xref: /openbmc/linux/drivers/opp/core.c (revision 4e95bc26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
405 						   unsigned long *freq)
406 {
407 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
408 
409 	mutex_lock(&opp_table->lock);
410 
411 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
412 		if (temp_opp->available && temp_opp->rate >= *freq) {
413 			opp = temp_opp;
414 			*freq = opp->rate;
415 
416 			/* Increment the reference count of OPP */
417 			dev_pm_opp_get(opp);
418 			break;
419 		}
420 	}
421 
422 	mutex_unlock(&opp_table->lock);
423 
424 	return opp;
425 }
426 
427 /**
428  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
429  * @dev:	device for which we do this operation
430  * @freq:	Start frequency
431  *
432  * Search for the matching ceil *available* OPP from a starting freq
433  * for a device.
434  *
435  * Return: matching *opp and refreshes *freq accordingly, else returns
436  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
437  * values can be:
438  * EINVAL:	for bad pointer
439  * ERANGE:	no match found for search
440  * ENODEV:	if device not found in list of registered devices
441  *
442  * The callers are required to call dev_pm_opp_put() for the returned OPP after
443  * use.
444  */
445 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
446 					     unsigned long *freq)
447 {
448 	struct opp_table *opp_table;
449 	struct dev_pm_opp *opp;
450 
451 	if (!dev || !freq) {
452 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
453 		return ERR_PTR(-EINVAL);
454 	}
455 
456 	opp_table = _find_opp_table(dev);
457 	if (IS_ERR(opp_table))
458 		return ERR_CAST(opp_table);
459 
460 	opp = _find_freq_ceil(opp_table, freq);
461 
462 	dev_pm_opp_put_opp_table(opp_table);
463 
464 	return opp;
465 }
466 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
467 
468 /**
469  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
470  * @dev:	device for which we do this operation
471  * @freq:	Start frequency
472  *
473  * Search for the matching floor *available* OPP from a starting freq
474  * for a device.
475  *
476  * Return: matching *opp and refreshes *freq accordingly, else returns
477  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
478  * values can be:
479  * EINVAL:	for bad pointer
480  * ERANGE:	no match found for search
481  * ENODEV:	if device not found in list of registered devices
482  *
483  * The callers are required to call dev_pm_opp_put() for the returned OPP after
484  * use.
485  */
486 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
487 					      unsigned long *freq)
488 {
489 	struct opp_table *opp_table;
490 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
491 
492 	if (!dev || !freq) {
493 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
494 		return ERR_PTR(-EINVAL);
495 	}
496 
497 	opp_table = _find_opp_table(dev);
498 	if (IS_ERR(opp_table))
499 		return ERR_CAST(opp_table);
500 
501 	mutex_lock(&opp_table->lock);
502 
503 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
504 		if (temp_opp->available) {
505 			/* go to the next node, before choosing prev */
506 			if (temp_opp->rate > *freq)
507 				break;
508 			else
509 				opp = temp_opp;
510 		}
511 	}
512 
513 	/* Increment the reference count of OPP */
514 	if (!IS_ERR(opp))
515 		dev_pm_opp_get(opp);
516 	mutex_unlock(&opp_table->lock);
517 	dev_pm_opp_put_opp_table(opp_table);
518 
519 	if (!IS_ERR(opp))
520 		*freq = opp->rate;
521 
522 	return opp;
523 }
524 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
525 
526 /**
527  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
528  *					 target voltage.
529  * @dev:	Device for which we do this operation.
530  * @u_volt:	Target voltage.
531  *
532  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
533  *
534  * Return: matching *opp, else returns ERR_PTR in case of error which should be
535  * handled using IS_ERR.
536  *
537  * Error return values can be:
538  * EINVAL:	bad parameters
539  *
540  * The callers are required to call dev_pm_opp_put() for the returned OPP after
541  * use.
542  */
543 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
544 						     unsigned long u_volt)
545 {
546 	struct opp_table *opp_table;
547 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
548 
549 	if (!dev || !u_volt) {
550 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
551 			u_volt);
552 		return ERR_PTR(-EINVAL);
553 	}
554 
555 	opp_table = _find_opp_table(dev);
556 	if (IS_ERR(opp_table))
557 		return ERR_CAST(opp_table);
558 
559 	mutex_lock(&opp_table->lock);
560 
561 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
562 		if (temp_opp->available) {
563 			if (temp_opp->supplies[0].u_volt > u_volt)
564 				break;
565 			opp = temp_opp;
566 		}
567 	}
568 
569 	/* Increment the reference count of OPP */
570 	if (!IS_ERR(opp))
571 		dev_pm_opp_get(opp);
572 
573 	mutex_unlock(&opp_table->lock);
574 	dev_pm_opp_put_opp_table(opp_table);
575 
576 	return opp;
577 }
578 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
579 
580 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
581 			    struct dev_pm_opp_supply *supply)
582 {
583 	int ret;
584 
585 	/* Regulator not available for device */
586 	if (IS_ERR(reg)) {
587 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
588 			PTR_ERR(reg));
589 		return 0;
590 	}
591 
592 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
593 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
594 
595 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
596 					    supply->u_volt, supply->u_volt_max);
597 	if (ret)
598 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
599 			__func__, supply->u_volt_min, supply->u_volt,
600 			supply->u_volt_max, ret);
601 
602 	return ret;
603 }
604 
605 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
606 					    unsigned long freq)
607 {
608 	int ret;
609 
610 	ret = clk_set_rate(clk, freq);
611 	if (ret) {
612 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
613 			ret);
614 	}
615 
616 	return ret;
617 }
618 
619 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
620 				      struct device *dev,
621 				      unsigned long old_freq,
622 				      unsigned long freq,
623 				      struct dev_pm_opp_supply *old_supply,
624 				      struct dev_pm_opp_supply *new_supply)
625 {
626 	struct regulator *reg = opp_table->regulators[0];
627 	int ret;
628 
629 	/* This function only supports single regulator per device */
630 	if (WARN_ON(opp_table->regulator_count > 1)) {
631 		dev_err(dev, "multiple regulators are not supported\n");
632 		return -EINVAL;
633 	}
634 
635 	/* Scaling up? Scale voltage before frequency */
636 	if (freq >= old_freq) {
637 		ret = _set_opp_voltage(dev, reg, new_supply);
638 		if (ret)
639 			goto restore_voltage;
640 	}
641 
642 	/* Change frequency */
643 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
644 	if (ret)
645 		goto restore_voltage;
646 
647 	/* Scaling down? Scale voltage after frequency */
648 	if (freq < old_freq) {
649 		ret = _set_opp_voltage(dev, reg, new_supply);
650 		if (ret)
651 			goto restore_freq;
