1 /* 2 * Generic OPP Interface 3 * 4 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 5 * Nishanth Menon 6 * Romit Dasgupta 7 * Kevin Hilman 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/clk.h> 17 #include <linux/errno.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/export.h> 22 #include <linux/pm_domain.h> 23 #include <linux/regulator/consumer.h> 24 25 #include "opp.h" 26 27 /* 28 * The root of the list of all opp-tables. All opp_table structures branch off 29 * from here, with each opp_table containing the list of opps it supports in 30 * various states of availability. 31 */ 32 LIST_HEAD(opp_tables); 33 /* Lock to allow exclusive modification to the device and opp lists */ 34 DEFINE_MUTEX(opp_table_lock); 35 36 static struct opp_device *_find_opp_dev(const struct device *dev, 37 struct opp_table *opp_table) 38 { 39 struct opp_device *opp_dev; 40 41 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 42 if (opp_dev->dev == dev) 43 return opp_dev; 44 45 return NULL; 46 } 47 48 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 49 { 50 struct opp_table *opp_table; 51 bool found; 52 53 list_for_each_entry(opp_table, &opp_tables, node) { 54 mutex_lock(&opp_table->lock); 55 found = !!_find_opp_dev(dev, opp_table); 56 mutex_unlock(&opp_table->lock); 57 58 if (found) { 59 _get_opp_table_kref(opp_table); 60 61 return opp_table; 62 } 63 } 64 65 return ERR_PTR(-ENODEV); 66 } 67 68 /** 69 * _find_opp_table() - find opp_table struct using device pointer 70 * @dev: device pointer used to lookup OPP table 71 * 72 * Search OPP table for one containing matching device. 73 * 74 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 75 * -EINVAL based on type of error. 76 * 77 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 78 */ 79 struct opp_table *_find_opp_table(struct device *dev) 80 { 81 struct opp_table *opp_table; 82 83 if (IS_ERR_OR_NULL(dev)) { 84 pr_err("%s: Invalid parameters\n", __func__); 85 return ERR_PTR(-EINVAL); 86 } 87 88 mutex_lock(&opp_table_lock); 89 opp_table = _find_opp_table_unlocked(dev); 90 mutex_unlock(&opp_table_lock); 91 92 return opp_table; 93 } 94 95 /** 96 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 97 * @opp: opp for which voltage has to be returned for 98 * 99 * Return: voltage in micro volt corresponding to the opp, else 100 * return 0 101 * 102 * This is useful only for devices with single power supply. 103 */ 104 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 105 { 106 if (IS_ERR_OR_NULL(opp)) { 107 pr_err("%s: Invalid parameters\n", __func__); 108 return 0; 109 } 110 111 return opp->supplies[0].u_volt; 112 } 113 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 114 115 /** 116 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 117 * @opp: opp for which frequency has to be returned for 118 * 119 * Return: frequency in hertz corresponding to the opp, else 120 * return 0 121 */ 122 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 123 { 124 if (IS_ERR_OR_NULL(opp) || !opp->available) { 125 pr_err("%s: Invalid parameters\n", __func__); 126 return 0; 127 } 128 129 return opp->rate; 130 } 131 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 132 133 /** 134 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 135 * @opp: opp for which turbo mode is being verified 136 * 137 * Turbo OPPs are not for normal use, and can be enabled (under certain 138 * conditions) for short duration of times to finish high throughput work 139 * quickly. Running on them for longer times may overheat the chip. 140 * 141 * Return: true if opp is turbo opp, else false. 142 */ 143 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 144 { 145 if (IS_ERR_OR_NULL(opp) || !opp->available) { 146 pr_err("%s: Invalid parameters\n", __func__); 147 return false; 148 } 149 150 return opp->turbo; 151 } 152 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 153 154 /** 155 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 156 * @dev: device for which we do this operation 157 * 158 * Return: This function returns the max clock latency in nanoseconds. 159 */ 160 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 161 { 162 struct opp_table *opp_table; 163 unsigned long clock_latency_ns; 164 165 opp_table = _find_opp_table(dev); 166 if (IS_ERR(opp_table)) 167 return 0; 168 169 clock_latency_ns = opp_table->clock_latency_ns_max; 170 171 dev_pm_opp_put_opp_table(opp_table); 172 173 return clock_latency_ns; 174 } 175 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 176 177 /** 178 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 179 * @dev: device for which we do this operation 180 * 181 * Return: This function returns the max voltage latency in nanoseconds. 182 */ 183 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 184 { 185 struct opp_table *opp_table; 186 struct dev_pm_opp *opp; 187 struct regulator *reg; 188 unsigned long latency_ns = 0; 189 int ret, i, count; 190 struct { 191 unsigned long min; 192 unsigned long max; 193 } *uV; 194 195 opp_table = _find_opp_table(dev); 196 if (IS_ERR(opp_table)) 197 return 0; 198 199 /* Regulator may not be required for the device */ 200 if (!opp_table->regulators) 201 goto put_opp_table; 202 203 count = opp_table->regulator_count; 204 205 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 206 if (!uV) 207 goto put_opp_table; 208 209 mutex_lock(&opp_table->lock); 210 211 for (i = 0; i < count; i++) { 212 uV[i].min = ~0; 213 uV[i].max = 0; 214 215 list_for_each_entry(opp, &opp_table->opp_list, node) { 216 if (!opp->available) 217 continue; 218 219 if (opp->supplies[i].u_volt_min < uV[i].min) 220 uV[i].min = opp->supplies[i].u_volt_min; 221 if (opp->supplies[i].u_volt_max > uV[i].max) 222 uV[i].max = opp->supplies[i].u_volt_max; 223 } 224 } 225 226 mutex_unlock(&opp_table->lock); 227 228 /* 229 * The caller needs to ensure that opp_table (and hence the regulator) 230 * isn't freed, while we are executing this routine. 231 */ 232 for (i = 0; i < count; i++) { 233 reg = opp_table->regulators[i]; 234 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 235 if (ret > 0) 236 latency_ns += ret * 1000; 237 } 238 239 kfree(uV); 240 put_opp_table: 241 dev_pm_opp_put_opp_table(opp_table); 242 243 return latency_ns; 244 } 245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 246 247 /** 248 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 249 * nanoseconds 250 * @dev: device for which we do this operation 251 * 252 * Return: This function returns the max transition latency, in nanoseconds, to 253 * switch from one OPP to other. 