1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp)) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 /** 405 * dev_pm_opp_find_level_exact() - search for an exact level 406 * @dev: device for which we do this operation 407 * @level: level to search for 408 * 409 * Return: Searches for exact match in the opp table and returns pointer to the 410 * matching opp if found, else returns ERR_PTR in case of error and should 411 * be handled using IS_ERR. Error return values can be: 412 * EINVAL: for bad pointer 413 * ERANGE: no match found for search 414 * ENODEV: if device not found in list of registered devices 415 * 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after 417 * use. 418 */ 419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 420 unsigned int level) 421 { 422 struct opp_table *opp_table; 423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 424 425 opp_table = _find_opp_table(dev); 426 if (IS_ERR(opp_table)) { 427 int r = PTR_ERR(opp_table); 428 429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 430 return ERR_PTR(r); 431 } 432 433 mutex_lock(&opp_table->lock); 434 435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 436 if (temp_opp->level == level) { 437 opp = temp_opp; 438 439 /* Increment the reference count of OPP */ 440 dev_pm_opp_get(opp); 441 break; 442 } 443 } 444 445 mutex_unlock(&opp_table->lock); 446 dev_pm_opp_put_opp_table(opp_table); 447 448 return opp; 449 } 450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 451 452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 453 unsigned long *freq) 454 { 455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 456 457 mutex_lock(&opp_table->lock); 458 459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 460 if (temp_opp->available && temp_opp->rate >= *freq) { 461 opp = temp_opp; 462 *freq = opp->rate; 463 464 /* Increment the reference count of OPP */ 465 dev_pm_opp_get(opp); 466 break; 467 } 468 } 469 470 mutex_unlock(&opp_table->lock); 471 472 return opp; 473 } 474 475 /** 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 477 * @dev: device for which we do this operation 478 * @freq: Start frequency 479 * 480 * Search for the matching ceil *available* OPP from a starting freq 481 * for a device. 482 * 483 * Return: matching *opp and refreshes *freq accordingly, else returns 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 485 * values can be: 486 * EINVAL: for bad pointer 487 * ERANGE: no match found for search 488 * ENODEV: if device not found in list of registered devices 489 * 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after 491 * use. 492 */ 493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 494 unsigned long *freq) 495 { 496 struct opp_table *opp_table; 497 struct dev_pm_opp *opp; 498 499 if (!dev || !freq) { 500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 501 return ERR_PTR(-EINVAL); 502 } 503 504 opp_table = _find_opp_table(dev); 505 if (IS_ERR(opp_table)) 506 return ERR_CAST(opp_table); 507 508 opp = _find_freq_ceil(opp_table, freq); 509 510 dev_pm_opp_put_opp_table(opp_table); 511 512 return opp; 513 } 514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 515 516 /** 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 518 * @dev: device for which we do this operation 519 * @freq: Start frequency 520 * 521 * Search for the matching floor *available* OPP from a starting freq 522 * for a device. 523 * 524 * Return: matching *opp and refreshes *freq accordingly, else returns 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 526 * values can be: 527 * EINVAL: for bad pointer 528 * ERANGE: no match found for search 529 * ENODEV: if device not found in list of registered devices 530 * 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after 532 * use. 533 */ 534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 535 unsigned long *freq) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 539 540 if (!dev || !freq) { 541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 542 return ERR_PTR(-EINVAL); 543 } 544 545 opp_table = _find_opp_table(dev); 546 if (IS_ERR(opp_table)) 547 return ERR_CAST(opp_table); 548 549 mutex_lock(&opp_table->lock); 550 551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 552 if (temp_opp->available) { 553 /* go to the next node, before choosing prev */ 554 if (temp_opp->rate > *freq) 555 break; 556 else 557 opp = temp_opp; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) 563 dev_pm_opp_get(opp); 564 mutex_unlock(&opp_table->lock); 565 dev_pm_opp_put_opp_table(opp_table); 566 567 if (!IS_ERR(opp)) 568 *freq = opp->rate; 569 570 return opp; 571 } 572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 573 574 /** 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 576 * target voltage. 577 * @dev: Device for which we do this operation. 578 * @u_volt: Target voltage. 579 * 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 581 * 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be 583 * handled using IS_ERR. 584 * 585 * Error return values can be: 586 * EINVAL: bad parameters 587 * 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after 589 * use. 590 */ 591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 592 unsigned long u_volt) 593 { 594 struct opp_table *opp_table; 595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 596 597 if (!dev || !u_volt) { 598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 599 u_volt); 600 return ERR_PTR(-EINVAL); 601 } 602 603 opp_table = _find_opp_table(dev); 604 if (IS_ERR(opp_table)) 605 return ERR_CAST(opp_table); 606 607 mutex_lock(&opp_table->lock); 608 609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 610 if (temp_opp->available) { 611 if (temp_opp->supplies[0].u_volt > u_volt) 612 break; 613 opp = temp_opp; 614 } 615 } 616 617 /* Increment the reference count of OPP */ 618 if (!IS_ERR(opp)) 619 dev_pm_opp_get(opp); 620 621 mutex_unlock(&opp_table->lock); 622 dev_pm_opp_put_opp_table(opp_table); 623 624 return opp; 625 } 626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 627 628 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 629 struct dev_pm_opp_supply *supply) 630 { 631 int ret; 632 633 /* Regulator not available for device */ 634 if (IS_ERR(reg)) { 635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 636 PTR_ERR(reg)); 637 return 0; 638 } 639 640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 641 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 642 643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 644 supply->u_volt, supply->u_volt_max); 645 if (ret) 646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 647 __func__, supply->u_volt_min, supply->u_volt, 648 supply->u_volt_max, ret); 649 650 return ret; 651 } 652 653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 654 unsigned long freq) 655 { 656 int ret; 657 658 ret = clk_set_rate(clk, freq); 659 if (ret) { 660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 661 ret); 662 } 663 664 return ret; 665 } 666 667 static int _generic_set_opp_regulator(struct opp_table *opp_table, 668 struct device *dev, 669 unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct regulator *reg = opp_table->regulators[0]; 675 int ret; 676 677 /* This function only supports single regulator per device */ 678 if (WARN_ON(opp_table->regulator_count > 1)) { 679 dev_err(dev, "multiple regulators are not supported\n"); 680 return -EINVAL; 681 } 682 683 /* Scaling up? Scale voltage before frequency */ 684 if (freq >= old_freq) { 685 ret = _set_opp_voltage(dev, reg, new_supply); 686 if (ret) 687 goto restore_voltage; 688 } 689 690 /* Change frequency */ 691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 692 if (ret) 693 goto restore_voltage; 694 695 /* Scaling down? Scale voltage after frequency */ 696 if (freq < old_freq) { 697 ret = _set_opp_voltage(dev, reg, new_supply); 698 if (ret) 699 goto restore_freq; 700 } 701 702 /* 703 * Enable the regulator after setting its voltages, otherwise it breaks 704 * some boot-enabled regulators. 