1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp) || !opp->available) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 /** 405 * dev_pm_opp_find_level_exact() - search for an exact level 406 * @dev: device for which we do this operation 407 * @level: level to search for 408 * 409 * Return: Searches for exact match in the opp table and returns pointer to the 410 * matching opp if found, else returns ERR_PTR in case of error and should 411 * be handled using IS_ERR. Error return values can be: 412 * EINVAL: for bad pointer 413 * ERANGE: no match found for search 414 * ENODEV: if device not found in list of registered devices 415 * 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after 417 * use. 418 */ 419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 420 unsigned int level) 421 { 422 struct opp_table *opp_table; 423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 424 425 opp_table = _find_opp_table(dev); 426 if (IS_ERR(opp_table)) { 427 int r = PTR_ERR(opp_table); 428 429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 430 return ERR_PTR(r); 431 } 432 433 mutex_lock(&opp_table->lock); 434 435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 436 if (temp_opp->level == level) { 437 opp = temp_opp; 438 439 /* Increment the reference count of OPP */ 440 dev_pm_opp_get(opp); 441 break; 442 } 443 } 444 445 mutex_unlock(&opp_table->lock); 446 dev_pm_opp_put_opp_table(opp_table); 447 448 return opp; 449 } 450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 451 452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 453 unsigned long *freq) 454 { 455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 456 457 mutex_lock(&opp_table->lock); 458 459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 460 if (temp_opp->available && temp_opp->rate >= *freq) { 461 opp = temp_opp; 462 *freq = opp->rate; 463 464 /* Increment the reference count of OPP */ 465 dev_pm_opp_get(opp); 466 break; 467 } 468 } 469 470 mutex_unlock(&opp_table->lock); 471 472 return opp; 473 } 474 475 /** 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 477 * @dev: device for which we do this operation 478 * @freq: Start frequency 479 * 480 * Search for the matching ceil *available* OPP from a starting freq 481 * for a device. 482 * 483 * Return: matching *opp and refreshes *freq accordingly, else returns 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 485 * values can be: 486 * EINVAL: for bad pointer 487 * ERANGE: no match found for search 488 * ENODEV: if device not found in list of registered devices 489 * 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after 491 * use. 492 */ 493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 494 unsigned long *freq) 495 { 496 struct opp_table *opp_table; 497 struct dev_pm_opp *opp; 498 499 if (!dev || !freq) { 500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 501 return ERR_PTR(-EINVAL); 502 } 503 504 opp_table = _find_opp_table(dev); 505 if (IS_ERR(opp_table)) 506 return ERR_CAST(opp_table); 507 508 opp = _find_freq_ceil(opp_table, freq); 509 510 dev_pm_opp_put_opp_table(opp_table); 511 512 return opp; 513 } 514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 515 516 /** 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 518 * @dev: device for which we do this operation 519 * @freq: Start frequency 520 * 521 * Search for the matching floor *available* OPP from a starting freq 522 * for a device. 523 * 524 * Return: matching *opp and refreshes *freq accordingly, else returns 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 526 * values can be: 527 * EINVAL: for bad pointer 528 * ERANGE: no match found for search 529 * ENODEV: if device not found in list of registered devices 530 * 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after 532 * use. 533 */ 534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 535 unsigned long *freq) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 539 540 if (!dev || !freq) { 541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 542 return ERR_PTR(-EINVAL); 543 } 544 545 opp_table = _find_opp_table(dev); 546 if (IS_ERR(opp_table)) 547 return ERR_CAST(opp_table); 548 549 mutex_lock(&opp_table->lock); 550 551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 552 if (temp_opp->available) { 553 /* go to the next node, before choosing prev */ 554 if (temp_opp->rate > *freq) 555 break; 556 else 557 opp = temp_opp; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) 563 dev_pm_opp_get(opp); 564 mutex_unlock(&opp_table->lock); 565 dev_pm_opp_put_opp_table(opp_table); 566 567 if (!IS_ERR(opp)) 568 *freq = opp->rate; 569 570 return opp; 571 } 572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 573 574 /** 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 576 * target voltage. 577 * @dev: Device for which we do this operation. 578 * @u_volt: Target voltage. 579 * 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 581 * 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be 583 * handled using IS_ERR. 584 * 585 * Error return values can be: 586 * EINVAL: bad parameters 587 * 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after 589 * use. 590 */ 591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 592 unsigned long u_volt) 593 { 594 struct opp_table *opp_table; 595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 596 597 if (!dev || !u_volt) { 598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 599 u_volt); 600 return ERR_PTR(-EINVAL); 601 } 602 603 opp_table = _find_opp_table(dev); 604 if (IS_ERR(opp_table)) 605 return ERR_CAST(opp_table); 606 607 mutex_lock(&opp_table->lock); 608 609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 610 if (temp_opp->available) { 611 if (temp_opp->supplies[0].u_volt > u_volt) 612 break; 613 opp = temp_opp; 614 } 615 } 616 617 /* Increment the reference count of OPP */ 618 if (!IS_ERR(opp)) 619 dev_pm_opp_get(opp); 620 621 mutex_unlock(&opp_table->lock); 622 dev_pm_opp_put_opp_table(opp_table); 623 624 return opp; 625 } 626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 627 628 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 629 struct dev_pm_opp_supply *supply) 630 { 631 int ret; 632 633 /* Regulator not available for device */ 634 if (IS_ERR(reg)) { 635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 636 PTR_ERR(reg)); 637 return 0; 638 } 639 640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 641 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 642 643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 644 supply->u_volt, supply->u_volt_max); 645 if (ret) 646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 647 __func__, supply->u_volt_min, supply->u_volt, 