708 1709 opp_table = dev_pm_opp_get_opp_table(dev); 1710 if (!opp_table) 1711 return ERR_PTR(-ENOMEM); 1712 1713 /* This should be called before OPPs are initialized */ 1714 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1715 dev_pm_opp_put_opp_table(opp_table); 1716 return ERR_PTR(-EBUSY); 1717 } 1718 1719 /* Another CPU that shares the OPP table has set the helper ? */ 1720 if (!opp_table->set_opp) 1721 opp_table->set_opp = set_opp; 1722 1723 return opp_table; 1724 } 1725 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1726 1727 /** 1728 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1729 * set_opp helper 1730 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1731 * 1732 * Release resources blocked for platform specific set_opp helper. 1733 */ 1734 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1735 { 1736 /* Make sure there are no concurrent readers while updating opp_table */ 1737 WARN_ON(!list_empty(&opp_table->opp_list)); 1738 1739 opp_table->set_opp = NULL; 1740 dev_pm_opp_put_opp_table(opp_table); 1741 } 1742 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1743 1744 /** 1745 * dev_pm_opp_set_genpd_virt_dev - Set virtual genpd device for an index 1746 * @dev: Consumer device for which the genpd device is getting set. 1747 * @virt_dev: virtual genpd device. 1748 * @index: index. 1749 * 1750 * Multiple generic power domains for a device are supported with the help of 1751 * virtual genpd devices, which are created for each consumer device - genpd 1752 * pair. These are the device structures which are attached to the power domain 1753 * and are required by the OPP core to set the performance state of the genpd. 1754 * 1755 * This helper will normally be called by the consumer driver of the device 1756 * "dev", as only that has details of the genpd devices. 1757 * 1758 * This helper needs to be called once for each of those virtual devices, but 1759 * only if multiple domains are available for a device. Otherwise the original 1760 * device structure will be used instead by the OPP core. 1761 */ 1762 struct opp_table *dev_pm_opp_set_genpd_virt_dev(struct device *dev, 1763 struct device *virt_dev, 1764 int index) 1765 { 1766 struct opp_table *opp_table; 1767 1768 opp_table = dev_pm_opp_get_opp_table(dev); 1769 if (!opp_table) 1770 return ERR_PTR(-ENOMEM); 1771 1772 mutex_lock(&opp_table->genpd_virt_dev_lock); 1773 1774 if (unlikely(!opp_table->genpd_virt_devs || 1775 index >= opp_table->required_opp_count || 1776 opp_table->genpd_virt_devs[index])) { 1777 1778 dev_err(dev, "Invalid request to set required device\n"); 1779 dev_pm_opp_put_opp_table(opp_table); 1780 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1781 1782 return ERR_PTR(-EINVAL); 1783 } 1784 1785 opp_table->genpd_virt_devs[index] = virt_dev; 1786 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1787 1788 return opp_table; 1789 } 1790 1791 /** 1792 * dev_pm_opp_put_genpd_virt_dev() - Releases resources blocked for genpd device. 1793 * @opp_table: OPP table returned by dev_pm_opp_set_genpd_virt_dev(). 1794 * @virt_dev: virtual genpd device. 1795 * 1796 * This releases the resource previously acquired with a call to 1797 * dev_pm_opp_set_genpd_virt_dev(). The consumer driver shall call this helper 1798 * if it doesn't want OPP core to update performance state of a power domain 1799 * anymore. 1800 */ 1801 void dev_pm_opp_put_genpd_virt_dev(struct opp_table *opp_table, 1802 struct device *virt_dev) 1803 { 1804 int i; 1805 1806 /* 1807 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 1808 * used in parallel. 1809 */ 1810 mutex_lock(&opp_table->genpd_virt_dev_lock); 1811 1812 for (i = 0; i < opp_table->required_opp_count; i++) { 1813 if (opp_table->genpd_virt_devs[i] != virt_dev) 1814 continue; 1815 1816 opp_table->genpd_virt_devs[i] = NULL; 1817 dev_pm_opp_put_opp_table(opp_table); 1818 1819 /* Drop the vote */ 1820 dev_pm_genpd_set_performance_state(virt_dev, 0); 1821 break; 1822 } 1823 1824 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1825 1826 if (unlikely(i == opp_table->required_opp_count)) 1827 dev_err(virt_dev, "Failed to find required device entry\n"); 1828 } 1829 1830 /** 1831 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 1832 * @src_table: OPP table which has dst_table as one of its required OPP table. 1833 * @dst_table: Required OPP table of the src_table. 1834 * @pstate: Current performance state of the src_table. 