1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp) || !opp->available) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 /** 405 * dev_pm_opp_find_level_exact() - search for an exact level 406 * @dev: device for which we do this operation 407 * @level: level to search for 408 * 409 * Return: Searches for exact match in the opp table and returns pointer to the 410 * matching opp if found, else returns ERR_PTR in case of error and should 411 * be handled using IS_ERR. Error return values can be: 412 * EINVAL: for bad pointer 413 * ERANGE: no match found for search 414 * ENODEV: if device not found in list of registered devices 415 * 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after 417 * use. 418 */ 419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 420 unsigned int level) 421 { 422 struct opp_table *opp_table; 423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 424 425 opp_table = _find_opp_table(dev); 426 if (IS_ERR(opp_table)) { 427 int r = PTR_ERR(opp_table); 428 429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 430 return ERR_PTR(r); 431 } 432 433 mutex_lock(&opp_table->lock); 434 435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 436 if (temp_opp->level == level) { 437 opp = temp_opp; 438 439 /* Increment the reference count of OPP */ 440 dev_pm_opp_get(opp); 441 break; 442 } 443 } 444 445 mutex_unlock(&opp_table->lock); 446 dev_pm_opp_put_opp_table(opp_table); 447 448 return opp; 449 } 450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 451 452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 453 unsigned long *freq) 454 { 455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 456 457 mutex_lock(&opp_table->lock); 458 459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 460 if (temp_opp->available && temp_opp->rate >= *freq) { 461 opp = temp_opp; 462 *freq = opp->rate; 463 464 /* Increment the reference count of OPP */ 465 dev_pm_opp_get(opp); 466 break; 467 } 468 } 469 470 mutex_unlock(&opp_table->lock); 471 472 return opp; 473 } 474 475 /** 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 477 * @dev: device for which we do this operation 478 * @freq: Start frequency 479 * 480 * Search for the matching ceil *available* OPP from a starting freq 481 * for a device. 482 * 483 * Return: matching *opp and refreshes *freq accordingly, else returns 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 485 * values can be: 486 * EINVAL: for bad pointer 487 * ERANGE: no match found for search 488 * ENODEV: if device not found in list of registered devices 489 * 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after 491 * use. 492 */ 493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 494 unsigned long *freq) 495 { 496 struct opp_table *opp_table; 497 struct dev_pm_opp *opp; 498 499 if (!dev || !freq) { 500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 501 return ERR_PTR(-EINVAL); 502 } 503 504 opp_table = _find_opp_table(dev); 505 if (IS_ERR(opp_table)) 506 return ERR_CAST(opp_table); 507 508 opp = _find_freq_ceil(opp_table, freq); 509 510 dev_pm_opp_put_opp_table(opp_table); 511 512 return opp; 513 } 514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 515 516 /** 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 518 * @dev: device for which we do this operation 519 * @freq: Start frequency 520 * 521 * Search for the matching floor *available* OPP from a starting freq 522 * for a device. 523 * 524 * Return: matching *opp and refreshes *freq accordingly, else returns 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 526 * values can be: 527 * EINVAL: for bad pointer 528 * ERANGE: no match found for search 529 * ENODEV: if device not found in list of registered devices 530 * 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after 532 * use. 533 */ 534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 535 unsigned long *freq) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 539 540 if (!dev || !freq) { 541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 542 return ERR_PTR(-EINVAL); 543 } 544 545 opp_table = _find_opp_table(dev); 546 if (IS_ERR(opp_table)) 547 return ERR_CAST(opp_table); 548 549 mutex_lock(&opp_table->lock); 550 551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 552 if (temp_opp->available) { 553 /* go to the next node, before choosing prev */ 554 if (temp_opp->rate > *freq) 555 break; 556 else 557 opp = temp_opp; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) 563 dev_pm_opp_get(opp); 564 mutex_unlock(&opp_table->lock); 565 dev_pm_opp_put_opp_table(opp_table); 566 567 if (!IS_ERR(opp)) 568 *freq = opp->rate; 569 570 return opp; 571 } 572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 573 574 /** 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 576 * target voltage. 577 * @dev: Device for which we do this operation. 578 * @u_volt: Target voltage. 579 * 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 581 * 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be 583 * handled using IS_ERR. 584 * 585 * Error return values can be: 586 * EINVAL: bad parameters 587 * 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after 589 * use. 590 */ 591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 592 unsigned long u_volt) 593 { 594 struct opp_table *opp_table; 595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 596 597 if (!dev || !u_volt) { 598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 599 u_volt); 600 return ERR_PTR(-EINVAL); 601 } 602 603 opp_table = _find_opp_table(dev); 604 if (IS_ERR(opp_table)) 605 return ERR_CAST(opp_table); 606 607 mutex_lock(&opp_table->lock); 608 609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 610 if (temp_opp->available) { 611 if (temp_opp->supplies[0].u_volt > u_volt) 612 break; 613 opp = temp_opp; 614 } 615 } 616 617 /* Increment the reference count of OPP */ 618 if (!IS_ERR(opp)) 619 dev_pm_opp_get(opp); 620 621 mutex_unlock(&opp_table->lock); 622 dev_pm_opp_put_opp_table(opp_table); 623 624 return opp; 625 } 626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 627 628 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 629 struct dev_pm_opp_supply *supply) 630 { 631 int ret; 632 633 /* Regulator not available for device */ 634 if (IS_ERR(reg)) { 635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 636 PTR_ERR(reg)); 637 return 0; 638 } 639 640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 641 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 642 643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 644 supply->u_volt, supply->u_volt_max); 645 if (ret) 646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 647 __func__, supply->u_volt_min, supply->u_volt, 648 supply->u_volt_max, ret); 649 650 return ret; 651 } 652 653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 654 unsigned long freq) 655 { 656 int ret; 657 658 ret = clk_set_rate(clk, freq); 659 if (ret) { 