1 /* 2 * Generic OPP Interface 3 * 4 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 5 * Nishanth Menon 6 * Romit Dasgupta 7 * Kevin Hilman 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/clk.h> 17 #include <linux/errno.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/export.h> 22 #include <linux/pm_domain.h> 23 #include <linux/regulator/consumer.h> 24 25 #include "opp.h" 26 27 /* 28 * The root of the list of all opp-tables. All opp_table structures branch off 29 * from here, with each opp_table containing the list of opps it supports in 30 * various states of availability. 31 */ 32 LIST_HEAD(opp_tables); 33 /* Lock to allow exclusive modification to the device and opp lists */ 34 DEFINE_MUTEX(opp_table_lock); 35 36 static struct opp_device *_find_opp_dev(const struct device *dev, 37 struct opp_table *opp_table) 38 { 39 struct opp_device *opp_dev; 40 41 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 42 if (opp_dev->dev == dev) 43 return opp_dev; 44 45 return NULL; 46 } 47 48 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 49 { 50 struct opp_table *opp_table; 51 bool found; 52 53 list_for_each_entry(opp_table, &opp_tables, node) { 54 mutex_lock(&opp_table->lock); 55 found = !!_find_opp_dev(dev, opp_table); 56 mutex_unlock(&opp_table->lock); 57 58 if (found) { 59 _get_opp_table_kref(opp_table); 60 61 return opp_table; 62 } 63 } 64 65 return ERR_PTR(-ENODEV); 66 } 67 68 /** 69 * _find_opp_table() - find opp_table struct using device pointer 70 * @dev: device pointer used to lookup OPP table 71 * 72 * Search OPP table for one containing matching device. 73 * 74 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 75 * -EINVAL based on type of error. 76 * 77 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 78 */ 79 struct opp_table *_find_opp_table(struct device *dev) 80 { 81 struct opp_table *opp_table; 82 83 if (IS_ERR_OR_NULL(dev)) { 84 pr_err("%s: Invalid parameters\n", __func__); 85 return ERR_PTR(-EINVAL); 86 } 87 88 mutex_lock(&opp_table_lock); 89 opp_table = _find_opp_table_unlocked(dev); 90 mutex_unlock(&opp_table_lock); 91 92 return opp_table; 93 } 94 95 /** 96 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 97 * @opp: opp for which voltage has to be returned for 98 * 99 * Return: voltage in micro volt corresponding to the opp, else 100 * return 0 101 * 102 * This is useful only for devices with single power supply. 103 */ 104 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 105 { 106 if (IS_ERR_OR_NULL(opp)) { 107 pr_err("%s: Invalid parameters\n", __func__); 108 return 0; 109 } 110 111 return opp->supplies[0].u_volt; 112 } 113 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 114 115 /** 116 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 117 * @opp: opp for which frequency has to be returned for 118 * 119 * Return: frequency in hertz corresponding to the opp, else 120 * return 0 121 */ 122 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 123 { 124 if (IS_ERR_OR_NULL(opp) || !opp->available) { 125 pr_err("%s: Invalid parameters\n", __func__); 126 return 0; 127 } 128 129 return opp->rate; 130 } 131 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 132 133 /** 134 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 135 * @opp: opp for which turbo mode is being verified 136 * 137 * Turbo OPPs are not for normal use, and can be enabled (under certain 138 * conditions) for short duration of times to finish high throughput work 139 * quickly. Running on them for longer times may overheat the chip. 140 * 141 * Return: true if opp is turbo opp, else false. 142 */ 143 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 144 { 145 if (IS_ERR_OR_NULL(opp) || !opp->available) { 146 pr_err("%s: Invalid parameters\n", __func__); 147 return false; 148 } 149 150 return opp->turbo; 151 } 152 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 153 154 /** 155 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 156 * @dev: device for which we do this operation 157 * 158 * Return: This function returns the max clock latency in nanoseconds. 159 */ 160 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 161 { 162 struct opp_table *opp_table; 163 unsigned long clock_latency_ns; 164 165 opp_table = _find_opp_table(dev); 166 if (IS_ERR(opp_table)) 167 return 0; 168 169 clock_latency_ns = opp_table->clock_latency_ns_max; 170 171 dev_pm_opp_put_opp_table(opp_table); 172 173 return clock_latency_ns; 174 } 175 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 176 177 /** 178 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 179 * @dev: device for which we do this operation 180 * 181 * Return: This function returns the max voltage latency in nanoseconds. 182 */ 183 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 184 { 185 struct opp_table *opp_table; 186 struct dev_pm_opp *opp; 187 struct regulator *reg; 188 unsigned long latency_ns = 0; 189 int ret, i, count; 190 struct { 191 unsigned long min; 192 unsigned long max; 193 } *uV; 194 195 opp_table = _find_opp_table(dev); 196 if (IS_ERR(opp_table)) 197 return 0; 198 199 /* Regulator may not be required for the device */ 200 if (!opp_table->regulators) 201 goto put_opp_table; 202 203 count = opp_table->regulator_count; 204 205 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 206 if (!uV) 207 goto put_opp_table; 208 209 mutex_lock(&opp_table->lock); 210 211 for (i = 0; i < count; i++) { 212 uV[i].min = ~0; 213 uV[i].max = 0; 214 215 list_for_each_entry(opp, &opp_table->opp_list, node) { 216 if (!opp->available) 217 continue; 218 219 if (opp->supplies[i].u_volt_min < uV[i].min) 220 uV[i].min = opp->supplies[i].u_volt_min; 221 if (opp->supplies[i].u_volt_max > uV[i].max) 222 uV[i].max = opp->supplies[i].u_volt_max; 223 } 224 } 225 226 mutex_unlock(&opp_table->lock); 227 228 /* 229 * The caller needs to ensure that opp_table (and hence the regulator) 230 * isn't freed, while we are executing this routine. 231 */ 232 for (i = 0; i < count; i++) { 233 reg = opp_table->regulators[i]; 234 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 235 if (ret > 0) 236 latency_ns += ret * 1000; 237 } 238 239 kfree(uV); 240 put_opp_table: 241 dev_pm_opp_put_opp_table(opp_table); 242 243 return latency_ns; 244 } 245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 246 247 /** 248 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 249 * nanoseconds 250 * @dev: device for which we do this operation 251 * 252 * Return: This function returns the max transition latency, in nanoseconds, to 253 * switch from one OPP to other. 254 */ 255 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 256 { 257 return dev_pm_opp_get_max_volt_latency(dev) + 258 dev_pm_opp_get_max_clock_latency(dev); 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 261 262 /** 263 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 264 * @dev: device for which we do this operation 265 * 266 * Return: This function returns the frequency of the OPP marked as suspend_opp 267 * if one is available, else returns 0; 268 */ 269 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 270 { 271 struct opp_table *opp_table; 272 unsigned long freq = 0; 273 274 opp_table = _find_opp_table(dev); 275 if (IS_ERR(opp_table)) 276 return 0; 277 278 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 279 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 280 281 dev_pm_opp_put_opp_table(opp_table); 282 283 return freq; 284 } 285 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 286 287 int _get_opp_count(struct opp_table *opp_table) 288 { 289 struct dev_pm_opp *opp; 290 int count = 0; 291 292 mutex_lock(&opp_table->lock); 293 294 list_for_each_entry(opp, &opp_table->opp_list, node) { 295 if (opp->available) 296 count++; 297 } 298 299 mutex_unlock(&opp_table->lock); 300 301 return count; 302 } 303 304 /** 305 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 306 * @dev: device for which we do this operation 307 * 308 * Return: This function returns the number of available opps if there are any, 309 * else returns 0 if none or the corresponding error value. 