652 	}
653 
654 	return 0;
655 
656 restore_freq:
657 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
658 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
659 			__func__, old_freq);
660 restore_voltage:
661 	/* This shouldn't harm even if the voltages weren't updated earlier */
662 	if (old_supply)
663 		_set_opp_voltage(dev, reg, old_supply);
664 
665 	return ret;
666 }
667 
668 static int _set_opp_custom(const struct opp_table *opp_table,
669 			   struct device *dev, unsigned long old_freq,
670 			   unsigned long freq,
671 			   struct dev_pm_opp_supply *old_supply,
672 			   struct dev_pm_opp_supply *new_supply)
673 {
674 	struct dev_pm_set_opp_data *data;
675 	int size;
676 
677 	data = opp_table->set_opp_data;
678 	data->regulators = opp_table->regulators;
679 	data->regulator_count = opp_table->regulator_count;
680 	data->clk = opp_table->clk;
681 	data->dev = dev;
682 
683 	data->old_opp.rate = old_freq;
684 	size = sizeof(*old_supply) * opp_table->regulator_count;
685 	if (IS_ERR(old_supply))
686 		memset(data->old_opp.supplies, 0, size);
687 	else
688 		memcpy(data->old_opp.supplies, old_supply, size);
689 
690 	data->new_opp.rate = freq;
691 	memcpy(data->new_opp.supplies, new_supply, size);
692 
693 	return opp_table->set_opp(data);
694 }
695 
696 /* This is only called for PM domain for now */
697 static int _set_required_opps(struct device *dev,
698 			      struct opp_table *opp_table,
699 			      struct dev_pm_opp *opp)
700 {
701 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
702 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
703 	unsigned int pstate;
704 	int i, ret = 0;
705 
706 	if (!required_opp_tables)
707 		return 0;
708 
709 	/* Single genpd case */
710 	if (!genpd_virt_devs) {
711 		pstate = opp->required_opps[0]->pstate;
712 		ret = dev_pm_genpd_set_performance_state(dev, pstate);
713 		if (ret) {
714 			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
715 				dev_name(dev), pstate, ret);
716 		}
717 		return ret;
718 	}
719 
720 	/* Multiple genpd case */
721 
722 	/*
723 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
724 	 * after it is freed from another thread.
725 	 */
726 	mutex_lock(&opp_table->genpd_virt_dev_lock);
727 
728 	for (i = 0; i < opp_table->required_opp_count; i++) {
729 		pstate = opp->required_opps[i]->pstate;
730 
731 		if (!genpd_virt_devs[i])
732 			continue;
733 
734 		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
735 		if (ret) {
736 			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
737 				dev_name(genpd_virt_devs[i]), pstate, ret);
738 			break;
739 		}
740 	}
741 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
742 
743 	return ret;
744 }
745 
746 /**
747  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
748  * @dev:	 device for which we do this operation
749  * @target_freq: frequency to achieve
750  *
751  * This configures the power-supplies and clock source to the levels specified
752  * by the OPP corresponding to the target_freq.
753  */
754 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
755 {
756 	struct opp_table *opp_table;
757 	unsigned long freq, old_freq;
758 	struct dev_pm_opp *old_opp, *opp;
759 	struct clk *clk;
760 	int ret;
761 
762 	if (unlikely(!target_freq)) {
763 		dev_err(dev, "%s: Invalid target frequency %lu\n", __func__,
764 			target_freq);
765 		return -EINVAL;
766 	}
767 
768 	opp_table = _find_opp_table(dev);
769 	if (IS_ERR(opp_table)) {
770 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
771 		return PTR_ERR(opp_table);
772 	}
773 
774 	clk = opp_table->clk;
775 	if (IS_ERR(clk)) {
776 		dev_err(dev, "%s: No clock available for the device\n",
777 			__func__);
778 		ret = PTR_ERR(clk);
779 		goto put_opp_table;
780 	}
781 
782 	freq = clk_round_rate(clk, target_freq);
783 	if ((long)freq <= 0)
784 		freq = target_freq;
785 
786 	old_freq = clk_get_rate(clk);
787 
788 	/* Return early if nothing to do */
789 	if (old_freq == freq) {
790 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
791 			__func__, freq);
792 		ret = 0;
793 		goto put_opp_table;
794 	}
795 
796 	old_opp = _find_freq_ceil(opp_table, &old_freq);
797 	if (IS_ERR(old_opp)) {
798 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
799 			__func__, old_freq, PTR_ERR(old_opp));
800 	}
801 
802 	opp = _find_freq_ceil(opp_table, &freq);
803 	if (IS_ERR(opp)) {
804 		ret = PTR_ERR(opp);
805 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
806 			__func__, freq, ret);
807 		goto put_old_opp;
808 	}
809 
810 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
811 		old_freq, freq);
812 
813 	/* Scaling up? Configure required OPPs before frequency */
814 	if (freq >= old_freq) {
815 		ret = _set_required_opps(dev, opp_table, opp);
816 		if (ret)
817 			goto put_opp;
818 	}
819 
820 	if (opp_table->set_opp) {
821 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
822 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
823 				      opp->supplies);
824 	} else if (opp_table->regulators) {
825 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
826 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
827 						 opp->supplies);
828 	} else {
829 		/* Only frequency scaling */
830 		ret = _generic_set_opp_clk_only(dev, clk, freq);
831 	}
832 
833 	/* Scaling down? Configure required OPPs after frequency */
834 	if (!ret && freq < old_freq) {
835 		ret = _set_required_opps(dev, opp_table, opp);
836 		if (ret)
837 			dev_err(dev, "Failed to set required opps: %d\n", ret);
838 	}
839 
840 put_opp:
841 	dev_pm_opp_put(opp);
842 put_old_opp:
843 	if (!IS_ERR(old_opp))
844 		dev_pm_opp_put(old_opp);
845 put_opp_table:
846 	dev_pm_opp_put_opp_table(opp_table);
847 	return ret;
848 }
849 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
850 
851 /* OPP-dev Helpers */
852 static void _remove_opp_dev(struct opp_device *opp_dev,
853 			    struct opp_table *opp_table)
854 {
855 	opp_debug_unregister(opp_dev, opp_table);
856 	list_del(&opp_dev->node);
857 	kfree(opp_dev);
858 }
859 
860 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
861 						struct opp_table *opp_table)
862 {
863 	struct opp_device *opp_dev;
864 
865 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
866 	if (!opp_dev)
867 		return NULL;
868 
869 	/* Initialize opp-dev */
870 	opp_dev->dev = dev;
871 
872 	list_add(&opp_dev->node, &opp_table->dev_list);
873 
874 	/* Create debugfs entries for the opp_table */
875 	opp_debug_register(opp_dev, opp_table);
876 
877 	return opp_dev;
878 }
879 
880 struct opp_device *_add_opp_dev(const struct device *dev,
881 				struct opp_table *opp_table)
882 {
883 	struct opp_device *opp_dev;
884 
885 	mutex_lock(&opp_table->lock);
886 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
887 	mutex_unlock(&opp_table->lock);
888 
889 	return opp_dev;
890 }
891 
892 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
893 {
894 	struct opp_table *opp_table;
895 	struct opp_device *opp_dev;
896 	int ret;
897 
898 	/*
899 	 * Allocate a new OPP table. In the infrequent case where a new
900 	 * device is needed to be added, we pay this penalty.