705 */ 706 if (unlikely(!opp_table->enabled)) { 707 ret = regulator_enable(reg); 708 if (ret < 0) 709 dev_warn(dev, "Failed to enable regulator: %d", ret); 710 } 711 712 return 0; 713 714 restore_freq: 715 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 716 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 717 __func__, old_freq); 718 restore_voltage: 719 /* This shouldn't harm even if the voltages weren't updated earlier */ 720 if (old_supply) 721 _set_opp_voltage(dev, reg, old_supply); 722 723 return ret; 724 } 725 726 static int _set_opp_bw(const struct opp_table *opp_table, 727 struct dev_pm_opp *opp, struct device *dev, bool remove) 728 { 729 u32 avg, peak; 730 int i, ret; 731 732 if (!opp_table->paths) 733 return 0; 734 735 for (i = 0; i < opp_table->path_count; i++) { 736 if (remove) { 737 avg = 0; 738 peak = 0; 739 } else { 740 avg = opp->bandwidth[i].avg; 741 peak = opp->bandwidth[i].peak; 742 } 743 ret = icc_set_bw(opp_table->paths[i], avg, peak); 744 if (ret) { 745 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 746 remove ? "remove" : "set", i, ret); 747 return ret; 748 } 749 } 750 751 return 0; 752 } 753 754 static int _set_opp_custom(const struct opp_table *opp_table, 755 struct device *dev, unsigned long old_freq, 756 unsigned long freq, 757 struct dev_pm_opp_supply *old_supply, 758 struct dev_pm_opp_supply *new_supply) 759 { 760 struct dev_pm_set_opp_data *data; 761 int size; 762 763 data = opp_table->set_opp_data; 764 data->regulators = opp_table->regulators; 765 data->regulator_count = opp_table->regulator_count; 766 data->clk = opp_table->clk; 767 data->dev = dev; 768 769 data->old_opp.rate = old_freq; 770 size = sizeof(*old_supply) * opp_table->regulator_count; 771 if (!old_supply) 772 memset(data->old_opp.supplies, 0, size); 773 else 774 memcpy(data->old_opp.supplies, old_supply, size); 775 776 data->new_opp.rate = freq; 777 memcpy(data->new_opp.supplies, new_supply, size); 778 779 return opp_table->set_opp(data); 780 } 781 782 static int _set_required_opp(struct device *dev, struct device *pd_dev, 783 struct dev_pm_opp *opp, int i) 784 { 785 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 786 int ret; 787 788 if (!pd_dev) 789 return 0; 790 791 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 792 if (ret) { 793 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 794 dev_name(pd_dev), pstate, ret); 795 } 796 797 return ret; 798 } 799 800 /* This is only called for PM domain for now */ 801 static int _set_required_opps(struct device *dev, 802 struct opp_table *opp_table, 803 struct dev_pm_opp *opp, bool up) 804 { 805 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 806 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 807 int i, ret = 0; 808 809 if (!required_opp_tables) 810 return 0; 811 812 /* Single genpd case */ 813 if (!genpd_virt_devs) 814 return _set_required_opp(dev, dev, opp, 0); 815 816 /* Multiple genpd case */ 817 818 /* 819 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 820 * after it is freed from another thread. 821 */ 822 mutex_lock(&opp_table->genpd_virt_dev_lock); 823 824 /* Scaling up? Set required OPPs in normal order, else reverse */ 825 if (up) { 826 for (i = 0; i < opp_table->required_opp_count; i++) { 827 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 828 if (ret) 829 break; 830 } 831 } else { 832 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 833 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 834 if (ret) 835 break; 836 } 837 } 838 839 mutex_unlock(&opp_table->genpd_virt_dev_lock); 840 841 return ret; 842 } 843 844 /** 845 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp 846 * @dev: device for which we do this operation 847 * @opp: opp based on which the bandwidth levels are to be configured 848 * 849 * This configures the bandwidth to the levels specified by the OPP. However 850 * if the OPP specified is NULL the bandwidth levels are cleared out. 851 * 852 * Return: 0 on success or a negative error value. 853 */ 854 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp) 855 { 856 struct opp_table *opp_table; 857 int ret; 858 859 opp_table = _find_opp_table(dev); 860 if (IS_ERR(opp_table)) { 861 dev_err(dev, "%s: device opp table doesn't exist\n", __func__); 862 return PTR_ERR(opp_table); 863 } 864 865 if (opp) 866 ret = _set_opp_bw(opp_table, opp, dev, false); 867 else 868 ret = _set_opp_bw(opp_table, NULL, dev, true); 869 870 dev_pm_opp_put_opp_table(opp_table); 871 return ret; 872 } 873 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw); 874 875 static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table) 876 { 877 int ret; 878 879 if (!opp_table->enabled) 880 return 0; 881 882 /* 883 * Some drivers need to support cases where some platforms may 884 * have OPP table for the device, while others don't and 885 * opp_set_rate() just needs to behave like clk_set_rate(). 886 */ 887 if (!_get_opp_count(opp_table)) 888 return 0; 889 890 ret = _set_opp_bw(opp_table, NULL, dev, true); 891 if (ret) 892 return ret; 893 894 if (opp_table->regulators) 895 regulator_disable(opp_table->regulators[0]); 896 897 ret = _set_required_opps(dev, opp_table, NULL, false); 898 899 opp_table->enabled = false; 900 return ret; 901 } 902 903 /** 904 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 905 * @dev: device for which we do this operation 906 * @target_freq: frequency to achieve 907 * 908 * This configures the power-supplies to the levels specified by the OPP 909 * corresponding to the target_freq, and programs the clock to a value <= 910 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 911 * provided by the opp, should have already rounded to the target OPP's 912 * frequency. 913 */ 914 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 915 { 916 struct opp_table *opp_table; 917 unsigned long freq, old_freq, temp_freq; 918 struct dev_pm_opp *old_opp, *opp; 919 struct clk *clk; 920 int ret; 921 922 opp_table = _find_opp_table(dev); 923 if (IS_ERR(opp_table)) { 924 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 925 return PTR_ERR(opp_table); 926 } 927 928 if (unlikely(!target_freq)) { 929 ret = _opp_set_rate_zero(dev, opp_table); 930 goto put_opp_table; 931 } 932 933 clk = opp_table->clk; 934 if (IS_ERR(clk)) { 935 dev_err(dev, "%s: No clock available for the device\n", 936 __func__); 937 ret = PTR_ERR(clk); 938 goto put_opp_table; 939 } 940 941 freq = clk_round_rate(clk, target_freq); 942 if ((long)freq <= 0) 943 freq = target_freq; 944 945 old_freq = clk_get_rate(clk); 946 947 /* Return early if nothing to do */ 948 if (opp_table->enabled && old_freq == freq) { 949 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 950 __func__, freq); 951 ret = 0; 952 goto put_opp_table; 953 } 954 955 /* 956 * For IO devices which require an OPP on some platforms/SoCs 957 * while just needing to scale the clock on some others 958 * we look for empty OPP tables with just a clock handle and 959 * scale only the clk. This makes dev_pm_opp_set_rate() 960 * equivalent to a clk_set_rate() 961 */ 962 if (!