310 */ 311 int dev_pm_opp_get_opp_count(struct device *dev) 312 { 313 struct opp_table *opp_table; 314 int count; 315 316 opp_table = _find_opp_table(dev); 317 if (IS_ERR(opp_table)) { 318 count = PTR_ERR(opp_table); 319 dev_dbg(dev, "%s: OPP table not found (%d)\n", 320 __func__, count); 321 return count; 322 } 323 324 count = _get_opp_count(opp_table); 325 dev_pm_opp_put_opp_table(opp_table); 326 327 return count; 328 } 329 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 330 331 /** 332 * dev_pm_opp_find_freq_exact() - search for an exact frequency 333 * @dev: device for which we do this operation 334 * @freq: frequency to search for 335 * @available: true/false - match for available opp 336 * 337 * Return: Searches for exact match in the opp table and returns pointer to the 338 * matching opp if found, else returns ERR_PTR in case of error and should 339 * be handled using IS_ERR. Error return values can be: 340 * EINVAL: for bad pointer 341 * ERANGE: no match found for search 342 * ENODEV: if device not found in list of registered devices 343 * 344 * Note: available is a modifier for the search. if available=true, then the 345 * match is for exact matching frequency and is available in the stored OPP 346 * table. if false, the match is for exact frequency which is not available. 347 * 348 * This provides a mechanism to enable an opp which is not available currently 349 * or the opposite as well. 350 * 351 * The callers are required to call dev_pm_opp_put() for the returned OPP after 352 * use. 353 */ 354 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 355 unsigned long freq, 356 bool available) 357 { 358 struct opp_table *opp_table; 359 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 360 361 opp_table = _find_opp_table(dev); 362 if (IS_ERR(opp_table)) { 363 int r = PTR_ERR(opp_table); 364 365 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 366 return ERR_PTR(r); 367 } 368 369 mutex_lock(&opp_table->lock); 370 371 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 372 if (temp_opp->available == available && 373 temp_opp->rate == freq) { 374 opp = temp_opp; 375 376 /* Increment the reference count of OPP */ 377 dev_pm_opp_get(opp); 378 break; 379 } 380 } 381 382 mutex_unlock(&opp_table->lock); 383 dev_pm_opp_put_opp_table(opp_table); 384 385 return opp; 386 } 387 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 388 389 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 390 unsigned long *freq) 391 { 392 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 393 394 mutex_lock(&opp_table->lock); 395 396 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 397 if (temp_opp->available && temp_opp->rate >= *freq) { 398 opp = temp_opp; 399 *freq = opp->rate; 400 401 /* Increment the reference count of OPP */ 402 dev_pm_opp_get(opp); 403 break; 404 } 405 } 406 407 mutex_unlock(&opp_table->lock); 408 409 return opp; 410 } 411 412 /** 413 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 414 * @dev: device for which we do this operation 415 * @freq: Start frequency 416 * 417 * Search for the matching ceil *available* OPP from a starting freq 418 * for a device. 419 * 420 * Return: matching *opp and refreshes *freq accordingly, else returns 421 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 422 * values can be: 423 * EINVAL: for bad pointer 424 * ERANGE: no match found for search 425 * ENODEV: if device not found in list of registered devices 426 * 427 * The callers are required to call dev_pm_opp_put() for the returned OPP after 428 * use. 429 */ 430 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 431 unsigned long *freq) 432 { 433 struct opp_table *opp_table; 434 struct dev_pm_opp *opp; 435 436 if (!dev || !freq) { 437 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 438 return ERR_PTR(-EINVAL); 439 } 440 441 opp_table = _find_opp_table(dev); 442 if (IS_ERR(opp_table)) 443 return ERR_CAST(opp_table); 444 445 opp = _find_freq_ceil(opp_table, freq); 446 447 dev_pm_opp_put_opp_table(opp_table); 448 449 return opp; 450 } 451 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 452 453 /** 454 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 455 * @dev: device for which we do this operation 456 * @freq: Start frequency 457 * 458 * Search for the matching floor *available* OPP from a starting freq 459 * for a device. 460 * 461 * Return: matching *opp and refreshes *freq accordingly, else returns 462 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 463 * values can be: 464 * EINVAL: for bad pointer 465 * ERANGE: no match found for search 466 * ENODEV: if device not found in list of registered devices 467 * 468 * The callers are required to call dev_pm_opp_put() for the returned OPP after 469 * use. 470 */ 471 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 472 unsigned long *freq) 473 { 474 struct opp_table *opp_table; 475 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 476 477 if (!dev || !freq) { 478 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 479 return ERR_PTR(-EINVAL); 480 } 481 482 opp_table = _find_opp_table(dev); 483 if (IS_ERR(opp_table)) 484 return ERR_CAST(opp_table); 485 486 mutex_lock(&opp_table->lock); 487 488 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 489 if (temp_opp->available) { 490 /* go to the next node, before choosing prev */ 491 if (temp_opp->rate > *freq) 492 break; 493 else 494 opp = temp_opp; 495 } 496 } 497 498 /* Increment the reference count of OPP */ 499 if (!IS_ERR(opp)) 500 dev_pm_opp_get(opp); 501 mutex_unlock(&opp_table->lock); 502 dev_pm_opp_put_opp_table(opp_table); 503 504 if (!IS_ERR(opp)) 505 *freq = opp->rate; 506 507 return opp; 508 } 509 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 510 511 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 512 struct dev_pm_opp_supply *supply) 513 { 514 int ret; 515 516 /* Regulator not available for device */ 517 if (IS_ERR(reg)) { 518 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 519 PTR_ERR(reg)); 520 return 0; 521 } 522 523 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 524 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 525 526 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 527 supply->u_volt, supply->u_volt_max); 528 if (ret) 529 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 530 __func__, supply->u_volt_min, supply->u_volt, 531 supply->u_volt_max, ret); 532 533 return ret; 534 } 535 536 static inline int 537 _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 538 unsigned long old_freq, unsigned long freq) 539 { 540 int ret; 541 542 ret = clk_set_rate(clk, freq); 543 if (ret) { 544 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 545 ret); 546 } 547 548 return ret; 549 } 550 551 static int _generic_set_opp_regulator(const struct opp_table *opp_table, 552 struct device *dev, 553 