901 	 */
902 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
903 	if (!opp_table)
904 		return NULL;
905 
906 	mutex_init(&opp_table->lock);
907 	mutex_init(&opp_table->genpd_virt_dev_lock);
908 	INIT_LIST_HEAD(&opp_table->dev_list);
909 
910 	/* Mark regulator count uninitialized */
911 	opp_table->regulator_count = -1;
912 
913 	opp_dev = _add_opp_dev(dev, opp_table);
914 	if (!opp_dev) {
915 		kfree(opp_table);
916 		return NULL;
917 	}
918 
919 	_of_init_opp_table(opp_table, dev, index);
920 
921 	/* Find clk for the device */
922 	opp_table->clk = clk_get(dev, NULL);
923 	if (IS_ERR(opp_table->clk)) {
924 		ret = PTR_ERR(opp_table->clk);
925 		if (ret != -EPROBE_DEFER)
926 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
927 				ret);
928 	}
929 
930 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
931 	INIT_LIST_HEAD(&opp_table->opp_list);
932 	kref_init(&opp_table->kref);
933 
934 	/* Secure the device table modification */
935 	list_add(&opp_table->node, &opp_tables);
936 	return opp_table;
937 }
938 
939 void _get_opp_table_kref(struct opp_table *opp_table)
940 {
941 	kref_get(&opp_table->kref);
942 }
943 
944 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
945 {
946 	struct opp_table *opp_table;
947 
948 	/* Hold our table modification lock here */
949 	mutex_lock(&opp_table_lock);
950 
951 	opp_table = _find_opp_table_unlocked(dev);
952 	if (!IS_ERR(opp_table))
953 		goto unlock;
954 
955 	opp_table = _managed_opp(dev, index);
956 	if (opp_table) {
957 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
958 			dev_pm_opp_put_opp_table(opp_table);
959 			opp_table = NULL;
960 		}
961 		goto unlock;
962 	}
963 
964 	opp_table = _allocate_opp_table(dev, index);
965 
966 unlock:
967 	mutex_unlock(&opp_table_lock);
968 
969 	return opp_table;
970 }
971 
972 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
973 {
974 	return _opp_get_opp_table(dev, 0);
975 }
976 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
977 
978 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
979 						   int index)
980 {
981 	return _opp_get_opp_table(dev, index);
982 }
983 
984 static void _opp_table_kref_release(struct kref *kref)
985 {
986 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
987 	struct opp_device *opp_dev, *temp;
988 
989 	_of_clear_opp_table(opp_table);
990 
991 	/* Release clk */
992 	if (!IS_ERR(opp_table->clk))
993 		clk_put(opp_table->clk);
994 
995 	WARN_ON(!list_empty(&opp_table->opp_list));
996 
997 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
998 		/*
999 		 * The OPP table is getting removed, drop the performance state
1000 		 * constraints.
1001 		 */
1002 		if (opp_table->genpd_performance_state)
1003 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1004 
1005 		_remove_opp_dev(opp_dev, opp_table);
1006 	}
1007 
1008 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1009 	mutex_destroy(&opp_table->lock);
1010 	list_del(&opp_table->node);
1011 	kfree(opp_table);
1012 
1013 	mutex_unlock(&opp_table_lock);
1014 }
1015 
1016 void _opp_remove_all_static(struct opp_table *opp_table)
1017 {
1018 	struct dev_pm_opp *opp, *tmp;
1019 
1020 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1021 		if (!opp->dynamic)
1022 			dev_pm_opp_put(opp);
1023 	}
1024 
1025 	opp_table->parsed_static_opps = false;
1026 }
1027 
1028 static void _opp_table_list_kref_release(struct kref *kref)
1029 {
1030 	struct opp_table *opp_table = container_of(kref, struct opp_table,
1031 						   list_kref);
1032 
1033 	_opp_remove_all_static(opp_table);
1034 	mutex_unlock(&opp_table_lock);
1035 }
1036 
1037 void _put_opp_list_kref(struct opp_table *opp_table)
1038 {
1039 	kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1040 		       &opp_table_lock);
1041 }
1042 
1043 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1044 {
1045 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1046 		       &opp_table_lock);
1047 }
1048 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1049 
1050 void _opp_free(struct dev_pm_opp *opp)
1051 {
1052 	kfree(opp);
1053 }
1054 
1055 static void _opp_kref_release(struct dev_pm_opp *opp,
1056 			      struct opp_table *opp_table)
1057 {
1058 	/*
1059 	 * Notify the changes in the availability of the operable
1060 	 * frequency/voltage list.
1061 	 */
1062 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1063 	_of_opp_free_required_opps(opp_table, opp);
1064 	opp_debug_remove_one(opp);
1065 	list_del(&opp->node);
1066 	kfree(opp);
1067 }
1068 
1069 static void _opp_kref_release_unlocked(struct kref *kref)
1070 {
1071 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1072 	struct opp_table *opp_table = opp->opp_table;
1073 
1074 	_opp_kref_release(opp, opp_table);
1075 }
1076 
1077 static void _opp_kref_release_locked(struct kref *kref)
1078 {
1079 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1080 	struct opp_table *opp_table = opp->opp_table;
1081 
1082 	_opp_kref_release(opp, opp_table);
1083 	mutex_unlock(&opp_table->lock);
1084 }
1085 
1086 void dev_pm_opp_get(struct dev_pm_opp *opp)
1087 {
1088 	kref_get(&opp->kref);
1089 }
1090 
1091 void dev_pm_opp_put(struct dev_pm_opp *opp)
1092 {
1093 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1094 		       &opp->opp_table->lock);
1095 }
1096 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1097 
1098 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1099 {
1100 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1101 }
1102 
1103 /**
1104  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1105  * @dev:	device for which we do this operation
1106  * @freq:	OPP to remove with matching 'freq'
1107  *
1108  * This function removes an opp from the opp table.