660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 661 ret); 662 } 663 664 return ret; 665 } 666 667 static int _generic_set_opp_regulator(const struct opp_table *opp_table, 668 struct device *dev, 669 unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct regulator *reg = opp_table->regulators[0]; 675 int ret; 676 677 /* This function only supports single regulator per device */ 678 if (WARN_ON(opp_table->regulator_count > 1)) { 679 dev_err(dev, "multiple regulators are not supported\n"); 680 return -EINVAL; 681 } 682 683 /* Scaling up? Scale voltage before frequency */ 684 if (freq >= old_freq) { 685 ret = _set_opp_voltage(dev, reg, new_supply); 686 if (ret) 687 goto restore_voltage; 688 } 689 690 /* Change frequency */ 691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 692 if (ret) 693 goto restore_voltage; 694 695 /* Scaling down? Scale voltage after frequency */ 696 if (freq < old_freq) { 697 ret = _set_opp_voltage(dev, reg, new_supply); 698 if (ret) 699 goto restore_freq; 700 } 701 702 return 0; 703 704 restore_freq: 705 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 706 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 707 __func__, old_freq); 708 restore_voltage: 709 /* This shouldn't harm even if the voltages weren't updated earlier */ 710 if (old_supply) 711 _set_opp_voltage(dev, reg, old_supply); 712 713 return ret; 714 } 715 716 static int _set_opp_custom(const struct opp_table *opp_table, 717 struct device *dev, unsigned long old_freq, 718 unsigned long freq, 719 struct dev_pm_opp_supply *old_supply, 720 struct dev_pm_opp_supply *new_supply) 721 { 722 struct dev_pm_set_opp_data *data; 723 int size; 724 725 data = opp_table->set_opp_data; 726 data->regulators = opp_table->regulators; 727 data->regulator_count = opp_table->regulator_count; 728 data->clk = opp_table->clk; 729 data->dev = dev; 730 731 data->old_opp.rate = old_freq; 732 size = sizeof(*old_supply) * opp_table->regulator_count; 733 if (!old_supply) 734 memset(data->old_opp.supplies, 0, size); 735 else 736 memcpy(data->old_opp.supplies, old_supply, size); 737 738 data->new_opp.rate = freq; 739 memcpy(data->new_opp.supplies, new_supply, size); 740 741 return opp_table->set_opp(data); 742 } 743 744 /* This is only called for PM domain for now */ 745 static int _set_required_opps(struct device *dev, 746 struct opp_table *opp_table, 747 struct dev_pm_opp *opp) 748 { 749 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 750 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 751 unsigned int pstate; 752 int i, ret = 0; 753 754 if (!required_opp_tables) 755 return 0; 756 757 /* Single genpd case */ 758 if (!genpd_virt_devs) { 759 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0; 760 ret = dev_pm_genpd_set_performance_state(dev, pstate); 761 if (ret) { 762 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 763 dev_name(dev), pstate, ret); 764 } 765 return ret; 766 } 767 768 /* Multiple genpd case */ 769 770 /* 771 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 772 * after it is freed from another thread. 773 */ 774 mutex_lock(&opp_table->genpd_virt_dev_lock); 775 776 for (i = 0; i < opp_table->required_opp_count; i++) { 777 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 778 779 if (!genpd_virt_devs[i]) 780 continue; 781 782 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 783 if (ret) { 784 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 785 dev_name(genpd_virt_devs[i]), pstate, ret); 786 break; 787 } 788 } 789 mutex_unlock(&opp_table->genpd_virt_dev_lock); 790 791 return ret; 792 } 793 794 /** 795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 796 * @dev: device for which we do this operation 797 * @target_freq: frequency to achieve 798 * 799 * This configures the power-supplies to the levels specified by the OPP 800 * corresponding to the target_freq, and programs the clock to a value <= 801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 802 * provided by the opp, should have already rounded to the target OPP's 803 * frequency. 804 */ 805 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 806 { 807 struct opp_table *opp_table; 808 unsigned long freq, old_freq, temp_freq; 809 struct dev_pm_opp *old_opp, *opp; 810 struct clk *clk; 811 int ret; 812 813 opp_table = _find_opp_table(dev); 814 if (IS_ERR(opp_table)) { 815 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 816 return PTR_ERR(opp_table); 817 } 818 819 if (unlikely(!target_freq)) { 820 if (opp_table->required_opp_tables) { 821 ret = _set_required_opps(dev, opp_table, NULL); 822 } else if (!_get_opp_count(opp_table)) { 823 return 0; 824 } else { 825 dev_err(dev, "target frequency can't be 0\n"); 826 ret = -EINVAL; 827 } 828 829 goto put_opp_table; 830 } 831 832 clk = opp_table->clk; 833 if (IS_ERR(clk)) { 834 dev_err(dev, "%s: No clock available for the device\n", 835 __func__); 836 ret = PTR_ERR(clk); 837 goto put_opp_table; 838 } 839 840 freq = clk_round_rate(clk, target_freq); 841 if ((long)freq <= 0) 842 freq = target_freq; 843 844 old_freq = clk_get_rate(clk); 845 846 /* Return early if nothing to do */ 847 if (old_freq == freq) { 848 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 849 __func__, freq); 850 ret = 0; 851 goto put_opp_table; 852 } 853 854 /* 855 * For IO devices which require an OPP on some platforms/SoCs 856 * while just needing to scale the clock on some others 857 * we look for empty OPP tables with just a clock handle and 858 * scale only the clk. This makes dev_pm_opp_set_rate() 859 * equivalent to a clk_set_rate() 860 */ 861 if (!_get_opp_count(opp_table)) { 862 ret = _generic_set_opp_clk_only(dev, clk, freq); 863 goto put_opp_table; 864 } 865 866 temp_freq = old_freq; 867 old_opp = _find_freq_ceil(opp_table, &temp_freq); 868 if (IS_ERR(old_opp)) { 869 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 870 __func__, old_freq, PTR_ERR(old_opp)); 871 } 872 873 temp_freq = freq; 874 opp = _find_freq_ceil(opp_table, &temp_freq); 875 if (IS_ERR(opp)) { 876 ret = PTR_ERR(opp); 877 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 878 __func__, freq, ret); 879 goto put_old_opp; 880 } 881 882 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 883 old_freq, freq); 884 885 /* Scaling up? Configure required OPPs before frequency */ 886 if (freq >= old_freq) { 887 ret = _set_required_opps(dev, opp_table, opp); 888 if (ret) 889 goto put_opp; 890 } 891 892 if (opp_table->set_opp) { 893 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 894 IS_ERR(old_opp) ? NULL : old_opp->supplies, 895 opp->supplies); 896 } else if (opp_table->regulators) { 897 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 898 IS_ERR(old_opp) ? NULL : old_opp->supplies, 899 opp->supplies); 900 } else { 901 /* Only frequency scaling */ 902 ret = _generic_set_opp_clk_only(dev, clk, freq); 903 } 904 905 /* Scaling down? Configure required OPPs after frequency */ 906 if (!ret && freq < old_freq) { 907 ret = _set_required_opps(dev, opp_table, opp); 908 if (ret) 909 dev_err(dev, "Failed to set required opps: %d\n", ret); 910 } 911 912 put_opp: 913 dev_pm_opp_put(opp); 914 put_old_opp: 915 if (!IS_ERR(old_opp)) 916 dev_pm_opp_put(old_opp); 917 put_opp_table: 918 dev_pm_opp_put_opp_table(opp_table); 919 return ret; 920 } 921 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 922 923 /* OPP-dev Helpers */ 924 static void _remove_opp_dev(struct opp_device *opp_dev, 925 struct opp_table *opp_table) 926 { 927 opp_debug_unregister(opp_dev, opp_table); 928 list_del(&opp_dev->node); 929 kfree(opp_dev); 930 } 931 932 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 933 struct opp_table *opp_table) 934 { 935 struct opp_device *opp_dev; 936 937 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 938 if (!opp_dev) 939 return NULL; 940 941 /* Initialize opp-dev */ 942 opp_dev->dev = dev; 943 944 list_add(&opp_dev->node, &opp_table->dev_list); 945 946 /* Create debugfs entries for the opp_table */ 947 opp_debug_register(opp_dev, opp_table); 948 949 return opp_dev; 950 } 951 952 struct opp_device *_add_opp_dev(const struct device *dev, 953 struct opp_table *opp_table) 954 { 955 struct opp_device *opp_dev; 956 957 mutex_lock(&opp_table->lock); 958 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 959 mutex_unlock(&opp_table->lock); 960 961 return opp_dev; 962 } 963 964 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 965 { 966 struct opp_table *opp_table; 967 struct opp_device *opp_dev; 968 int ret; 969 970 /* 971 * Allocate a new OPP table. In the infrequent case where a new 972 * device is needed to be added, we pay this penalty. 973 */ 974 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 975 if (!opp_table) 976 return NULL; 977 978 mutex_init(&opp_table->lock); 979 mutex_init(&opp_table->genpd_virt_dev_lock); 980 INIT_LIST_HEAD(&opp_table->dev_list); 981 982 /* Mark regulator count uninitialized */ 983 opp_table->regulator_count = -1; 984 985 opp_dev = _add_opp_dev(dev, opp_table); 986 if (!opp_dev) { 987 kfree(opp_table); 988 return NULL; 989 } 990 991 _of_init_opp_table(opp_table, dev, index); 992 993 /* Find clk for the device */ 994 opp_table->clk = clk_get(dev, NULL); 995 if (IS_ERR(opp_table->clk)) { 996 ret = PTR_ERR(opp_table->clk); 997 if (ret != -EPROBE_DEFER) 998 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 999 ret); 1000 } 1001 1002 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1003 INIT_LIST_HEAD(&opp_table->opp_list); 1004 kref_init(&opp_table->kref); 1005 1006 /* Secure the device table modification */ 1007 list_add(&opp_table->node, &opp_tables); 1008 return opp_table; 1009 } 1010 1011 void _get_opp_table_kref(struct opp_table *opp_table) 1012 { 1013 kref_get(&opp_table->kref); 1014 } 1015 1016 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 1017 { 1018 struct opp_table *opp_table; 1019 1020 /* Hold our table modification lock here */ 1021 mutex_lock(&opp_table_lock); 1022 1023 opp_table = _find_opp_table_unlocked(dev); 1024 if (!IS_ERR(opp_table)) 1025 goto unlock; 1026 1027 opp_table = _managed_opp(dev, index); 1028 if (opp_table) { 1029 if (!_add_opp_dev_unlocked(dev, opp_table)) { 1030 dev_pm_opp_put_opp_table(opp_table); 1031 opp_table = NULL; 1032 } 1033 goto unlock; 1034 } 1035 1036 opp_table = _allocate_opp_table(dev, index); 1037 1038 unlock: 1039 mutex_unlock(&opp_table_lock); 1040 1041 return opp_table; 1042 } 1043 1044 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1045 { 1046 return _opp_get_opp_table(dev, 0); 1047 } 1048 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1049 1050 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 1051 int index) 1052 { 1053 return _opp_get_opp_table(dev, index); 1054 } 1055 1056 static void _opp_table_kref_release(struct kref *kref) 1057 { 1058 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1059 struct opp_device *opp_dev, *temp; 1060 1061 _of_clear_opp_table(opp_table); 1062 1063 /* Release clk */ 1064 if (!IS_ERR(opp_table->clk)) 1065 clk_put(opp_table->clk); 1066 1067 WARN_ON(!list_empty(&opp_table->opp_list)); 1068 1069 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1070 /* 1071 * The OPP table is getting removed, drop the performance state 1072 * constraints. 1073 */ 1074 if (opp_table->genpd_performance_state) 1075 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1076 1077 _remove_opp_dev(opp_dev, opp_table); 1078 } 1079 1080 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1081 mutex_destroy(&opp_table->lock); 1082 list_del(&opp_table->node); 1083 kfree(opp_table); 1084 1085 mutex_unlock(&opp_table_lock); 1086 } 1087 1088 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1089 { 1090 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1091 &opp_table_lock); 1092 } 1093 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1094 1095 void _opp_free(struct dev_pm_opp *opp) 1096 { 1097 kfree(opp); 1098 } 1099 1100 static void _opp_kref_release(struct dev_pm_opp *opp, 1101 struct opp_table *opp_table) 1102 { 1103 /* 1104 * Notify the changes in the availability of the operable 1105 * frequency/voltage list. 1106 */ 1107 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1108 _of_opp_free_required_opps(opp_table, opp); 1109 opp_debug_remove_one(opp); 1110 list_del(&opp->node); 1111 kfree(opp); 1112 } 1113 1114 static void _opp_kref_release_unlocked(struct kref *kref) 1115 { 1116 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1117 struct opp_table *opp_table = opp->opp_table; 1118 1119 _opp_kref_release(opp, opp_table); 1120 } 1121 1122 static void _opp_kref_release_locked(struct kref *kref) 1123 { 1124 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1125 struct opp_table *opp_table = opp->opp_table; 1126 1127 _opp_kref_release(opp, opp_table); 1128 mutex_unlock(&opp_table->lock); 1129 } 1130 1131 void dev_pm_opp_get(struct dev_pm_opp *opp) 1132 { 1133 kref_get(&opp->kref); 1134 } 1135 1136 void dev_pm_opp_put(struct dev_pm_opp *opp) 1137 { 1138 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1139 &opp->opp_table->lock); 1140 } 1141 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1142 1143 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1144 { 1145 kref_put(&opp->kref, _opp_kref_release_unlocked); 1146 } 1147 1148 /** 1149 * dev_pm_opp_remove() - Remove an OPP from OPP table 1150 * @dev: device for which we do this operation 1151 * @freq: OPP to remove with matching 'freq' 1152 * 1153 * This function removes an opp from the opp table. 