254 */ 255 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 256 { 257 return dev_pm_opp_get_max_volt_latency(dev) + 258 dev_pm_opp_get_max_clock_latency(dev); 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 261 262 /** 263 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 264 * @dev: device for which we do this operation 265 * 266 * Return: This function returns the frequency of the OPP marked as suspend_opp 267 * if one is available, else returns 0; 268 */ 269 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 270 { 271 struct opp_table *opp_table; 272 unsigned long freq = 0; 273 274 opp_table = _find_opp_table(dev); 275 if (IS_ERR(opp_table)) 276 return 0; 277 278 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 279 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 280 281 dev_pm_opp_put_opp_table(opp_table); 282 283 return freq; 284 } 285 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 286 287 int _get_opp_count(struct opp_table *opp_table) 288 { 289 struct dev_pm_opp *opp; 290 int count = 0; 291 292 mutex_lock(&opp_table->lock); 293 294 list_for_each_entry(opp, &opp_table->opp_list, node) { 295 if (opp->available) 296 count++; 297 } 298 299 mutex_unlock(&opp_table->lock); 300 301 return count; 302 } 303 304 /** 305 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 306 * @dev: device for which we do this operation 307 * 308 * Return: This function returns the number of available opps if there are any, 309 * else returns 0 if none or the corresponding error value. 310 */ 311 int dev_pm_opp_get_opp_count(struct device *dev) 312 { 313 struct opp_table *opp_table; 314 int count; 315 316 opp_table = _find_opp_table(dev); 317 if (IS_ERR(opp_table)) { 318 count = PTR_ERR(opp_table); 319 dev_dbg(dev, "%s: OPP table not found (%d)\n", 320 __func__, count); 321 return count; 322 } 323 324 count = _get_opp_count(opp_table); 325 dev_pm_opp_put_opp_table(opp_table); 326 327 return count; 328 } 329 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 330 331 /** 332 * dev_pm_opp_find_freq_exact() - search for an exact frequency 333 * @dev: device for which we do this operation 334 * @freq: frequency to search for 335 * @available: true/false - match for available opp 336 * 337 * Return: Searches for exact match in the opp table and returns pointer to the 338 * matching opp if found, else returns ERR_PTR in case of error and should 339 * be handled using IS_ERR. Error return values can be: 340 * EINVAL: for bad pointer 341 * ERANGE: no match found for search 342 * ENODEV: if device not found in list of registered devices 343 * 344 * Note: available is a modifier for the search. if available=true, then the 345 * match is for exact matching frequency and is available in the stored OPP 346 * table. if false, the match is for exact frequency which is not available. 347 * 348 * This provides a mechanism to enable an opp which is not available currently 349 * or the opposite as well. 350 * 351 * The callers are required to call dev_pm_opp_put() for the returned OPP after 352 * use. 353 */ 354 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 355 unsigned long freq, 356 bool available) 357 { 358 struct opp_table *opp_table; 359 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 360 361 opp_table = _find_opp_table(dev); 362 if (IS_ERR(opp_table)) { 363 int r = PTR_ERR(opp_table); 364 365 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 366 return ERR_PTR(r); 367 } 368 369 mutex_lock(&opp_table->lock); 370 371 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 372 if (temp_opp->available == available && 373 temp_opp->rate == freq) { 374 opp = temp_opp; 375 376 /* Increment the reference count of OPP */ 377 dev_pm_opp_get(opp); 378 break; 379 } 380 } 381 382 mutex_unlock(&opp_table->lock); 383 dev_pm_opp_put_opp_table(opp_table); 384 385 return opp; 386 } 387 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 388 389 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 390 unsigned long *freq) 391 { 392 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 393 394 mutex_lock(&opp_table->lock); 395 396 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 397 if (temp_opp->available && temp_opp->rate >= *freq) { 398 opp = temp_opp; 399 *freq = opp->rate; 400 401 /* Increment the reference count of OPP */ 402 dev_pm_opp_get(opp); 403 break; 404 } 405 } 406 407 mutex_unlock(&opp_table->lock); 408 409 return opp; 410 } 411 412 /** 413 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 414 * @dev: device for which we do this operation 415 * @freq: Start frequency 416 * 417 * Search for the matching ceil *available* OPP from a starting freq 418 * for a device. 419 * 420 * Return: matching *opp and refreshes *freq accordingly, else returns 421 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 422 * values can be: 423 * EINVAL: for bad pointer 424 * ERANGE: no match found for search 425 * ENODEV: if device not found in list of registered devices 426 * 427 * The callers are required to call dev_pm_opp_put() for the returned OPP after 428 * use. 429 */ 430 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 431 unsigned long *freq) 432 { 433 struct opp_table *opp_table; 434 struct dev_pm_opp *opp; 435 436 if (!dev || !freq) { 437 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 438 return ERR_PTR(-EINVAL); 439 } 440 441 opp_table = _find_opp_table(dev); 442 if (IS_ERR(opp_table)) 443 return ERR_CAST(opp_table); 444 445 opp = _find_freq_ceil(opp_table, freq); 446 447 dev_pm_opp_put_opp_table(opp_table); 448 449 return opp; 450 } 451 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 452 453 /** 454 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 455 * @dev: device for which we do this operation 456 * @freq: Start frequency 457 * 458 * Search for the matching floor *available* OPP from a starting freq 459 * for a device. 460 * 461 * Return: matching *opp and refreshes *freq accordingly, else returns 462 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 463 * values can be: 464 * EINVAL: for bad pointer 465 * ERANGE: no match found for search 466 * ENODEV: if device not found in list of registered devices 467 * 468 * The callers are required to call dev_pm_opp_put() for the returned OPP after 469 * use. 470 */ 471 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 472 unsigned long *freq) 473 { 474 struct opp_table *opp_table; 475 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 476 477 if (!dev || !freq) { 478 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 479 return ERR_PTR(-EINVAL); 480 } 481 482 opp_table = _find_opp_table(dev); 483 if (IS_ERR(opp_table)) 484 return ERR_CAST(opp_table); 485 486 mutex_lock(&opp_table->lock); 487 488 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 489 if (temp_opp->available) { 490 /* go to the next node, before choosing prev */ 491 if (temp_opp->rate > *freq) 492 break; 493 else 494 opp = temp_opp; 495 } 496 } 497 498 /* Increment the reference count of OPP */ 499 if (!IS_ERR(opp)) 500 dev_pm_opp_get(opp); 501 mutex_unlock(&opp_table->lock); 502 dev_pm_opp_put_opp_table(opp_table); 503 504 if (!IS_ERR(opp)) 505 *freq = opp->rate; 506 507 return opp; 508 } 509 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 510 511 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 512 struct dev_pm_opp_supply *supply) 513 { 514 int ret; 515 516 /* Regulator not available for device */ 517 if (IS_ERR(reg)) { 518 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 519 PTR_ERR(reg)); 520 return 0; 521 } 522 523 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 524 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 525 526 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 527 supply->u_volt, supply->u_volt_max); 528 if (ret) 529 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 530 __func__, supply->u_volt_min, supply->u_volt, 531 supply->u_volt_max, ret); 532 533 return ret; 534 } 535 536 static inline int 537 _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 538 unsigned long old_freq, unsigned long freq) 539 { 540 int ret; 541 542 ret = clk_set_rate(clk, freq); 543 if (ret) { 544 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 545 ret); 546 } 547 548 return ret; 549 } 550 551 static int _generic_set_opp_regulator(const struct opp_table *opp_table, 552 struct device *dev, 553 unsigned long old_freq, 554 unsigned long freq, 555 struct dev_pm_opp_supply *old_supply, 556 struct dev_pm_opp_supply *new_supply) 557 { 558 struct regulator *reg = opp_table->regulators[0]; 559 int ret; 560 561 /* This function only supports single regulator per device */ 562 if (WARN_ON(opp_table->regulator_count > 1)) { 563 dev_err(dev, "multiple regulators are not supported\n"); 564 return -EINVAL; 565 } 566 567 /* Scaling up? Scale voltage before frequency */ 568 if (freq >= old_freq) { 569 ret = _set_opp_voltage(dev, reg, new_supply); 570 if (ret) 571 goto restore_voltage; 572 } 573 574 /* Change frequency */ 575 ret = _generic_set_opp_clk_only(dev, opp_table->clk, old_freq, freq); 576 if (ret) 577 goto restore_voltage; 578 579 /* Scaling down? Scale voltage after frequency */ 580 if (freq < old_freq) { 581 ret = _set_opp_voltage(dev, reg, new_supply); 582 if (ret) 583 goto restore_freq; 584 } 585 586 return 0; 587 588 restore_freq: 589 if (_generic_set_opp_clk_only(dev, opp_table->clk, freq, old_freq)) 590 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 591 __func__, old_freq); 592 restore_voltage: 593 /* This shouldn't harm even if the voltages weren't updated earlier */ 594 if (old_supply) 595 _set_opp_voltage(dev, reg, old_supply); 596 597 return ret; 598 } 599 600 static int _set_opp_custom(const struct opp_table *opp_table, 601 struct device *dev, unsigned long old_freq, 602 unsigned long freq, 603 struct dev_pm_opp_supply *old_supply, 604 struct dev_pm_opp_supply *new_supply) 605 { 606 struct dev_pm_set_opp_data *data; 607 int size; 608 609 data = opp_table->set_opp_data; 610 data->regulators = opp_table->regulators; 611 data->regulator_count = opp_table->regulator_count; 612 data->clk = opp_table->clk; 613 data->dev = dev; 614 615 data->old_opp.rate = old_freq; 616 size = sizeof(*old_supply) * opp_table->regulator_count; 617 if (IS_ERR(old_supply)) 618 memset(data->old_opp.supplies, 0, size); 619 else 620 memcpy(data->old_opp.supplies, old_supply, size); 621 622 data->new_opp.rate = freq; 623 memcpy(data->new_opp.supplies, new_supply, size); 624 625 return opp_table->set_opp(data); 626 } 627 628 /* This is only called for PM domain for now */ 629 static int _set_required_opps(struct device *dev, 630 struct opp_table *opp_table, 631 struct dev_pm_opp *opp) 632 { 633 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 634 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 635 unsigned int pstate; 636 int i, ret = 0; 637 638 if (!required_opp_tables) 639 return 0; 640 641 /* Single genpd case */ 642 if (!genpd_virt_devs) { 643 pstate = opp->required_opps[0]->pstate; 644 ret = dev_pm_genpd_set_performance_state(dev, pstate); 645 if (ret) { 646 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 647 dev_name(dev), pstate, ret); 648 } 649 return ret; 650 } 651 652 /* Multiple genpd case */ 653 654 /* 655 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 656 * after it is freed from another thread. 657 */ 658 mutex_lock(&opp_table->genpd_virt_dev_lock); 659 660 for (i = 0; i < opp_table->required_opp_count; i++) { 661 pstate = opp->required_opps[i]->pstate; 662 663 if (!genpd_virt_devs[i]) 664 continue; 665 666 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 667 if (ret) { 668 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 669 dev_name(genpd_virt_devs[i]), pstate, ret); 670 break; 671 } 672 } 673 mutex_unlock(&opp_table->genpd_virt_dev_lock); 674 675 return ret; 676 } 677 678 /** 679 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 680 * @dev: device for which we do this operation 681 * @target_freq: frequency to achieve 682 * 683 * This configures the power-supplies and clock source to the levels specified 684 * by the OPP corresponding to the target_freq. 685 */ 686 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 687 { 688 struct opp_table *opp_table; 689 unsigned long freq, old_freq; 690 struct dev_pm_opp *old_opp, *opp; 691 struct clk *clk; 692 int ret; 693 694 if (unlikely(!target_freq)) { 695 dev_err(dev, "%s: Invalid target frequency %lu\n", __func__, 696 target_freq); 697 return -EINVAL; 698 } 699 700 opp_table = _find_opp_table(dev); 701 if (IS_ERR(opp_table)) { 702 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 703 return PTR_ERR(opp_table); 704 } 705 706 clk = opp_table->clk; 707 if (IS_ERR(clk)) { 708 dev_err(dev, "%s: No clock available for the device\n", 709 __func__); 710 ret = PTR_ERR(clk); 711 goto put_opp_table; 712 } 713 714 freq = clk_round_rate(clk, target_freq); 715 if ((long)freq <= 0) 716 freq = target_freq; 717 718 old_freq = clk_get_rate(clk); 719 720 /* Return early if nothing to do */ 721 if (old_freq == freq) { 722 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 723 __func__, freq); 724 ret = 0; 725 goto put_opp_table; 726 } 727 728 old_opp = _find_freq_ceil(opp_table, &old_freq); 729 if (IS_ERR(old_opp)) { 730 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 731 __func__, old_freq, PTR_ERR(old_opp)); 732 } 733 734 opp = _find_freq_ceil(opp_table, &freq); 735 if (IS_ERR(opp)) { 736 ret = PTR_ERR(opp); 737 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 738 __func__, freq, ret); 739 goto put_old_opp; 740 } 741 742 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 743 old_freq, freq); 744 745 /* Scaling up? Configure required OPPs before frequency */ 746 if (freq > old_freq) { 747 ret = _set_required_opps(dev, opp_table, opp); 748 if (ret) 749 goto put_opp; 750 } 751 752 if (opp_table->set_opp) { 753 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 754 IS_ERR(old_opp) ? NULL : old_opp->supplies, 755 opp->supplies); 756 } else if (opp_table->regulators) { 757 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 758 IS_ERR(old_opp) ? NULL : old_opp->supplies, 759 opp->supplies); 760 } else { 761 /* Only frequency scaling */ 762 ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq); 763 } 764 765 /* Scaling down? Configure required OPPs after frequency */ 766 if (!ret && freq < old_freq) { 767 ret = _set_required_opps(dev, opp_table, opp); 768 if (ret) 769 dev_err(dev, "Failed to set required opps: %d\n", ret); 770 } 771 772 put_opp: 773 dev_pm_opp_put(opp); 774 put_old_opp: 775 if (!IS_ERR(old_opp)) 776 dev_pm_opp_put(old_opp); 777 put_opp_table: 778 dev_pm_opp_put_opp_table(opp_table); 779 return ret; 780 } 781 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 782 783 /* OPP-dev Helpers */ 784 static void _remove_opp_dev(struct opp_device *opp_dev, 785 struct opp_table *opp_table) 786 { 787 opp_debug_unregister(opp_dev, opp_table); 788 list_del(&opp_dev->node); 789 kfree(opp_dev); 790 } 791 792 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 793 struct opp_table *opp_table) 794 { 795 struct opp_device *opp_dev; 796 int ret; 797 798 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 799 if (!opp_dev) 800 return NULL; 801 802 /* Initialize opp-dev */ 803 opp_dev->dev = dev; 804 805 list_add(&opp_dev->node, &opp_table->dev_list); 806 807 /* Create debugfs entries for the opp_table */ 808 ret = opp_debug_register(opp_dev, opp_table); 809 if (ret) 810 dev_err(dev, "%s: Failed to register opp debugfs (%d)\n", 811 __func__, ret); 812 813 return opp_dev; 814 } 815 816 struct opp_device *_add_opp_dev(const struct device *dev, 817 struct opp_table *opp_table) 818 { 819 struct opp_device *opp_dev; 820 821 mutex_lock(&opp_table->lock); 822 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 823 mutex_unlock(&opp_table->lock); 824 825 return opp_dev; 826 } 827 828 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 829 { 830 struct opp_table *opp_table; 831 struct opp_device *opp_dev; 832 int ret; 833 834 /* 835 * Allocate a new OPP table. In the infrequent case where a new 836 * device is needed to be added, we pay this penalty. 