_get_opp_count(opp_table)) { 963 ret = _generic_set_opp_clk_only(dev, clk, freq); 964 goto put_opp_table; 965 } 966 967 temp_freq = old_freq; 968 old_opp = _find_freq_ceil(opp_table, &temp_freq); 969 if (IS_ERR(old_opp)) { 970 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 971 __func__, old_freq, PTR_ERR(old_opp)); 972 } 973 974 temp_freq = freq; 975 opp = _find_freq_ceil(opp_table, &temp_freq); 976 if (IS_ERR(opp)) { 977 ret = PTR_ERR(opp); 978 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 979 __func__, freq, ret); 980 goto put_old_opp; 981 } 982 983 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 984 old_freq, freq); 985 986 /* Scaling up? Configure required OPPs before frequency */ 987 if (freq >= old_freq) { 988 ret = _set_required_opps(dev, opp_table, opp, true); 989 if (ret) 990 goto put_opp; 991 } 992 993 if (opp_table->set_opp) { 994 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 995 IS_ERR(old_opp) ? NULL : old_opp->supplies, 996 opp->supplies); 997 } else if (opp_table->regulators) { 998 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 999 IS_ERR(old_opp) ? NULL : old_opp->supplies, 1000 opp->supplies); 1001 } else { 1002 /* Only frequency scaling */ 1003 ret = _generic_set_opp_clk_only(dev, clk, freq); 1004 } 1005 1006 /* Scaling down? Configure required OPPs after frequency */ 1007 if (!ret && freq < old_freq) { 1008 ret = _set_required_opps(dev, opp_table, opp, false); 1009 if (ret) 1010 dev_err(dev, "Failed to set required opps: %d\n", ret); 1011 } 1012 1013 if (!ret) { 1014 ret = _set_opp_bw(opp_table, opp, dev, false); 1015 if (!ret) 1016 opp_table->enabled = true; 1017 } 1018 1019 put_opp: 1020 dev_pm_opp_put(opp); 1021 put_old_opp: 1022 if (!IS_ERR(old_opp)) 1023 dev_pm_opp_put(old_opp); 1024 put_opp_table: 1025 dev_pm_opp_put_opp_table(opp_table); 1026 return ret; 1027 } 1028 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1029 1030 /* OPP-dev Helpers */ 1031 static void _remove_opp_dev(struct opp_device *opp_dev, 1032 struct opp_table *opp_table) 1033 { 1034 opp_debug_unregister(opp_dev, opp_table); 1035 list_del(&opp_dev->node); 1036 kfree(opp_dev); 1037 } 1038 1039 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 1040 struct opp_table *opp_table) 1041 { 1042 struct opp_device *opp_dev; 1043 1044 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1045 if (!opp_dev) 1046 return NULL; 1047 1048 /* Initialize opp-dev */ 1049 opp_dev->dev = dev; 1050 1051 list_add(&opp_dev->node, &opp_table->dev_list); 1052 1053 /* Create debugfs entries for the opp_table */ 1054 opp_debug_register(opp_dev, opp_table); 1055 1056 return opp_dev; 1057 } 1058 1059 struct opp_device *_add_opp_dev(const struct device *dev, 1060 struct opp_table *opp_table) 1061 { 1062 struct opp_device *opp_dev; 1063 1064 mutex_lock(&opp_table->lock); 1065 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 1066 mutex_unlock(&opp_table->lock); 1067 1068 return opp_dev; 1069 } 1070 1071 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1072 { 1073 struct opp_table *opp_table; 1074 struct opp_device *opp_dev; 1075 int ret; 1076 1077 /* 1078 * Allocate a new OPP table. In the infrequent case where a new 1079 * device is needed to be added, we pay this penalty. 1080 */ 1081 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1082 if (!opp_table) 1083 return ERR_PTR(-ENOMEM); 1084 1085 mutex_init(&opp_table->lock); 1086 mutex_init(&opp_table->genpd_virt_dev_lock); 1087 INIT_LIST_HEAD(&opp_table->dev_list); 1088 1089 /* Mark regulator count uninitialized */ 1090 opp_table->regulator_count = -1; 1091 1092 opp_dev = _add_opp_dev(dev, opp_table); 1093 if (!opp_dev) { 1094 ret = -ENOMEM; 1095 goto err; 1096 } 1097 1098 _of_init_opp_table(opp_table, dev, index); 1099 1100 /* Find clk for the device */ 1101 opp_table->clk = clk_get(dev, NULL); 1102 if (IS_ERR(opp_table->clk)) { 1103 ret = PTR_ERR(opp_table->clk); 1104 if (ret == -EPROBE_DEFER) 1105 goto err; 1106 1107 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1108 } 1109 1110 /* Find interconnect path(s) for the device */ 1111 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1112 if (ret) { 1113 if (ret == -EPROBE_DEFER) 1114 goto err; 1115 1116 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1117 __func__, ret); 1118 } 1119 1120 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1121 INIT_LIST_HEAD(&opp_table->opp_list); 1122 kref_init(&opp_table->kref); 1123 1124 /* Secure the device table modification */ 1125 list_add(&opp_table->node, &opp_tables); 1126 return opp_table; 1127 1128 err: 1129 kfree(opp_table); 1130 return ERR_PTR(ret); 1131 } 1132 1133 void _get_opp_table_kref(struct opp_table *opp_table) 1134 { 1135 kref_get(&opp_table->kref); 1136 } 1137 1138 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 1139 { 1140 struct opp_table *opp_table; 1141 1142 /* Hold our table modification lock here */ 1143 mutex_lock(&opp_table_lock); 1144 1145 opp_table = _find_opp_table_unlocked(dev); 1146 if (!IS_ERR(opp_table)) 1147 goto unlock; 1148 1149 opp_table = _managed_opp(dev, index); 1150 if (opp_table) { 1151 if (!_add_opp_dev_unlocked(dev, opp_table)) { 1152 dev_pm_opp_put_opp_table(opp_table); 1153 opp_table = ERR_PTR(-ENOMEM); 1154 } 1155 goto unlock; 1156 } 1157 1158 opp_table = _allocate_opp_table(dev, index); 1159 1160 unlock: 1161 mutex_unlock(&opp_table_lock); 1162 1163 return opp_table; 1164 } 1165 1166 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1167 { 1168 return _opp_get_opp_table(dev, 0); 1169 } 1170 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1171 1172 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 1173 int index) 1174 { 1175 return _opp_get_opp_table(dev, index); 1176 } 1177 1178 static void _opp_table_kref_release(struct kref *kref) 1179 { 1180 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1181 struct opp_device *opp_dev, *temp; 1182 int i; 1183 1184 /* Drop the lock as soon as we can */ 1185 list_del(&opp_table->node); 1186 mutex_unlock(&opp_table_lock); 1187 1188 _of_clear_opp_table(opp_table); 1189 1190 /* Release clk */ 1191 if (!IS_ERR(opp_table->clk)) 1192 clk_put(opp_table->clk); 1193 1194 if (opp_table->paths) { 1195 for (i = 0; i < opp_table->path_count; i++) 1196 icc_put(opp_table->paths[i]); 1197 kfree(opp_table->paths); 1198 } 1199 1200 WARN_ON(!list_empty(&opp_table->opp_list)); 1201 1202 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1203 /* 1204 * The OPP table is getting removed, drop the performance state 1205 * constraints. 