648 supply->u_volt_max, ret); 649 650 return ret; 651 } 652 653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 654 unsigned long freq) 655 { 656 int ret; 657 658 ret = clk_set_rate(clk, freq); 659 if (ret) { 660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 661 ret); 662 } 663 664 return ret; 665 } 666 667 static int _generic_set_opp_regulator(const struct opp_table *opp_table, 668 struct device *dev, 669 unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct regulator *reg = opp_table->regulators[0]; 675 int ret; 676 677 /* This function only supports single regulator per device */ 678 if (WARN_ON(opp_table->regulator_count > 1)) { 679 dev_err(dev, "multiple regulators are not supported\n"); 680 return -EINVAL; 681 } 682 683 /* Scaling up? Scale voltage before frequency */ 684 if (freq >= old_freq) { 685 ret = _set_opp_voltage(dev, reg, new_supply); 686 if (ret) 687 goto restore_voltage; 688 } 689 690 /* Change frequency */ 691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 692 if (ret) 693 goto restore_voltage; 694 695 /* Scaling down? Scale voltage after frequency */ 696 if (freq < old_freq) { 697 ret = _set_opp_voltage(dev, reg, new_supply); 698 if (ret) 699 goto restore_freq; 700 } 701 702 return 0; 703 704 restore_freq: 705 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 706 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 707 __func__, old_freq); 708 restore_voltage: 709 /* This shouldn't harm even if the voltages weren't updated earlier */ 710 if (old_supply) 711 _set_opp_voltage(dev, reg, old_supply); 712 713 return ret; 714 } 715 716 static int _set_opp_custom(const struct opp_table *opp_table, 717 struct device *dev, unsigned long old_freq, 718 unsigned long freq, 719 struct dev_pm_opp_supply *old_supply, 720 struct dev_pm_opp_supply *new_supply) 721 { 722 struct dev_pm_set_opp_data *data; 723 int size; 724 725 data = opp_table->set_opp_data; 726 data->regulators = opp_table->regulators; 727 data->regulator_count = opp_table->regulator_count; 728 data->clk = opp_table->clk; 729 data->dev = dev; 730 731 data->old_opp.rate = old_freq; 732 size = sizeof(*old_supply) * opp_table->regulator_count; 733 if (!old_supply) 734 memset(data->old_opp.supplies, 0, size); 735 else 736 memcpy(data->old_opp.supplies, old_supply, size); 737 738 data->new_opp.rate = freq; 739 memcpy(data->new_opp.supplies, new_supply, size); 740 741 return opp_table->set_opp(data); 742 } 743 744 /* This is only called for PM domain for now */ 745 static int _set_required_opps(struct device *dev, 746 struct opp_table *opp_table, 747 struct dev_pm_opp *opp) 748 { 749 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 750 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 751 unsigned int pstate; 752 int i, ret = 0; 753 754 if (!required_opp_tables) 755 return 0; 756 757 /* Single genpd case */ 758 if (!genpd_virt_devs) { 759 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0; 760 ret = dev_pm_genpd_set_performance_state(dev, pstate); 761 if (ret) { 762 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 763 dev_name(dev), pstate, ret); 764 } 765 return ret; 766 } 767 768 /* Multiple genpd case */ 769 770 /* 771 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 772 * after it is freed from another thread. 773 */ 774 mutex_lock(&opp_table->genpd_virt_dev_lock); 775 776 for (i = 0; i < opp_table->required_opp_count; i++) { 777 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 778 779 if (!genpd_virt_devs[i]) 780 continue; 781 782 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 783 if (ret) { 784 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 785 dev_name(genpd_virt_devs[i]), pstate, ret); 786 break; 787 } 788 } 789 mutex_unlock(&opp_table->genpd_virt_dev_lock); 790 791 return ret; 792 } 793 794 /** 795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 796 * @dev: device for which we do this operation 797 * @target_freq: frequency to achieve 798 * 799 * This configures the power-supplies to the levels specified by the OPP 800 * corresponding to the target_freq, and programs the clock to a value <= 801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 802 * provided by the opp, should have already rounded to the target OPP's 803 * frequency. 804 */ 805 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 806 { 807 struct opp_table *opp_table; 808 unsigned long freq, old_freq, temp_freq; 809 struct dev_pm_opp *old_opp, *opp; 810 struct clk *clk; 811 int ret; 812 813 opp_table = _find_opp_table(dev); 814 if (IS_ERR(opp_table)) { 815 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 816 return PTR_ERR(opp_table); 817 } 818 819 if (unlikely(!target_freq)) { 820 if (opp_table->required_opp_tables) { 821 ret = _set_required_opps(dev, opp_table, NULL); 822 } else { 823 dev_err(dev, "target frequency can't be 0\n"); 824 ret = -EINVAL; 825 } 826 827 goto put_opp_table; 828 } 829 830 clk = opp_table->clk; 831 if (IS_ERR(clk)) { 832 dev_err(dev, "%s: No clock available for the device\n", 833 __func__); 834 ret = PTR_ERR(clk); 835 goto put_opp_table; 836 } 837 838 freq = clk_round_rate(clk, target_freq); 839 if ((long)freq <= 0) 840 freq = target_freq; 841 842 old_freq = clk_get_rate(clk); 843 844 /* Return early if nothing to do */ 845 if (old_freq == freq) { 846 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 847 __func__, freq); 848 ret = 0; 849 goto put_opp_table; 850 } 851 852 temp_freq = old_freq; 853 old_opp = _find_freq_ceil(opp_table, &temp_freq); 854 if (IS_ERR(old_opp)) { 855 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 856 __func__, old_freq, PTR_ERR(old_opp)); 857 } 858 859 temp_freq = freq; 860 opp = _find_freq_ceil(opp_table, &temp_freq); 861 if (IS_ERR(opp)) { 862 ret = PTR_ERR(opp); 863 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 864 __func__, freq, ret); 865 goto put_old_opp; 866 } 867 868 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 869 old_freq, freq); 870 871 /* Scaling up? Configure required OPPs before frequency */ 872 if (freq >= old_freq) { 873 ret = _set_required_opps(dev, opp_table, opp); 874 if (ret) 875 goto put_opp; 876 } 877 878 if (opp_table->set_opp) { 879 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 880 IS_ERR(old_opp) ? NULL : old_opp->supplies, 881 opp->supplies); 882 } else if (opp_table->regulators) { 883 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 884 IS_ERR(old_opp) ? NULL : old_opp->supplies, 885 opp->supplies); 886 } else { 887 /* Only frequency scaling */ 888 ret = _generic_set_opp_clk_only(dev, clk, freq); 889 } 890 891 /* Scaling down? Configure required OPPs after frequency */ 892 if (!ret && freq < old_freq) { 893 