837 */ 838 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 839 if (!opp_table) 840 return NULL; 841 842 mutex_init(&opp_table->lock); 843 mutex_init(&opp_table->genpd_virt_dev_lock); 844 INIT_LIST_HEAD(&opp_table->dev_list); 845 846 /* Mark regulator count uninitialized */ 847 opp_table->regulator_count = -1; 848 849 opp_dev = _add_opp_dev(dev, opp_table); 850 if (!opp_dev) { 851 kfree(opp_table); 852 return NULL; 853 } 854 855 _of_init_opp_table(opp_table, dev, index); 856 857 /* Find clk for the device */ 858 opp_table->clk = clk_get(dev, NULL); 859 if (IS_ERR(opp_table->clk)) { 860 ret = PTR_ERR(opp_table->clk); 861 if (ret != -EPROBE_DEFER) 862 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 863 ret); 864 } 865 866 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 867 INIT_LIST_HEAD(&opp_table->opp_list); 868 kref_init(&opp_table->kref); 869 870 /* Secure the device table modification */ 871 list_add(&opp_table->node, &opp_tables); 872 return opp_table; 873 } 874 875 void _get_opp_table_kref(struct opp_table *opp_table) 876 { 877 kref_get(&opp_table->kref); 878 } 879 880 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 881 { 882 struct opp_table *opp_table; 883 884 /* Hold our table modification lock here */ 885 mutex_lock(&opp_table_lock); 886 887 opp_table = _find_opp_table_unlocked(dev); 888 if (!IS_ERR(opp_table)) 889 goto unlock; 890 891 opp_table = _managed_opp(dev, index); 892 if (opp_table) { 893 if (!_add_opp_dev_unlocked(dev, opp_table)) { 894 dev_pm_opp_put_opp_table(opp_table); 895 opp_table = NULL; 896 } 897 goto unlock; 898 } 899 900 opp_table = _allocate_opp_table(dev, index); 901 902 unlock: 903 mutex_unlock(&opp_table_lock); 904 905 return opp_table; 906 } 907 908 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 909 { 910 return _opp_get_opp_table(dev, 0); 911 } 912 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 913 914 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 915 int index) 916 { 917 return _opp_get_opp_table(dev, index); 918 } 919 920 static void _opp_table_kref_release(struct kref *kref) 921 { 922 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 923 struct opp_device *opp_dev, *temp; 924 925 _of_clear_opp_table(opp_table); 926 927 /* Release clk */ 928 if (!IS_ERR(opp_table->clk)) 929 clk_put(opp_table->clk); 930 931 WARN_ON(!list_empty(&opp_table->opp_list)); 932 933 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 934 /* 935 * The OPP table is getting removed, drop the performance state 936 * constraints. 937 */ 938 if (opp_table->genpd_performance_state) 939 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 940 941 _remove_opp_dev(opp_dev, opp_table); 942 } 943 944 mutex_destroy(&opp_table->genpd_virt_dev_lock); 945 mutex_destroy(&opp_table->lock); 946 list_del(&opp_table->node); 947 kfree(opp_table); 948 949 mutex_unlock(&opp_table_lock); 950 } 951 952 void _opp_remove_all_static(struct opp_table *opp_table) 953 { 954 struct dev_pm_opp *opp, *tmp; 955 956 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 957 if (!opp->dynamic) 958 dev_pm_opp_put(opp); 959 } 960 961 opp_table->parsed_static_opps = false; 962 } 963 964 static void _opp_table_list_kref_release(struct kref *kref) 965 { 966 struct opp_table *opp_table = container_of(kref, struct opp_table, 967 list_kref); 968 969 _opp_remove_all_static(opp_table); 970 mutex_unlock(&opp_table_lock); 971 } 972 973 void _put_opp_list_kref(struct opp_table *opp_table) 974 { 975 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release, 976 &opp_table_lock); 977 } 978 979 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 980 { 981 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 982 &opp_table_lock); 983 } 984 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 985 986 void _opp_free(struct dev_pm_opp *opp) 987 { 988 kfree(opp); 989 } 990 991 static void _opp_kref_release(struct kref *kref) 992 { 993 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 994 struct opp_table *opp_table = opp->opp_table; 995 996 /* 997 * Notify the changes in the availability of the operable 998 * frequency/voltage list. 999 */ 1000 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1001 _of_opp_free_required_opps(opp_table, opp); 1002 opp_debug_remove_one(opp); 1003 list_del(&opp->node); 1004 kfree(opp); 1005 1006 mutex_unlock(&opp_table->lock); 1007 } 1008 1009 void dev_pm_opp_get(struct dev_pm_opp *opp) 1010 { 1011 kref_get(&opp->kref); 1012 } 1013 1014 void dev_pm_opp_put(struct dev_pm_opp *opp) 1015 { 1016 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1017 } 1018 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1019 1020 /** 1021 * dev_pm_opp_remove() - Remove an OPP from OPP table 1022 * @dev: device for which we do this operation 1023 * @freq: OPP to remove with matching 'freq' 1024 * 1025 * This function removes an opp from the opp table. 1026 */ 1027 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1028 { 1029 struct dev_pm_opp *opp; 1030 struct opp_table *opp_table; 1031 bool found = false; 1032 1033 opp_table = _find_opp_table(dev); 1034 if (IS_ERR(opp_table)) 1035 return; 1036 1037 mutex_lock(&opp_table->lock); 1038 1039 list_for_each_entry(opp, &opp_table->opp_list, node) { 1040 if (opp->rate == freq) { 1041 found = true; 1042 break; 1043 } 1044 } 1045 1046 mutex_unlock(&opp_table->lock); 1047 1048 if (found) { 1049 dev_pm_opp_put(opp); 1050 1051 /* Drop the reference taken by dev_pm_opp_add() */ 1052 dev_pm_opp_put_opp_table(opp_table); 1053 } else { 1054 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1055 __func__, freq); 1056 } 1057 1058 /* Drop the reference taken by _find_opp_table() */ 1059 dev_pm_opp_put_opp_table(opp_table); 1060 } 1061 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1062 1063 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1064 { 1065 struct dev_pm_opp *opp; 1066 int count, supply_size; 1067 1068 /* Allocate space for at least one supply */ 1069 count = table->regulator_count > 0 ? table->regulator_count : 1; 1070 supply_size = sizeof(*opp->supplies) * count; 1071 1072 /* allocate new OPP node and supplies structures */ 1073 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); 1074 if (!opp) 1075 return NULL; 1076 1077 /* Put the supplies at the end of the OPP structure as an empty array */ 1078 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1079 INIT_LIST_HEAD(&opp->node); 1080 1081 return opp; 1082 } 1083 1084 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1085 struct opp_table *opp_table) 1086 { 1087 struct regulator *reg; 1088 int i; 1089 1090 if (!opp_table->regulators) 1091 return true; 1092 1093 for (i = 0; i < opp_table->regulator_count; i++) { 1094 reg = opp_table->regulators[i]; 1095 1096 if (!regulator_is_supported_voltage(reg, 1097 opp->supplies[i].u_volt_min, 1098 opp->supplies[i].u_volt_max)) { 1099 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1100 __func__, opp->supplies[i].u_volt_min, 1101 opp->supplies[i].u_volt_max); 1102 return false; 1103 } 1104 } 1105 1106 return true; 1107 } 1108 1109 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1110 struct opp_table *opp_table, 1111 struct list_head **head) 1112 { 1113 struct dev_pm_opp *opp; 1114 1115 /* 1116 * Insert new OPP in order of increasing frequency and discard if 1117 * already present. 