1206 */ 1207 if (opp_table->genpd_performance_state) 1208 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1209 1210 _remove_opp_dev(opp_dev, opp_table); 1211 } 1212 1213 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1214 mutex_destroy(&opp_table->lock); 1215 kfree(opp_table); 1216 } 1217 1218 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1219 { 1220 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1221 &opp_table_lock); 1222 } 1223 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1224 1225 void _opp_free(struct dev_pm_opp *opp) 1226 { 1227 kfree(opp); 1228 } 1229 1230 static void _opp_kref_release(struct dev_pm_opp *opp, 1231 struct opp_table *opp_table) 1232 { 1233 /* 1234 * Notify the changes in the availability of the operable 1235 * frequency/voltage list. 1236 */ 1237 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1238 _of_opp_free_required_opps(opp_table, opp); 1239 opp_debug_remove_one(opp); 1240 list_del(&opp->node); 1241 kfree(opp); 1242 } 1243 1244 static void _opp_kref_release_unlocked(struct kref *kref) 1245 { 1246 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1247 struct opp_table *opp_table = opp->opp_table; 1248 1249 _opp_kref_release(opp, opp_table); 1250 } 1251 1252 static void _opp_kref_release_locked(struct kref *kref) 1253 { 1254 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1255 struct opp_table *opp_table = opp->opp_table; 1256 1257 _opp_kref_release(opp, opp_table); 1258 mutex_unlock(&opp_table->lock); 1259 } 1260 1261 void dev_pm_opp_get(struct dev_pm_opp *opp) 1262 { 1263 kref_get(&opp->kref); 1264 } 1265 1266 void dev_pm_opp_put(struct dev_pm_opp *opp) 1267 { 1268 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1269 &opp->opp_table->lock); 1270 } 1271 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1272 1273 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1274 { 1275 kref_put(&opp->kref, _opp_kref_release_unlocked); 1276 } 1277 1278 /** 1279 * dev_pm_opp_remove() - Remove an OPP from OPP table 1280 * @dev: device for which we do this operation 1281 * @freq: OPP to remove with matching 'freq' 1282 * 1283 * This function removes an opp from the opp table. 1284 */ 1285 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1286 { 1287 struct dev_pm_opp *opp; 1288 struct opp_table *opp_table; 1289 bool found = false; 1290 1291 opp_table = _find_opp_table(dev); 1292 if (IS_ERR(opp_table)) 1293 return; 1294 1295 mutex_lock(&opp_table->lock); 1296 1297 list_for_each_entry(opp, &opp_table->opp_list, node) { 1298 if (opp->rate == freq) { 1299 found = true; 1300 break; 1301 } 1302 } 1303 1304 mutex_unlock(&opp_table->lock); 1305 1306 if (found) { 1307 dev_pm_opp_put(opp); 1308 1309 /* Drop the reference taken by dev_pm_opp_add() */ 1310 dev_pm_opp_put_opp_table(opp_table); 1311 } else { 1312 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1313 __func__, freq); 1314 } 1315 1316 /* Drop the reference taken by _find_opp_table() */ 1317 dev_pm_opp_put_opp_table(opp_table); 1318 } 1319 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1320 1321 bool _opp_remove_all_static(struct opp_table *opp_table) 1322 { 1323 struct dev_pm_opp *opp, *tmp; 1324 bool ret = true; 1325 1326 mutex_lock(&opp_table->lock); 1327 1328 if (!opp_table->parsed_static_opps) { 1329 ret = false; 1330 goto unlock; 1331 } 1332 1333 if (--opp_table->parsed_static_opps) 1334 goto unlock; 1335 1336 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1337 if (!opp->dynamic) 1338 dev_pm_opp_put_unlocked(opp); 1339 } 1340 1341 unlock: 1342 mutex_unlock(&opp_table->lock); 1343 1344 return ret; 1345 } 1346 1347 /** 1348 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1349 * @dev: device for which we do this operation 1350 * 1351 * This function removes all dynamically created OPPs from the opp table. 1352 */ 1353 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1354 { 1355 struct opp_table *opp_table; 1356 struct dev_pm_opp *opp, *temp; 1357 int count = 0; 1358 1359 opp_table = _find_opp_table(dev); 1360 if (IS_ERR(opp_table)) 1361 return; 1362 1363 mutex_lock(&opp_table->lock); 1364 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1365 if (opp->dynamic) { 1366 dev_pm_opp_put_unlocked(opp); 1367 count++; 1368 } 1369 } 1370 mutex_unlock(&opp_table->lock); 1371 1372 /* Drop the references taken by dev_pm_opp_add() */ 1373 while (count--) 1374 dev_pm_opp_put_opp_table(opp_table); 1375 1376 /* Drop the reference taken by _find_opp_table() */ 1377 dev_pm_opp_put_opp_table(opp_table); 1378 } 1379 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1380 1381 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1382 { 1383 struct dev_pm_opp *opp; 1384 int supply_count, supply_size, icc_size; 1385 1386 /* Allocate space for at least one supply */ 1387 supply_count = table->regulator_count > 0 ? table->regulator_count : 1; 1388 supply_size = sizeof(*opp->supplies) * supply_count; 1389 icc_size = sizeof(*opp->bandwidth) * table->path_count; 1390 1391 /* allocate new OPP node and supplies structures */ 1392 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL); 1393 1394 if (!opp) 1395 return NULL; 1396 1397 /* Put the supplies at the end of the OPP structure as an empty array */ 1398 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1399 if (icc_size) 1400 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count); 1401 INIT_LIST_HEAD(&opp->node); 1402 1403 return opp; 1404 } 1405 1406 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1407 struct opp_table *opp_table) 1408 { 1409 struct regulator *reg; 1410 int i; 1411 1412 if (!opp_table->regulators) 1413 return true; 1414 1415 for (i = 0; i < opp_table->regulator_count; i++) { 1416 reg = opp_table->regulators[i]; 1417 1418 if (!regulator_is_supported_voltage(reg, 1419 opp->supplies[i].u_volt_min, 1420 opp->supplies[i].u_volt_max)) { 1421 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1422 __func__, opp->supplies[i].u_volt_min, 1423 opp->supplies[i].u_volt_max); 1424 return false; 1425 } 1426 } 1427 1428 return true; 1429 } 1430 1431 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1432 { 1433 if (opp1->rate != opp2->rate) 1434 return opp1->rate < opp2->rate ? -1 : 1; 1435 if (opp1->bandwidth && opp2->bandwidth && 1436 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak) 1437 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1; 1438 if (opp1->level != opp2->level) 1439 return opp1->level < opp2->level ? -1 : 1; 1440 return 0; 1441 } 1442 1443 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1444 struct opp_table *opp_table, 1445 struct list_head **head) 1446 { 1447 struct dev_pm_opp *opp; 1448 int opp_cmp; 1449 1450 /* 1451 * Insert new OPP in order of increasing frequency and discard if 1452 * already present. 1453 * 1454 * Need to use &opp_table->opp_list in the condition part of the 'for' 1455 * loop, don't replace it with head otherwise it will become an infinite 1456 * loop. 1457 */ 1458 list_for_each_entry(opp, &opp_table->opp_list, node) { 1459 opp_cmp = _opp_compare_key(new_opp, opp); 1460 if (opp_cmp > 0) { 1461 *head = &opp->node; 1462 continue; 1463 } 1464 1465 if (opp_cmp < 0) 1466 return 0; 1467 1468 /* Duplicate OPPs */ 1469 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1470 __func__, opp->rate, opp->supplies[0].u_volt, 1471 opp->available, new_opp->rate, 1472 new_opp->supplies[0].u_volt, new_opp->available); 1473 1474 /* Should we compare voltages for all regulators here ? */ 1475 return opp->available && 1476 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1477 } 1478 1479 return 0; 1480 } 1481 1482 /* 1483 * Returns: 1484 * 0: On success. And appropriate error message for duplicate OPPs. 1485 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1486 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1487 * sure we don't print error messages unnecessarily if different parts of 1488 * kernel try to initialize the OPP table. 1489 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1490 * should be considered an error by the callers of _opp_add(). 