ret = _set_required_opps(dev, opp_table, opp); 894 if (ret) 895 dev_err(dev, "Failed to set required opps: %d\n", ret); 896 } 897 898 put_opp: 899 dev_pm_opp_put(opp); 900 put_old_opp: 901 if (!IS_ERR(old_opp)) 902 dev_pm_opp_put(old_opp); 903 put_opp_table: 904 dev_pm_opp_put_opp_table(opp_table); 905 return ret; 906 } 907 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 908 909 /* OPP-dev Helpers */ 910 static void _remove_opp_dev(struct opp_device *opp_dev, 911 struct opp_table *opp_table) 912 { 913 opp_debug_unregister(opp_dev, opp_table); 914 list_del(&opp_dev->node); 915 kfree(opp_dev); 916 } 917 918 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 919 struct opp_table *opp_table) 920 { 921 struct opp_device *opp_dev; 922 923 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 924 if (!opp_dev) 925 return NULL; 926 927 /* Initialize opp-dev */ 928 opp_dev->dev = dev; 929 930 list_add(&opp_dev->node, &opp_table->dev_list); 931 932 /* Create debugfs entries for the opp_table */ 933 opp_debug_register(opp_dev, opp_table); 934 935 return opp_dev; 936 } 937 938 struct opp_device *_add_opp_dev(const struct device *dev, 939 struct opp_table *opp_table) 940 { 941 struct opp_device *opp_dev; 942 943 mutex_lock(&opp_table->lock); 944 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 945 mutex_unlock(&opp_table->lock); 946 947 return opp_dev; 948 } 949 950 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 951 { 952 struct opp_table *opp_table; 953 struct opp_device *opp_dev; 954 int ret; 955 956 /* 957 * Allocate a new OPP table. In the infrequent case where a new 958 * device is needed to be added, we pay this penalty. 959 */ 960 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 961 if (!opp_table) 962 return NULL; 963 964 mutex_init(&opp_table->lock); 965 mutex_init(&opp_table->genpd_virt_dev_lock); 966 INIT_LIST_HEAD(&opp_table->dev_list); 967 968 /* Mark regulator count uninitialized */ 969 opp_table->regulator_count = -1; 970 971 opp_dev = _add_opp_dev(dev, opp_table); 972 if (!opp_dev) { 973 kfree(opp_table); 974 return NULL; 975 } 976 977 _of_init_opp_table(opp_table, dev, index); 978 979 /* Find clk for the device */ 980 opp_table->clk = clk_get(dev, NULL); 981 if (IS_ERR(opp_table->clk)) { 982 ret = PTR_ERR(opp_table->clk); 983 if (ret != -EPROBE_DEFER) 984 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 985 ret); 986 } 987 988 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 989 INIT_LIST_HEAD(&opp_table->opp_list); 990 kref_init(&opp_table->kref); 991 kref_init(&opp_table->list_kref); 992 993 /* Secure the device table modification */ 994 list_add(&opp_table->node, &opp_tables); 995 return opp_table; 996 } 997 998 void _get_opp_table_kref(struct opp_table *opp_table) 999 { 1000 kref_get(&opp_table->kref); 1001 } 1002 1003 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 1004 { 1005 struct opp_table *opp_table; 1006 1007 /* Hold our table modification lock here */ 1008 mutex_lock(&opp_table_lock); 1009 1010 opp_table = _find_opp_table_unlocked(dev); 1011 if (!IS_ERR(opp_table)) 1012 goto unlock; 1013 1014 opp_table = _managed_opp(dev, index); 1015 if (opp_table) { 1016 if (!_add_opp_dev_unlocked(dev, opp_table)) { 1017 dev_pm_opp_put_opp_table(opp_table); 1018 opp_table = NULL; 1019 } 1020 goto unlock; 1021 } 1022 1023 opp_table = _allocate_opp_table(dev, index); 1024 1025 unlock: 1026 mutex_unlock(&opp_table_lock); 1027 1028 return opp_table; 1029 } 1030 1031 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1032 { 1033 return _opp_get_opp_table(dev, 0); 1034 } 1035 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1036 1037 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 1038 int index) 1039 { 1040 return _opp_get_opp_table(dev, index); 1041 } 1042 1043 static void _opp_table_kref_release(struct kref *kref) 1044 { 1045 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1046 struct opp_device *opp_dev, *temp; 1047 1048 _of_clear_opp_table(opp_table); 1049 1050 /* Release clk */ 1051 if (!IS_ERR(opp_table->clk)) 1052 clk_put(opp_table->clk); 1053 1054 WARN_ON(!list_empty(&opp_table->opp_list)); 1055 1056 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1057 /* 1058 * The OPP table is getting removed, drop the performance state 1059 * constraints. 1060 */ 1061 if (opp_table->genpd_performance_state) 1062 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1063 1064 _remove_opp_dev(opp_dev, opp_table); 1065 } 1066 1067 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1068 mutex_destroy(&opp_table->lock); 1069 list_del(&opp_table->node); 1070 kfree(opp_table); 1071 1072 mutex_unlock(&opp_table_lock); 1073 } 1074 1075 void _opp_remove_all_static(struct opp_table *opp_table) 1076 { 1077 struct dev_pm_opp *opp, *tmp; 1078 1079 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1080 if (!opp->dynamic) 1081 dev_pm_opp_put(opp); 1082 } 1083 1084 opp_table->parsed_static_opps = false; 1085 } 1086 1087 static void _opp_table_list_kref_release(struct kref *kref) 1088 { 1089 struct opp_table *opp_table = container_of(kref, struct opp_table, 1090 list_kref); 1091 1092 _opp_remove_all_static(opp_table); 1093 mutex_unlock(&opp_table_lock); 1094 } 1095 1096 void _put_opp_list_kref(struct opp_table *opp_table) 1097 { 1098 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release, 1099 &opp_table_lock); 1100 } 1101 1102 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1103 { 1104 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1105 &opp_table_lock); 1106 } 1107 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1108 1109 void _opp_free(struct dev_pm_opp *opp) 1110 { 1111 kfree(opp); 1112 } 1113 1114 static void _opp_kref_release(struct dev_pm_opp *opp, 1115 struct opp_table *opp_table) 1116 { 1117 /* 1118 * Notify the changes in the availability of the operable 1119 * frequency/voltage list. 1120 */ 1121 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1122 _of_opp_free_required_opps(opp_table, opp); 1123 opp_debug_remove_one(opp); 1124 list_del(&opp->node); 1125 kfree(opp); 1126 } 1127 1128 static void _opp_kref_release_unlocked(struct kref *kref) 1129 { 1130 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1131 struct opp_table *opp_table = opp->opp_table; 1132 1133 _opp_kref_release(opp, opp_table); 1134 } 1135 1136 static void _opp_kref_release_locked(struct kref *kref) 1137 { 1138 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1139 struct opp_table *opp_table = opp->opp_table; 1140 1141 _opp_kref_release(opp, opp_table); 1142 mutex_unlock(&opp_table->lock); 1143 } 1144 1145 void dev_pm_opp_get(struct dev_pm_opp *opp) 1146 { 1147 kref_get(&opp->kref); 1148 } 1149 1150 void dev_pm_opp_put(struct dev_pm_opp *opp) 1151 { 1152 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1153 &opp->opp_table->lock); 1154 } 1155 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1156 1157 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1158 { 1159 kref_put(&opp->kref, _opp_kref_release_unlocked); 1160 } 1161 1162 /** 1163 * dev_pm_opp_remove() - Remove an OPP from OPP table 1164 * @dev: device for which we do this operation 1165 * @freq: OPP to remove with matching 'freq' 1166 * 1167 * This function removes an opp from the opp table. 