1109  */
1110 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1111 {
1112 	struct dev_pm_opp *opp;
1113 	struct opp_table *opp_table;
1114 	bool found = false;
1115 
1116 	opp_table = _find_opp_table(dev);
1117 	if (IS_ERR(opp_table))
1118 		return;
1119 
1120 	mutex_lock(&opp_table->lock);
1121 
1122 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1123 		if (opp->rate == freq) {
1124 			found = true;
1125 			break;
1126 		}
1127 	}
1128 
1129 	mutex_unlock(&opp_table->lock);
1130 
1131 	if (found) {
1132 		dev_pm_opp_put(opp);
1133 
1134 		/* Drop the reference taken by dev_pm_opp_add() */
1135 		dev_pm_opp_put_opp_table(opp_table);
1136 	} else {
1137 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1138 			 __func__, freq);
1139 	}
1140 
1141 	/* Drop the reference taken by _find_opp_table() */
1142 	dev_pm_opp_put_opp_table(opp_table);
1143 }
1144 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1145 
1146 /**
1147  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1148  * @dev:	device for which we do this operation
1149  *
1150  * This function removes all dynamically created OPPs from the opp table.
1151  */
1152 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1153 {
1154 	struct opp_table *opp_table;
1155 	struct dev_pm_opp *opp, *temp;
1156 	int count = 0;
1157 
1158 	opp_table = _find_opp_table(dev);
1159 	if (IS_ERR(opp_table))
1160 		return;
1161 
1162 	mutex_lock(&opp_table->lock);
1163 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1164 		if (opp->dynamic) {
1165 			dev_pm_opp_put_unlocked(opp);
1166 			count++;
1167 		}
1168 	}
1169 	mutex_unlock(&opp_table->lock);
1170 
1171 	/* Drop the references taken by dev_pm_opp_add() */
1172 	while (count--)
1173 		dev_pm_opp_put_opp_table(opp_table);
1174 
1175 	/* Drop the reference taken by _find_opp_table() */
1176 	dev_pm_opp_put_opp_table(opp_table);
1177 }
1178 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1179 
1180 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1181 {
1182 	struct dev_pm_opp *opp;
1183 	int count, supply_size;
1184 
1185 	/* Allocate space for at least one supply */
1186 	count = table->regulator_count > 0 ? table->regulator_count : 1;
1187 	supply_size = sizeof(*opp->supplies) * count;
1188 
1189 	/* allocate new OPP node and supplies structures */
1190 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1191 	if (!opp)
1192 		return NULL;
1193 
1194 	/* Put the supplies at the end of the OPP structure as an empty array */
1195 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1196 	INIT_LIST_HEAD(&opp->node);
1197 
1198 	return opp;
1199 }
1200 
1201 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1202 					 struct opp_table *opp_table)
1203 {
1204 	struct regulator *reg;
1205 	int i;
1206 
1207 	if (!opp_table->regulators)
1208 		return true;
1209 
1210 	for (i = 0; i < opp_table->regulator_count; i++) {
1211 		reg = opp_table->regulators[i];
1212 
1213 		if (!regulator_is_supported_voltage(reg,
1214 					opp->supplies[i].u_volt_min,
1215 					opp->supplies[i].u_volt_max)) {
1216 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1217 				__func__, opp->supplies[i].u_volt_min,
1218 				opp->supplies[i].u_volt_max);
1219 			return false;
1220 		}
1221 	}
1222 
1223 	return true;
1224 }
1225 
1226 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1227 			     struct opp_table *opp_table,
1228 			     struct list_head **head)
1229 {
1230 	struct dev_pm_opp *opp;
1231 
1232 	/*
1233 	 * Insert new OPP in order of increasing frequency and discard if
1234 	 * already present.
1235 	 *
1236 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1237 	 * loop, don't replace it with head otherwise it will become an infinite
1238 	 * loop.
1239 	 */
1240 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1241 		if (new_opp->rate > opp->rate) {
1242 			*head = &opp->node;
1243 			continue;
1244 		}
1245 
1246 		if (new_opp->rate < opp->rate)
1247 			return 0;
1248 
1249 		/* Duplicate OPPs */
1250 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1251 			 __func__, opp->rate, opp->supplies[0].u_volt,
1252 			 opp->available, new_opp->rate,
1253 			 new_opp->supplies[0].u_volt, new_opp->available);
1254 
1255 		/* Should we compare voltages for all regulators here ? */
1256 		return opp->available &&
1257 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 /*
1264  * Returns:
1265  * 0: On success. And appropriate error message for duplicate OPPs.
1266  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1267  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1268  *  sure we don't print error messages unnecessarily if different parts of
1269  *  kernel try to initialize the OPP table.
1270  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1271  *  should be considered an error by the callers of _opp_add().
1272  */
1273 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1274 	     struct opp_table *opp_table, bool rate_not_available)
1275 {
1276 	struct list_head *head;
1277 	int ret;
1278 
1279 	mutex_lock(&opp_table->lock);
1280 	head = &opp_table->opp_list;
1281 
1282 	if (likely(!rate_not_available)) {
1283 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1284 		if (ret) {
1285 			mutex_unlock(&opp_table->lock);
1286 			return ret;
1287 		}
1288 	}
1289 
1290 	list_add(&new_opp->node, head);
1291 	mutex_unlock(&opp_table->lock);
1292 
1293 	new_opp->opp_table = opp_table;
1294 	kref_init(&new_opp->kref);
1295 
1296 	opp_debug_create_one(new_opp, opp_table);
1297 
1298 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1299 		new_opp->available = false;
1300 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1301 			 __func__, new_opp->rate);
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /**
1308  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1309  * @opp_table:	OPP table
1310  * @dev:	device for which we do this operation
1311  * @freq:	Frequency in Hz for this OPP
1312  * @u_volt:	Voltage in uVolts for this OPP
1313  * @dynamic:	Dynamically added OPPs.
1314  *
1315  * This function adds an opp definition to the opp table and returns status.
1316  * The opp is made available by default and it can be controlled using
1317  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1318  *
1319  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1320  * and freed by dev_pm_opp_of_remove_table.