1118 * 1119 * Need to use &opp_table->opp_list in the condition part of the 'for' 1120 * loop, don't replace it with head otherwise it will become an infinite 1121 * loop. 1122 */ 1123 list_for_each_entry(opp, &opp_table->opp_list, node) { 1124 if (new_opp->rate > opp->rate) { 1125 *head = &opp->node; 1126 continue; 1127 } 1128 1129 if (new_opp->rate < opp->rate) 1130 return 0; 1131 1132 /* Duplicate OPPs */ 1133 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1134 __func__, opp->rate, opp->supplies[0].u_volt, 1135 opp->available, new_opp->rate, 1136 new_opp->supplies[0].u_volt, new_opp->available); 1137 1138 /* Should we compare voltages for all regulators here ? */ 1139 return opp->available && 1140 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1141 } 1142 1143 return 0; 1144 } 1145 1146 /* 1147 * Returns: 1148 * 0: On success. And appropriate error message for duplicate OPPs. 1149 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1150 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1151 * sure we don't print error messages unnecessarily if different parts of 1152 * kernel try to initialize the OPP table. 1153 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1154 * should be considered an error by the callers of _opp_add(). 1155 */ 1156 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1157 struct opp_table *opp_table, bool rate_not_available) 1158 { 1159 struct list_head *head; 1160 int ret; 1161 1162 mutex_lock(&opp_table->lock); 1163 head = &opp_table->opp_list; 1164 1165 if (likely(!rate_not_available)) { 1166 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1167 if (ret) { 1168 mutex_unlock(&opp_table->lock); 1169 return ret; 1170 } 1171 } 1172 1173 list_add(&new_opp->node, head); 1174 mutex_unlock(&opp_table->lock); 1175 1176 new_opp->opp_table = opp_table; 1177 kref_init(&new_opp->kref); 1178 1179 ret = opp_debug_create_one(new_opp, opp_table); 1180 if (ret) 1181 dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n", 1182 __func__, ret); 1183 1184 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1185 new_opp->available = false; 1186 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1187 __func__, new_opp->rate); 1188 } 1189 1190 return 0; 1191 } 1192 1193 /** 1194 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1195 * @opp_table: OPP table 1196 * @dev: device for which we do this operation 1197 * @freq: Frequency in Hz for this OPP 1198 * @u_volt: Voltage in uVolts for this OPP 1199 * @dynamic: Dynamically added OPPs. 1200 * 1201 * This function adds an opp definition to the opp table and returns status. 1202 * The opp is made available by default and it can be controlled using 1203 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1204 * 1205 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1206 * and freed by dev_pm_opp_of_remove_table. 1207 * 1208 * Return: 1209 * 0 On success OR 1210 * Duplicate OPPs (both freq and volt are same) and opp->available 1211 * -EEXIST Freq are same and volt are different OR 1212 * Duplicate OPPs (both freq and volt are same) and !opp->available 1213 * -ENOMEM Memory allocation failure 1214 */ 1215 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1216 unsigned long freq, long u_volt, bool dynamic) 1217 { 1218 struct dev_pm_opp *new_opp; 1219 unsigned long tol; 1220 int ret; 1221 1222 new_opp = _opp_allocate(opp_table); 1223 if (!new_opp) 1224 return -ENOMEM; 1225 1226 /* populate the opp table */ 1227 new_opp->rate = freq; 1228 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1229 new_opp->supplies[0].u_volt = u_volt; 1230 new_opp->supplies[0].u_volt_min = u_volt - tol; 1231 new_opp->supplies[0].u_volt_max = u_volt + tol; 1232 new_opp->available = true; 1233 new_opp->dynamic = dynamic; 1234 1235 ret = _opp_add(dev, new_opp, opp_table, false); 1236 if (ret) { 1237 /* Don't return error for duplicate OPPs */ 1238 if (ret == -EBUSY) 1239 ret = 0; 1240 goto free_opp; 1241 } 1242 1243 /* 1244 * Notify the changes in the availability of the operable 1245 * frequency/voltage list. 1246 */ 1247 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1248 return 0; 1249 1250 free_opp: 1251 _opp_free(new_opp); 1252 1253 return ret; 1254 } 1255 1256 /** 1257 * dev_pm_opp_set_supported_hw() - Set supported platforms 1258 * @dev: Device for which supported-hw has to be set. 1259 * @versions: Array of hierarchy of versions to match. 1260 * @count: Number of elements in the array. 1261 * 1262 * This is required only for the V2 bindings, and it enables a platform to 1263 * specify the hierarchy of versions it supports. OPP layer will then enable 1264 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1265 * property. 1266 */ 1267 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1268 const u32 *versions, unsigned int count) 1269 { 1270 struct opp_table *opp_table; 1271 1272 opp_table = dev_pm_opp_get_opp_table(dev); 1273 if (!opp_table) 1274 return ERR_PTR(-ENOMEM); 1275 1276 /* Make sure there are no concurrent readers while updating opp_table */ 1277 WARN_ON(!list_empty(&opp_table->opp_list)); 1278 1279 /* Another CPU that shares the OPP table has set the property ? */ 1280 if (opp_table->supported_hw) 1281 return opp_table; 1282 1283 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1284 GFP_KERNEL); 1285 if (!opp_table->supported_hw) { 1286 dev_pm_opp_put_opp_table(opp_table); 1287 return ERR_PTR(-ENOMEM); 1288 } 1289 1290 opp_table->supported_hw_count = count; 1291 1292 return opp_table; 1293 } 1294 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1295 1296 /** 1297 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1298 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1299 * 1300 * This is required only for the V2 bindings, and is called for a matching 1301 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1302 * will not be freed. 1303 */ 1304 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1305 { 1306 /* Make sure there are no concurrent readers while updating opp_table */ 1307 WARN_ON(!list_empty(&opp_table->opp_list)); 1308 1309 kfree(opp_table->supported_hw); 1310 opp_table->supported_hw = NULL; 1311 opp_table->supported_hw_count = 0; 1312 1313 dev_pm_opp_put_opp_table(opp_table); 1314 } 1315 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1316 1317 /** 1318 * dev_pm_opp_set_prop_name() - Set prop-extn name 1319 * @dev: Device for which the prop-name has to be set. 1320 * @name: name to postfix to properties. 