unsigned long old_freq, 554 unsigned long freq, 555 struct dev_pm_opp_supply *old_supply, 556 struct dev_pm_opp_supply *new_supply) 557 { 558 struct regulator *reg = opp_table->regulators[0]; 559 int ret; 560 561 /* This function only supports single regulator per device */ 562 if (WARN_ON(opp_table->regulator_count > 1)) { 563 dev_err(dev, "multiple regulators are not supported\n"); 564 return -EINVAL; 565 } 566 567 /* Scaling up? Scale voltage before frequency */ 568 if (freq >= old_freq) { 569 ret = _set_opp_voltage(dev, reg, new_supply); 570 if (ret) 571 goto restore_voltage; 572 } 573 574 /* Change frequency */ 575 ret = _generic_set_opp_clk_only(dev, opp_table->clk, old_freq, freq); 576 if (ret) 577 goto restore_voltage; 578 579 /* Scaling down? Scale voltage after frequency */ 580 if (freq < old_freq) { 581 ret = _set_opp_voltage(dev, reg, new_supply); 582 if (ret) 583 goto restore_freq; 584 } 585 586 return 0; 587 588 restore_freq: 589 if (_generic_set_opp_clk_only(dev, opp_table->clk, freq, old_freq)) 590 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 591 __func__, old_freq); 592 restore_voltage: 593 /* This shouldn't harm even if the voltages weren't updated earlier */ 594 if (old_supply) 595 _set_opp_voltage(dev, reg, old_supply); 596 597 return ret; 598 } 599 600 static int _set_opp_custom(const struct opp_table *opp_table, 601 struct device *dev, unsigned long old_freq, 602 unsigned long freq, 603 struct dev_pm_opp_supply *old_supply, 604 struct dev_pm_opp_supply *new_supply) 605 { 606 struct dev_pm_set_opp_data *data; 607 int size; 608 609 data = opp_table->set_opp_data; 610 data->regulators = opp_table->regulators; 611 data->regulator_count = opp_table->regulator_count; 612 data->clk = opp_table->clk; 613 data->dev = dev; 614 615 data->old_opp.rate = old_freq; 616 size = sizeof(*old_supply) * opp_table->regulator_count; 617 if (IS_ERR(old_supply)) 618 memset(data->old_opp.supplies, 0, size); 619 else 620 memcpy(data->old_opp.supplies, old_supply, size); 621 622 data->new_opp.rate = freq; 623 memcpy(data->new_opp.supplies, new_supply, size); 624 625 return opp_table->set_opp(data); 626 } 627 628 /* This is only called for PM domain for now */ 629 static int _set_required_opps(struct device *dev, 630 struct opp_table *opp_table, 631 struct dev_pm_opp *opp) 632 { 633 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 634 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 635 unsigned int pstate; 636 int i, ret = 0; 637 638 if (!required_opp_tables) 639 return 0; 640 641 /* Single genpd case */ 642 if (!genpd_virt_devs) { 643 pstate = opp->required_opps[0]->pstate; 644 ret = dev_pm_genpd_set_performance_state(dev, pstate); 645 if (ret) { 646 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 647 dev_name(dev), pstate, ret); 648 } 649 return ret; 650 } 651 652 /* Multiple genpd case */ 653 654 /* 655 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 656 * after it is freed from another thread. 657 */ 658 mutex_lock(&opp_table->genpd_virt_dev_lock); 659 660 for (i = 0; i < opp_table->required_opp_count; i++) { 661 pstate = opp->required_opps[i]->pstate; 662 663 if (!genpd_virt_devs[i]) 664 continue; 665 666 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 667 if (ret) { 668 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 669 dev_name(genpd_virt_devs[i]), pstate, ret); 670 break; 671 } 672 } 673 mutex_unlock(&opp_table->genpd_virt_dev_lock); 674 675 return ret; 676 } 677 678 /** 679 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 680 * @dev: device for which we do this operation 681 * @target_freq: frequency to achieve 682 * 683 * This configures the power-supplies and clock source to the levels specified 684 * by the OPP corresponding to the target_freq. 685 */ 686 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 687 { 688 struct opp_table *opp_table; 689 unsigned long freq, old_freq; 690 struct dev_pm_opp *old_opp, *opp; 691 struct clk *clk; 692 int ret; 693 694 if (unlikely(!target_freq)) { 695 dev_err(dev, "%s: Invalid target frequency %lu\n", __func__, 696 target_freq); 697 return -EINVAL; 698 } 699 700 opp_table = _find_opp_table(dev); 701 if (IS_ERR(opp_table)) { 702 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 703 return PTR_ERR(opp_table); 704 } 705 706 clk = opp_table->clk; 707 if (IS_ERR(clk)) { 708 dev_err(dev, "%s: No clock available for the device\n", 709 __func__); 710 ret = PTR_ERR(clk); 711 goto put_opp_table; 712 } 713 714 freq = clk_round_rate(clk, target_freq); 715 if ((long)freq <= 0) 716 freq = target_freq; 717 718 old_freq = clk_get_rate(clk); 719 720 /* Return early if nothing to do */ 721 if (old_freq == freq) { 722 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 723 __func__, freq); 724 ret = 0; 725 goto put_opp_table; 726 } 727 728 old_opp = _find_freq_ceil(opp_table, &old_freq); 729 if (IS_ERR(old_opp)) { 730 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 731 __func__, old_freq, PTR_ERR(old_opp)); 732 } 733 734 opp = _find_freq_ceil(opp_table, &freq); 735 if (IS_ERR(opp)) { 736 ret = PTR_ERR(opp); 737 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 738 __func__, freq, ret); 739 goto put_old_opp; 740 } 741 742 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 743 old_freq, freq); 744 745 /* Scaling up? Configure required OPPs before frequency */ 746 if (freq > old_freq) { 747 ret = _set_required_opps(dev, opp_table, opp); 748 if (ret) 749 goto put_opp; 750 } 751 752 if (opp_table->set_opp) { 753 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 754 IS_ERR(old_opp) ? NULL : old_opp->supplies, 755 opp->supplies); 756 } else if (opp_table->regulators) { 757 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 758 IS_ERR(old_opp) ? NULL : old_opp->supplies, 759 opp->supplies); 760 } else { 761 /* Only frequency scaling */ 762 ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq); 763 } 764 765 /* Scaling down? Configure required OPPs after frequency */ 766 if (!ret && freq < old_freq) { 767 ret = _set_required_opps(dev, opp_table, opp); 768 if (ret) 769 dev_err(dev, "Failed to set required opps: %d\n", ret); 770 } 771 772 put_opp: 773 dev_pm_opp_put(opp); 774 put_old_opp: 775 if (!IS_ERR(old_opp)) 776 dev_pm_opp_put(old_opp); 777 put_opp_table: 778 dev_pm_opp_put_opp_table(opp_table); 779 return ret; 780 } 781 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 782 783 /* OPP-dev Helpers */ 784 static void _remove_opp_dev(struct opp_device *opp_dev, 785 struct opp_table *opp_table) 786 { 787 opp_debug_unregister(opp_dev, opp_table); 788 list_del(&opp_dev->node); 789 kfree(opp_dev); 790 } 791 792 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 793 struct opp_table *opp_table) 794 { 795 struct opp_device *opp_dev; 796 int ret; 797 798 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 799 if (!opp_dev) 800 return NULL; 801 802 /* Initialize opp-dev */ 803 opp_dev->dev = dev; 804 805 list_add(&opp_dev->node, &opp_table->dev_list); 806 807 /* Create debugfs entries for the opp_table */ 808 ret = opp_debug_register(opp_dev, opp_table); 809 if (ret) 810 dev_err(dev, "%s: Failed to register opp debugfs (%d)\n", 811 __func__, ret); 812 813 return opp_dev; 814 } 815 816 struct opp_device *_add_opp_dev(const struct device *dev, 817 struct opp_table *opp_table) 818 { 819 struct opp_device *opp_dev; 820 821 mutex_lock(&opp_table->lock); 822 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 823 mutex_unlock(&opp_table->lock); 824 825 return opp_dev; 826 } 827 828 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 829 { 830 struct opp_table *opp_table; 831 struct opp_device *opp_dev; 832 int ret; 833 834 /* 835 * Allocate a new OPP table. In the infrequent case where a new 836 * device is needed to be added, we pay this penalty. 