xref: /openbmc/linux/drivers/opp/core.c (revision 173940b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 
31 /* OPP tables with uninitialized required OPPs */
32 LIST_HEAD(lazy_opp_tables);
33 
34 /* Lock to allow exclusive modification to the device and opp lists */
35 DEFINE_MUTEX(opp_table_lock);
36 /* Flag indicating that opp_tables list is being updated at the moment */
37 static bool opp_tables_busy;
38 
39 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40 {
41 	struct opp_device *opp_dev;
42 	bool found = false;
43 
44 	mutex_lock(&opp_table->lock);
45 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 		if (opp_dev->dev == dev) {
47 			found = true;
48 			break;
49 		}
50 
51 	mutex_unlock(&opp_table->lock);
52 	return found;
53 }
54 
55 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56 {
57 	struct opp_table *opp_table;
58 
59 	list_for_each_entry(opp_table, &opp_tables, node) {
60 		if (_find_opp_dev(dev, opp_table)) {
61 			_get_opp_table_kref(opp_table);
62 			return opp_table;
63 		}
64 	}
65 
66 	return ERR_PTR(-ENODEV);
67 }
68 
69 /**
70  * _find_opp_table() - find opp_table struct using device pointer
71  * @dev:	device pointer used to lookup OPP table
72  *
73  * Search OPP table for one containing matching device.
74  *
75  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76  * -EINVAL based on type of error.
77  *
78  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79  */
80 struct opp_table *_find_opp_table(struct device *dev)
81 {
82 	struct opp_table *opp_table;
83 
84 	if (IS_ERR_OR_NULL(dev)) {
85 		pr_err("%s: Invalid parameters\n", __func__);
86 		return ERR_PTR(-EINVAL);
87 	}
88 
89 	mutex_lock(&opp_table_lock);
90 	opp_table = _find_opp_table_unlocked(dev);
91 	mutex_unlock(&opp_table_lock);
92 
93 	return opp_table;
94 }
95 
96 /**
97  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98  * @opp:	opp for which voltage has to be returned for
99  *
100  * Return: voltage in micro volt corresponding to the opp, else
101  * return 0
102  *
103  * This is useful only for devices with single power supply.
104  */
105 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106 {
107 	if (IS_ERR_OR_NULL(opp)) {
108 		pr_err("%s: Invalid parameters\n", __func__);
109 		return 0;
110 	}
111 
112 	return opp->supplies[0].u_volt;
113 }
114 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115 
116 /**
117  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
118  * @opp:	opp for which power has to be returned for
119  *
120  * Return: power in micro watt corresponding to the opp, else
121  * return 0
122  *
123  * This is useful only for devices with single power supply.
124  */
125 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
126 {
127 	unsigned long opp_power = 0;
128 	int i;
129 
130 	if (IS_ERR_OR_NULL(opp)) {
131 		pr_err("%s: Invalid parameters\n", __func__);
132 		return 0;
133 	}
134 	for (i = 0; i < opp->opp_table->regulator_count; i++)
135 		opp_power += opp->supplies[i].u_watt;
136 
137 	return opp_power;
138 }
139 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
140 
141 /**
142  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
143  * @opp:	opp for which frequency has to be returned for
144  *
145  * Return: frequency in hertz corresponding to the opp, else
146  * return 0
147  */
148 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
149 {
150 	if (IS_ERR_OR_NULL(opp)) {
151 		pr_err("%s: Invalid parameters\n", __func__);
152 		return 0;
153 	}
154 
155 	return opp->rate;
156 }
157 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
158 
159 /**
160  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
161  * @opp:	opp for which level value has to be returned for
162  *
163  * Return: level read from device tree corresponding to the opp, else
164  * return 0.
165  */
166 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
167 {
168 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
169 		pr_err("%s: Invalid parameters\n", __func__);
170 		return 0;
171 	}
172 
173 	return opp->level;
174 }
175 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
176 
177 /**
178  * dev_pm_opp_get_required_pstate() - Gets the required performance state
179  *                                    corresponding to an available opp
180  * @opp:	opp for which performance state has to be returned for
181  * @index:	index of the required opp
182  *
183  * Return: performance state read from device tree corresponding to the
184  * required opp, else return 0.