1168 */ 1169 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1170 { 1171 struct dev_pm_opp *opp; 1172 struct opp_table *opp_table; 1173 bool found = false; 1174 1175 opp_table = _find_opp_table(dev); 1176 if (IS_ERR(opp_table)) 1177 return; 1178 1179 mutex_lock(&opp_table->lock); 1180 1181 list_for_each_entry(opp, &opp_table->opp_list, node) { 1182 if (opp->rate == freq) { 1183 found = true; 1184 break; 1185 } 1186 } 1187 1188 mutex_unlock(&opp_table->lock); 1189 1190 if (found) { 1191 dev_pm_opp_put(opp); 1192 1193 /* Drop the reference taken by dev_pm_opp_add() */ 1194 dev_pm_opp_put_opp_table(opp_table); 1195 } else { 1196 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1197 __func__, freq); 1198 } 1199 1200 /* Drop the reference taken by _find_opp_table() */ 1201 dev_pm_opp_put_opp_table(opp_table); 1202 } 1203 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1204 1205 /** 1206 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1207 * @dev: device for which we do this operation 1208 * 1209 * This function removes all dynamically created OPPs from the opp table. 1210 */ 1211 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1212 { 1213 struct opp_table *opp_table; 1214 struct dev_pm_opp *opp, *temp; 1215 int count = 0; 1216 1217 opp_table = _find_opp_table(dev); 1218 if (IS_ERR(opp_table)) 1219 return; 1220 1221 mutex_lock(&opp_table->lock); 1222 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1223 if (opp->dynamic) { 1224 dev_pm_opp_put_unlocked(opp); 1225 count++; 1226 } 1227 } 1228 mutex_unlock(&opp_table->lock); 1229 1230 /* Drop the references taken by dev_pm_opp_add() */ 1231 while (count--) 1232 dev_pm_opp_put_opp_table(opp_table); 1233 1234 /* Drop the reference taken by _find_opp_table() */ 1235 dev_pm_opp_put_opp_table(opp_table); 1236 } 1237 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1238 1239 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1240 { 1241 struct dev_pm_opp *opp; 1242 int count, supply_size; 1243 1244 /* Allocate space for at least one supply */ 1245 count = table->regulator_count > 0 ? table->regulator_count : 1; 1246 supply_size = sizeof(*opp->supplies) * count; 1247 1248 /* allocate new OPP node and supplies structures */ 1249 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); 1250 if (!opp) 1251 return NULL; 1252 1253 /* Put the supplies at the end of the OPP structure as an empty array */ 1254 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1255 INIT_LIST_HEAD(&opp->node); 1256 1257 return opp; 1258 } 1259 1260 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1261 struct opp_table *opp_table) 1262 { 1263 struct regulator *reg; 1264 int i; 1265 1266 if (!opp_table->regulators) 1267 return true; 1268 1269 for (i = 0; i < opp_table->regulator_count; i++) { 1270 reg = opp_table->regulators[i]; 1271 1272 if (!regulator_is_supported_voltage(reg, 1273 opp->supplies[i].u_volt_min, 1274 opp->supplies[i].u_volt_max)) { 1275 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1276 __func__, opp->supplies[i].u_volt_min, 1277 opp->supplies[i].u_volt_max); 1278 return false; 1279 } 1280 } 1281 1282 return true; 1283 } 1284 1285 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1286 struct opp_table *opp_table, 1287 struct list_head **head) 1288 { 1289 struct dev_pm_opp *opp; 1290 1291 /* 1292 * Insert new OPP in order of increasing frequency and discard if 1293 * already present. 1294 * 1295 * Need to use &opp_table->opp_list in the condition part of the 'for' 1296 * loop, don't replace it with head otherwise it will become an infinite 1297 * loop. 1298 */ 1299 list_for_each_entry(opp, &opp_table->opp_list, node) { 1300 if (new_opp->rate > opp->rate) { 1301 *head = &opp->node; 1302 continue; 1303 } 1304 1305 if (new_opp->rate < opp->rate) 1306 return 0; 1307 1308 /* Duplicate OPPs */ 1309 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1310 __func__, opp->rate, opp->supplies[0].u_volt, 1311 opp->available, new_opp->rate, 1312 new_opp->supplies[0].u_volt, new_opp->available); 1313 1314 /* Should we compare voltages for all regulators here ? */ 1315 return opp->available && 1316 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1317 } 1318 1319 return 0; 1320 } 1321 1322 /* 1323 * Returns: 1324 * 0: On success. And appropriate error message for duplicate OPPs. 1325 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1326 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1327 * sure we don't print error messages unnecessarily if different parts of 1328 * kernel try to initialize the OPP table. 1329 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1330 * should be considered an error by the callers of _opp_add(). 1331 */ 1332 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1333 struct opp_table *opp_table, bool rate_not_available) 1334 { 1335 struct list_head *head; 1336 int ret; 1337 1338 mutex_lock(&opp_table->lock); 1339 head = &opp_table->opp_list; 1340 1341 if (likely(!rate_not_available)) { 1342 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1343 if (ret) { 1344 mutex_unlock(&opp_table->lock); 1345 return ret; 1346 } 1347 } 1348 1349 list_add(&new_opp->node, head); 1350 mutex_unlock(&opp_table->lock); 1351 1352 new_opp->opp_table = opp_table; 1353 kref_init(&new_opp->kref); 1354 1355 opp_debug_create_one(new_opp, opp_table); 1356 1357 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1358 new_opp->available = false; 1359 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1360 __func__, new_opp->rate); 1361 } 1362 1363 return 0; 1364 } 1365 1366 /** 1367 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1368 * @opp_table: OPP table 1369 * @dev: device for which we do this operation 1370 * @freq: Frequency in Hz for this OPP 1371 * @u_volt: Voltage in uVolts for this OPP 1372 * @dynamic: Dynamically added OPPs. 1373 * 1374 * This function adds an opp definition to the opp table and returns status. 1375 * The opp is made available by default and it can be controlled using 1376 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1377 * 1378 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1379 * and freed by dev_pm_opp_of_remove_table. 