837 */ 838 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 839 if (!opp_table) 840 return NULL; 841 842 mutex_init(&opp_table->lock); 843 mutex_init(&opp_table->genpd_virt_dev_lock); 844 INIT_LIST_HEAD(&opp_table->dev_list); 845 846 /* Mark regulator count uninitialized */ 847 opp_table->regulator_count = -1; 848 849 opp_dev = _add_opp_dev(dev, opp_table); 850 if (!opp_dev) { 851 kfree(opp_table); 852 return NULL; 853 } 854 855 _of_init_opp_table(opp_table, dev, index); 856 857 /* Find clk for the device */ 858 opp_table->clk = clk_get(dev, NULL); 859 if (IS_ERR(opp_table->clk)) { 860 ret = PTR_ERR(opp_table->clk); 861 if (ret != -EPROBE_DEFER) 862 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 863 ret); 864 } 865 866 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 867 INIT_LIST_HEAD(&opp_table->opp_list); 868 kref_init(&opp_table->kref); 869 870 /* Secure the device table modification */ 871 list_add(&opp_table->node, &opp_tables); 872 return opp_table; 873 } 874 875 void _get_opp_table_kref(struct opp_table *opp_table) 876 { 877 kref_get(&opp_table->kref); 878 } 879 880 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 881 { 882 struct opp_table *opp_table; 883 884 /* Hold our table modification lock here */ 885 mutex_lock(&opp_table_lock); 886 887 opp_table = _find_opp_table_unlocked(dev); 888 if (!IS_ERR(opp_table)) 889 goto unlock; 890 891 opp_table = _managed_opp(dev, index); 892 if (opp_table) { 893 if (!_add_opp_dev_unlocked(dev, opp_table)) { 894 dev_pm_opp_put_opp_table(opp_table); 895 opp_table = NULL; 896 } 897 goto unlock; 898 } 899 900 opp_table = _allocate_opp_table(dev, index); 901 902 unlock: 903 mutex_unlock(&opp_table_lock); 904 905 return opp_table; 906 } 907 908 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 909 { 910 return _opp_get_opp_table(dev, 0); 911 } 912 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 913 914 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 915 int index) 916 { 917 return _opp_get_opp_table(dev, index); 918 } 919 920 static void _opp_table_kref_release(struct kref *kref) 921 { 922 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 923 struct opp_device *opp_dev, *temp; 924 925 _of_clear_opp_table(opp_table); 926 927 /* Release clk */ 928 if (!IS_ERR(opp_table->clk)) 929 clk_put(opp_table->clk); 930 931 WARN_ON(!list_empty(&opp_table->opp_list)); 932 933 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 934 /* 935 * The OPP table is getting removed, drop the performance state 936 * constraints. 937 */ 938 if (opp_table->genpd_performance_state) 939 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 940 941 _remove_opp_dev(opp_dev, opp_table); 942 } 943 944 mutex_destroy(&opp_table->genpd_virt_dev_lock); 945 mutex_destroy(&opp_table->lock); 946 list_del(&opp_table->node); 947 kfree(opp_table); 948 949 mutex_unlock(&opp_table_lock); 950 } 951 952 void _opp_remove_all_static(struct opp_table *opp_table) 953 { 954 struct dev_pm_opp *opp, *tmp; 955 956 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 957 if (!opp->dynamic) 958 dev_pm_opp_put(opp); 959 } 960 961 opp_table->parsed_static_opps = false; 962 } 963 964 static void _opp_table_list_kref_release(struct kref *kref) 965 { 966 struct opp_table *opp_table = container_of(kref, struct opp_table, 967 list_kref); 968 969 _opp_remove_all_static(opp_table); 970 mutex_unlock(&opp_table_lock); 971 } 972 973 void _put_opp_list_kref(struct opp_table *opp_table) 974 { 975 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release, 976 &opp_table_lock); 977 } 978 979 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 980 { 981 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 982 &opp_table_lock); 983 } 984 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 985 986 void _opp_free(struct dev_pm_opp *opp) 987 { 988 kfree(opp); 989 } 990 991 static void _opp_kref_release(struct dev_pm_opp *opp, 992 struct opp_table *opp_table) 993 { 994 /* 995 * Notify the changes in the availability of the operable 996 * frequency/voltage list. 997 */ 998 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 999 _of_opp_free_required_opps(opp_table, opp); 1000 opp_debug_remove_one(opp); 1001 list_del(&opp->node); 1002 kfree(opp); 1003 } 1004 1005 static void _opp_kref_release_unlocked(struct kref *kref) 1006 { 1007 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1008 struct opp_table *opp_table = opp->opp_table; 1009 1010 _opp_kref_release(opp, opp_table); 1011 } 1012 1013 static void _opp_kref_release_locked(struct kref *kref) 1014 { 1015 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1016 struct opp_table *opp_table = opp->opp_table; 1017 1018 _opp_kref_release(opp, opp_table); 1019 mutex_unlock(&opp_table->lock); 1020 } 1021 1022 void dev_pm_opp_get(struct dev_pm_opp *opp) 1023 { 1024 kref_get(&opp->kref); 1025 } 1026 1027 void dev_pm_opp_put(struct dev_pm_opp *opp) 1028 { 1029 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1030 &opp->opp_table->lock); 1031 } 1032 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1033 1034 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1035 { 1036 kref_put(&opp->kref, _opp_kref_release_unlocked); 1037 } 1038 1039 /** 1040 * dev_pm_opp_remove() - Remove an OPP from OPP table 1041 * @dev: device for which we do this operation 1042 * @freq: OPP to remove with matching 'freq' 1043 * 1044 * This function removes an opp from the opp table. 1045 */ 1046 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1047 { 1048 struct dev_pm_opp *opp; 1049 struct opp_table *opp_table; 1050 bool found = false; 1051 1052 opp_table = _find_opp_table(dev); 1053 if (IS_ERR(opp_table)) 1054 return; 1055 1056 mutex_lock(&opp_table->lock); 1057 1058 list_for_each_entry(opp, &opp_table->opp_list, node) { 1059 if (opp->rate == freq) { 1060 found = true; 1061 break; 1062 } 1063 } 1064 1065 mutex_unlock(&opp_table->lock); 1066 1067 if (found) { 1068 dev_pm_opp_put(opp); 1069 1070 /* Drop the reference taken by dev_pm_opp_add() */ 1071 dev_pm_opp_put_opp_table(opp_table); 1072 } else { 1073 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1074 __func__, freq); 1075 } 1076 1077 /* Drop the reference taken by _find_opp_table() */ 1078 dev_pm_opp_put_opp_table(opp_table); 1079 } 1080 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1081 1082 /** 1083 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1084 * @dev: device for which we do this operation 1085 * 1086 * This function removes all dynamically created OPPs from the opp table. 