1154 */ 1155 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1156 { 1157 struct dev_pm_opp *opp; 1158 struct opp_table *opp_table; 1159 bool found = false; 1160 1161 opp_table = _find_opp_table(dev); 1162 if (IS_ERR(opp_table)) 1163 return; 1164 1165 mutex_lock(&opp_table->lock); 1166 1167 list_for_each_entry(opp, &opp_table->opp_list, node) { 1168 if (opp->rate == freq) { 1169 found = true; 1170 break; 1171 } 1172 } 1173 1174 mutex_unlock(&opp_table->lock); 1175 1176 if (found) { 1177 dev_pm_opp_put(opp); 1178 1179 /* Drop the reference taken by dev_pm_opp_add() */ 1180 dev_pm_opp_put_opp_table(opp_table); 1181 } else { 1182 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1183 __func__, freq); 1184 } 1185 1186 /* Drop the reference taken by _find_opp_table() */ 1187 dev_pm_opp_put_opp_table(opp_table); 1188 } 1189 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1190 1191 void _opp_remove_all_static(struct opp_table *opp_table) 1192 { 1193 struct dev_pm_opp *opp, *tmp; 1194 1195 mutex_lock(&opp_table->lock); 1196 1197 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps) 1198 goto unlock; 1199 1200 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1201 if (!opp->dynamic) 1202 dev_pm_opp_put_unlocked(opp); 1203 } 1204 1205 unlock: 1206 mutex_unlock(&opp_table->lock); 1207 } 1208 1209 /** 1210 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1211 * @dev: device for which we do this operation 1212 * 1213 * This function removes all dynamically created OPPs from the opp table. 1214 */ 1215 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1216 { 1217 struct opp_table *opp_table; 1218 struct dev_pm_opp *opp, *temp; 1219 int count = 0; 1220 1221 opp_table = _find_opp_table(dev); 1222 if (IS_ERR(opp_table)) 1223 return; 1224 1225 mutex_lock(&opp_table->lock); 1226 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1227 if (opp->dynamic) { 1228 dev_pm_opp_put_unlocked(opp); 1229 count++; 1230 } 1231 } 1232 mutex_unlock(&opp_table->lock); 1233 1234 /* Drop the references taken by dev_pm_opp_add() */ 1235 while (count--) 1236 dev_pm_opp_put_opp_table(opp_table); 1237 1238 /* Drop the reference taken by _find_opp_table() */ 1239 dev_pm_opp_put_opp_table(opp_table); 1240 } 1241 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1242 1243 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1244 { 1245 struct dev_pm_opp *opp; 1246 int count, supply_size; 1247 1248 /* Allocate space for at least one supply */ 1249 count = table->regulator_count > 0 ? table->regulator_count : 1; 1250 supply_size = sizeof(*opp->supplies) * count; 1251 1252 /* allocate new OPP node and supplies structures */ 1253 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); 1254 if (!opp) 1255 return NULL; 1256 1257 /* Put the supplies at the end of the OPP structure as an empty array */ 1258 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1259 INIT_LIST_HEAD(&opp->node); 1260 1261 return opp; 1262 } 1263 1264 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1265 struct opp_table *opp_table) 1266 { 1267 struct regulator *reg; 1268 int i; 1269 1270 if (!opp_table->regulators) 1271 return true; 1272 1273 for (i = 0; i < opp_table->regulator_count; i++) { 1274 reg = opp_table->regulators[i]; 1275 1276 if (!regulator_is_supported_voltage(reg, 1277 opp->supplies[i].u_volt_min, 1278 opp->supplies[i].u_volt_max)) { 1279 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1280 __func__, opp->supplies[i].u_volt_min, 1281 opp->supplies[i].u_volt_max); 1282 return false; 1283 } 1284 } 1285 1286 return true; 1287 } 1288 1289 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1290 struct opp_table *opp_table, 1291 struct list_head **head) 1292 { 1293 struct dev_pm_opp *opp; 1294 1295 /* 1296 * Insert new OPP in order of increasing frequency and discard if 1297 * already present. 1298 * 1299 * Need to use &opp_table->opp_list in the condition part of the 'for' 1300 * loop, don't replace it with head otherwise it will become an infinite 1301 * loop. 1302 */ 1303 list_for_each_entry(opp, &opp_table->opp_list, node) { 1304 if (new_opp->rate > opp->rate) { 1305 *head = &opp->node; 1306 continue; 1307 } 1308 1309 if (new_opp->rate < opp->rate) 1310 return 0; 1311 1312 /* Duplicate OPPs */ 1313 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1314 __func__, opp->rate, opp->supplies[0].u_volt, 1315 opp->available, new_opp->rate, 1316 new_opp->supplies[0].u_volt, new_opp->available); 1317 1318 /* Should we compare voltages for all regulators here ? */ 1319 return opp->available && 1320 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1321 } 1322 1323 return 0; 1324 } 1325 1326 /* 1327 * Returns: 1328 * 0: On success. And appropriate error message for duplicate OPPs. 1329 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1330 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1331 * sure we don't print error messages unnecessarily if different parts of 1332 * kernel try to initialize the OPP table. 1333 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1334 * should be considered an error by the callers of _opp_add(). 1335 */ 1336 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1337 struct opp_table *opp_table, bool rate_not_available) 1338 { 1339 struct list_head *head; 1340 int ret; 1341 1342 mutex_lock(&opp_table->lock); 1343 head = &opp_table->opp_list; 1344 1345 if (likely(!rate_not_available)) { 1346 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1347 if (ret) { 1348 mutex_unlock(&opp_table->lock); 1349 return ret; 1350 } 1351 } 1352 1353 list_add(&new_opp->node, head); 1354 mutex_unlock(&opp_table->lock); 1355 1356 new_opp->opp_table = opp_table; 1357 kref_init(&new_opp->kref); 1358 1359 opp_debug_create_one(new_opp, opp_table); 1360 1361 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1362 new_opp->available = false; 1363 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1364 __func__, new_opp->rate); 1365 } 1366 1367 return 0; 1368 } 1369 1370 /** 1371 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1372 * @opp_table: OPP table 1373 * @dev: device for which we do this operation 1374 * @freq: Frequency in Hz for this OPP 1375 * @u_volt: Voltage in uVolts for this OPP 1376 * @dynamic: Dynamically added OPPs. 1377 * 1378 * This function adds an opp definition to the opp table and returns status. 1379 * The opp is made available by default and it can be controlled using 1380 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1381 * 1382 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1383 * and freed by dev_pm_opp_of_remove_table. 