185  */
186 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
187 					    unsigned int index)
188 {
189 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
190 	    index >= opp->opp_table->required_opp_count) {
191 		pr_err("%s: Invalid parameters\n", __func__);
192 		return 0;
193 	}
194 
195 	/* required-opps not fully initialized yet */
196 	if (lazy_linking_pending(opp->opp_table))
197 		return 0;
198 
199 	return opp->required_opps[index]->pstate;
200 }
201 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
202 
203 /**
204  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
205  * @opp: opp for which turbo mode is being verified
206  *
207  * Turbo OPPs are not for normal use, and can be enabled (under certain
208  * conditions) for short duration of times to finish high throughput work
209  * quickly. Running on them for longer times may overheat the chip.
210  *
211  * Return: true if opp is turbo opp, else false.
212  */
213 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
214 {
215 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
216 		pr_err("%s: Invalid parameters\n", __func__);
217 		return false;
218 	}
219 
220 	return opp->turbo;
221 }
222 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
223 
224 /**
225  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
226  * @dev:	device for which we do this operation
227  *
228  * Return: This function returns the max clock latency in nanoseconds.
229  */
230 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
231 {
232 	struct opp_table *opp_table;
233 	unsigned long clock_latency_ns;
234 
235 	opp_table = _find_opp_table(dev);
236 	if (IS_ERR(opp_table))
237 		return 0;
238 
239 	clock_latency_ns = opp_table->clock_latency_ns_max;
240 
241 	dev_pm_opp_put_opp_table(opp_table);
242 
243 	return clock_latency_ns;
244 }
245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
246 
247 /**
248  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
249  * @dev: device for which we do this operation
250  *
251  * Return: This function returns the max voltage latency in nanoseconds.
252  */
253 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
254 {
255 	struct opp_table *opp_table;
256 	struct dev_pm_opp *opp;
257 	struct regulator *reg;
258 	unsigned long latency_ns = 0;
259 	int ret, i, count;
260 	struct {
261 		unsigned long min;
262 		unsigned long max;
263 	} *uV;
264 
265 	opp_table = _find_opp_table(dev);
266 	if (IS_ERR(opp_table))
267 		return 0;
268 
269 	/* Regulator may not be required for the device */
270 	if (!opp_table->regulators)
271 		goto put_opp_table;
272 
273 	count = opp_table->regulator_count;
274 
275 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
276 	if (!uV)
277 		goto put_opp_table;
278 
279 	mutex_lock(&opp_table->lock);
280 
281 	for (i = 0; i < count; i++) {
282 		uV[i].min = ~0;
283 		uV[i].max = 0;
284 
285 		list_for_each_entry(opp, &opp_table->opp_list, node) {
286 			if (!opp->available)
287 				continue;
288 
289 			if (opp->supplies[i].u_volt_min < uV[i].min)
290 				uV[i].min = opp->supplies[i].u_volt_min;
291 			if (opp->supplies[i].u_volt_max > uV[i].max)
292 				uV[i].max = opp->supplies[i].u_volt_max;
293 		}
294 	}
295 
296 	mutex_unlock(&opp_table->lock);
297 
298 	/*
299 	 * The caller needs to ensure that opp_table (and hence the regulator)
300 	 * isn't freed, while we are executing this routine.
301 	 */
302 	for (i = 0; i < count; i++) {
303 		reg = opp_table->regulators[i];
304 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
305 		if (ret > 0)
306 			latency_ns += ret * 1000;
307 	}
308 
309 	kfree(uV);
310 put_opp_table:
311 	dev_pm_opp_put_opp_table(opp_table);
312 
313 	return latency_ns;
314 }
315 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
316 
317 /**
318  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
319  *					     nanoseconds
320  * @dev: device for which we do this operation
321  *
322  * Return: This function returns the max transition latency, in nanoseconds, to
323  * switch from one OPP to other.
324  */
325 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
326 {
327 	return dev_pm_opp_get_max_volt_latency(dev) +
328 		dev_pm_opp_get_max_clock_latency(dev);
329 }
330 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
331 
332 /**
333  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
334  * @dev:	device for which we do this operation
335  *
336  * Return: This function returns the frequency of the OPP marked as suspend_opp
337  * if one is available, else returns 0;
338  */
339 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
340 {
341 	struct opp_table *opp_table;
342 	unsigned long freq = 0;
343 
344 	opp_table = _find_opp_table(dev);
345 	if (IS_ERR(opp_table))
346 		return 0;
347 
348 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
349 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
350 
351 	dev_pm_opp_put_opp_table(opp_table);
352 
353 	return freq;
354 }
355 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
356 
357 int _get_opp_count(struct opp_table *opp_table)
358 {
359 	struct dev_pm_opp *opp;
360 	int count = 0;
361 
362 	mutex_lock(&opp_table->lock);
363 
364 	list_for_each_entry(opp, &opp_table->opp_list, node) {
365 		if (opp->available)
366 			count++;
367 	}
368 
369 	mutex_unlock(&opp_table->lock);
370 
371 	return count;
372 }
373 
374 /**
375  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
376  * @dev:	device for which we do this operation
377  *
378  * Return: This function returns the number of available opps if there are any,
379  * else returns 0 if none or the corresponding error value.