1321 * 1322 * This is required only for the V2 bindings, and it enables a platform to 1323 * specify the extn to be used for certain property names. The properties to 1324 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1325 * should postfix the property name with -<name> while looking for them. 1326 */ 1327 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1328 { 1329 struct opp_table *opp_table; 1330 1331 opp_table = dev_pm_opp_get_opp_table(dev); 1332 if (!opp_table) 1333 return ERR_PTR(-ENOMEM); 1334 1335 /* Make sure there are no concurrent readers while updating opp_table */ 1336 WARN_ON(!list_empty(&opp_table->opp_list)); 1337 1338 /* Another CPU that shares the OPP table has set the property ? */ 1339 if (opp_table->prop_name) 1340 return opp_table; 1341 1342 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1343 if (!opp_table->prop_name) { 1344 dev_pm_opp_put_opp_table(opp_table); 1345 return ERR_PTR(-ENOMEM); 1346 } 1347 1348 return opp_table; 1349 } 1350 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1351 1352 /** 1353 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1354 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1355 * 1356 * This is required only for the V2 bindings, and is called for a matching 1357 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1358 * will not be freed. 1359 */ 1360 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1361 { 1362 /* Make sure there are no concurrent readers while updating opp_table */ 1363 WARN_ON(!list_empty(&opp_table->opp_list)); 1364 1365 kfree(opp_table->prop_name); 1366 opp_table->prop_name = NULL; 1367 1368 dev_pm_opp_put_opp_table(opp_table); 1369 } 1370 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1371 1372 static int _allocate_set_opp_data(struct opp_table *opp_table) 1373 { 1374 struct dev_pm_set_opp_data *data; 1375 int len, count = opp_table->regulator_count; 1376 1377 if (WARN_ON(!opp_table->regulators)) 1378 return -EINVAL; 1379 1380 /* space for set_opp_data */ 1381 len = sizeof(*data); 1382 1383 /* space for old_opp.supplies and new_opp.supplies */ 1384 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1385 1386 data = kzalloc(len, GFP_KERNEL); 1387 if (!data) 1388 return -ENOMEM; 1389 1390 data->old_opp.supplies = (void *)(data + 1); 1391 data->new_opp.supplies = data->old_opp.supplies + count; 1392 1393 opp_table->set_opp_data = data; 1394 1395 return 0; 1396 } 1397 1398 static void _free_set_opp_data(struct opp_table *opp_table) 1399 { 1400 kfree(opp_table->set_opp_data); 1401 opp_table->set_opp_data = NULL; 1402 } 1403 1404 /** 1405 * dev_pm_opp_set_regulators() - Set regulator names for the device 1406 * @dev: Device for which regulator name is being set. 1407 * @names: Array of pointers to the names of the regulator. 1408 * @count: Number of regulators. 1409 * 1410 * In order to support OPP switching, OPP layer needs to know the name of the 1411 * device's regulators, as the core would be required to switch voltages as 1412 * well. 1413 * 1414 * This must be called before any OPPs are initialized for the device. 1415 */ 1416 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1417 const char * const names[], 1418 unsigned int count) 1419 { 1420 struct opp_table *opp_table; 1421 struct regulator *reg; 1422 int ret, i; 1423 1424 opp_table = dev_pm_opp_get_opp_table(dev); 1425 if (!opp_table) 1426 return ERR_PTR(-ENOMEM); 1427 1428 /* This should be called before OPPs are initialized */ 1429 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1430 ret = -EBUSY; 1431 goto err; 1432 } 1433 1434 /* Another CPU that shares the OPP table has set the regulators ? */ 1435 if (opp_table->regulators) 1436 return opp_table; 1437 1438 opp_table->regulators = kmalloc_array(count, 1439 sizeof(*opp_table->regulators), 1440 GFP_KERNEL); 1441 if (!opp_table->regulators) { 1442 ret = -ENOMEM; 1443 goto err; 1444 } 1445 1446 for (i = 0; i < count; i++) { 1447 reg = regulator_get_optional(dev, names[i]); 1448 if (IS_ERR(reg)) { 1449 ret = PTR_ERR(reg); 1450 if (ret != -EPROBE_DEFER) 1451 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1452 __func__, names[i], ret); 1453 goto free_regulators; 1454 } 1455 1456 opp_table->regulators[i] = reg; 1457 } 1458 1459 opp_table->regulator_count = count; 1460 1461 /* Allocate block only once to pass to set_opp() routines */ 1462 ret = _allocate_set_opp_data(opp_table); 1463 if (ret) 1464 goto free_regulators; 1465 1466 return opp_table; 1467 1468 free_regulators: 1469 while (i != 0) 1470 regulator_put(opp_table->regulators[--i]); 1471 1472 kfree(opp_table->regulators); 1473 opp_table->regulators = NULL; 1474 opp_table->regulator_count = -1; 1475 err: 1476 dev_pm_opp_put_opp_table(opp_table); 1477 1478 return ERR_PTR(ret); 1479 } 1480 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1481 1482 /** 1483 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1484 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1485 */ 1486 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1487 { 1488 int i; 1489 1490 if (!opp_table->regulators) 1491 goto put_opp_table; 1492 1493 /* Make sure there are no concurrent readers while updating opp_table */ 1494 WARN_ON(!list_empty(&opp_table->opp_list)); 1495 1496 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1497 regulator_put(opp_table->regulators[i]); 1498 1499 _free_set_opp_data(opp_table); 1500 1501 kfree(opp_table->regulators); 1502 opp_table->regulators = NULL; 1503 opp_table->regulator_count = -1; 1504 1505 put_opp_table: 1506 dev_pm_opp_put_opp_table(opp_table); 1507 } 1508 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1509 1510 /** 1511 * dev_pm_opp_set_clkname() - Set clk name for the device 1512 * @dev: Device for which clk name is being set. 1513 * @name: Clk name. 1514 * 1515 * In order to support OPP switching, OPP layer needs to get pointer to the 1516 * clock for the device. Simple cases work fine without using this routine (i.e. 1517 * by passing connection-id as NULL), but for a device with multiple clocks 1518 * available, the OPP core needs to know the exact name of the clk to use. 1519 * 1520 * This must be called before any OPPs are initialized for the device. 1521 */ 1522 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1523 { 1524 struct opp_table *opp_table; 1525 int ret; 1526 1527 opp_table = dev_pm_opp_get_opp_table(dev); 1528 if (!opp_table) 1529 return ERR_PTR(-ENOMEM); 1530 1531 /* This should be called before OPPs are initialized */ 1532 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1533 ret = -EBUSY; 1534 goto err; 1535 } 1536 1537 /* Already have default clk set, free it */ 1538 if (!IS_ERR(opp_table->clk)) 1539 clk_put(opp_table->clk); 1540 1541 /* Find clk for the device */ 1542 opp_table->clk = clk_get(dev, name); 1543 if (IS_ERR(opp_table->clk)) { 1544 ret = PTR_ERR(opp_table->clk); 1545 if (ret != -EPROBE_DEFER) { 1546 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1547 ret); 1548 } 1549 goto err; 1550 } 1551 1552 return opp_table; 1553 1554 err: 1555 dev_pm_opp_put_opp_table(opp_table); 1556 1557 return ERR_PTR(ret); 1558 } 1559 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1560 1561 /** 1562 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1563 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1564 */ 1565 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1566 { 1567 /* Make sure there are no concurrent readers while updating opp_table */ 1568 WARN_ON(!list_empty(&opp_table->opp_list)); 1569 1570 clk_put(opp_table->clk); 1571 opp_table->clk = ERR_PTR(-EINVAL); 1572 1573 dev_pm_opp_put_opp_table(opp_table); 1574 } 1575 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1576 1577 /** 1578 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1579 * @dev: Device for which the helper is getting registered. 