1380 * 1381 * Return: 1382 * 0 On success OR 1383 * Duplicate OPPs (both freq and volt are same) and opp->available 1384 * -EEXIST Freq are same and volt are different OR 1385 * Duplicate OPPs (both freq and volt are same) and !opp->available 1386 * -ENOMEM Memory allocation failure 1387 */ 1388 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1389 unsigned long freq, long u_volt, bool dynamic) 1390 { 1391 struct dev_pm_opp *new_opp; 1392 unsigned long tol; 1393 int ret; 1394 1395 new_opp = _opp_allocate(opp_table); 1396 if (!new_opp) 1397 return -ENOMEM; 1398 1399 /* populate the opp table */ 1400 new_opp->rate = freq; 1401 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1402 new_opp->supplies[0].u_volt = u_volt; 1403 new_opp->supplies[0].u_volt_min = u_volt - tol; 1404 new_opp->supplies[0].u_volt_max = u_volt + tol; 1405 new_opp->available = true; 1406 new_opp->dynamic = dynamic; 1407 1408 ret = _opp_add(dev, new_opp, opp_table, false); 1409 if (ret) { 1410 /* Don't return error for duplicate OPPs */ 1411 if (ret == -EBUSY) 1412 ret = 0; 1413 goto free_opp; 1414 } 1415 1416 /* 1417 * Notify the changes in the availability of the operable 1418 * frequency/voltage list. 1419 */ 1420 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1421 return 0; 1422 1423 free_opp: 1424 _opp_free(new_opp); 1425 1426 return ret; 1427 } 1428 1429 /** 1430 * dev_pm_opp_set_supported_hw() - Set supported platforms 1431 * @dev: Device for which supported-hw has to be set. 1432 * @versions: Array of hierarchy of versions to match. 1433 * @count: Number of elements in the array. 1434 * 1435 * This is required only for the V2 bindings, and it enables a platform to 1436 * specify the hierarchy of versions it supports. OPP layer will then enable 1437 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1438 * property. 1439 */ 1440 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1441 const u32 *versions, unsigned int count) 1442 { 1443 struct opp_table *opp_table; 1444 1445 opp_table = dev_pm_opp_get_opp_table(dev); 1446 if (!opp_table) 1447 return ERR_PTR(-ENOMEM); 1448 1449 /* Make sure there are no concurrent readers while updating opp_table */ 1450 WARN_ON(!list_empty(&opp_table->opp_list)); 1451 1452 /* Another CPU that shares the OPP table has set the property ? */ 1453 if (opp_table->supported_hw) 1454 return opp_table; 1455 1456 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1457 GFP_KERNEL); 1458 if (!opp_table->supported_hw) { 1459 dev_pm_opp_put_opp_table(opp_table); 1460 return ERR_PTR(-ENOMEM); 1461 } 1462 1463 opp_table->supported_hw_count = count; 1464 1465 return opp_table; 1466 } 1467 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1468 1469 /** 1470 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1471 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1472 * 1473 * This is required only for the V2 bindings, and is called for a matching 1474 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1475 * will not be freed. 1476 */ 1477 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1478 { 1479 /* Make sure there are no concurrent readers while updating opp_table */ 1480 WARN_ON(!list_empty(&opp_table->opp_list)); 1481 1482 kfree(opp_table->supported_hw); 1483 opp_table->supported_hw = NULL; 1484 opp_table->supported_hw_count = 0; 1485 1486 dev_pm_opp_put_opp_table(opp_table); 1487 } 1488 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1489 1490 /** 1491 * dev_pm_opp_set_prop_name() - Set prop-extn name 1492 * @dev: Device for which the prop-name has to be set. 1493 * @name: name to postfix to properties. 1494 * 1495 * This is required only for the V2 bindings, and it enables a platform to 1496 * specify the extn to be used for certain property names. The properties to 1497 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1498 * should postfix the property name with -<name> while looking for them. 1499 */ 1500 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1501 { 1502 struct opp_table *opp_table; 1503 1504 opp_table = dev_pm_opp_get_opp_table(dev); 1505 if (!opp_table) 1506 return ERR_PTR(-ENOMEM); 1507 1508 /* Make sure there are no concurrent readers while updating opp_table */ 1509 WARN_ON(!list_empty(&opp_table->opp_list)); 1510 1511 /* Another CPU that shares the OPP table has set the property ? */ 1512 if (opp_table->prop_name) 1513 return opp_table; 1514 1515 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1516 if (!opp_table->prop_name) { 1517 dev_pm_opp_put_opp_table(opp_table); 1518 return ERR_PTR(-ENOMEM); 1519 } 1520 1521 return opp_table; 1522 } 1523 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1524 1525 /** 1526 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1527 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1528 * 1529 * This is required only for the V2 bindings, and is called for a matching 1530 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1531 * will not be freed. 1532 */ 1533 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1534 { 1535 /* Make sure there are no concurrent readers while updating opp_table */ 1536 WARN_ON(!list_empty(&opp_table->opp_list)); 1537 1538 kfree(opp_table->prop_name); 1539 opp_table->prop_name = NULL; 1540 1541 dev_pm_opp_put_opp_table(opp_table); 1542 } 1543 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1544 1545 static int _allocate_set_opp_data(struct opp_table *opp_table) 1546 { 1547 struct dev_pm_set_opp_data *data; 1548 int len, count = opp_table->regulator_count; 1549 1550 if (WARN_ON(!opp_table->regulators)) 1551 return -EINVAL; 1552 1553 /* space for set_opp_data */ 1554 len = sizeof(*data); 1555 1556 /* space for old_opp.supplies and new_opp.supplies */ 1557 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1558 1559 data = kzalloc(len, GFP_KERNEL); 1560 if (!data) 1561 return -ENOMEM; 1562 1563 data->old_opp.supplies = (void *)(data + 1); 1564 data->new_opp.supplies = data->old_opp.supplies + count; 1565 1566 opp_table->set_opp_data = data; 1567 1568 return 0; 1569 } 1570 1571 static void _free_set_opp_data(struct opp_table *opp_table) 1572 { 1573 kfree(opp_table->set_opp_data); 1574 opp_table->set_opp_data = NULL; 1575 } 1576 1577 /** 1578 * dev_pm_opp_set_regulators() - Set regulator names for the device 1579 * @dev: Device for which regulator name is being set. 1580 * @names: Array of pointers to the names of the regulator. 1581 * @count: Number of regulators. 1582 * 1583 * In order to support OPP switching, OPP layer needs to know the name of the 1584 * device's regulators, as the core would be required to switch voltages as 1585 * well. 1586 * 1587 * This must be called before any OPPs are initialized for the device. 