1321  *
1322  * Return:
1323  * 0		On success OR
1324  *		Duplicate OPPs (both freq and volt are same) and opp->available
1325  * -EEXIST	Freq are same and volt are different OR
1326  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1327  * -ENOMEM	Memory allocation failure
1328  */
1329 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1330 		unsigned long freq, long u_volt, bool dynamic)
1331 {
1332 	struct dev_pm_opp *new_opp;
1333 	unsigned long tol;
1334 	int ret;
1335 
1336 	new_opp = _opp_allocate(opp_table);
1337 	if (!new_opp)
1338 		return -ENOMEM;
1339 
1340 	/* populate the opp table */
1341 	new_opp->rate = freq;
1342 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1343 	new_opp->supplies[0].u_volt = u_volt;
1344 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1345 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1346 	new_opp->available = true;
1347 	new_opp->dynamic = dynamic;
1348 
1349 	ret = _opp_add(dev, new_opp, opp_table, false);
1350 	if (ret) {
1351 		/* Don't return error for duplicate OPPs */
1352 		if (ret == -EBUSY)
1353 			ret = 0;
1354 		goto free_opp;
1355 	}
1356 
1357 	/*
1358 	 * Notify the changes in the availability of the operable
1359 	 * frequency/voltage list.
1360 	 */
1361 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1362 	return 0;
1363 
1364 free_opp:
1365 	_opp_free(new_opp);
1366 
1367 	return ret;
1368 }
1369 
1370 /**
1371  * dev_pm_opp_set_supported_hw() - Set supported platforms
1372  * @dev: Device for which supported-hw has to be set.
1373  * @versions: Array of hierarchy of versions to match.
1374  * @count: Number of elements in the array.
1375  *
1376  * This is required only for the V2 bindings, and it enables a platform to
1377  * specify the hierarchy of versions it supports. OPP layer will then enable
1378  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1379  * property.
1380  */
1381 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1382 			const u32 *versions, unsigned int count)
1383 {
1384 	struct opp_table *opp_table;
1385 
1386 	opp_table = dev_pm_opp_get_opp_table(dev);
1387 	if (!opp_table)
1388 		return ERR_PTR(-ENOMEM);
1389 
1390 	/* Make sure there are no concurrent readers while updating opp_table */
1391 	WARN_ON(!list_empty(&opp_table->opp_list));
1392 
1393 	/* Another CPU that shares the OPP table has set the property ? */
1394 	if (opp_table->supported_hw)
1395 		return opp_table;
1396 
1397 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1398 					GFP_KERNEL);
1399 	if (!opp_table->supported_hw) {
1400 		dev_pm_opp_put_opp_table(opp_table);
1401 		return ERR_PTR(-ENOMEM);
1402 	}
1403 
1404 	opp_table->supported_hw_count = count;
1405 
1406 	return opp_table;
1407 }
1408 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1409 
1410 /**
1411  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1412  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1413  *
1414  * This is required only for the V2 bindings, and is called for a matching
1415  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1416  * will not be freed.
1417  */
1418 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1419 {
1420 	/* Make sure there are no concurrent readers while updating opp_table */
1421 	WARN_ON(!list_empty(&opp_table->opp_list));
1422 
1423 	kfree(opp_table->supported_hw);
1424 	opp_table->supported_hw = NULL;
1425 	opp_table->supported_hw_count = 0;
1426 
1427 	dev_pm_opp_put_opp_table(opp_table);
1428 }
1429 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1430 
1431 /**
1432  * dev_pm_opp_set_prop_name() - Set prop-extn name
1433  * @dev: Device for which the prop-name has to be set.
1434  * @name: name to postfix to properties.
1435  *
1436  * This is required only for the V2 bindings, and it enables a platform to
1437  * specify the extn to be used for certain property names. The properties to
1438  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1439  * should postfix the property name with -<name> while looking for them.
1440  */
1441 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1442 {
1443 	struct opp_table *opp_table;
1444 
1445 	opp_table = dev_pm_opp_get_opp_table(dev);
1446 	if (!opp_table)
1447 		return ERR_PTR(-ENOMEM);
1448 
1449 	/* Make sure there are no concurrent readers while updating opp_table */
1450 	WARN_ON(!list_empty(&opp_table->opp_list));
1451 
1452 	/* Another CPU that shares the OPP table has set the property ? */
1453 	if (opp_table->prop_name)
1454 		return opp_table;
1455 
1456 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1457 	if (!opp_table->prop_name) {
1458 		dev_pm_opp_put_opp_table(opp_table);
1459 		return ERR_PTR(-ENOMEM);
1460 	}
1461 
1462 	return opp_table;
1463 }
1464 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1465 
1466 /**
1467  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1468  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1469  *
1470  * This is required only for the V2 bindings, and is called for a matching
1471  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1472  * will not be freed.
1473  */
1474 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1475 {
1476 	/* Make sure there are no concurrent readers while updating opp_table */
1477 	WARN_ON(!list_empty(&opp_table->opp_list));
1478 
1479 	kfree(opp_table->prop_name);
1480 	opp_table->prop_name = NULL;
1481 
1482 	dev_pm_opp_put_opp_table(opp_table);
1483 }
1484 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1485 
1486 static int _allocate_set_opp_data(struct opp_table *opp_table)
1487 {
1488 	struct dev_pm_set_opp_data *data;
1489 	int len, count = opp_table->regulator_count;
1490 
1491 	if (WARN_ON(!opp_table->regulators))
1492 		return -EINVAL;
1493 
1494 	/* space for set_opp_data */
1495 	len = sizeof(*data);
1496 
1497 	/* space for old_opp.supplies and new_opp.supplies */
1498 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1499 
1500 	data = kzalloc(len, GFP_KERNEL);
1501 	if (!data)
1502 		return -ENOMEM;
1503 
1504 	data->old_opp.supplies = (void *)(data + 1);
1505 	data->new_opp.supplies = data->old_opp.supplies + count;
1506 
1507 	opp_table->set_opp_data = data;
1508 
1509 	return 0;
1510 }
1511 
1512 static void _free_set_opp_data(struct opp_table *opp_table)
1513 {
1514 	kfree(opp_table->set_opp_data);
1515 	opp_table->set_opp_data = NULL;
1516 }
1517 
1518 /**
1519  * dev_pm_opp_set_regulators() - Set regulator names for the device
1520  * @dev: Device for which regulator name is being set.
1521  * @names: Array of pointers to the names of the regulator.
1522  * @count: Number of regulators.