1580 * @set_opp: Custom set OPP helper. 1581 * 1582 * This is useful to support complex platforms (like platforms with multiple 1583 * regulators per device), instead of the generic OPP set rate helper. 1584 * 1585 * This must be called before any OPPs are initialized for the device. 1586 */ 1587 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1588 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1589 { 1590 struct opp_table *opp_table; 1591 1592 if (!set_opp) 1593 return ERR_PTR(-EINVAL); 1594 1595 opp_table = dev_pm_opp_get_opp_table(dev); 1596 if (!opp_table) 1597 return ERR_PTR(-ENOMEM); 1598 1599 /* This should be called before OPPs are initialized */ 1600 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1601 dev_pm_opp_put_opp_table(opp_table); 1602 return ERR_PTR(-EBUSY); 1603 } 1604 1605 /* Another CPU that shares the OPP table has set the helper ? */ 1606 if (!opp_table->set_opp) 1607 opp_table->set_opp = set_opp; 1608 1609 return opp_table; 1610 } 1611 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1612 1613 /** 1614 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1615 * set_opp helper 1616 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1617 * 1618 * Release resources blocked for platform specific set_opp helper. 1619 */ 1620 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1621 { 1622 /* Make sure there are no concurrent readers while updating opp_table */ 1623 WARN_ON(!list_empty(&opp_table->opp_list)); 1624 1625 opp_table->set_opp = NULL; 1626 dev_pm_opp_put_opp_table(opp_table); 1627 } 1628 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1629 1630 /** 1631 * dev_pm_opp_set_genpd_virt_dev - Set virtual genpd device for an index 1632 * @dev: Consumer device for which the genpd device is getting set. 1633 * @virt_dev: virtual genpd device. 1634 * @index: index. 1635 * 1636 * Multiple generic power domains for a device are supported with the help of 1637 * virtual genpd devices, which are created for each consumer device - genpd 1638 * pair. These are the device structures which are attached to the power domain 1639 * and are required by the OPP core to set the performance state of the genpd. 1640 * 1641 * This helper will normally be called by the consumer driver of the device 1642 * "dev", as only that has details of the genpd devices. 1643 * 1644 * This helper needs to be called once for each of those virtual devices, but 1645 * only if multiple domains are available for a device. Otherwise the original 1646 * device structure will be used instead by the OPP core. 1647 */ 1648 struct opp_table *dev_pm_opp_set_genpd_virt_dev(struct device *dev, 1649 struct device *virt_dev, 1650 int index) 1651 { 1652 struct opp_table *opp_table; 1653 1654 opp_table = dev_pm_opp_get_opp_table(dev); 1655 if (!opp_table) 1656 return ERR_PTR(-ENOMEM); 1657 1658 mutex_lock(&opp_table->genpd_virt_dev_lock); 1659 1660 if (unlikely(!opp_table->genpd_virt_devs || 1661 index >= opp_table->required_opp_count || 1662 opp_table->genpd_virt_devs[index])) { 1663 1664 dev_err(dev, "Invalid request to set required device\n"); 1665 dev_pm_opp_put_opp_table(opp_table); 1666 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1667 1668 return ERR_PTR(-EINVAL); 1669 } 1670 1671 opp_table->genpd_virt_devs[index] = virt_dev; 1672 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1673 1674 return opp_table; 1675 } 1676 1677 /** 1678 * dev_pm_opp_put_genpd_virt_dev() - Releases resources blocked for genpd device. 1679 * @opp_table: OPP table returned by dev_pm_opp_set_genpd_virt_dev(). 1680 * @virt_dev: virtual genpd device. 1681 * 1682 * This releases the resource previously acquired with a call to 1683 * dev_pm_opp_set_genpd_virt_dev(). The consumer driver shall call this helper 1684 * if it doesn't want OPP core to update performance state of a power domain 1685 * anymore. 1686 */ 1687 void dev_pm_opp_put_genpd_virt_dev(struct opp_table *opp_table, 1688 struct device *virt_dev) 1689 { 1690 int i; 1691 1692 /* 1693 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 1694 * used in parallel. 1695 */ 1696 mutex_lock(&opp_table->genpd_virt_dev_lock); 1697 1698 for (i = 0; i < opp_table->required_opp_count; i++) { 1699 if (opp_table->genpd_virt_devs[i] != virt_dev) 1700 continue; 1701 1702 opp_table->genpd_virt_devs[i] = NULL; 1703 dev_pm_opp_put_opp_table(opp_table); 1704 1705 /* Drop the vote */ 1706 dev_pm_genpd_set_performance_state(virt_dev, 0); 1707 break; 1708 } 1709 1710 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1711 1712 if (unlikely(i == opp_table->required_opp_count)) 1713 dev_err(virt_dev, "Failed to find required device entry\n"); 1714 } 1715 1716 /** 1717 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 1718 * @src_table: OPP table which has dst_table as one of its required OPP table. 1719 * @dst_table: Required OPP table of the src_table. 1720 * @pstate: Current performance state of the src_table. 1721 * 1722 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 1723 * "required-opps" property of the OPP (present in @src_table) which has 1724 * performance state set to @pstate. 1725 * 1726 * Return: Zero or positive performance state on success, otherwise negative 1727 * value on errors. 1728 */ 1729 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 1730 struct opp_table *dst_table, 1731 unsigned int pstate) 1732 { 1733 struct dev_pm_opp *opp; 1734 int dest_pstate = -EINVAL; 1735 int i; 1736 1737 if (!pstate) 1738 return 0; 1739 1740 /* 1741 * Normally the src_table will have the "required_opps" property set to 1742 * point to one of the OPPs in the dst_table, but in some cases the 1743 * genpd and its master have one to one mapping of performance states 1744 * and so none of them have the "required-opps" property set. Return the 1745 * pstate of the src_table as it is in such cases. 1746 */ 1747 if (!src_table->required_opp_count) 1748 return pstate; 1749 1750 for (i = 0; i < src_table->required_opp_count; i++) { 1751 if (src_table->required_opp_tables[i]->np == dst_table->np) 1752 break; 1753 } 1754 1755 if (unlikely(i == src_table->required_opp_count)) { 1756 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 1757 __func__, src_table, dst_table); 1758 return -EINVAL; 1759 } 1760 1761 mutex_lock(&src_table->lock); 1762 1763 list_for_each_entry(opp, &src_table->opp_list, node) { 1764 if (opp->pstate == pstate) { 1765 dest_pstate = opp->required_opps[i]->pstate; 1766 goto unlock; 1767 } 1768 } 1769 1770 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 1771 dst_table); 1772 1773 unlock: 1774 mutex_unlock(&src_table->lock); 1775 1776 return dest_pstate; 1777 } 1778 1779 /** 1780 * dev_pm_opp_add() - Add an OPP table from a table definitions 1781 * @dev: device for which we do this operation 1782 * @freq: Frequency in Hz for this OPP 1783 * @u_volt: Voltage in uVolts for this OPP 1784 * 1785 * This function adds an opp definition to the opp table and returns status. 