1588 */ 1589 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1590 const char * const names[], 1591 unsigned int count) 1592 { 1593 struct opp_table *opp_table; 1594 struct regulator *reg; 1595 int ret, i; 1596 1597 opp_table = dev_pm_opp_get_opp_table(dev); 1598 if (!opp_table) 1599 return ERR_PTR(-ENOMEM); 1600 1601 /* This should be called before OPPs are initialized */ 1602 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1603 ret = -EBUSY; 1604 goto err; 1605 } 1606 1607 /* Another CPU that shares the OPP table has set the regulators ? */ 1608 if (opp_table->regulators) 1609 return opp_table; 1610 1611 opp_table->regulators = kmalloc_array(count, 1612 sizeof(*opp_table->regulators), 1613 GFP_KERNEL); 1614 if (!opp_table->regulators) { 1615 ret = -ENOMEM; 1616 goto err; 1617 } 1618 1619 for (i = 0; i < count; i++) { 1620 reg = regulator_get_optional(dev, names[i]); 1621 if (IS_ERR(reg)) { 1622 ret = PTR_ERR(reg); 1623 if (ret != -EPROBE_DEFER) 1624 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1625 __func__, names[i], ret); 1626 goto free_regulators; 1627 } 1628 1629 ret = regulator_enable(reg); 1630 if (ret < 0) { 1631 regulator_put(reg); 1632 goto free_regulators; 1633 } 1634 1635 opp_table->regulators[i] = reg; 1636 } 1637 1638 opp_table->regulator_count = count; 1639 1640 /* Allocate block only once to pass to set_opp() routines */ 1641 ret = _allocate_set_opp_data(opp_table); 1642 if (ret) 1643 goto free_regulators; 1644 1645 return opp_table; 1646 1647 free_regulators: 1648 while (i--) { 1649 regulator_disable(opp_table->regulators[i]); 1650 regulator_put(opp_table->regulators[i]); 1651 } 1652 1653 kfree(opp_table->regulators); 1654 opp_table->regulators = NULL; 1655 opp_table->regulator_count = -1; 1656 err: 1657 dev_pm_opp_put_opp_table(opp_table); 1658 1659 return ERR_PTR(ret); 1660 } 1661 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1662 1663 /** 1664 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1665 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1666 */ 1667 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1668 { 1669 int i; 1670 1671 if (!opp_table->regulators) 1672 goto put_opp_table; 1673 1674 /* Make sure there are no concurrent readers while updating opp_table */ 1675 WARN_ON(!list_empty(&opp_table->opp_list)); 1676 1677 for (i = opp_table->regulator_count - 1; i >= 0; i--) { 1678 regulator_disable(opp_table->regulators[i]); 1679 regulator_put(opp_table->regulators[i]); 1680 } 1681 1682 _free_set_opp_data(opp_table); 1683 1684 kfree(opp_table->regulators); 1685 opp_table->regulators = NULL; 1686 opp_table->regulator_count = -1; 1687 1688 put_opp_table: 1689 dev_pm_opp_put_opp_table(opp_table); 1690 } 1691 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1692 1693 /** 1694 * dev_pm_opp_set_clkname() - Set clk name for the device 1695 * @dev: Device for which clk name is being set. 1696 * @name: Clk name. 1697 * 1698 * In order to support OPP switching, OPP layer needs to get pointer to the 1699 * clock for the device. Simple cases work fine without using this routine (i.e. 1700 * by passing connection-id as NULL), but for a device with multiple clocks 1701 * available, the OPP core needs to know the exact name of the clk to use. 1702 * 1703 * This must be called before any OPPs are initialized for the device. 1704 */ 1705 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1706 { 1707 struct opp_table *opp_table; 1708 int ret; 1709 1710 opp_table = dev_pm_opp_get_opp_table(dev); 1711 if (!opp_table) 1712 return ERR_PTR(-ENOMEM); 1713 1714 /* This should be called before OPPs are initialized */ 1715 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1716 ret = -EBUSY; 1717 goto err; 1718 } 1719 1720 /* Already have default clk set, free it */ 1721 if (!IS_ERR(opp_table->clk)) 1722 clk_put(opp_table->clk); 1723 1724 /* Find clk for the device */ 1725 opp_table->clk = clk_get(dev, name); 1726 if (IS_ERR(opp_table->clk)) { 1727 ret = PTR_ERR(opp_table->clk); 1728 if (ret != -EPROBE_DEFER) { 1729 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1730 ret); 1731 } 1732 goto err; 1733 } 1734 1735 return opp_table; 1736 1737 err: 1738 dev_pm_opp_put_opp_table(opp_table); 1739 1740 return ERR_PTR(ret); 1741 } 1742 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1743 1744 /** 1745 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1746 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1747 */ 1748 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1749 { 1750 /* Make sure there are no concurrent readers while updating opp_table */ 1751 WARN_ON(!list_empty(&opp_table->opp_list)); 1752 1753 clk_put(opp_table->clk); 1754 opp_table->clk = ERR_PTR(-EINVAL); 1755 1756 dev_pm_opp_put_opp_table(opp_table); 1757 } 1758 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1759 1760 /** 1761 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1762 * @dev: Device for which the helper is getting registered. 1763 * @set_opp: Custom set OPP helper. 1764 * 1765 * This is useful to support complex platforms (like platforms with multiple 1766 * regulators per device), instead of the generic OPP set rate helper. 1767 * 1768 * This must be called before any OPPs are initialized for the device. 1769 */ 1770 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1771 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1772 { 1773 struct opp_table *opp_table; 1774 1775 if (!set_opp) 1776 return ERR_PTR(-EINVAL); 1777 1778 opp_table = dev_pm_opp_get_opp_table(dev); 1779 if (!opp_table) 1780 return ERR_PTR(-ENOMEM); 1781 1782 /* This should be called before OPPs are initialized */ 1783 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1784 dev_pm_opp_put_opp_table(opp_table); 1785 return ERR_PTR(-EBUSY); 1786 } 1787 1788 /* Another CPU that shares the OPP table has set the helper ? */ 1789 if (!opp_table->set_opp) 1790 opp_table->set_opp = set_opp; 1791 1792 return opp_table; 1793 } 1794 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1795 1796 /** 1797 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1798 * set_opp helper 1799 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1800 * 1801 * Release resources blocked for platform specific set_opp helper. 