1523  *
1524  * In order to support OPP switching, OPP layer needs to know the name of the
1525  * device's regulators, as the core would be required to switch voltages as
1526  * well.
1527  *
1528  * This must be called before any OPPs are initialized for the device.
1529  */
1530 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1531 					    const char * const names[],
1532 					    unsigned int count)
1533 {
1534 	struct opp_table *opp_table;
1535 	struct regulator *reg;
1536 	int ret, i;
1537 
1538 	opp_table = dev_pm_opp_get_opp_table(dev);
1539 	if (!opp_table)
1540 		return ERR_PTR(-ENOMEM);
1541 
1542 	/* This should be called before OPPs are initialized */
1543 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1544 		ret = -EBUSY;
1545 		goto err;
1546 	}
1547 
1548 	/* Another CPU that shares the OPP table has set the regulators ? */
1549 	if (opp_table->regulators)
1550 		return opp_table;
1551 
1552 	opp_table->regulators = kmalloc_array(count,
1553 					      sizeof(*opp_table->regulators),
1554 					      GFP_KERNEL);
1555 	if (!opp_table->regulators) {
1556 		ret = -ENOMEM;
1557 		goto err;
1558 	}
1559 
1560 	for (i = 0; i < count; i++) {
1561 		reg = regulator_get_optional(dev, names[i]);
1562 		if (IS_ERR(reg)) {
1563 			ret = PTR_ERR(reg);
1564 			if (ret != -EPROBE_DEFER)
1565 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1566 					__func__, names[i], ret);
1567 			goto free_regulators;
1568 		}
1569 
1570 		opp_table->regulators[i] = reg;
1571 	}
1572 
1573 	opp_table->regulator_count = count;
1574 
1575 	/* Allocate block only once to pass to set_opp() routines */
1576 	ret = _allocate_set_opp_data(opp_table);
1577 	if (ret)
1578 		goto free_regulators;
1579 
1580 	return opp_table;
1581 
1582 free_regulators:
1583 	while (i != 0)
1584 		regulator_put(opp_table->regulators[--i]);
1585 
1586 	kfree(opp_table->regulators);
1587 	opp_table->regulators = NULL;
1588 	opp_table->regulator_count = -1;
1589 err:
1590 	dev_pm_opp_put_opp_table(opp_table);
1591 
1592 	return ERR_PTR(ret);
1593 }
1594 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1595 
1596 /**
1597  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1598  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1599  */
1600 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1601 {
1602 	int i;
1603 
1604 	if (!opp_table->regulators)
1605 		goto put_opp_table;
1606 
1607 	/* Make sure there are no concurrent readers while updating opp_table */
1608 	WARN_ON(!list_empty(&opp_table->opp_list));
1609 
1610 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1611 		regulator_put(opp_table->regulators[i]);
1612 
1613 	_free_set_opp_data(opp_table);
1614 
1615 	kfree(opp_table->regulators);
1616 	opp_table->regulators = NULL;
1617 	opp_table->regulator_count = -1;
1618 
1619 put_opp_table:
1620 	dev_pm_opp_put_opp_table(opp_table);
1621 }
1622 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1623 
1624 /**
1625  * dev_pm_opp_set_clkname() - Set clk name for the device
1626  * @dev: Device for which clk name is being set.
1627  * @name: Clk name.
1628  *
1629  * In order to support OPP switching, OPP layer needs to get pointer to the
1630  * clock for the device. Simple cases work fine without using this routine (i.e.
1631  * by passing connection-id as NULL), but for a device with multiple clocks
1632  * available, the OPP core needs to know the exact name of the clk to use.
1633  *
1634  * This must be called before any OPPs are initialized for the device.
1635  */
1636 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1637 {
1638 	struct opp_table *opp_table;
1639 	int ret;
1640 
1641 	opp_table = dev_pm_opp_get_opp_table(dev);
1642 	if (!opp_table)
1643 		return ERR_PTR(-ENOMEM);
1644 
1645 	/* This should be called before OPPs are initialized */
1646 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1647 		ret = -EBUSY;
1648 		goto err;
1649 	}
1650 
1651 	/* Already have default clk set, free it */
1652 	if (!IS_ERR(opp_table->clk))
1653 		clk_put(opp_table->clk);
1654 
1655 	/* Find clk for the device */
1656 	opp_table->clk = clk_get(dev, name);
1657 	if (IS_ERR(opp_table->clk)) {
1658 		ret = PTR_ERR(opp_table->clk);
1659 		if (ret != -EPROBE_DEFER) {
1660 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1661 				ret);
1662 		}
1663 		goto err;
1664 	}
1665 
1666 	return opp_table;
1667 
1668 err:
1669 	dev_pm_opp_put_opp_table(opp_table);
1670 
1671 	return ERR_PTR(ret);
1672 }
1673 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1674 
1675 /**
1676  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1677  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1678  */
1679 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1680 {
1681 	/* Make sure there are no concurrent readers while updating opp_table */
1682 	WARN_ON(!list_empty(&opp_table->opp_list));
1683 
1684 	clk_put(opp_table->clk);
1685 	opp_table->clk = ERR_PTR(-EINVAL);
1686 
1687 	dev_pm_opp_put_opp_table(opp_table);
1688 }
1689 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1690 
1691 /**
1692  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1693  * @dev: Device for which the helper is getting registered.
1694  * @set_opp: Custom set OPP helper.
1695  *
1696  * This is useful to support complex platforms (like platforms with multiple
1697  * regulators per device), instead of the generic OPP set rate helper.
1698  *
1699  * This must be called before any OPPs are initialized for the device.
1700  */
1701 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1702 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1703 {
1704 	struct opp_table *opp_table;
1705 
1706 	if (!set_opp)
1707 		return ERR_PTR(-EINVAL);
1708 
1709 	opp_table = dev_pm_opp_get_opp_table(dev);
1710 	if (!opp_table)
1711 		return ERR_PTR(-ENOMEM);
1712 
1713 	/* This should be called before OPPs are initialized */
1714 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1715 		dev_pm_opp_put_opp_table(opp_table);
1716 		return ERR_PTR(-EBUSY);
1717 	}
1718 
1719 	/* Another CPU that shares the OPP table has set the helper ? */
1720 	if (!opp_table->set_opp)
1721 		opp_table->set_opp = set_opp;
1722 
1723 	return opp_table;
1724 }
1725 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1726 
1727 /**
1728  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1729  *					   set_opp helper
1730  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1731  *
1732  * Release resources blocked for platform specific set_opp helper.