1491 */ 1492 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1493 struct opp_table *opp_table, bool rate_not_available) 1494 { 1495 struct list_head *head; 1496 int ret; 1497 1498 mutex_lock(&opp_table->lock); 1499 head = &opp_table->opp_list; 1500 1501 if (likely(!rate_not_available)) { 1502 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1503 if (ret) { 1504 mutex_unlock(&opp_table->lock); 1505 return ret; 1506 } 1507 } 1508 1509 list_add(&new_opp->node, head); 1510 mutex_unlock(&opp_table->lock); 1511 1512 new_opp->opp_table = opp_table; 1513 kref_init(&new_opp->kref); 1514 1515 opp_debug_create_one(new_opp, opp_table); 1516 1517 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1518 new_opp->available = false; 1519 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1520 __func__, new_opp->rate); 1521 } 1522 1523 return 0; 1524 } 1525 1526 /** 1527 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1528 * @opp_table: OPP table 1529 * @dev: device for which we do this operation 1530 * @freq: Frequency in Hz for this OPP 1531 * @u_volt: Voltage in uVolts for this OPP 1532 * @dynamic: Dynamically added OPPs. 1533 * 1534 * This function adds an opp definition to the opp table and returns status. 1535 * The opp is made available by default and it can be controlled using 1536 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1537 * 1538 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1539 * and freed by dev_pm_opp_of_remove_table. 1540 * 1541 * Return: 1542 * 0 On success OR 1543 * Duplicate OPPs (both freq and volt are same) and opp->available 1544 * -EEXIST Freq are same and volt are different OR 1545 * Duplicate OPPs (both freq and volt are same) and !opp->available 1546 * -ENOMEM Memory allocation failure 1547 */ 1548 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1549 unsigned long freq, long u_volt, bool dynamic) 1550 { 1551 struct dev_pm_opp *new_opp; 1552 unsigned long tol; 1553 int ret; 1554 1555 new_opp = _opp_allocate(opp_table); 1556 if (!new_opp) 1557 return -ENOMEM; 1558 1559 /* populate the opp table */ 1560 new_opp->rate = freq; 1561 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1562 new_opp->supplies[0].u_volt = u_volt; 1563 new_opp->supplies[0].u_volt_min = u_volt - tol; 1564 new_opp->supplies[0].u_volt_max = u_volt + tol; 1565 new_opp->available = true; 1566 new_opp->dynamic = dynamic; 1567 1568 ret = _opp_add(dev, new_opp, opp_table, false); 1569 if (ret) { 1570 /* Don't return error for duplicate OPPs */ 1571 if (ret == -EBUSY) 1572 ret = 0; 1573 goto free_opp; 1574 } 1575 1576 /* 1577 * Notify the changes in the availability of the operable 1578 * frequency/voltage list. 1579 */ 1580 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1581 return 0; 1582 1583 free_opp: 1584 _opp_free(new_opp); 1585 1586 return ret; 1587 } 1588 1589 /** 1590 * dev_pm_opp_set_supported_hw() - Set supported platforms 1591 * @dev: Device for which supported-hw has to be set. 1592 * @versions: Array of hierarchy of versions to match. 1593 * @count: Number of elements in the array. 1594 * 1595 * This is required only for the V2 bindings, and it enables a platform to 1596 * specify the hierarchy of versions it supports. OPP layer will then enable 1597 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1598 * property. 1599 */ 1600 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1601 const u32 *versions, unsigned int count) 1602 { 1603 struct opp_table *opp_table; 1604 1605 opp_table = dev_pm_opp_get_opp_table(dev); 1606 if (IS_ERR(opp_table)) 1607 return opp_table; 1608 1609 /* Make sure there are no concurrent readers while updating opp_table */ 1610 WARN_ON(!list_empty(&opp_table->opp_list)); 1611 1612 /* Another CPU that shares the OPP table has set the property ? */ 1613 if (opp_table->supported_hw) 1614 return opp_table; 1615 1616 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1617 GFP_KERNEL); 1618 if (!opp_table->supported_hw) { 1619 dev_pm_opp_put_opp_table(opp_table); 1620 return ERR_PTR(-ENOMEM); 1621 } 1622 1623 opp_table->supported_hw_count = count; 1624 1625 return opp_table; 1626 } 1627 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1628 1629 /** 1630 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1631 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1632 * 1633 * This is required only for the V2 bindings, and is called for a matching 1634 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1635 * will not be freed. 1636 */ 1637 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1638 { 1639 /* Make sure there are no concurrent readers while updating opp_table */ 1640 WARN_ON(!list_empty(&opp_table->opp_list)); 1641 1642 kfree(opp_table->supported_hw); 1643 opp_table->supported_hw = NULL; 1644 opp_table->supported_hw_count = 0; 1645 1646 dev_pm_opp_put_opp_table(opp_table); 1647 } 1648 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1649 1650 /** 1651 * dev_pm_opp_set_prop_name() - Set prop-extn name 1652 * @dev: Device for which the prop-name has to be set. 1653 * @name: name to postfix to properties. 1654 * 1655 * This is required only for the V2 bindings, and it enables a platform to 1656 * specify the extn to be used for certain property names. The properties to 1657 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1658 * should postfix the property name with -<name> while looking for them. 1659 */ 1660 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1661 { 1662 struct opp_table *opp_table; 1663 1664 opp_table = dev_pm_opp_get_opp_table(dev); 1665 if (IS_ERR(opp_table)) 1666 return opp_table; 1667 1668 /* Make sure there are no concurrent readers while updating opp_table */ 1669 WARN_ON(!list_empty(&opp_table->opp_list)); 1670 1671 /* Another CPU that shares the OPP table has set the property ? */ 1672 if (opp_table->prop_name) 1673 return opp_table; 1674 1675 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1676 if (!opp_table->prop_name) { 1677 dev_pm_opp_put_opp_table(opp_table); 1678 return ERR_PTR(-ENOMEM); 1679 } 1680 1681 return opp_table; 1682 } 1683 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1684 1685 /** 1686 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1687 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1688 * 1689 * This is required only for the V2 bindings, and is called for a matching 1690 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1691 * will not be freed. 1692 */ 1693 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1694 { 1695 /* Make sure there are no concurrent readers while updating opp_table */ 1696 WARN_ON(!list_empty(&opp_table->opp_list)); 1697 1698 kfree(opp_table->prop_name); 1699 opp_table->prop_name = NULL; 1700 1701 dev_pm_opp_put_opp_table(opp_table); 1702 } 1703 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1704 1705 static int _allocate_set_opp_data(struct opp_table *opp_table) 1706 { 1707 struct dev_pm_set_opp_data *data; 1708 int len, count = opp_table->regulator_count; 1709 1710 if (WARN_ON(!opp_table->regulators)) 1711 return -EINVAL; 1712 1713 /* space for set_opp_data */ 1714 len = sizeof(*data); 1715 1716 /* space for old_opp.supplies and new_opp.supplies */ 1717 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1718 1719 data = kzalloc(len, GFP_KERNEL); 1720 if (!data) 1721 return -ENOMEM; 1722 1723 data->old_opp.supplies = (void *)(data + 1); 1724 data->new_opp.supplies = data->old_opp.supplies + count; 1725 1726 opp_table->set_opp_data = data; 1727 1728 return 0; 1729 } 1730 1731 static void _free_set_opp_data(struct opp_table *opp_table) 1732 { 1733 kfree(opp_table->set_opp_data); 1734 opp_table->set_opp_data = NULL; 1735 } 1736 1737 /** 1738 * dev_pm_opp_set_regulators() - Set regulator names for the device 1739 * @dev: Device for which regulator name is being set. 1740 * @names: Array of pointers to the names of the regulator. 