1786 * The opp is made available by default and it can be controlled using 1787 * dev_pm_opp_enable/disable functions. 1788 * 1789 * Return: 1790 * 0 On success OR 1791 * Duplicate OPPs (both freq and volt are same) and opp->available 1792 * -EEXIST Freq are same and volt are different OR 1793 * Duplicate OPPs (both freq and volt are same) and !opp->available 1794 * -ENOMEM Memory allocation failure 1795 */ 1796 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 1797 { 1798 struct opp_table *opp_table; 1799 int ret; 1800 1801 opp_table = dev_pm_opp_get_opp_table(dev); 1802 if (!opp_table) 1803 return -ENOMEM; 1804 1805 /* Fix regulator count for dynamic OPPs */ 1806 opp_table->regulator_count = 1; 1807 1808 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 1809 if (ret) 1810 dev_pm_opp_put_opp_table(opp_table); 1811 1812 return ret; 1813 } 1814 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 1815 1816 /** 1817 * _opp_set_availability() - helper to set the availability of an opp 1818 * @dev: device for which we do this operation 1819 * @freq: OPP frequency to modify availability 1820 * @availability_req: availability status requested for this opp 1821 * 1822 * Set the availability of an OPP, opp_{enable,disable} share a common logic 1823 * which is isolated here. 1824 * 1825 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1826 * copy operation, returns 0 if no modification was done OR modification was 1827 * successful. 1828 */ 1829 static int _opp_set_availability(struct device *dev, unsigned long freq, 1830 bool availability_req) 1831 { 1832 struct opp_table *opp_table; 1833 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 1834 int r = 0; 1835 1836 /* Find the opp_table */ 1837 opp_table = _find_opp_table(dev); 1838 if (IS_ERR(opp_table)) { 1839 r = PTR_ERR(opp_table); 1840 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 1841 return r; 1842 } 1843 1844 mutex_lock(&opp_table->lock); 1845 1846 /* Do we have the frequency? */ 1847 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 1848 if (tmp_opp->rate == freq) { 1849 opp = tmp_opp; 1850 break; 1851 } 1852 } 1853 1854 if (IS_ERR(opp)) { 1855 r = PTR_ERR(opp); 1856 goto unlock; 1857 } 1858 1859 /* Is update really needed? */ 1860 if (opp->available == availability_req) 1861 goto unlock; 1862 1863 opp->available = availability_req; 1864 1865 dev_pm_opp_get(opp); 1866 mutex_unlock(&opp_table->lock); 1867 1868 /* Notify the change of the OPP availability */ 1869 if (availability_req) 1870 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 1871 opp); 1872 else 1873 blocking_notifier_call_chain(&opp_table->head, 1874 OPP_EVENT_DISABLE, opp); 1875 1876 dev_pm_opp_put(opp); 1877 goto put_table; 1878 1879 unlock: 1880 mutex_unlock(&opp_table->lock); 1881 put_table: 1882 dev_pm_opp_put_opp_table(opp_table); 1883 return r; 1884 } 1885 1886 /** 1887 * dev_pm_opp_enable() - Enable a specific OPP 1888 * @dev: device for which we do this operation 1889 * @freq: OPP frequency to enable 1890 * 1891 * Enables a provided opp. If the operation is valid, this returns 0, else the 1892 * corresponding error value. It is meant to be used for users an OPP available 1893 * after being temporarily made unavailable with dev_pm_opp_disable. 1894 * 1895 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1896 * copy operation, returns 0 if no modification was done OR modification was 1897 * successful. 1898 */ 1899 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 1900 { 1901 return _opp_set_availability(dev, freq, true); 1902 } 1903 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 1904 1905 /** 1906 * dev_pm_opp_disable() - Disable a specific OPP 1907 * @dev: device for which we do this operation 1908 * @freq: OPP frequency to disable 1909 * 1910 * Disables a provided opp. If the operation is valid, this returns 1911 * 0, else the corresponding error value. It is meant to be a temporary 1912 * control by users to make this OPP not available until the circumstances are 1913 * right to make it available again (with a call to dev_pm_opp_enable). 1914 * 1915 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 1916 * copy operation, returns 0 if no modification was done OR modification was 1917 * successful. 1918 */ 1919 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 1920 { 1921 return _opp_set_availability(dev, freq, false); 1922 } 1923 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 1924 1925 /** 1926 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 1927 * @dev: Device for which notifier needs to be registered 1928 * @nb: Notifier block to be registered 1929 * 1930 * Return: 0 on success or a negative error value. 1931 */ 1932 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 1933 { 1934 struct opp_table *opp_table; 1935 int ret; 1936 1937 opp_table = _find_opp_table(dev); 1938 if (IS_ERR(opp_table)) 1939 return PTR_ERR(opp_table); 1940 1941 ret = blocking_notifier_chain_register(&opp_table->head, nb); 1942 1943 dev_pm_opp_put_opp_table(opp_table); 1944 1945 return ret; 1946 } 1947 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 1948 1949 /** 1950 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 1951 * @dev: Device for which notifier needs to be unregistered 1952 * @nb: Notifier block to be unregistered 1953 * 1954 * Return: 0 on success or a negative error value. 1955 */ 1956 int dev_pm_opp_unregister_notifier(struct device *dev, 1957 struct notifier_block *nb) 1958 { 1959 struct opp_table *opp_table; 1960 int ret; 1961 1962 opp_table = _find_opp_table(dev); 1963 if (IS_ERR(opp_table)) 1964 return PTR_ERR(opp_table); 1965 1966 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 1967 1968 dev_pm_opp_put_opp_table(opp_table); 1969 1970 return ret; 1971 } 1972 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 1973 1974 void _dev_pm_opp_find_and_remove_table(struct device *dev) 1975 { 1976 struct opp_table *opp_table; 1977 1978 /* Check for existing table for 'dev' */ 1979 opp_table = _find_opp_table(dev); 1980 if (IS_ERR(opp_table)) { 1981 int error = PTR_ERR(opp_table); 1982 1983 if (error != -ENODEV) 1984 WARN(1, "%s: opp_table: %d\n", 1985 IS_ERR_OR_NULL(dev) ? 1986 "Invalid device" : dev_name(dev), 1987 error); 1988 return; 1989 } 1990 1991 _put_opp_list_kref(opp_table); 1992 1993 /* Drop reference taken by _find_opp_table() */ 1994 dev_pm_opp_put_opp_table(opp_table); 1995 1996 /* Drop reference taken while the OPP table was added */ 1997 dev_pm_opp_put_opp_table(opp_table); 1998 } 1999 2000 /** 2001 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2002 * @dev: device pointer used to lookup OPP table. 2003 * 2004 * Free both OPPs created using static entries present in DT and the 2005 * dynamically added entries. 2006 */ 2007 void dev_pm_opp_remove_table(struct device *dev) 2008 { 2009 _dev_pm_opp_find_and_remove_table(dev); 2010 } 2011 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2012