1384 * 1385 * Return: 1386 * 0 On success OR 1387 * Duplicate OPPs (both freq and volt are same) and opp->available 1388 * -EEXIST Freq are same and volt are different OR 1389 * Duplicate OPPs (both freq and volt are same) and !opp->available 1390 * -ENOMEM Memory allocation failure 1391 */ 1392 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1393 unsigned long freq, long u_volt, bool dynamic) 1394 { 1395 struct dev_pm_opp *new_opp; 1396 unsigned long tol; 1397 int ret; 1398 1399 new_opp = _opp_allocate(opp_table); 1400 if (!new_opp) 1401 return -ENOMEM; 1402 1403 /* populate the opp table */ 1404 new_opp->rate = freq; 1405 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1406 new_opp->supplies[0].u_volt = u_volt; 1407 new_opp->supplies[0].u_volt_min = u_volt - tol; 1408 new_opp->supplies[0].u_volt_max = u_volt + tol; 1409 new_opp->available = true; 1410 new_opp->dynamic = dynamic; 1411 1412 ret = _opp_add(dev, new_opp, opp_table, false); 1413 if (ret) { 1414 /* Don't return error for duplicate OPPs */ 1415 if (ret == -EBUSY) 1416 ret = 0; 1417 goto free_opp; 1418 } 1419 1420 /* 1421 * Notify the changes in the availability of the operable 1422 * frequency/voltage list. 1423 */ 1424 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1425 return 0; 1426 1427 free_opp: 1428 _opp_free(new_opp); 1429 1430 return ret; 1431 } 1432 1433 /** 1434 * dev_pm_opp_set_supported_hw() - Set supported platforms 1435 * @dev: Device for which supported-hw has to be set. 1436 * @versions: Array of hierarchy of versions to match. 1437 * @count: Number of elements in the array. 1438 * 1439 * This is required only for the V2 bindings, and it enables a platform to 1440 * specify the hierarchy of versions it supports. OPP layer will then enable 1441 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1442 * property. 1443 */ 1444 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1445 const u32 *versions, unsigned int count) 1446 { 1447 struct opp_table *opp_table; 1448 1449 opp_table = dev_pm_opp_get_opp_table(dev); 1450 if (!opp_table) 1451 return ERR_PTR(-ENOMEM); 1452 1453 /* Make sure there are no concurrent readers while updating opp_table */ 1454 WARN_ON(!list_empty(&opp_table->opp_list)); 1455 1456 /* Another CPU that shares the OPP table has set the property ? */ 1457 if (opp_table->supported_hw) 1458 return opp_table; 1459 1460 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1461 GFP_KERNEL); 1462 if (!opp_table->supported_hw) { 1463 dev_pm_opp_put_opp_table(opp_table); 1464 return ERR_PTR(-ENOMEM); 1465 } 1466 1467 opp_table->supported_hw_count = count; 1468 1469 return opp_table; 1470 } 1471 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1472 1473 /** 1474 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1475 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1476 * 1477 * This is required only for the V2 bindings, and is called for a matching 1478 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1479 * will not be freed. 1480 */ 1481 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1482 { 1483 /* Make sure there are no concurrent readers while updating opp_table */ 1484 WARN_ON(!list_empty(&opp_table->opp_list)); 1485 1486 kfree(opp_table->supported_hw); 1487 opp_table->supported_hw = NULL; 1488 opp_table->supported_hw_count = 0; 1489 1490 dev_pm_opp_put_opp_table(opp_table); 1491 } 1492 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1493 1494 /** 1495 * dev_pm_opp_set_prop_name() - Set prop-extn name 1496 * @dev: Device for which the prop-name has to be set. 1497 * @name: name to postfix to properties. 1498 * 1499 * This is required only for the V2 bindings, and it enables a platform to 1500 * specify the extn to be used for certain property names. The properties to 1501 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1502 * should postfix the property name with -<name> while looking for them. 1503 */ 1504 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1505 { 1506 struct opp_table *opp_table; 1507 1508 opp_table = dev_pm_opp_get_opp_table(dev); 1509 if (!opp_table) 1510 return ERR_PTR(-ENOMEM); 1511 1512 /* Make sure there are no concurrent readers while updating opp_table */ 1513 WARN_ON(!list_empty(&opp_table->opp_list)); 1514 1515 /* Another CPU that shares the OPP table has set the property ? */ 1516 if (opp_table->prop_name) 1517 return opp_table; 1518 1519 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1520 if (!opp_table->prop_name) { 1521 dev_pm_opp_put_opp_table(opp_table); 1522 return ERR_PTR(-ENOMEM); 1523 } 1524 1525 return opp_table; 1526 } 1527 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1528 1529 /** 1530 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1531 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1532 * 1533 * This is required only for the V2 bindings, and is called for a matching 1534 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1535 * will not be freed. 1536 */ 1537 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1538 { 1539 /* Make sure there are no concurrent readers while updating opp_table */ 1540 WARN_ON(!list_empty(&opp_table->opp_list)); 1541 1542 kfree(opp_table->prop_name); 1543 opp_table->prop_name = NULL; 1544 1545 dev_pm_opp_put_opp_table(opp_table); 1546 } 1547 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1548 1549 static int _allocate_set_opp_data(struct opp_table *opp_table) 1550 { 1551 struct dev_pm_set_opp_data *data; 1552 int len, count = opp_table->regulator_count; 1553 1554 if (WARN_ON(!opp_table->regulators)) 1555 return -EINVAL; 1556 1557 /* space for set_opp_data */ 1558 len = sizeof(*data); 1559 1560 /* space for old_opp.supplies and new_opp.supplies */ 1561 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1562 1563 data = kzalloc(len, GFP_KERNEL); 1564 if (!data) 1565 return -ENOMEM; 1566 1567 data->old_opp.supplies = (void *)(data + 1); 1568 data->new_opp.supplies = data->old_opp.supplies + count; 1569 1570 opp_table->set_opp_data = data; 1571 1572 return 0; 1573 } 1574 1575 static void _free_set_opp_data(struct opp_table *opp_table) 1576 { 1577 kfree(opp_table->set_opp_data); 1578 opp_table->set_opp_data = NULL; 1579 } 1580 1581 /** 1582 * dev_pm_opp_set_regulators() - Set regulator names for the device 1583 * @dev: Device for which regulator name is being set. 1584 * @names: Array of pointers to the names of the regulator. 1585 * @count: Number of regulators. 1586 * 1587 * In order to support OPP switching, OPP layer needs to know the name of the 1588 * device's regulators, as the core would be required to switch voltages as 1589 * well. 1590 * 1591 * This must be called before any OPPs are initialized for the device. 