1087 */ 1088 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1089 { 1090 struct opp_table *opp_table; 1091 struct dev_pm_opp *opp, *temp; 1092 int count = 0; 1093 1094 opp_table = _find_opp_table(dev); 1095 if (IS_ERR(opp_table)) 1096 return; 1097 1098 mutex_lock(&opp_table->lock); 1099 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1100 if (opp->dynamic) { 1101 dev_pm_opp_put_unlocked(opp); 1102 count++; 1103 } 1104 } 1105 mutex_unlock(&opp_table->lock); 1106 1107 /* Drop the references taken by dev_pm_opp_add() */ 1108 while (count--) 1109 dev_pm_opp_put_opp_table(opp_table); 1110 1111 /* Drop the reference taken by _find_opp_table() */ 1112 dev_pm_opp_put_opp_table(opp_table); 1113 } 1114 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1115 1116 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1117 { 1118 struct dev_pm_opp *opp; 1119 int count, supply_size; 1120 1121 /* Allocate space for at least one supply */ 1122 count = table->regulator_count > 0 ? table->regulator_count : 1; 1123 supply_size = sizeof(*opp->supplies) * count; 1124 1125 /* allocate new OPP node and supplies structures */ 1126 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); 1127 if (!opp) 1128 return NULL; 1129 1130 /* Put the supplies at the end of the OPP structure as an empty array */ 1131 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1132 INIT_LIST_HEAD(&opp->node); 1133 1134 return opp; 1135 } 1136 1137 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1138 struct opp_table *opp_table) 1139 { 1140 struct regulator *reg; 1141 int i; 1142 1143 if (!opp_table->regulators) 1144 return true; 1145 1146 for (i = 0; i < opp_table->regulator_count; i++) { 1147 reg = opp_table->regulators[i]; 1148 1149 if (!regulator_is_supported_voltage(reg, 1150 opp->supplies[i].u_volt_min, 1151 opp->supplies[i].u_volt_max)) { 1152 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1153 __func__, opp->supplies[i].u_volt_min, 1154 opp->supplies[i].u_volt_max); 1155 return false; 1156 } 1157 } 1158 1159 return true; 1160 } 1161 1162 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1163 struct opp_table *opp_table, 1164 struct list_head **head) 1165 { 1166 struct dev_pm_opp *opp; 1167 1168 /* 1169 * Insert new OPP in order of increasing frequency and discard if 1170 * already present. 1171 * 1172 * Need to use &opp_table->opp_list in the condition part of the 'for' 1173 * loop, don't replace it with head otherwise it will become an infinite 1174 * loop. 1175 */ 1176 list_for_each_entry(opp, &opp_table->opp_list, node) { 1177 if (new_opp->rate > opp->rate) { 1178 *head = &opp->node; 1179 continue; 1180 } 1181 1182 if (new_opp->rate < opp->rate) 1183 return 0; 1184 1185 /* Duplicate OPPs */ 1186 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1187 __func__, opp->rate, opp->supplies[0].u_volt, 1188 opp->available, new_opp->rate, 1189 new_opp->supplies[0].u_volt, new_opp->available); 1190 1191 /* Should we compare voltages for all regulators here ? */ 1192 return opp->available && 1193 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /* 1200 * Returns: 1201 * 0: On success. And appropriate error message for duplicate OPPs. 1202 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1203 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1204 * sure we don't print error messages unnecessarily if different parts of 1205 * kernel try to initialize the OPP table. 1206 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1207 * should be considered an error by the callers of _opp_add(). 1208 */ 1209 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1210 struct opp_table *opp_table, bool rate_not_available) 1211 { 1212 struct list_head *head; 1213 int ret; 1214 1215 mutex_lock(&opp_table->lock); 1216 head = &opp_table->opp_list; 1217 1218 if (likely(!rate_not_available)) { 1219 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1220 if (ret) { 1221 mutex_unlock(&opp_table->lock); 1222 return ret; 1223 } 1224 } 1225 1226 list_add(&new_opp->node, head); 1227 mutex_unlock(&opp_table->lock); 1228 1229 new_opp->opp_table = opp_table; 1230 kref_init(&new_opp->kref); 1231 1232 ret = opp_debug_create_one(new_opp, opp_table); 1233 if (ret) 1234 dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n", 1235 __func__, ret); 1236 1237 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1238 new_opp->available = false; 1239 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1240 __func__, new_opp->rate); 1241 } 1242 1243 return 0; 1244 } 1245 1246 /** 1247 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1248 * @opp_table: OPP table 1249 * @dev: device for which we do this operation 1250 * @freq: Frequency in Hz for this OPP 1251 * @u_volt: Voltage in uVolts for this OPP 1252 * @dynamic: Dynamically added OPPs. 1253 * 1254 * This function adds an opp definition to the opp table and returns status. 1255 * The opp is made available by default and it can be controlled using 1256 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1257 * 1258 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1259 * and freed by dev_pm_opp_of_remove_table. 1260 * 1261 * Return: 1262 * 0 On success OR 1263 * Duplicate OPPs (both freq and volt are same) and opp->available 1264 * -EEXIST Freq are same and volt are different OR 1265 * Duplicate OPPs (both freq and volt are same) and !opp->available 1266 * -ENOMEM Memory allocation failure 1267 */ 1268 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1269 unsigned long freq, long u_volt, bool dynamic) 1270 { 1271 struct dev_pm_opp *new_opp; 1272 unsigned long tol; 1273 int ret; 1274 1275 new_opp = _opp_allocate(opp_table); 1276 if (!new_opp) 1277 return -ENOMEM; 1278 1279 /* populate the opp table */ 1280 new_opp->rate = freq; 1281 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1282 new_opp->supplies[0].u_volt = u_volt; 1283 new_opp->supplies[0].u_volt_min = u_volt - tol; 1284 new_opp->supplies[0].u_volt_max = u_volt + tol; 1285 new_opp->available = true; 1286 new_opp->dynamic = dynamic; 1287 1288 ret = _opp_add(dev, new_opp, opp_table, false); 1289 if (ret) { 1290 /* Don't return error for duplicate OPPs */ 1291 if (ret == -EBUSY) 1292 ret = 0; 1293 goto free_opp; 1294 } 1295 1296 /* 1297 * Notify the changes in the availability of the operable 1298 * frequency/voltage list. 1299 */ 1300 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1301 return 0; 1302 1303 free_opp: 1304 _opp_free(new_opp); 1305 1306 return ret; 1307 } 1308 1309 /** 1310 * dev_pm_opp_set_supported_hw() - Set supported platforms 1311 * @dev: Device for which supported-hw has to be set. 1312 * @versions: Array of hierarchy of versions to match. 1313 * @count: Number of elements in the array. 1314 * 1315 * This is required only for the V2 bindings, and it enables a platform to 1316 * specify the hierarchy of versions it supports. OPP layer will then enable 1317 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1318 * property. 1319 */ 1320 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1321 const u32 *versions, unsigned int count) 1322 { 1323 struct opp_table *opp_table; 1324 1325 opp_table = dev_pm_opp_get_opp_table(dev); 1326 if (!opp_table) 1327 return ERR_PTR(-ENOMEM); 1328 1329 /* Make sure there are no concurrent readers while updating opp_table */ 1330 WARN_ON(!list_empty(&opp_table->opp_list)); 1331 1332 /* Another CPU that shares the OPP table has set the property ? */ 1333 if (opp_table->supported_hw) 1334 return opp_table; 1335 1336 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1337 GFP_KERNEL); 1338 if (!opp_table->supported_hw) { 1339 dev_pm_opp_put_opp_table(opp_table); 1340 return ERR_PTR(-ENOMEM); 1341 } 1342 1343 opp_table->supported_hw_count = count; 1344 1345 return opp_table; 1346 } 1347 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1348 1349 /** 1350 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1351 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1352 * 1353 * This is required only for the V2 bindings, and is called for a matching 1354 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1355 * will not be freed. 