380  */
381 int dev_pm_opp_get_opp_count(struct device *dev)
382 {
383 	struct opp_table *opp_table;
384 	int count;
385 
386 	opp_table = _find_opp_table(dev);
387 	if (IS_ERR(opp_table)) {
388 		count = PTR_ERR(opp_table);
389 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
390 			__func__, count);
391 		return count;
392 	}
393 
394 	count = _get_opp_count(opp_table);
395 	dev_pm_opp_put_opp_table(opp_table);
396 
397 	return count;
398 }
399 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
400 
401 /**
402  * dev_pm_opp_find_freq_exact() - search for an exact frequency
403  * @dev:		device for which we do this operation
404  * @freq:		frequency to search for
405  * @available:		true/false - match for available opp
406  *
407  * Return: Searches for exact match in the opp table and returns pointer to the
408  * matching opp if found, else returns ERR_PTR in case of error and should
409  * be handled using IS_ERR. Error return values can be:
410  * EINVAL:	for bad pointer
411  * ERANGE:	no match found for search
412  * ENODEV:	if device not found in list of registered devices
413  *
414  * Note: available is a modifier for the search. if available=true, then the
415  * match is for exact matching frequency and is available in the stored OPP
416  * table. if false, the match is for exact frequency which is not available.
417  *
418  * This provides a mechanism to enable an opp which is not available currently
419  * or the opposite as well.
420  *
421  * The callers are required to call dev_pm_opp_put() for the returned OPP after
422  * use.
423  */
424 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
425 					      unsigned long freq,
426 					      bool available)
427 {
428 	struct opp_table *opp_table;
429 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
430 
431 	opp_table = _find_opp_table(dev);
432 	if (IS_ERR(opp_table)) {
433 		int r = PTR_ERR(opp_table);
434 
435 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
436 		return ERR_PTR(r);
437 	}
438 
439 	mutex_lock(&opp_table->lock);
440 
441 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
442 		if (temp_opp->available == available &&
443 				temp_opp->rate == freq) {
444 			opp = temp_opp;
445 
446 			/* Increment the reference count of OPP */
447 			dev_pm_opp_get(opp);
448 			break;
449 		}
450 	}
451 
452 	mutex_unlock(&opp_table->lock);
453 	dev_pm_opp_put_opp_table(opp_table);
454 
455 	return opp;
456 }
457 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
458 
459 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
460 						   unsigned long *freq)
461 {
462 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
463 
464 	mutex_lock(&opp_table->lock);
465 
466 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
467 		if (temp_opp->available && temp_opp->rate >= *freq) {
468 			opp = temp_opp;
469 			*freq = opp->rate;
470 
471 			/* Increment the reference count of OPP */
472 			dev_pm_opp_get(opp);
473 			break;
474 		}
475 	}
476 
477 	mutex_unlock(&opp_table->lock);
478 
479 	return opp;
480 }
481 
482 /**
483  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
484  * @dev:	device for which we do this operation
485  * @freq:	Start frequency
486  *
487  * Search for the matching ceil *available* OPP from a starting freq
488  * for a device.
489  *
490  * Return: matching *opp and refreshes *freq accordingly, else returns
491  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
492  * values can be:
493  * EINVAL:	for bad pointer
494  * ERANGE:	no match found for search
495  * ENODEV:	if device not found in list of registered devices
496  *
497  * The callers are required to call dev_pm_opp_put() for the returned OPP after
498  * use.
499  */
500 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
501 					     unsigned long *freq)
502 {
503 	struct opp_table *opp_table;
504 	struct dev_pm_opp *opp;
505 
506 	if (!dev || !freq) {
507 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
508 		return ERR_PTR(-EINVAL);
509 	}
510 
511 	opp_table = _find_opp_table(dev);
512 	if (IS_ERR(opp_table))
513 		return ERR_CAST(opp_table);
514 
515 	opp = _find_freq_ceil(opp_table, freq);
516 
517 	dev_pm_opp_put_opp_table(opp_table);
518 
519 	return opp;
520 }
521 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
522 
523 /**
524  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
525  * @dev:	device for which we do this operation
526  * @freq:	Start frequency
527  *
528  * Search for the matching floor *available* OPP from a starting freq
529  * for a device.