1835 * 1836 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 1837 * "required-opps" property of the OPP (present in @src_table) which has 1838 * performance state set to @pstate. 1839 * 1840 * Return: Zero or positive performance state on success, otherwise negative 1841 * value on errors. 1842 */ 1843 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 1844 struct opp_table *dst_table, 1845 unsigned int pstate) 1846 { 1847 struct dev_pm_opp *opp; 1848 int dest_pstate = -EINVAL; 1849 int i; 1850 1851 if (!pstate) 1852 return 0; 1853 1854 /* 1855 * Normally the src_table will have the "required_opps" property set to 1856 * point to one of the OPPs in the dst_table, but in some cases the 1857 * genpd and its master have one to one mapping of performance states 1858 * and so none of them have the "required-opps" property set. Return the 1859 * pstate of the src_table as it is in such cases. 1860 */ 1861 if (!src_table->required_opp_count) 1862 return pstate; 1863 1864 for (i = 0; i < src_table->required_opp_count; i++) { 1865 if (src_table->required_opp_tables[i]->np == dst_table->np) 1866 break; 1867 } 1868 1869 if (unlikely(i == src_table->required_opp_count)) { 1870 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 1871 __func__, src_table, dst_table); 1872 return -EINVAL; 1873 } 1874 1875 mutex_lock(&src_table->lock); 1876 1877 list_for_each_entry(opp, &src_table->opp_list, node) { 1878 if (opp->pstate == pstate) { 1879 dest_pstate = opp->required_opps[i]->pstate; 1880 goto unlock; 1881 } 1882 } 1883 1884 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 1885 dst_table); 1886 1887 unlock: 1888 mutex_unlock(&src_table->lock); 1889 1890 return dest_pstate; 1891 } 1892 1893 /** 1894 * dev_pm_opp_add() - Add an OPP table from a table definitions 1895 * @dev: device for which we do this operation 1896 * @freq: Frequency in Hz for this OPP 1897 * @u_volt: Voltage in uVolts for this OPP 1898 * 1899 * This function adds an opp definition to the opp table and returns status. 1900 * The opp is made available by default and it can be controlled using 1901 * dev_pm_opp_enable/disable functions. 1902 * 1903 * Return: 1904 * 0 On success OR 1905 * Duplicate OPPs (both freq and volt are same) and opp->available 1906 * -EEXIST Freq are same and volt are different OR 1907 * Duplicate OPPs (both freq and volt are same) and !opp->available 1908 * -ENOMEM Memory allocation failure 1909 */ 1910 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 1911 { 1912 struct opp_table *opp_table; 1913 int ret; 1914 1915 opp_table = dev_pm_opp_get_opp_table(dev); 1916 if (!opp_table) 1917 return -ENOMEM; 1918 1919 /* Fix regulator count for dynamic OPPs */ 1920 opp_table->regulator_count = 1; 1921 1922 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 1923 if (ret) 1924 dev_pm_opp_put_opp_table(opp_table); 1925 1926 return ret; 1927 } 1928 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 1929 1930 /** 1931 * _opp_set_availability() - helper to set the availability of an opp 1932 * @dev: device for which we do this operation 1933 * @freq: OPP frequency to modify availability 1934 * @availability_req: availability status requested for this opp 1935 * 1936 * Set the availability of an OPP, opp_{enable,disable} share a common logic 1937 * which is isolated here. 1938 * 1939 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1940 * copy operation, returns 0 if no modification was done OR modification was 1941 * successful. 1942 */ 1943 static int _opp_set_availability(struct device *dev, unsigned long freq, 1944 bool availability_req) 1945 { 1946 struct opp_table *opp_table; 1947 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 1948 int r = 0; 1949 1950 /* Find the opp_table */ 1951 opp_table = _find_opp_table(dev); 1952 if (IS_ERR(opp_table)) { 1953 r = PTR_ERR(opp_table); 1954 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 1955 return r; 1956 } 1957 1958 mutex_lock(&opp_table->lock); 1959 1960 /* Do we have the frequency? */ 1961 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 1962 if (tmp_opp->rate == freq) { 1963 opp = tmp_opp; 1964 break; 1965 } 1966 } 1967 1968 if (IS_ERR(opp)) { 1969 r = PTR_ERR(opp); 1970 goto unlock; 1971 } 1972 1973 /* Is update really needed? */ 1974 if (opp->available == availability_req) 1975 goto unlock; 1976 1977 opp->available = availability_req; 1978 1979 dev_pm_opp_get(opp); 1980 mutex_unlock(&opp_table->lock); 1981 1982 /* Notify the change of