1356 */ 1357 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1358 { 1359 /* Make sure there are no concurrent readers while updating opp_table */ 1360 WARN_ON(!list_empty(&opp_table->opp_list)); 1361 1362 kfree(opp_table->supported_hw); 1363 opp_table->supported_hw = NULL; 1364 opp_table->supported_hw_count = 0; 1365 1366 dev_pm_opp_put_opp_table(opp_table); 1367 } 1368 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1369 1370 /** 1371 * dev_pm_opp_set_prop_name() - Set prop-extn name 1372 * @dev: Device for which the prop-name has to be set. 1373 * @name: name to postfix to properties. 1374 * 1375 * This is required only for the V2 bindings, and it enables a platform to 1376 * specify the extn to be used for certain property names. The properties to 1377 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1378 * should postfix the property name with -<name> while looking for them. 1379 */ 1380 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1381 { 1382 struct opp_table *opp_table; 1383 1384 opp_table = dev_pm_opp_get_opp_table(dev); 1385 if (!opp_table) 1386 return ERR_PTR(-ENOMEM); 1387 1388 /* Make sure there are no concurrent readers while updating opp_table */ 1389 WARN_ON(!list_empty(&opp_table->opp_list)); 1390 1391 /* Another CPU that shares the OPP table has set the property ? */ 1392 if (opp_table->prop_name) 1393 return opp_table; 1394 1395 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1396 if (!opp_table->prop_name) { 1397 dev_pm_opp_put_opp_table(opp_table); 1398 return ERR_PTR(-ENOMEM); 1399 } 1400 1401 return opp_table; 1402 } 1403 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1404 1405 /** 1406 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1407 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1408 * 1409 * This is required only for the V2 bindings, and is called for a matching 1410 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1411 * will not be freed. 1412 */ 1413 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1414 { 1415 /* Make sure there are no concurrent readers while updating opp_table */ 1416 WARN_ON(!list_empty(&opp_table->opp_list)); 1417 1418 kfree(opp_table->prop_name); 1419 opp_table->prop_name = NULL; 1420 1421 dev_pm_opp_put_opp_table(opp_table); 1422 } 1423 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1424 1425 static int _allocate_set_opp_data(struct opp_table *opp_table) 1426 { 1427 struct dev_pm_set_opp_data *data; 1428 int len, count = opp_table->regulator_count; 1429 1430 if (WARN_ON(!opp_table->regulators)) 1431 return -EINVAL; 1432 1433 /* space for set_opp_data */ 1434 len = sizeof(*data); 1435 1436 /* space for old_opp.supplies and new_opp.supplies */ 1437 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1438 1439 data = kzalloc(len, GFP_KERNEL); 1440 if (!data) 1441 return -ENOMEM; 1442 1443 data->old_opp.supplies = (void *)(data + 1); 1444 data->new_opp.supplies = data->old_opp.supplies + count; 1445 1446 opp_table->set_opp_data = data; 1447 1448 return 0; 1449 } 1450 1451 static void _free_set_opp_data(struct opp_table *opp_table) 1452 { 1453 kfree(opp_table->set_opp_data); 1454 opp_table->set_opp_data = NULL; 1455 } 1456 1457 /** 1458 * dev_pm_opp_set_regulators() - Set regulator names for the device 1459 * @dev: Device for which regulator name is being set. 1460 * @names: Array of pointers to the names of the regulator. 1461 * @count: Number of regulators. 1462 * 1463 * In order to support OPP switching, OPP layer needs to know the name of the 1464 * device's regulators, as the core would be required to switch voltages as 1465 * well. 1466 * 1467 * This must be called before any OPPs are initialized for the device. 1468 */ 1469 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1470 const char * const names[], 1471 unsigned int count) 1472 { 1473 struct opp_table *opp_table; 1474 struct regulator *reg; 1475 int ret, i; 1476 1477 opp_table = dev_pm_opp_get_opp_table(dev); 1478 if (!opp_table) 1479 return ERR_PTR(-ENOMEM); 1480 1481 /* This should be called before OPPs are initialized */ 1482 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1483 ret = -EBUSY; 1484 goto err; 1485 } 1486 1487 /* Another CPU that shares the OPP table has set the regulators ? */ 1488 if (opp_table->regulators) 1489 return opp_table; 1490 1491 opp_table->regulators = kmalloc_array(count, 1492 sizeof(*opp_table->regulators), 1493 GFP_KERNEL); 1494 if (!opp_table->regulators) { 1495 ret = -ENOMEM; 1496 goto err; 1497 } 1498 1499 for (i = 0; i < count; i++) { 1500 reg = regulator_get_optional(dev, names[i]); 1501 if (IS_ERR(reg)) { 1502 ret = PTR_ERR(reg); 1503 if (ret != -EPROBE_DEFER) 1504 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1505 __func__, names[i], ret); 1506 goto free_regulators; 1507 } 1508 1509 opp_table->regulators[i] = reg; 1510 } 1511 1512 opp_table->regulator_count = count; 1513 1514 /* Allocate block only once to pass to set_opp() routines */ 1515 ret = _allocate_set_opp_data(opp_table); 1516 if (ret) 1517 goto free_regulators; 1518 1519 return opp_table; 1520 1521 free_regulators: 1522 while (i != 0) 1523 regulator_put(opp_table->regulators[--i]); 1524 1525 kfree(opp_table->regulators); 1526 opp_table->regulators = NULL; 1527 opp_table->regulator_count = -1; 1528 err: 1529 dev_pm_opp_put_opp_table(opp_table); 1530 1531 return ERR_PTR(ret); 1532 } 1533 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1534 1535 /** 1536 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1537 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1538 */ 1539 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1540 { 1541 int i; 1542 1543 if (!opp_table->regulators) 1544 goto put_opp_table; 1545 1546 /* Make sure there are no concurrent readers while updating opp_table */ 1547 WARN_ON(!list_empty(&opp_table->opp_list)); 1548 1549 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1550 regulator_put(opp_table->regulators[i]); 1551 1552 _free_set_opp_data(opp_table); 1553 1554 kfree(opp_table->regulators); 1555 opp_table->regulators = NULL; 1556 opp_table->regulator_count = -1; 1557 1558 put_opp_table: 1559 dev_pm_opp_put_opp_table(opp_table); 1560 } 1561 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1562 1563 /** 1564 * dev_pm_opp_set_clkname() - Set clk name for the device 1565 * @dev: Device for which clk name is being set. 1566 * @name: Clk name. 1567 * 1568 * In order to support OPP switching, OPP layer needs to get pointer to the 1569 * clock for the device. Simple cases work fine without using this routine (i.e. 1570 * by passing connection-id as NULL), but for a device with multiple clocks 1571 * available, the OPP core needs to know the exact name of the clk to use. 1572 * 1573 * This must be called before any OPPs are initialized for the device. 