1802 */ 1803 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1804 { 1805 /* Make sure there are no concurrent readers while updating opp_table */ 1806 WARN_ON(!list_empty(&opp_table->opp_list)); 1807 1808 opp_table->set_opp = NULL; 1809 dev_pm_opp_put_opp_table(opp_table); 1810 } 1811 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1812 1813 static void _opp_detach_genpd(struct opp_table *opp_table) 1814 { 1815 int index; 1816 1817 for (index = 0; index < opp_table->required_opp_count; index++) { 1818 if (!opp_table->genpd_virt_devs[index]) 1819 continue; 1820 1821 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1822 opp_table->genpd_virt_devs[index] = NULL; 1823 } 1824 1825 kfree(opp_table->genpd_virt_devs); 1826 opp_table->genpd_virt_devs = NULL; 1827 } 1828 1829 /** 1830 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1831 * @dev: Consumer device for which the genpd is getting attached. 1832 * @names: Null terminated array of pointers containing names of genpd to attach. 1833 * @virt_devs: Pointer to return the array of virtual devices. 1834 * 1835 * Multiple generic power domains for a device are supported with the help of 1836 * virtual genpd devices, which are created for each consumer device - genpd 1837 * pair. These are the device structures which are attached to the power domain 1838 * and are required by the OPP core to set the performance state of the genpd. 1839 * The same API also works for the case where single genpd is available and so 1840 * we don't need to support that separately. 1841 * 1842 * This helper will normally be called by the consumer driver of the device 1843 * "dev", as only that has details of the genpd names. 1844 * 1845 * This helper needs to be called once with a list of all genpd to attach. 1846 * Otherwise the original device structure will be used instead by the OPP core. 1847 * 1848 * The order of entries in the names array must match the order in which 1849 * "required-opps" are added in DT. 1850 */ 1851 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 1852 const char **names, struct device ***virt_devs) 1853 { 1854 struct opp_table *opp_table; 1855 struct device *virt_dev; 1856 int index = 0, ret = -EINVAL; 1857 const char **name = names; 1858 1859 opp_table = dev_pm_opp_get_opp_table(dev); 1860 if (!opp_table) 1861 return ERR_PTR(-ENOMEM); 1862 1863 /* 1864 * If the genpd's OPP table isn't already initialized, parsing of the 1865 * required-opps fail for dev. We should retry this after genpd's OPP 1866 * table is added. 1867 */ 1868 if (!opp_table->required_opp_count) { 1869 ret = -EPROBE_DEFER; 1870 goto put_table; 1871 } 1872 1873 mutex_lock(&opp_table->genpd_virt_dev_lock); 1874 1875 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 1876 sizeof(*opp_table->genpd_virt_devs), 1877 GFP_KERNEL); 1878 if (!opp_table->genpd_virt_devs) 1879 goto unlock; 1880 1881 while (*name) { 1882 if (index >= opp_table->required_opp_count) { 1883 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 1884 *name, opp_table->required_opp_count, index); 1885 goto err; 1886 } 1887 1888 if (opp_table->genpd_virt_devs[index]) { 1889 dev_err(dev, "Genpd virtual device already set %s\n", 1890 *name); 1891 goto err; 1892 } 1893 1894 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 1895 if (IS_ERR(virt_dev)) { 1896 ret = PTR_ERR(virt_dev); 1897 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 1898 goto err; 1899 } 1900 1901 opp_table->genpd_virt_devs[index] = virt_dev; 1902 index++; 1903 name++; 1904 } 1905 1906 if (virt_devs) 1907 *virt_devs = opp_table->genpd_virt_devs; 1908 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1909 1910 return opp_table; 1911 1912 err: 1913 _opp_detach_genpd(opp_table); 1914 unlock: 1915 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1916 1917 put_table: 1918 dev_pm_opp_put_opp_table(opp_table); 1919 1920 return ERR_PTR(ret); 1921 } 1922 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 1923 1924 /** 1925 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 1926 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 1927 * 1928 * This detaches the genpd(s), resets the virtual device pointers, and puts the 1929 * OPP table. 1930 */ 1931 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 1932 { 1933 /* 1934 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 1935 * used in parallel. 1936 */ 1937 mutex_lock(&opp_table->genpd_virt_dev_lock); 1938 _opp_detach_genpd(opp_table); 1939 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1940 1941 dev_pm_opp_put_opp_table(opp_table); 1942 } 1943 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 1944 1945 /** 1946 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 1947 * @src_table: OPP table which has dst_table as one of its required OPP table. 1948 * @dst_table: Required OPP table of the src_table. 1949 * @pstate: Current performance state of the src_table. 1950 * 1951 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 1952 * "required-opps" property of the OPP (present in @src_table) which has 1953 * performance state set to @pstate. 1954 * 1955 * Return: Zero or positive performance state on success, otherwise negative 1956 * value on errors. 1957 */ 1958 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 1959 struct opp_table *dst_table, 1960 unsigned int pstate) 1961 { 1962 struct dev_pm_opp *opp; 1963 int dest_pstate = -EINVAL; 1964 int i; 1965 1966 if (!pstate) 1967 return 0; 1968 1969 /* 1970 * Normally the src_table will have the "required_opps" property set to 1971 * point to one of the OPPs in the dst_table, but in some cases the 1972 * genpd and its master have one to one mapping of performance states 1973 * and so none of them have the "required-opps" property set. Return the 1974 * pstate of the src_table as it is in such cases. 1975 */ 1976 if (!src_table->required_opp_count) 1977 return pstate; 1978 1979 for (i = 0; i < src_table->required_opp_count; i++) { 1980 if (src_table->required_opp_tables[i]->np == dst_table->np) 1981 break; 1982 } 1983 1984 if (unlikely(i == src_table->required_opp_count)) { 1985 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 1986 __func__, src_table, dst_table); 1987 return -EINVAL; 1988 } 1989 1990 mutex_lock(&src_table->lock); 1991 1992 list_for_each_entry(opp, &src_table->opp_list, node) { 1993 if (opp->pstate == pstate) { 1994 dest_pstate = opp->required_opps[i]->pstate; 1995 goto unlock; 1996 } 1997 } 1998 1999 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2000 dst_table); 2001 2002 unlock: 2003 mutex_unlock(&src_table->lock); 2004 2005 return dest_pstate; 2006 } 2007 2008 /** 2009 * dev_pm_opp_add() - Add an OPP table from a table definitions 2010 * @dev: device for which we do this operation 2011 * @freq: Frequency in Hz for this OPP 2012 * @u_volt: Voltage in uVolts for this OPP 2013 * 2014 * This function adds an opp definition to the opp table and returns status. 2015 * The opp is made available by default and it can be controlled using 2016 * dev_pm_opp_enable/disable functions. 