1592 */ 1593 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1594 const char * const names[], 1595 unsigned int count) 1596 { 1597 struct opp_table *opp_table; 1598 struct regulator *reg; 1599 int ret, i; 1600 1601 opp_table = dev_pm_opp_get_opp_table(dev); 1602 if (!opp_table) 1603 return ERR_PTR(-ENOMEM); 1604 1605 /* This should be called before OPPs are initialized */ 1606 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1607 ret = -EBUSY; 1608 goto err; 1609 } 1610 1611 /* Another CPU that shares the OPP table has set the regulators ? */ 1612 if (opp_table->regulators) 1613 return opp_table; 1614 1615 opp_table->regulators = kmalloc_array(count, 1616 sizeof(*opp_table->regulators), 1617 GFP_KERNEL); 1618 if (!opp_table->regulators) { 1619 ret = -ENOMEM; 1620 goto err; 1621 } 1622 1623 for (i = 0; i < count; i++) { 1624 reg = regulator_get_optional(dev, names[i]); 1625 if (IS_ERR(reg)) { 1626 ret = PTR_ERR(reg); 1627 if (ret != -EPROBE_DEFER) 1628 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1629 __func__, names[i], ret); 1630 goto free_regulators; 1631 } 1632 1633 opp_table->regulators[i] = reg; 1634 } 1635 1636 opp_table->regulator_count = count; 1637 1638 /* Allocate block only once to pass to set_opp() routines */ 1639 ret = _allocate_set_opp_data(opp_table); 1640 if (ret) 1641 goto free_regulators; 1642 1643 return opp_table; 1644 1645 free_regulators: 1646 while (i != 0) 1647 regulator_put(opp_table->regulators[--i]); 1648 1649 kfree(opp_table->regulators); 1650 opp_table->regulators = NULL; 1651 opp_table->regulator_count = -1; 1652 err: 1653 dev_pm_opp_put_opp_table(opp_table); 1654 1655 return ERR_PTR(ret); 1656 } 1657 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1658 1659 /** 1660 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1661 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1662 */ 1663 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1664 { 1665 int i; 1666 1667 if (!opp_table->regulators) 1668 goto put_opp_table; 1669 1670 /* Make sure there are no concurrent readers while updating opp_table */ 1671 WARN_ON(!list_empty(&opp_table->opp_list)); 1672 1673 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1674 regulator_put(opp_table->regulators[i]); 1675 1676 _free_set_opp_data(opp_table); 1677 1678 kfree(opp_table->regulators); 1679 opp_table->regulators = NULL; 1680 opp_table->regulator_count = -1; 1681 1682 put_opp_table: 1683 dev_pm_opp_put_opp_table(opp_table); 1684 } 1685 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1686 1687 /** 1688 * dev_pm_opp_set_clkname() - Set clk name for the device 1689 * @dev: Device for which clk name is being set. 1690 * @name: Clk name. 1691 * 1692 * In order to support OPP switching, OPP layer needs to get pointer to the 1693 * clock for the device. Simple cases work fine without using this routine (i.e. 1694 * by passing connection-id as NULL), but for a device with multiple clocks 1695 * available, the OPP core needs to know the exact name of the clk to use. 1696 * 1697 * This must be called before any OPPs are initialized for the device. 1698 */ 1699 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1700 { 1701 struct opp_table *opp_table; 1702 int ret; 1703 1704 opp_table = dev_pm_opp_get_opp_table(dev); 1705 if (!opp_table) 1706 return ERR_PTR(-ENOMEM); 1707 1708 /* This should be called before OPPs are initialized */ 1709 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1710 ret = -EBUSY; 1711 goto err; 1712 } 1713 1714 /* Already have default clk set, free it */ 1715 if (!IS_ERR(opp_table->clk)) 1716 clk_put(opp_table->clk); 1717 1718 /* Find clk for the device */ 1719 opp_table->clk = clk_get(dev, name); 1720 if (IS_ERR(opp_table->clk)) { 1721 ret = PTR_ERR(opp_table->clk); 1722 if (ret != -EPROBE_DEFER) { 1723 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1724 ret); 1725 } 1726 goto err; 1727 } 1728 1729 return opp_table; 1730 1731 err: 1732 dev_pm_opp_put_opp_table(opp_table); 1733 1734 return ERR_PTR(ret); 1735 } 1736 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1737 1738 /** 1739 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1740 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1741 */ 1742 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1743 { 1744 /* Make sure there are no concurrent readers while updating opp_table */ 1745 WARN_ON(!list_empty(&opp_table->opp_list)); 1746 1747 clk_put(opp_table->clk); 1748 opp_table->clk = ERR_PTR(-EINVAL); 1749 1750 dev_pm_opp_put_opp_table(opp_table); 1751 } 1752 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1753 1754 /** 1755 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1756 * @dev: Device for which the helper is getting registered. 1757 * @set_opp: Custom set OPP helper. 1758 * 1759 * This is useful to support complex platforms (like platforms with multiple 1760 * regulators per device), instead of the generic OPP set rate helper. 1761 * 1762 * This must be called before any OPPs are initialized for the device. 1763 */ 1764 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1765 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1766 { 1767 struct opp_table *opp_table; 1768 1769 if (!set_opp) 1770 return ERR_PTR(-EINVAL); 1771 1772 opp_table = dev_pm_opp_get_opp_table(dev); 1773 if (!opp_table) 1774 return ERR_PTR(-ENOMEM); 1775 1776 /* This should be called before OPPs are initialized */ 1777 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1778 dev_pm_opp_put_opp_table(opp_table); 1779 return ERR_PTR(-EBUSY); 1780 } 1781 1782 /* Another CPU that shares the OPP table has set the helper ? */ 1783 if (!opp_table->set_opp) 1784 opp_table->set_opp = set_opp; 1785 1786 return opp_table; 1787 } 1788 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1789 1790 /** 1791 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1792 * set_opp helper 1793 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1794 * 1795 * Release resources blocked for platform specific set_opp helper. 1796 */ 1797 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1798 { 1799 /* Make sure there are no concurrent readers while updating opp_table */ 1800 WARN_ON(!list_empty(&opp_table->opp_list)); 1801 1802 opp_table->set_opp = NULL; 1803 dev_pm_opp_put_opp_table(opp_table); 1804 } 1805 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1806 1807 static void _opp_detach_genpd(struct opp_table *opp_table) 1808 { 1809 int index; 1810 1811 for (index = 0; index < opp_table->required_opp_count; index++) { 1812 if (!opp_table->genpd_virt_devs[index]) 1813 continue; 1814 1815 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1816 opp_table->genpd_virt_devs[index] = NULL; 1817 } 1818 1819 kfree(opp_table->genpd_virt_devs); 1820 opp_table->genpd_virt_devs = NULL; 1821 } 1822 1823 /** 1824 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1825 * @dev: Consumer device for which the genpd is getting attached. 1826 * @names: Null terminated array of pointers containing names of genpd to attach. 1827 * @virt_devs: Pointer to return the array of virtual devices. 1828 * 1829 * Multiple generic power domains for a device are supported with the help of 1830 * virtual genpd devices, which are created for each consumer device - genpd 1831 * pair. These are the device structures which are attached to the power domain 1832 * and are required by the OPP core to set the performance state of the genpd. 1833 * The same API also works for the case where single genpd is available and so 1834 * we don't need to support that separately. 1835 * 1836 * This helper will normally be called by the consumer driver of the device 1837 * "dev", as only that has details of the genpd names. 1838 * 1839 * This helper needs to be called once with a list of all genpd to attach. 