1574 */ 1575 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1576 { 1577 struct opp_table *opp_table; 1578 int ret; 1579 1580 opp_table = dev_pm_opp_get_opp_table(dev); 1581 if (!opp_table) 1582 return ERR_PTR(-ENOMEM); 1583 1584 /* This should be called before OPPs are initialized */ 1585 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1586 ret = -EBUSY; 1587 goto err; 1588 } 1589 1590 /* Already have default clk set, free it */ 1591 if (!IS_ERR(opp_table->clk)) 1592 clk_put(opp_table->clk); 1593 1594 /* Find clk for the device */ 1595 opp_table->clk = clk_get(dev, name); 1596 if (IS_ERR(opp_table->clk)) { 1597 ret = PTR_ERR(opp_table->clk); 1598 if (ret != -EPROBE_DEFER) { 1599 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1600 ret); 1601 } 1602 goto err; 1603 } 1604 1605 return opp_table; 1606 1607 err: 1608 dev_pm_opp_put_opp_table(opp_table); 1609 1610 return ERR_PTR(ret); 1611 } 1612 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1613 1614 /** 1615 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1616 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1617 */ 1618 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1619 { 1620 /* Make sure there are no concurrent readers while updating opp_table */ 1621 WARN_ON(!list_empty(&opp_table->opp_list)); 1622 1623 clk_put(opp_table->clk); 1624 opp_table->clk = ERR_PTR(-EINVAL); 1625 1626 dev_pm_opp_put_opp_table(opp_table); 1627 } 1628 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1629 1630 /** 1631 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1632 * @dev: Device for which the helper is getting registered. 1633 * @set_opp: Custom set OPP helper. 1634 * 1635 * This is useful to support complex platforms (like platforms with multiple 1636 * regulators per device), instead of the generic OPP set rate helper. 1637 * 1638 * This must be called before any OPPs are initialized for the device. 1639 */ 1640 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1641 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1642 { 1643 struct opp_table *opp_table; 1644 1645 if (!set_opp) 1646 return ERR_PTR(-EINVAL); 1647 1648 opp_table = dev_pm_opp_get_opp_table(dev); 1649 if (!opp_table) 1650 return ERR_PTR(-ENOMEM); 1651 1652 /* This should be called before OPPs are initialized */ 1653 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1654 dev_pm_opp_put_opp_table(opp_table); 1655 return ERR_PTR(-EBUSY); 1656 } 1657 1658 /* Another CPU that shares the OPP table has set the helper ? */ 1659 if (!opp_table->set_opp) 1660 opp_table->set_opp = set_opp; 1661 1662 return opp_table; 1663 } 1664 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1665 1666 /** 1667 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1668 * set_opp helper 1669 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1670 * 1671 * Release resources blocked for platform specific set_opp helper. 1672 */ 1673 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1674 { 1675 /* Make sure there are no concurrent readers while updating opp_table */ 1676 WARN_ON(!list_empty(&opp_table->opp_list)); 1677 1678 opp_table->set_opp = NULL; 1679 dev_pm_opp_put_opp_table(opp_table); 1680 } 1681 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1682 1683 /** 1684 * dev_pm_opp_set_genpd_virt_dev - Set virtual genpd device for an index 1685 * @dev: Consumer device for which the genpd device is getting set. 1686 * @virt_dev: virtual genpd device. 1687 * @index: index. 1688 * 1689 * Multiple generic power domains for a device are supported with the help of 1690 * virtual genpd devices, which are created for each consumer device - genpd 1691 * pair. These are the device structures which are attached to the power domain 1692 * and are required by the OPP core to set the performance state of the genpd. 1693 * 1694 * This helper will normally be called by the consumer driver of the device 1695 * "dev", as only that has details of the genpd devices. 1696 * 1697 * This helper needs to be called once for each of those virtual devices, but 1698 * only if multiple domains are available for a device. Otherwise the original 1699 * device structure will be used instead by the OPP core. 1700 */ 1701 struct opp_table *dev_pm_opp_set_genpd_virt_dev(struct device *dev, 1702 struct device *virt_dev, 1703 int index) 1704 { 1705 struct opp_table *opp_table; 1706 1707 opp_table = dev_pm_opp_get_opp_table(dev); 1708 if (!opp_table) 1709 return ERR_PTR(-ENOMEM); 1710 1711 mutex_lock(&opp_table->genpd_virt_dev_lock); 1712 1713 if (unlikely(!opp_table->genpd_virt_devs || 1714 index >= opp_table->required_opp_count || 1715 opp_table->genpd_virt_devs[index])) { 1716 1717 dev_err(dev, "Invalid request to set required device\n"); 1718 dev_pm_opp_put_opp_table(opp_table); 1719 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1720 1721 return ERR_PTR(-EINVAL); 1722 } 1723 1724 opp_table->genpd_virt_devs[index] = virt_dev; 1725 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1726 1727 return opp_table; 1728 } 1729 1730 /** 1731 * dev_pm_opp_put_genpd_virt_dev() - Releases resources blocked for genpd device. 1732 * @opp_table: OPP table returned by dev_pm_opp_set_genpd_virt_dev(). 1733 * @virt_dev: virtual genpd device. 1734 * 1735 * This releases the resource previously acquired with a call to 1736 * dev_pm_opp_set_genpd_virt_dev(). The consumer driver shall call this helper 1737 * if it doesn't want OPP core to update performance state of a power domain 1738 * anymore. 1739 */ 1740 void dev_pm_opp_put_genpd_virt_dev(struct opp_table *opp_table, 1741 struct device *virt_dev) 1742 { 1743 int i; 1744 1745 /* 1746 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 1747 * used in parallel. 1748 */ 1749 mutex_lock(&opp_table->genpd_virt_dev_lock); 1750 1751 for (i = 0; i < opp_table->required_opp_count; i++) { 1752 if (opp_table->genpd_virt_devs[i] != virt_dev) 1753 continue; 1754 1755 opp_table->genpd_virt_devs[i] = NULL; 1756 dev_pm_opp_put_opp_table(opp_table); 1757 1758 /* Drop the vote */ 1759 dev_pm_genpd_set_performance_state(virt_dev, 0); 1760 break; 1761 } 1762 1763 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1764 1765 if (unlikely(i == opp_table->required_opp_count)) 1766 dev_err(virt_dev, "Failed to find required device entry\n"); 1767 } 1768 1769 /** 1770 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 1771 * @src_table: OPP table which has dst_table as one of its required OPP table. 1772 * @dst_table: Required OPP table of the src_table. 1773 * @pstate: Current performance state of the src_table. 1774 * 1775 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 1776 * "required-opps" property of the OPP (present in @src_table) which has 1777 * performance state set to @pstate. 1778 * 1779 * Return: Zero or positive performance state on success, otherwise negative 1780 * value on errors. 1781 */ 1782 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 1783 struct opp_table *dst_table, 1784 unsigned int pstate) 1785 { 1786 struct dev_pm_opp *opp; 1787 int dest_pstate = -EINVAL; 1788 int i; 1789 1790 if (!pstate) 1791 return 0; 1792 1793 /* 1794 * Normally the src_table will have the "required_opps" property set to 1795 * point to one of the OPPs in the dst_table, but in some cases the 1796 * genpd and its master have one to one mapping of performance states 1797 * and so none of them have the "required-opps" property set. Return the 1798 * pstate of the src_table as it is in such cases. 1799 */ 1800 if (!src_table->required_opp_count) 1801 return pstate; 1802 1803 for (i = 0; i < src_table->required_opp_count; i++) { 1804 if (src_table->required_opp_tables[i]->np == dst_table->np) 1805 break; 1806 } 1807 1808 if (unlikely(i == src_table->required_opp_count)) { 1809 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 1810 __func__, src_table, dst_table); 1811 return -EINVAL; 1812 } 1813 1814 mutex_lock(&src_table->lock); 1815 1816 list_for_each_entry(opp, &src_table->opp_list, node) { 1817 if (opp->pstate == pstate) { 1818 dest_pstate = opp->required_opps[i]->pstate; 1819 goto unlock; 1820 } 1821 } 1822 1823 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 1824 dst_table); 1825 1826 unlock: 1827 mutex_unlock(&src_table->lock); 1828 1829 return dest_pstate; 1830 } 1831 1832 /** 1833 * dev_pm_opp_add() - Add an OPP table from a table definitions 1834 * @dev: device for which we do this operation 1835 * @freq: Frequency in Hz for this OPP 1836 * @u_volt: Voltage in uVolts for this OPP 1837 * 1838 * This function adds an opp definition to the opp table and returns status. 