1741 * @count: Number of regulators. 1742 * 1743 * In order to support OPP switching, OPP layer needs to know the name of the 1744 * device's regulators, as the core would be required to switch voltages as 1745 * well. 1746 * 1747 * This must be called before any OPPs are initialized for the device. 1748 */ 1749 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1750 const char * const names[], 1751 unsigned int count) 1752 { 1753 struct opp_table *opp_table; 1754 struct regulator *reg; 1755 int ret, i; 1756 1757 opp_table = dev_pm_opp_get_opp_table(dev); 1758 if (IS_ERR(opp_table)) 1759 return opp_table; 1760 1761 /* This should be called before OPPs are initialized */ 1762 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1763 ret = -EBUSY; 1764 goto err; 1765 } 1766 1767 /* Another CPU that shares the OPP table has set the regulators ? */ 1768 if (opp_table->regulators) 1769 return opp_table; 1770 1771 opp_table->regulators = kmalloc_array(count, 1772 sizeof(*opp_table->regulators), 1773 GFP_KERNEL); 1774 if (!opp_table->regulators) { 1775 ret = -ENOMEM; 1776 goto err; 1777 } 1778 1779 for (i = 0; i < count; i++) { 1780 reg = regulator_get_optional(dev, names[i]); 1781 if (IS_ERR(reg)) { 1782 ret = PTR_ERR(reg); 1783 if (ret != -EPROBE_DEFER) 1784 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1785 __func__, names[i], ret); 1786 goto free_regulators; 1787 } 1788 1789 opp_table->regulators[i] = reg; 1790 } 1791 1792 opp_table->regulator_count = count; 1793 1794 /* Allocate block only once to pass to set_opp() routines */ 1795 ret = _allocate_set_opp_data(opp_table); 1796 if (ret) 1797 goto free_regulators; 1798 1799 return opp_table; 1800 1801 free_regulators: 1802 while (i != 0) 1803 regulator_put(opp_table->regulators[--i]); 1804 1805 kfree(opp_table->regulators); 1806 opp_table->regulators = NULL; 1807 opp_table->regulator_count = -1; 1808 err: 1809 dev_pm_opp_put_opp_table(opp_table); 1810 1811 return ERR_PTR(ret); 1812 } 1813 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1814 1815 /** 1816 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1817 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1818 */ 1819 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1820 { 1821 int i; 1822 1823 if (!opp_table->regulators) 1824 goto put_opp_table; 1825 1826 /* Make sure there are no concurrent readers while updating opp_table */ 1827 WARN_ON(!list_empty(&opp_table->opp_list)); 1828 1829 if (opp_table->enabled) { 1830 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1831 regulator_disable(opp_table->regulators[i]); 1832 } 1833 1834 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1835 regulator_put(opp_table->regulators[i]); 1836 1837 _free_set_opp_data(opp_table); 1838 1839 kfree(opp_table->regulators); 1840 opp_table->regulators = NULL; 1841 opp_table->regulator_count = -1; 1842 1843 put_opp_table: 1844 dev_pm_opp_put_opp_table(opp_table); 1845 } 1846 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1847 1848 /** 1849 * dev_pm_opp_set_clkname() - Set clk name for the device 1850 * @dev: Device for which clk name is being set. 1851 * @name: Clk name. 1852 * 1853 * In order to support OPP switching, OPP layer needs to get pointer to the 1854 * clock for the device. Simple cases work fine without using this routine (i.e. 1855 * by passing connection-id as NULL), but for a device with multiple clocks 1856 * available, the OPP core needs to know the exact name of the clk to use. 1857 * 1858 * This must be called before any OPPs are initialized for the device. 1859 */ 1860 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1861 { 1862 struct opp_table *opp_table; 1863 int ret; 1864 1865 opp_table = dev_pm_opp_get_opp_table(dev); 1866 if (IS_ERR(opp_table)) 1867 return opp_table; 1868 1869 /* This should be called before OPPs are initialized */ 1870 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1871 ret = -EBUSY; 1872 goto err; 1873 } 1874 1875 /* Already have default clk set, free it */ 1876 if (!IS_ERR(opp_table->clk)) 1877 clk_put(opp_table->clk); 1878 1879 /* Find clk for the device */ 1880 opp_table->clk = clk_get(dev, name); 1881 if (IS_ERR(opp_table->clk)) { 1882 ret = PTR_ERR(opp_table->clk); 1883 if (ret != -EPROBE_DEFER) { 1884 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1885 ret); 1886 } 1887 goto err; 1888 } 1889 1890 return opp_table; 1891 1892 err: 1893 dev_pm_opp_put_opp_table(opp_table); 1894 1895 return ERR_PTR(ret); 1896 } 1897 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1898 1899 /** 1900 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1901 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1902 */ 1903 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1904 { 1905 /* Make sure there are no concurrent readers while updating opp_table */ 1906 WARN_ON(!list_empty(&opp_table->opp_list)); 1907 1908 clk_put(opp_table->clk); 1909 opp_table->clk = ERR_PTR(-EINVAL); 1910 1911 dev_pm_opp_put_opp_table(opp_table); 1912 } 1913 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1914 1915 /** 1916 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1917 * @dev: Device for which the helper is getting registered. 1918 * @set_opp: Custom set OPP helper. 1919 * 1920 * This is useful to support complex platforms (like platforms with multiple 1921 * regulators per device), instead of the generic OPP set rate helper. 1922 * 1923 * This must be called before any OPPs are initialized for the device. 1924 */ 1925 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1926 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1927 { 1928 struct opp_table *opp_table; 1929 1930 if (!set_opp) 1931 return ERR_PTR(-EINVAL); 1932 1933 opp_table = dev_pm_opp_get_opp_table(dev); 1934 if (IS_ERR(opp_table)) 1935 return opp_table; 1936 1937 /* This should be called before OPPs are initialized */ 1938 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1939 dev_pm_opp_put_opp_table(opp_table); 1940 return ERR_PTR(-EBUSY); 1941 } 1942 1943 /* Another CPU that shares the OPP table has set the helper ? */ 1944 if (!opp_table->set_opp) 1945 opp_table->set_opp = set_opp; 1946 1947 return opp_table; 1948 } 1949 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1950 1951 /** 1952 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1953 * set_opp helper 1954 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1955 * 1956 * Release resources blocked for platform specific set_opp helper. 1957 */ 1958 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1959 { 1960 /* Make sure there are no concurrent readers while updating opp_table */ 1961 WARN_ON(!list_empty(&opp_table->opp_list)); 1962 1963 opp_table->set_opp = NULL; 1964 dev_pm_opp_put_opp_table(opp_table); 1965 } 1966 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1967 1968 static void _opp_detach_genpd(struct opp_table *opp_table) 1969 { 1970 int index; 1971 1972 if (!opp_table->genpd_virt_devs) 1973 return; 1974 1975 for (index = 0; index < opp_table->required_opp_count; index++) { 1976 if (!opp_table->genpd_virt_devs[index]) 1977 continue; 1978 1979 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1980 opp_table->genpd_virt_devs[index] = NULL; 1981 } 1982 1983 kfree(opp_table->genpd_virt_devs); 1984 opp_table->genpd_virt_devs = NULL; 1985 } 1986 1987 /** 1988 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1989 * @dev: Consumer device for which the genpd is getting attached. 