the OPP availability */ 1983 if (availability_req) 1984 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 1985 opp); 1986 else 1987 blocking_notifier_call_chain(&opp_table->head, 1988 OPP_EVENT_DISABLE, opp); 1989 1990 dev_pm_opp_put(opp); 1991 goto put_table; 1992 1993 unlock: 1994 mutex_unlock(&opp_table->lock); 1995 put_table: 1996 dev_pm_opp_put_opp_table(opp_table); 1997 return r; 1998 } 1999 2000 /** 2001 * dev_pm_opp_enable() - Enable a specific OPP 2002 * @dev: device for which we do this operation 2003 * @freq: OPP frequency to enable 2004 * 2005 * Enables a provided opp. If the operation is valid, this returns 0, else the 2006 * corresponding error value. It is meant to be used for users an OPP available 2007 * after being temporarily made unavailable with dev_pm_opp_disable. 2008 * 2009 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2010 * copy operation, returns 0 if no modification was done OR modification was 2011 * successful. 2012 */ 2013 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2014 { 2015 return _opp_set_availability(dev, freq, true); 2016 } 2017 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2018 2019 /** 2020 * dev_pm_opp_disable() - Disable a specific OPP 2021 * @dev: device for which we do this operation 2022 * @freq: OPP frequency to disable 2023 * 2024 * Disables a provided opp. If the operation is valid, this returns 2025 * 0, else the corresponding error value. It is meant to be a temporary 2026 * control by users to make this OPP not available until the circumstances are 2027 * right to make it available again (with a call to dev_pm_opp_enable). 2028 * 2029 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2030 * copy operation, returns 0 if no modification was done OR modification was 2031 * successful. 2032 */ 2033 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2034 { 2035 return _opp_set_availability(dev, freq, false); 2036 } 2037 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2038 2039 /** 2040 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2041 * @dev: Device for which notifier needs to be registered 2042 * @nb: Notifier block to be registered 2043 * 2044 * Return: 0 on success or a negative error value. 2045 */ 2046 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2047 { 2048 struct opp_table *opp_table; 2049 int ret; 2050 2051 opp_table = _find_opp_table(dev); 2052 if (IS_ERR(opp_table)) 2053 return PTR_ERR(opp_table); 2054 2055 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2056 2057 dev_pm_opp_put_opp_table(opp_table); 2058 2059 return ret; 2060 } 2061 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2062 2063 /** 2064 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2065 * @dev: Device for which notifier needs to be unregistered 2066 * @nb: Notifier block to be unregistered 2067 * 2068 * Return: 0 on success or a negative error value. 2069 */ 2070 int dev_pm_opp_unregister_notifier(struct device *dev, 2071 struct notifier_block *nb) 2072 { 2073 struct opp_table *opp_table; 2074 int ret; 2075 2076 opp_table = _find_opp_table(dev); 2077 if (IS_ERR(opp_table)) 2078 return PTR_ERR(opp_table); 2079 2080 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2081 2082 dev_pm_opp_put_opp_table(opp_table); 2083 2084 return ret; 2085 } 2086 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2087 2088 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2089 { 2090 struct opp_table *opp_table; 2091 2092 /* Check for existing table for 'dev' */ 2093 opp_table = _find_opp_table(dev); 2094 if (IS_ERR(opp_table)) { 2095 int error = PTR_ERR(opp_table); 2096 2097 if (error != -ENODEV) 2098 WARN(1, "%s: opp_table: %d\n", 2099 IS_ERR_OR_NULL(dev) ? 2100 "Invalid device" : dev_name(dev), 2101 error); 2102 return; 2103 } 2104 2105 _put_opp_list_kref(opp_table); 2106 2107 /* Drop reference taken by _find_opp_table() */ 2108 dev_pm_opp_put_opp_table(opp_table); 2109 2110 /* Drop reference taken while the OPP table was added */ 2111 dev_pm_opp_put_opp_table(opp_table); 2112 } 2113 2114 /** 2115 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2116 * @dev: device pointer used to lookup OPP table. 2117 * 2118 * Free both OPPs created using static entries present in DT and the 2119 * dynamically added entries. 2120 */ 2121 void dev_pm_opp_remove_table(struct device *dev) 2122 { 2123 _dev_pm_opp_find_and_remove_table(dev); 2124 } 2125 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2126