1840 * Otherwise the original device structure will be used instead by the OPP core. 1841 * 1842 * The order of entries in the names array must match the order in which 1843 * "required-opps" are added in DT. 1844 */ 1845 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 1846 const char **names, struct device ***virt_devs) 1847 { 1848 struct opp_table *opp_table; 1849 struct device *virt_dev; 1850 int index = 0, ret = -EINVAL; 1851 const char **name = names; 1852 1853 opp_table = dev_pm_opp_get_opp_table(dev); 1854 if (!opp_table) 1855 return ERR_PTR(-ENOMEM); 1856 1857 /* 1858 * If the genpd's OPP table isn't already initialized, parsing of the 1859 * required-opps fail for dev. We should retry this after genpd's OPP 1860 * table is added. 1861 */ 1862 if (!opp_table->required_opp_count) { 1863 ret = -EPROBE_DEFER; 1864 goto put_table; 1865 } 1866 1867 mutex_lock(&opp_table->genpd_virt_dev_lock); 1868 1869 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 1870 sizeof(*opp_table->genpd_virt_devs), 1871 GFP_KERNEL); 1872 if (!opp_table->genpd_virt_devs) 1873 goto unlock; 1874 1875 while (*name) { 1876 if (index >= opp_table->required_opp_count) { 1877 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 1878 *name, opp_table->required_opp_count, index); 1879 goto err; 1880 } 1881 1882 if (opp_table->genpd_virt_devs[index]) { 1883 dev_err(dev, "Genpd virtual device already set %s\n", 1884 *name); 1885 goto err; 1886 } 1887 1888 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 1889 if (IS_ERR(virt_dev)) { 1890 ret = PTR_ERR(virt_dev); 1891 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 1892 goto err; 1893 } 1894 1895 opp_table->genpd_virt_devs[index] = virt_dev; 1896 index++; 1897 name++; 1898 } 1899 1900 if (virt_devs) 1901 *virt_devs = opp_table->genpd_virt_devs; 1902 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1903 1904 return opp_table; 1905 1906 err: 1907 _opp_detach_genpd(opp_table); 1908 unlock: 1909 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1910 1911 put_table: 1912 dev_pm_opp_put_opp_table(opp_table); 1913 1914 return ERR_PTR(ret); 1915 } 1916 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 1917 1918 /** 1919 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 1920 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 1921 * 1922 * This detaches the genpd(s), resets the virtual device pointers, and puts the 1923 * OPP table. 1924 */ 1925 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 1926 { 1927 /* 1928 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 1929 * used in parallel. 1930 */ 1931 mutex_lock(&opp_table->genpd_virt_dev_lock); 1932 _opp_detach_genpd(opp_table); 1933 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1934 1935 dev_pm_opp_put_opp_table(opp_table); 1936 } 1937 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 1938 1939 /** 1940 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 1941 * @src_table: OPP table which has dst_table as one of its required OPP table. 1942 * @dst_table: Required OPP table of the src_table. 1943 * @pstate: Current performance state of the src_table. 1944 * 1945 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 1946 * "required-opps" property of the OPP (present in @src_table) which has 1947 * performance state set to @pstate. 1948 * 1949 * Return: Zero or positive performance state on success, otherwise negative 1950 * value on errors. 1951 */ 1952 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 1953 struct opp_table *dst_table, 1954 unsigned int pstate) 1955 { 1956 struct dev_pm_opp *opp; 1957 int dest_pstate = -EINVAL; 1958 int i; 1959 1960 if (!pstate) 1961 return 0; 1962 1963 /* 1964 * Normally the src_table will have the "required_opps" property set to 1965 * point to one of the OPPs in the dst_table, but in some cases the 1966 * genpd and its master have one to one mapping of performance states 1967 * and so none of them have the "required-opps" property set. Return the 1968 * pstate of the src_table as it is in such cases. 1969 */ 1970 if (!src_table->required_opp_count) 1971 return pstate; 1972 1973 for (i = 0; i < src_table->required_opp_count; i++) { 1974 if (src_table->required_opp_tables[i]->np == dst_table->np) 1975 break; 1976 } 1977 1978 if (unlikely(i == src_table->required_opp_count)) { 1979 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 1980 __func__, src_table, dst_table); 1981 return -EINVAL; 1982 } 1983 1984 mutex_lock(&src_table->lock); 1985 1986 list_for_each_entry(opp, &src_table->opp_list, node) { 1987 if (opp->pstate == pstate) { 1988 dest_pstate = opp->required_opps[i]->pstate; 1989 goto unlock; 1990 } 1991 } 1992 1993 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 1994 dst_table); 1995 1996 unlock: 1997 mutex_unlock(&src_table->lock); 1998 1999 return dest_pstate; 2000 } 2001 2002 /** 2003 * dev_pm_opp_add() - Add an OPP table from a table definitions 2004 * @dev: device for which we do this operation 2005 * @freq: Frequency in Hz for this OPP 2006 * @u_volt: Voltage in uVolts for this OPP 2007 * 2008 * This function adds an opp definition to the opp table and returns status. 2009 * The opp is made available by default and it can be controlled using 2010 * dev_pm_opp_enable/disable functions. 2011 * 2012 * Return: 2013 * 0 On success OR 2014 * Duplicate OPPs (both freq and volt are same) and opp->available 2015 * -EEXIST Freq are same and volt are different OR 2016 * Duplicate OPPs (both freq and volt are same) and !opp->available 2017 * -ENOMEM Memory allocation failure 2018 */ 2019 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2020 { 2021 struct opp_table *opp_table; 2022 int ret; 2023 2024 opp_table = dev_pm_opp_get_opp_table(dev); 2025 if (!opp_table) 2026 return -ENOMEM; 2027 2028 /* Fix regulator count for dynamic OPPs */ 2029 opp_table->regulator_count = 1; 2030 2031 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2032 if (ret) 2033 dev_pm_opp_put_opp_table(opp_table); 2034 2035 return ret; 2036 } 2037 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2038 2039 /** 2040 * _opp_set_availability() - helper to set the availability of an opp 2041 * @dev: device for which we do this operation 2042 * @freq: OPP frequency to modify availability 2043 * @availability_req: availability status requested for this opp 2044 * 2045 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2046 * which is isolated here. 2047 * 2048 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2049 * copy operation, returns 0 if no modification was done OR modification was 2050 * successful. 