2017 * 2018 * Return: 2019 * 0 On success OR 2020 * Duplicate OPPs (both freq and volt are same) and opp->available 2021 * -EEXIST Freq are same and volt are different OR 2022 * Duplicate OPPs (both freq and volt are same) and !opp->available 2023 * -ENOMEM Memory allocation failure 2024 */ 2025 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2026 { 2027 struct opp_table *opp_table; 2028 int ret; 2029 2030 opp_table = dev_pm_opp_get_opp_table(dev); 2031 if (!opp_table) 2032 return -ENOMEM; 2033 2034 /* Fix regulator count for dynamic OPPs */ 2035 opp_table->regulator_count = 1; 2036 2037 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2038 if (ret) 2039 dev_pm_opp_put_opp_table(opp_table); 2040 2041 return ret; 2042 } 2043 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2044 2045 /** 2046 * _opp_set_availability() - helper to set the availability of an opp 2047 * @dev: device for which we do this operation 2048 * @freq: OPP frequency to modify availability 2049 * @availability_req: availability status requested for this opp 2050 * 2051 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2052 * which is isolated here. 2053 * 2054 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2055 * copy operation, returns 0 if no modification was done OR modification was 2056 * successful. 2057 */ 2058 static int _opp_set_availability(struct device *dev, unsigned long freq, 2059 bool availability_req) 2060 { 2061 struct opp_table *opp_table; 2062 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2063 int r = 0; 2064 2065 /* Find the opp_table */ 2066 opp_table = _find_opp_table(dev); 2067 if (IS_ERR(opp_table)) { 2068 r = PTR_ERR(opp_table); 2069 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2070 return r; 2071 } 2072 2073 mutex_lock(&opp_table->lock); 2074 2075 /* Do we have the frequency? */ 2076 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2077 if (tmp_opp->rate == freq) { 2078 opp = tmp_opp; 2079 break; 2080 } 2081 } 2082 2083 if (IS_ERR(opp)) { 2084 r = PTR_ERR(opp); 2085 goto unlock; 2086 } 2087 2088 /* Is update really needed? */ 2089 if (opp->available == availability_req) 2090 goto unlock; 2091 2092 opp->available = availability_req; 2093 2094 dev_pm_opp_get(opp); 2095 mutex_unlock(&opp_table->lock); 2096 2097 /* Notify the change of the OPP availability */ 2098 if (availability_req) 2099 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2100 opp); 2101 else 2102 blocking_notifier_call_chain(&opp_table->head, 2103 OPP_EVENT_DISABLE, opp); 2104 2105 dev_pm_opp_put(opp); 2106 goto put_table; 2107 2108 unlock: 2109 mutex_unlock(&opp_table->lock); 2110 put_table: 2111 dev_pm_opp_put_opp_table(opp_table); 2112 return r; 2113 } 2114 2115 /** 2116 * dev_pm_opp_enable() - Enable a specific OPP 2117 * @dev: device for which we do this operation 2118 * @freq: OPP frequency to enable 2119 * 2120 * Enables a provided opp. If the operation is valid, this returns 0, else the 2121 * corresponding error value. It is meant to be used for users an OPP available 2122 * after being temporarily made unavailable with dev_pm_opp_disable. 2123 * 2124 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2125 * copy operation, returns 0 if no modification was done OR modification was 2126 * successful. 2127 */ 2128 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2129 { 2130 return _opp_set_availability(dev, freq, true); 2131 } 2132 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2133 2134 /** 2135 * dev_pm_opp_disable() - Disable a specific OPP 2136 * @dev: device for which we do this operation 2137 * @freq: OPP frequency to disable 2138 * 2139 * Disables a provided opp. If the operation is valid, this returns 2140 * 0, else the corresponding error value. It is meant to be a temporary 2141 * control by users to make this OPP not available until the circumstances are 2142 * right to make it available again (with a call to dev_pm_opp_enable). 2143 * 2144 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2145 * copy operation, returns 0 if no modification was done OR modification was 2146 * successful. 2147 */ 2148 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2149 { 2150 return _opp_set_availability(dev, freq, false); 2151 } 2152 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2153 2154 /** 2155 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2156 * @dev: Device for which notifier needs to be registered 2157 * @nb: Notifier block to be registered 2158 * 2159 * Return: 0 on success or a negative error value. 2160 */ 2161 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2162 { 2163 struct opp_table *opp_table; 2164 int ret; 2165 2166 opp_table = _find_opp_table(dev); 2167 if (IS_ERR(opp_table)) 2168 return PTR_ERR(opp_table); 2169 2170 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2171 2172 dev_pm_opp_put_opp_table(opp_table); 2173 2174 return ret; 2175 } 2176 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2177 2178 /** 2179 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2180 * @dev: Device for which notifier needs to be unregistered 2181 * @nb: Notifier block to be unregistered 2182 * 2183 * Return: 0 on success or a negative error value. 2184 */ 2185 int dev_pm_opp_unregister_notifier(struct device *dev, 2186 struct notifier_block *nb) 2187 { 2188 struct opp_table *opp_table; 2189 int ret; 2190 2191 opp_table = _find_opp_table(dev); 2192 if (IS_ERR(opp_table)) 2193 return PTR_ERR(opp_table); 2194 2195 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2196 2197 dev_pm_opp_put_opp_table(opp_table); 2198 2199 return ret; 2200 } 2201 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2202 2203 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2204 { 2205 struct opp_table *opp_table; 2206 2207 /* Check for existing table for 'dev' */ 2208 opp_table = _find_opp_table(dev); 2209 if (IS_ERR(opp_table)) { 2210 int error = PTR_ERR(opp_table); 2211 2212 if (error != -ENODEV) 2213 WARN(1, "%s: opp_table: %d\n", 2214 IS_ERR_OR_NULL(dev) ? 2215 "Invalid device" : dev_name(dev), 2216 error); 2217 return; 2218 } 2219 2220 _put_opp_list_kref(opp_table); 2221 2222 /* Drop reference taken by _find_opp_table() */ 2223 dev_pm_opp_put_opp_table(opp_table); 2224 2225 /* Drop reference taken while the OPP table was added */ 2226 dev_pm_opp_put_opp_table(opp_table); 2227 } 2228 2229 /** 2230 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2231 * @dev: device pointer used to lookup OPP table. 2232 * 2233 * Free both OPPs created using static entries present in DT and the 2234 * dynamically added entries. 2235 */ 2236 void dev_pm_opp_remove_table(struct device *dev) 2237 { 2238 _dev_pm_opp_find_and_remove_table(dev); 2239 } 2240 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2241