1990 * @names: Null terminated array of pointers containing names of genpd to attach. 1991 * @virt_devs: Pointer to return the array of virtual devices. 1992 * 1993 * Multiple generic power domains for a device are supported with the help of 1994 * virtual genpd devices, which are created for each consumer device - genpd 1995 * pair. These are the device structures which are attached to the power domain 1996 * and are required by the OPP core to set the performance state of the genpd. 1997 * The same API also works for the case where single genpd is available and so 1998 * we don't need to support that separately. 1999 * 2000 * This helper will normally be called by the consumer driver of the device 2001 * "dev", as only that has details of the genpd names. 2002 * 2003 * This helper needs to be called once with a list of all genpd to attach. 2004 * Otherwise the original device structure will be used instead by the OPP core. 2005 * 2006 * The order of entries in the names array must match the order in which 2007 * "required-opps" are added in DT. 2008 */ 2009 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 2010 const char **names, struct device ***virt_devs) 2011 { 2012 struct opp_table *opp_table; 2013 struct device *virt_dev; 2014 int index = 0, ret = -EINVAL; 2015 const char **name = names; 2016 2017 opp_table = dev_pm_opp_get_opp_table(dev); 2018 if (IS_ERR(opp_table)) 2019 return opp_table; 2020 2021 if (opp_table->genpd_virt_devs) 2022 return opp_table; 2023 2024 /* 2025 * If the genpd's OPP table isn't already initialized, parsing of the 2026 * required-opps fail for dev. We should retry this after genpd's OPP 2027 * table is added. 2028 */ 2029 if (!opp_table->required_opp_count) { 2030 ret = -EPROBE_DEFER; 2031 goto put_table; 2032 } 2033 2034 mutex_lock(&opp_table->genpd_virt_dev_lock); 2035 2036 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2037 sizeof(*opp_table->genpd_virt_devs), 2038 GFP_KERNEL); 2039 if (!opp_table->genpd_virt_devs) 2040 goto unlock; 2041 2042 while (*name) { 2043 if (index >= opp_table->required_opp_count) { 2044 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2045 *name, opp_table->required_opp_count, index); 2046 goto err; 2047 } 2048 2049 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2050 if (IS_ERR(virt_dev)) { 2051 ret = PTR_ERR(virt_dev); 2052 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2053 goto err; 2054 } 2055 2056 opp_table->genpd_virt_devs[index] = virt_dev; 2057 index++; 2058 name++; 2059 } 2060 2061 if (virt_devs) 2062 *virt_devs = opp_table->genpd_virt_devs; 2063 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2064 2065 return opp_table; 2066 2067 err: 2068 _opp_detach_genpd(opp_table); 2069 unlock: 2070 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2071 2072 put_table: 2073 dev_pm_opp_put_opp_table(opp_table); 2074 2075 return ERR_PTR(ret); 2076 } 2077 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 2078 2079 /** 2080 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 2081 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 2082 * 2083 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2084 * OPP table. 2085 */ 2086 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 2087 { 2088 /* 2089 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2090 * used in parallel. 2091 */ 2092 mutex_lock(&opp_table->genpd_virt_dev_lock); 2093 _opp_detach_genpd(opp_table); 2094 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2095 2096 dev_pm_opp_put_opp_table(opp_table); 2097 } 2098 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 2099 2100 /** 2101 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2102 * @src_table: OPP table which has dst_table as one of its required OPP table. 2103 * @dst_table: Required OPP table of the src_table. 2104 * @pstate: Current performance state of the src_table. 2105 * 2106 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2107 * "required-opps" property of the OPP (present in @src_table) which has 2108 * performance state set to @pstate. 2109 * 2110 * Return: Zero or positive performance state on success, otherwise negative 2111 * value on errors. 2112 */ 2113 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2114 struct opp_table *dst_table, 2115 unsigned int pstate) 2116 { 2117 struct dev_pm_opp *opp; 2118 int dest_pstate = -EINVAL; 2119 int i; 2120 2121 /* 2122 * Normally the src_table will have the "required_opps" property set to 2123 * point to one of the OPPs in the dst_table, but in some cases the 2124 * genpd and its master have one to one mapping of performance states 2125 * and so none of them have the "required-opps" property set. Return the 2126 * pstate of the src_table as it is in such cases. 2127 */ 2128 if (!src_table->required_opp_count) 2129 return pstate; 2130 2131 for (i = 0; i < src_table->required_opp_count; i++) { 2132 if (src_table->required_opp_tables[i]->np == dst_table->np) 2133 break; 2134 } 2135 2136 if (unlikely(i == src_table->required_opp_count)) { 2137 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2138 __func__, src_table, dst_table); 2139 return -EINVAL; 2140 } 2141 2142 mutex_lock(&src_table->lock); 2143 2144 list_for_each_entry(opp, &src_table->opp_list, node) { 2145 if (opp->pstate == pstate) { 2146 dest_pstate = opp->required_opps[i]->pstate; 2147 goto unlock; 2148 } 2149 } 2150 2151 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2152 dst_table); 2153 2154 unlock: 2155 mutex_unlock(&src_table->lock); 2156 2157 return dest_pstate; 2158 } 2159 2160 /** 2161 * dev_pm_opp_add() - Add an OPP table from a table definitions 2162 * @dev: device for which we do this operation 2163 * @freq: Frequency in Hz for this OPP 2164 * @u_volt: Voltage in uVolts for this OPP 2165 * 2166 * This function adds an opp definition to the opp table and returns status. 2167 * The opp is made available by default and it can be controlled using 2168 * dev_pm_opp_enable/disable functions. 2169 * 2170 * Return: 2171 * 0 On success OR 2172 * Duplicate OPPs (both freq and volt are same) and opp->available 2173 * -EEXIST Freq are same and volt are different OR 2174 * Duplicate OPPs (both freq and volt are same) and !opp->available 2175 * -ENOMEM Memory allocation failure 2176 */ 2177 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2178 { 2179 struct opp_table *opp_table; 2180 int ret; 2181 2182 opp_table = dev_pm_opp_get_opp_table(dev); 2183 if (IS_ERR(opp_table)) 2184 return PTR_ERR(opp_table); 2185 2186 /* Fix regulator count for dynamic OPPs */ 2187 opp_table->regulator_count = 1; 2188 2189 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2190 if (ret) 2191 dev_pm_opp_put_opp_table(opp_table); 2192 2193 return ret; 2194 } 2195 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2196 2197 /** 2198 * _opp_set_availability() - helper to set the availability of an opp 2199 * @dev: device for which we do this operation 2200 * @freq: OPP frequency to modify availability 2201 * @availability_req: availability status requested for this opp 2202 * 2203 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2204 * which is isolated here. 2205 * 2206 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2207 * copy operation, returns 0 if no modification was done OR modification was 2208 * successful. 