2051 */ 2052 static int _opp_set_availability(struct device *dev, unsigned long freq, 2053 bool availability_req) 2054 { 2055 struct opp_table *opp_table; 2056 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2057 int r = 0; 2058 2059 /* Find the opp_table */ 2060 opp_table = _find_opp_table(dev); 2061 if (IS_ERR(opp_table)) { 2062 r = PTR_ERR(opp_table); 2063 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2064 return r; 2065 } 2066 2067 mutex_lock(&opp_table->lock); 2068 2069 /* Do we have the frequency? */ 2070 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2071 if (tmp_opp->rate == freq) { 2072 opp = tmp_opp; 2073 break; 2074 } 2075 } 2076 2077 if (IS_ERR(opp)) { 2078 r = PTR_ERR(opp); 2079 goto unlock; 2080 } 2081 2082 /* Is update really needed? */ 2083 if (opp->available == availability_req) 2084 goto unlock; 2085 2086 opp->available = availability_req; 2087 2088 dev_pm_opp_get(opp); 2089 mutex_unlock(&opp_table->lock); 2090 2091 /* Notify the change of the OPP availability */ 2092 if (availability_req) 2093 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2094 opp); 2095 else 2096 blocking_notifier_call_chain(&opp_table->head, 2097 OPP_EVENT_DISABLE, opp); 2098 2099 dev_pm_opp_put(opp); 2100 goto put_table; 2101 2102 unlock: 2103 mutex_unlock(&opp_table->lock); 2104 put_table: 2105 dev_pm_opp_put_opp_table(opp_table); 2106 return r; 2107 } 2108 2109 /** 2110 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2111 * @dev: device for which we do this operation 2112 * @freq: OPP frequency to adjust voltage of 2113 * @u_volt: new OPP target voltage 2114 * @u_volt_min: new OPP min voltage 2115 * @u_volt_max: new OPP max voltage 2116 * 2117 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2118 * copy operation, returns 0 if no modifcation was done OR modification was 2119 * successful. 2120 */ 2121 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2122 unsigned long u_volt, unsigned long u_volt_min, 2123 unsigned long u_volt_max) 2124 2125 { 2126 struct opp_table *opp_table; 2127 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2128 int r = 0; 2129 2130 /* Find the opp_table */ 2131 opp_table = _find_opp_table(dev); 2132 if (IS_ERR(opp_table)) { 2133 r = PTR_ERR(opp_table); 2134 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2135 return r; 2136 } 2137 2138 mutex_lock(&opp_table->lock); 2139 2140 /* Do we have the frequency? */ 2141 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2142 if (tmp_opp->rate == freq) { 2143 opp = tmp_opp; 2144 break; 2145 } 2146 } 2147 2148 if (IS_ERR(opp)) { 2149 r = PTR_ERR(opp); 2150 goto adjust_unlock; 2151 } 2152 2153 /* Is update really needed? */ 2154 if (opp->supplies->u_volt == u_volt) 2155 goto adjust_unlock; 2156 2157 opp->supplies->u_volt = u_volt; 2158 opp->supplies->u_volt_min = u_volt_min; 2159 opp->supplies->u_volt_max = u_volt_max; 2160 2161 dev_pm_opp_get(opp); 2162 mutex_unlock(&opp_table->lock); 2163 2164 /* Notify the voltage change of the OPP */ 2165 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2166 opp); 2167 2168 dev_pm_opp_put(opp); 2169 goto adjust_put_table; 2170 2171 adjust_unlock: 2172 mutex_unlock(&opp_table->lock); 2173 adjust_put_table: 2174 dev_pm_opp_put_opp_table(opp_table); 2175 return r; 2176 } 2177 2178 /** 2179 * dev_pm_opp_enable() - Enable a specific OPP 2180 * @dev: device for which we do this operation 2181 * @freq: OPP frequency to enable 2182 * 2183 * Enables a provided opp. If the operation is valid, this returns 0, else the 2184 * corresponding error value. It is meant to be used for users an OPP available 2185 * after being temporarily made unavailable with dev_pm_opp_disable. 2186 * 2187 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2188 * copy operation, returns 0 if no modification was done OR modification was 2189 * successful. 2190 */ 2191 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2192 { 2193 return _opp_set_availability(dev, freq, true); 2194 } 2195 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2196 2197 /** 2198 * dev_pm_opp_disable() - Disable a specific OPP 2199 * @dev: device for which we do this operation 2200 * @freq: OPP frequency to disable 2201 * 2202 * Disables a provided opp. If the operation is valid, this returns 2203 * 0, else the corresponding error value. It is meant to be a temporary 2204 * control by users to make this OPP not available until the circumstances are 2205 * right to make it available again (with a call to dev_pm_opp_enable). 2206 * 2207 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2208 * copy operation, returns 0 if no modification was done OR modification was 2209 * successful. 2210 */ 2211 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2212 { 2213 return _opp_set_availability(dev, freq, false); 2214 } 2215 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2216 2217 /** 2218 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2219 * @dev: Device for which notifier needs to be registered 2220 * @nb: Notifier block to be registered 2221 * 2222 * Return: 0 on success or a negative error value. 2223 */ 2224 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2225 { 2226 struct opp_table *opp_table; 2227 int ret; 2228 2229 opp_table = _find_opp_table(dev); 2230 if (IS_ERR(opp_table)) 2231 return PTR_ERR(opp_table); 2232 2233 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2234 2235 dev_pm_opp_put_opp_table(opp_table); 2236 2237 return ret; 2238 } 2239 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2240 2241 /** 2242 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2243 * @dev: Device for which notifier needs to be unregistered 2244 * @nb: Notifier block to be unregistered 2245 * 2246 * Return: 0 on success or a negative error value. 2247 */ 2248 int dev_pm_opp_unregister_notifier(struct device *dev, 2249 struct notifier_block *nb) 2250 { 2251 struct opp_table *opp_table; 2252 int ret; 2253 2254 opp_table = _find_opp_table(dev); 2255 if (IS_ERR(opp_table)) 2256 return PTR_ERR(opp_table); 2257 2258 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2259 2260 dev_pm_opp_put_opp_table(opp_table); 2261 2262 return ret; 2263 } 2264 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2265 2266 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2267 { 2268 struct opp_table *opp_table; 2269 2270 /* Check for existing table for 'dev' */ 2271 opp_table = _find_opp_table(dev); 2272 if (IS_ERR(opp_table)) { 2273 int error = PTR_ERR(opp_table); 2274 2275 if (error != -ENODEV) 2276 WARN(1, "%s: opp_table: %d\n", 2277 IS_ERR_OR_NULL(dev) ? 2278 "Invalid device" : dev_name(dev), 2279 error); 2280 return; 2281 } 2282 2283 _opp_remove_all_static(opp_table); 2284 2285 /* Drop reference taken by _find_opp_table() */ 2286 dev_pm_opp_put_opp_table(opp_table); 2287 2288 /* Drop reference taken while the OPP table was added */ 2289 dev_pm_opp_put_opp_table(opp_table); 2290 } 2291 2292 /** 2293 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2294 * @dev: device pointer used to lookup OPP table. 2295 * 2296 * Free both OPPs created using static entries present in DT and the 2297 * dynamically added entries. 2298 */ 2299 void dev_pm_opp_remove_table(struct device *dev) 2300 { 2301 _dev_pm_opp_find_and_remove_table(dev); 2302 } 2303 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2304