1839 * The opp is made available by default and it can be controlled using 1840 * dev_pm_opp_enable/disable functions. 1841 * 1842 * Return: 1843 * 0 On success OR 1844 * Duplicate OPPs (both freq and volt are same) and opp->available 1845 * -EEXIST Freq are same and volt are different OR 1846 * Duplicate OPPs (both freq and volt are same) and !opp->available 1847 * -ENOMEM Memory allocation failure 1848 */ 1849 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 1850 { 1851 struct opp_table *opp_table; 1852 int ret; 1853 1854 opp_table = dev_pm_opp_get_opp_table(dev); 1855 if (!opp_table) 1856 return -ENOMEM; 1857 1858 /* Fix regulator count for dynamic OPPs */ 1859 opp_table->regulator_count = 1; 1860 1861 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 1862 if (ret) 1863 dev_pm_opp_put_opp_table(opp_table); 1864 1865 return ret; 1866 } 1867 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 1868 1869 /** 1870 * _opp_set_availability() - helper to set the availability of an opp 1871 * @dev: device for which we do this operation 1872 * @freq: OPP frequency to modify availability 1873 * @availability_req: availability status requested for this opp 1874 * 1875 * Set the availability of an OPP, opp_{enable,disable} share a common logic 1876 * which is isolated here. 1877 * 1878 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1879 * copy operation, returns 0 if no modification was done OR modification was 1880 * successful. 1881 */ 1882 static int _opp_set_availability(struct device *dev, unsigned long freq, 1883 bool availability_req) 1884 { 1885 struct opp_table *opp_table; 1886 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 1887 int r = 0; 1888 1889 /* Find the opp_table */ 1890 opp_table = _find_opp_table(dev); 1891 if (IS_ERR(opp_table)) { 1892 r = PTR_ERR(opp_table); 1893 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 1894 return r; 1895 } 1896 1897 mutex_lock(&opp_table->lock); 1898 1899 /* Do we have the frequency? */ 1900 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 1901 if (tmp_opp->rate == freq) { 1902 opp = tmp_opp; 1903 break; 1904 } 1905 } 1906 1907 if (IS_ERR(opp)) { 1908 r = PTR_ERR(opp); 1909 goto unlock; 1910 } 1911 1912 /* Is update really needed? */ 1913 if (opp->available == availability_req) 1914 goto unlock; 1915 1916 opp->available = availability_req; 1917 1918 dev_pm_opp_get(opp); 1919 mutex_unlock(&opp_table->lock); 1920 1921 /* Notify the change of the OPP availability */ 1922 if (availability_req) 1923 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 1924 opp); 1925 else 1926 blocking_notifier_call_chain(&opp_table->head, 1927 OPP_EVENT_DISABLE, opp); 1928 1929 dev_pm_opp_put(opp); 1930 goto put_table; 1931 1932 unlock: 1933 mutex_unlock(&opp_table->lock); 1934 put_table: 1935 dev_pm_opp_put_opp_table(opp_table); 1936 return r; 1937 } 1938 1939 /** 1940 * dev_pm_opp_enable() - Enable a specific OPP 1941 * @dev: device for which we do this operation 1942 * @freq: OPP frequency to enable 1943 * 1944 * Enables a provided opp. If the operation is valid, this returns 0, else the 1945 * corresponding error value. It is meant to be used for users an OPP available 1946 * after being temporarily made unavailable with dev_pm_opp_disable. 1947 * 1948 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1949 * copy operation, returns 0 if no modification was done OR modification was 1950 * successful. 1951 */ 1952 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 1953 { 1954 return _opp_set_availability(dev, freq, true); 1955 } 1956 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 1957 1958 /** 1959 * dev_pm_opp_disable() - Disable a specific OPP 1960 * @dev: device for which we do this operation 1961 * @freq: OPP frequency to disable 1962 * 1963 * Disables a provided opp. If the operation is valid, this returns 1964 * 0, else the corresponding error value. It is meant to be a temporary 1965 * control by users to make this OPP not available until the circumstances are 1966 * right to make it available again (with a call to dev_pm_opp_enable). 1967 * 1968 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1969 * copy operation, returns 0 if no modification was done OR modification was 1970 * successful. 1971 */ 1972 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 1973 { 1974 return _opp_set_availability(dev, freq, false); 1975 } 1976 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 1977 1978 /** 1979 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 1980 * @dev: Device for which notifier needs to be registered 1981 * @nb: Notifier block to be registered 1982 * 1983 * Return: 0 on success or a negative error value. 1984 */ 1985 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 1986 { 1987 struct opp_table *opp_table; 1988 int ret; 1989 1990 opp_table = _find_opp_table(dev); 1991 if (IS_ERR(opp_table)) 1992 return PTR_ERR(opp_table); 1993 1994 ret = blocking_notifier_chain_register(&opp_table->head, nb); 1995 1996 dev_pm_opp_put_opp_table(opp_table); 1997 1998 return ret; 1999 } 2000 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2001 2002 /** 2003 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2004 * @dev: Device for which notifier needs to be unregistered 2005 * @nb: Notifier block to be unregistered 2006 * 2007 * Return: 0 on success or a negative error value. 2008 */ 2009 int dev_pm_opp_unregister_notifier(struct device *dev, 2010 struct notifier_block *nb) 2011 { 2012 struct opp_table *opp_table; 2013 int ret; 2014 2015 opp_table = _find_opp_table(dev); 2016 if (IS_ERR(opp_table)) 2017 return PTR_ERR(opp_table); 2018 2019 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2020 2021 dev_pm_opp_put_opp_table(opp_table); 2022 2023 return ret; 2024 } 2025 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2026 2027 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2028 { 2029 struct opp_table *opp_table; 2030 2031 /* Check for existing table for 'dev' */ 2032 opp_table = _find_opp_table(dev); 2033 if (IS_ERR(opp_table)) { 2034 int error = PTR_ERR(opp_table); 2035 2036 if (error != -ENODEV) 2037 WARN(1, "%s: opp_table: %d\n", 2038 IS_ERR_OR_NULL(dev) ? 2039 "Invalid device" : dev_name(dev), 2040 error); 2041 return; 2042 } 2043 2044 _put_opp_list_kref(opp_table); 2045 2046 /* Drop reference taken by _find_opp_table() */ 2047 dev_pm_opp_put_opp_table(opp_table); 2048 2049 /* Drop reference taken while the OPP table was added */ 2050 dev_pm_opp_put_opp_table(opp_table); 2051 } 2052 2053 /** 2054 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2055 * @dev: device pointer used to lookup OPP table. 2056 * 2057 * Free both OPPs created using static entries present in DT and the 2058 * dynamically added entries. 2059 */ 2060 void dev_pm_opp_remove_table(struct device *dev) 2061 { 2062 _dev_pm_opp_find_and_remove_table(dev); 2063 } 2064 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2065