2209 */ 2210 static int _opp_set_availability(struct device *dev, unsigned long freq, 2211 bool availability_req) 2212 { 2213 struct opp_table *opp_table; 2214 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2215 int r = 0; 2216 2217 /* Find the opp_table */ 2218 opp_table = _find_opp_table(dev); 2219 if (IS_ERR(opp_table)) { 2220 r = PTR_ERR(opp_table); 2221 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2222 return r; 2223 } 2224 2225 mutex_lock(&opp_table->lock); 2226 2227 /* Do we have the frequency? */ 2228 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2229 if (tmp_opp->rate == freq) { 2230 opp = tmp_opp; 2231 break; 2232 } 2233 } 2234 2235 if (IS_ERR(opp)) { 2236 r = PTR_ERR(opp); 2237 goto unlock; 2238 } 2239 2240 /* Is update really needed? */ 2241 if (opp->available == availability_req) 2242 goto unlock; 2243 2244 opp->available = availability_req; 2245 2246 dev_pm_opp_get(opp); 2247 mutex_unlock(&opp_table->lock); 2248 2249 /* Notify the change of the OPP availability */ 2250 if (availability_req) 2251 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2252 opp); 2253 else 2254 blocking_notifier_call_chain(&opp_table->head, 2255 OPP_EVENT_DISABLE, opp); 2256 2257 dev_pm_opp_put(opp); 2258 goto put_table; 2259 2260 unlock: 2261 mutex_unlock(&opp_table->lock); 2262 put_table: 2263 dev_pm_opp_put_opp_table(opp_table); 2264 return r; 2265 } 2266 2267 /** 2268 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2269 * @dev: device for which we do this operation 2270 * @freq: OPP frequency to adjust voltage of 2271 * @u_volt: new OPP target voltage 2272 * @u_volt_min: new OPP min voltage 2273 * @u_volt_max: new OPP max voltage 2274 * 2275 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2276 * copy operation, returns 0 if no modifcation was done OR modification was 2277 * successful. 2278 */ 2279 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2280 unsigned long u_volt, unsigned long u_volt_min, 2281 unsigned long u_volt_max) 2282 2283 { 2284 struct opp_table *opp_table; 2285 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2286 int r = 0; 2287 2288 /* Find the opp_table */ 2289 opp_table = _find_opp_table(dev); 2290 if (IS_ERR(opp_table)) { 2291 r = PTR_ERR(opp_table); 2292 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2293 return r; 2294 } 2295 2296 mutex_lock(&opp_table->lock); 2297 2298 /* Do we have the frequency? */ 2299 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2300 if (tmp_opp->rate == freq) { 2301 opp = tmp_opp; 2302 break; 2303 } 2304 } 2305 2306 if (IS_ERR(opp)) { 2307 r = PTR_ERR(opp); 2308 goto adjust_unlock; 2309 } 2310 2311 /* Is update really needed? */ 2312 if (opp->supplies->u_volt == u_volt) 2313 goto adjust_unlock; 2314 2315 opp->supplies->u_volt = u_volt; 2316 opp->supplies->u_volt_min = u_volt_min; 2317 opp->supplies->u_volt_max = u_volt_max; 2318 2319 dev_pm_opp_get(opp); 2320 mutex_unlock(&opp_table->lock); 2321 2322 /* Notify the voltage change of the OPP */ 2323 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2324 opp); 2325 2326 dev_pm_opp_put(opp); 2327 goto adjust_put_table; 2328 2329 adjust_unlock: 2330 mutex_unlock(&opp_table->lock); 2331 adjust_put_table: 2332 dev_pm_opp_put_opp_table(opp_table); 2333 return r; 2334 } 2335 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2336 2337 /** 2338 * dev_pm_opp_enable() - Enable a specific OPP 2339 * @dev: device for which we do this operation 2340 * @freq: OPP frequency to enable 2341 * 2342 * Enables a provided opp. If the operation is valid, this returns 0, else the 2343 * corresponding error value. It is meant to be used for users an OPP available 2344 * after being temporarily made unavailable with dev_pm_opp_disable. 2345 * 2346 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2347 * copy operation, returns 0 if no modification was done OR modification was 2348 * successful. 2349 */ 2350 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2351 { 2352 return _opp_set_availability(dev, freq, true); 2353 } 2354 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2355 2356 /** 2357 * dev_pm_opp_disable() - Disable a specific OPP 2358 * @dev: device for which we do this operation 2359 * @freq: OPP frequency to disable 2360 * 2361 * Disables a provided opp. If the operation is valid, this returns 2362 * 0, else the corresponding error value. It is meant to be a temporary 2363 * control by users to make this OPP not available until the circumstances are 2364 * right to make it available again (with a call to dev_pm_opp_enable). 2365 * 2366 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2367 * copy operation, returns 0 if no modification was done OR modification was 2368 * successful. 2369 */ 2370 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2371 { 2372 return _opp_set_availability(dev, freq, false); 2373 } 2374 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2375 2376 /** 2377 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2378 * @dev: Device for which notifier needs to be registered 2379 * @nb: Notifier block to be registered 2380 * 2381 * Return: 0 on success or a negative error value. 2382 */ 2383 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2384 { 2385 struct opp_table *opp_table; 2386 int ret; 2387 2388 opp_table = _find_opp_table(dev); 2389 if (IS_ERR(opp_table)) 2390 return PTR_ERR(opp_table); 2391 2392 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2393 2394 dev_pm_opp_put_opp_table(opp_table); 2395 2396 return ret; 2397 } 2398 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2399 2400 /** 2401 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2402 * @dev: Device for which notifier needs to be unregistered 2403 * @nb: Notifier block to be unregistered 2404 * 2405 * Return: 0 on success or a negative error value. 2406 */ 2407 int dev_pm_opp_unregister_notifier(struct device *dev, 2408 struct notifier_block *nb) 2409 { 2410 struct opp_table *opp_table; 2411 int ret; 2412 2413 opp_table = _find_opp_table(dev); 2414 if (IS_ERR(opp_table)) 2415 return PTR_ERR(opp_table); 2416 2417 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2418 2419 dev_pm_opp_put_opp_table(opp_table); 2420 2421 return ret; 2422 } 2423 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2424 2425 /** 2426 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2427 * @dev: device pointer used to lookup OPP table. 2428 * 2429 * Free both OPPs created using static entries present in DT and the 2430 * dynamically added entries. 2431 */ 2432 void dev_pm_opp_remove_table(struct device *dev) 2433 { 2434 struct opp_table *opp_table; 2435 2436 /* Check for existing table for 'dev' */ 2437 opp_table = _find_opp_table(dev); 2438 if (IS_ERR(opp_table)) { 2439 int error = PTR_ERR(opp_table); 2440 2441 if (error != -ENODEV) 2442 WARN(1, "%s: opp_table: %d\n", 2443 IS_ERR_OR_NULL(dev) ? 2444 "Invalid device" : dev_name(dev), 2445 error); 2446 return; 2447 } 2448 2449 /* 2450 * Drop the extra reference only if the OPP table was successfully added 2451 * with dev_pm_opp_of_add_table() earlier. 2452 **/ 2453 if (_opp_remove_all_static(opp_table)) 2454 dev_pm_opp_put_opp_table(opp_table); 2455 2456 /* Drop reference taken by _find_opp_table() */ 2457 dev_pm_opp_put_opp_table(opp_table); 2458 } 2459 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2460