1733  */
1734 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1735 {
1736 	/* Make sure there are no concurrent readers while updating opp_table */
1737 	WARN_ON(!list_empty(&opp_table->opp_list));
1738 
1739 	opp_table->set_opp = NULL;
1740 	dev_pm_opp_put_opp_table(opp_table);
1741 }
1742 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1743 
1744 /**
1745  * dev_pm_opp_set_genpd_virt_dev - Set virtual genpd device for an index
1746  * @dev: Consumer device for which the genpd device is getting set.
1747  * @virt_dev: virtual genpd device.
1748  * @index: index.
1749  *
1750  * Multiple generic power domains for a device are supported with the help of
1751  * virtual genpd devices, which are created for each consumer device - genpd
1752  * pair. These are the device structures which are attached to the power domain
1753  * and are required by the OPP core to set the performance state of the genpd.
1754  *
1755  * This helper will normally be called by the consumer driver of the device
1756  * "dev", as only that has details of the genpd devices.
1757  *
1758  * This helper needs to be called once for each of those virtual devices, but
1759  * only if multiple domains are available for a device. Otherwise the original
1760  * device structure will be used instead by the OPP core.
1761  */
1762 struct opp_table *dev_pm_opp_set_genpd_virt_dev(struct device *dev,
1763 						struct device *virt_dev,
1764 						int index)
1765 {
1766 	struct opp_table *opp_table;
1767 
1768 	opp_table = dev_pm_opp_get_opp_table(dev);
1769 	if (!opp_table)
1770 		return ERR_PTR(-ENOMEM);
1771 
1772 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1773 
1774 	if (unlikely(!opp_table->genpd_virt_devs ||
1775 		     index >= opp_table->required_opp_count ||
1776 		     opp_table->genpd_virt_devs[index])) {
1777 
1778 		dev_err(dev, "Invalid request to set required device\n");
1779 		dev_pm_opp_put_opp_table(opp_table);
1780 		mutex_unlock(&opp_table->genpd_virt_dev_lock);
1781 
1782 		return ERR_PTR(-EINVAL);
1783 	}
1784 
1785 	opp_table->genpd_virt_devs[index] = virt_dev;
1786 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1787 
1788 	return opp_table;
1789 }
1790 
1791 /**
1792  * dev_pm_opp_put_genpd_virt_dev() - Releases resources blocked for genpd device.
1793  * @opp_table: OPP table returned by dev_pm_opp_set_genpd_virt_dev().
1794  * @virt_dev: virtual genpd device.
1795  *
1796  * This releases the resource previously acquired with a call to
1797  * dev_pm_opp_set_genpd_virt_dev(). The consumer driver shall call this helper
1798  * if it doesn't want OPP core to update performance state of a power domain
1799  * anymore.
1800  */
1801 void dev_pm_opp_put_genpd_virt_dev(struct opp_table *opp_table,
1802 				   struct device *virt_dev)
1803 {
1804 	int i;
1805 
1806 	/*
1807 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1808 	 * used in parallel.
1809 	 */
1810 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1811 
1812 	for (i = 0; i < opp_table->required_opp_count; i++) {
1813 		if (opp_table->genpd_virt_devs[i] != virt_dev)
1814 			continue;
1815 
1816 		opp_table->genpd_virt_devs[i] = NULL;
1817 		dev_pm_opp_put_opp_table(opp_table);
1818 
1819 		/* Drop the vote */
1820 		dev_pm_genpd_set_performance_state(virt_dev, 0);
1821 		break;
1822 	}
1823 
1824 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1825 
1826 	if (unlikely(i == opp_table->required_opp_count))
1827 		dev_err(virt_dev, "Failed to find required device entry\n");
1828 }
1829 
1830 /**
1831  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1832  * @src_table: OPP table which has dst_table as one of its required OPP table.
1833  * @dst_table: Required OPP table of the src_table.
1834  * @pstate: Current performance state of the src_table.
1835  *
1836  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1837  * "required-opps" property of the OPP (present in @src_table) which has
1838  * performance state set to @pstate.
1839  *
1840  * Return: Zero or positive performance state on success, otherwise negative
1841  * value on errors.
1842  */
1843 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1844 				       struct opp_table *dst_table,
1845 				       unsigned int pstate)
1846 {
1847 	struct dev_pm_opp *opp;
1848 	int dest_pstate = -EINVAL;
1849 	int i;
1850 
1851 	if (!pstate)
1852 		return 0;
1853 
1854 	/*
1855 	 * Normally the src_table will have the "required_opps" property set to
1856 	 * point to one of the OPPs in the dst_table, but in some cases the
1857 	 * genpd and its master have one to one mapping of performance states
1858 	 * and so none of them have the "required-opps" property set. Return the
1859 	 * pstate of the src_table as it is in such cases.
1860 	 */
1861 	if (!src_table->required_opp_count)
1862 		return pstate;
1863 
1864 	for (i = 0; i < src_table->required_opp_count; i++) {
1865 		if (src_table->required_opp_tables[i]->np == dst_table->np)
1866 			break;
1867 	}
1868 
1869 	if (unlikely(i == src_table->required_opp_count)) {
1870 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1871 		       __func__, src_table, dst_table);
1872 		return -EINVAL;
1873 	}
1874 
1875 	mutex_lock(&src_table->lock);
1876 
1877 	list_for_each_entry(opp, &src_table->opp_list, node) {
1878 		if (opp->pstate == pstate) {
1879 			dest_pstate = opp->required_opps[i]->pstate;
1880 			goto unlock;
1881 		}
1882 	}
1883 
1884 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1885 	       dst_table);
1886 
1887 unlock:
1888 	mutex_unlock(&src_table->lock);
1889 
1890 	return dest_pstate;
1891 }
1892 
1893 /**
1894  * dev_pm_opp_add()  - Add an OPP table from a table definitions
1895  * @dev:	device for which we do this operation
1896  * @freq:	Frequency in Hz for this OPP
1897  * @u_volt:	Voltage in uVolts for this OPP
1898  *
1899  * This function adds an opp definition to the opp table and returns status.
1900  * The opp is made available by default and it can be controlled using
1901  * dev_pm_opp_enable/disable functions.
1902  *
1903  * Return:
1904  * 0		On success OR
1905  *		Duplicate OPPs (both freq and volt are same) and opp->available
1906  * -EEXIST	Freq are same and volt are different OR
1907  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1908  * -ENOMEM	Memory allocation failure
1909  */
1910 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1911 {
1912 	struct opp_table *opp_table;
1913 	int ret;
1914 
1915 	opp_table = dev_pm_opp_get_opp_table(dev);
1916 	if (!opp_table)
1917 		return -ENOMEM;
1918 
1919 	/* Fix regulator count for dynamic OPPs */
1920 	opp_table->regulator_count = 1;
1921 
1922 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1923 	if (ret)
1924 		dev_pm_opp_put_opp_table(opp_table);
1925 
1926 	return ret;
1927 }
1928 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1929 
1930 /**
1931  * _opp_set_availability() - helper to set the availability of an opp
1932  * @dev:		device for which we do this operation
1933  * @freq:		OPP frequency to modify availability
1934  * @availability_req:	availability status requested for this opp
1935  *
1936  * Set the availability of an OPP, opp_{enable,disable} share a common logic
1937  * which is isolated here.
1938  *
1939  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1940  * copy operation, returns 0 if no modification was done OR modification was
1941  * successful.
1942  */
1943 static int _opp_set_availability(struct device *dev, unsigned long freq,
1944 				 bool availability_req)
1945 {
1946 	struct opp_table *opp_table;
1947 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
1948 	int r = 0;
1949 
1950 	/* Find the opp_table */
1951 	opp_table = _find_opp_table(dev);
1952 	if (IS_ERR(opp_table)) {
1953 		r = PTR_ERR(opp_table);
1954 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
1955 		return r;
1956 	}
1957 
1958 	mutex_lock(&opp_table->lock);
1959 
1960 	/* Do we have the frequency? */
1961 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
1962 		if (tmp_opp->rate == freq) {
1963 			opp = tmp_opp;
1964 			break;
1965 		}
1966 	}
1967 
1968 	if (IS_ERR(opp)) {
1969 		r = PTR_ERR(opp);
1970 		goto unlock;
1971 	}
1972 
1973 	/* Is update really needed? */
1974 	if (opp->available == availability_req)
1975 		goto unlock;
1976 
1977 	opp->available = availability_req;
1978 
1979 	dev_pm_opp_get(opp);
1980 	mutex_unlock(&opp_table->lock);
1981 
1982 	/* Notify the change of the OPP availability */
1983 	if (availability_req)
1984 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
1985 					     opp);
1986 	else
1987 		blocking_notifier_call_chain(&opp_table->head,
1988 					     OPP_EVENT_DISABLE, opp);
1989 
1990 	dev_pm_opp_put(opp);
1991 	goto put_table;
1992 
1993 unlock:
1994 	mutex_unlock(&opp_table->lock);
1995 put_table:
1996 	dev_pm_opp_put_opp_table(opp_table);
1997 	return r;
1998 }
1999 
2000 /**
2001  * dev_pm_opp_enable() - Enable a specific OPP
2002  * @dev:	device for which we do this operation
2003  * @freq:	OPP frequency to enable
2004  *
2005  * Enables a provided opp. If the operation is valid, this returns 0, else the
2006  * corresponding error value. It is meant to be used for users an OPP available
2007  * after being temporarily made unavailable with dev_pm_opp_disable.
2008  *
2009  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2010  * copy operation, returns 0 if no modification was done OR modification was
2011  * successful.
2012  */
2013 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2014 {
2015 	return _opp_set_availability(dev, freq, true);
2016 }
2017 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2018 
2019 /**
2020  * dev_pm_opp_disable() - Disable a specific OPP
2021  * @dev:	device for which we do this operation
2022  * @freq:	OPP frequency to disable
2023  *
2024  * Disables a provided opp. If the operation is valid, this returns
2025  * 0, else the corresponding error value. It is meant to be a temporary
2026  * control by users to make this OPP not available until the circumstances are
2027  * right to make it available again (with a call to dev_pm_opp_enable).
2028  *
2029  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2030  * copy operation, returns 0 if no modification was done OR modification was
2031  * successful.
2032  */
2033 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2034 {
2035 	return _opp_set_availability(dev, freq, false);
2036 }
2037 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2038 
2039 /**
2040  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2041  * @dev:	Device for which notifier needs to be registered
2042  * @nb:		Notifier block to be registered
2043  *
2044  * Return: 0 on success or a negative error value.
2045  */
2046 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2047 {
2048 	struct opp_table *opp_table;
2049 	int ret;
2050 
2051 	opp_table = _find_opp_table(dev);
2052 	if (IS_ERR(opp_table))
2053 		return PTR_ERR(opp_table);
2054 
2055 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2056 
2057 	dev_pm_opp_put_opp_table(opp_table);
2058 
2059 	return ret;
2060 }
2061 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2062 
2063 /**
2064  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2065  * @dev:	Device for which notifier needs to be unregistered
2066  * @nb:		Notifier block to be unregistered
2067  *
2068  * Return: 0 on success or a negative error value.
2069  */
2070 int dev_pm_opp_unregister_notifier(struct device *dev,
2071 				   struct notifier_block *nb)
2072 {
2073 	struct opp_table *opp_table;
2074 	int ret;
2075 
2076 	opp_table = _find_opp_table(dev);
2077 	if (IS_ERR(opp_table))
2078 		return PTR_ERR(opp_table);
2079 
2080 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2081 
2082 	dev_pm_opp_put_opp_table(opp_table);
2083 
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2087 
2088 void _dev_pm_opp_find_and_remove_table(struct device *dev)
2089 {
2090 	struct opp_table *opp_table;
2091 
2092 	/* Check for existing table for 'dev' */
2093 	opp_table = _find_opp_table(dev);
2094 	if (IS_ERR(opp_table)) {
2095 		int error = PTR_ERR(opp_table);
2096 
2097 		if (error != -ENODEV)
2098 			WARN(1, "%s: opp_table: %d\n",
2099 			     IS_ERR_OR_NULL(dev) ?
2100 					"Invalid device" : dev_name(dev),
2101 			     error);
2102 		return;
2103 	}
2104 
2105 	_put_opp_list_kref(opp_table);
2106 
2107 	/* Drop reference taken by _find_opp_table() */
2108 	dev_pm_opp_put_opp_table(opp_table);
2109 
2110 	/* Drop reference taken while the OPP table was added */
2111 	dev_pm_opp_put_opp_table(opp_table);
2112 }
2113 
2114 /**
2115  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2116  * @dev:	device pointer used to lookup OPP table.
2117  *
2118  * Free both OPPs created using static entries present in DT and the
2119  * dynamically added entries.
2120  */
2121 void dev_pm_opp_remove_table(struct device *dev)
2122 {
2123 	_dev_pm_opp_find_and_remove_table(dev);
2124 }
2125 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2126