530  *
531  * Return: matching *opp and refreshes *freq accordingly, else returns
532  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
533  * values can be:
534  * EINVAL:	for bad pointer
535  * ERANGE:	no match found for search
536  * ENODEV:	if device not found in list of registered devices
537  *
538  * The callers are required to call dev_pm_opp_put() for the returned OPP after
539  * use.
540  */
541 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
542 					      unsigned long *freq)
543 {
544 	struct opp_table *opp_table;
545 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
546 
547 	if (!dev || !freq) {
548 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
549 		return ERR_PTR(-EINVAL);
550 	}
551 
552 	opp_table = _find_opp_table(dev);
553 	if (IS_ERR(opp_table))
554 		return ERR_CAST(opp_table);
555 
556 	mutex_lock(&opp_table->lock);
557 
558 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
559 		if (temp_opp->available) {
560 			/* go to the next node, before choosing prev */
561 			if (temp_opp->rate > *freq)
562 				break;
563 			else
564 				opp = temp_opp;
565 		}
566 	}
567 
568 	/* Increment the reference count of OPP */
569 	if (!IS_ERR(opp))
570 		dev_pm_opp_get(opp);
571 	mutex_unlock(&opp_table->lock);
572 	dev_pm_opp_put_opp_table(opp_table);
573 
574 	if (!IS_ERR(opp))
575 		*freq = opp->rate;
576 
577 	return opp;
578 }
579 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
580 
581 /**
582  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
583  *					 target voltage.
584  * @dev:	Device for which we do this operation.
585  * @u_volt:	Target voltage.
586  *
587  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
588  *
589  * Return: matching *opp, else returns ERR_PTR in case of error which should be
590  * handled using IS_ERR.
591  *
592  * Error return values can be:
593  * EINVAL:	bad parameters
594  *
595  * The callers are required to call dev_pm_opp_put() for the returned OPP after
596  * use.
597  */
598 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
599 						     unsigned long u_volt)
600 {
601 	struct opp_table *opp_table;
602 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
603 
604 	if (!dev || !u_volt) {
605 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
606 			u_volt);
607 		return ERR_PTR(-EINVAL);
608 	}
609 
610 	opp_table = _find_opp_table(dev);
611 	if (IS_ERR(opp_table))
612 		return ERR_CAST(opp_table);
613 
614 	mutex_lock(&opp_table->lock);
615 
616 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
617 		if (temp_opp->available) {
618 			if (temp_opp->supplies[0].u_volt > u_volt)
619 				break;
620 			opp = temp_opp;
621 		}
622 	}
623 
624 	/* Increment the reference count of OPP */
625 	if (!IS_ERR(opp))
626 		dev_pm_opp_get(opp);
627 
628 	mutex_unlock(&opp_table->lock);
629 	dev_pm_opp_put_opp_table(opp_table);
630 
631 	return opp;
632 }
633 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
634 
635 /**
636  * dev_pm_opp_find_level_exact() - search for an exact level
637  * @dev:		device for which we do this operation
638  * @level:		level to search for
639  *
640  * Return: Searches for exact match in the opp table and returns pointer to the
641  * matching opp if found, else returns ERR_PTR in case of error and should
642  * be handled using IS_ERR. Error return values can be:
643  * EINVAL:	for bad pointer
644  * ERANGE:	no match found for search
645  * ENODEV:	if device not found in list of registered devices
646  *
647  * The callers are required to call dev_pm_opp_put() for the returned OPP after
648  * use.
649  */
650 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
651 					       unsigned int level)
652 {
653 	struct opp_table *opp_table;
654 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
655 
656 	opp_table = _find_opp_table(dev);
657 	if (IS_ERR(opp_table)) {
658 		int r = PTR_ERR(opp_table);
659 
660 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
661 		return ERR_PTR(r);
662 	}
663 
664 	mutex_lock(&opp_table->lock);
665 
666 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
667 		if (temp_opp->level == level) {
668 			opp = temp_opp;
669 
670 			/* Increment the reference count of OPP */
671 			dev_pm_opp_get(opp);
672 			break;
673 		}
674 	}
675 
676 	mutex_unlock(&opp_table->lock);
677 	dev_pm_opp_put_opp_table(opp_table);
678 
679 	return opp;
680 }
681 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
682 
683 /**
684  * dev_pm_opp_find_level_ceil() - search for an rounded up level
685  * @dev:		device for which we do this operation
686  * @level:		level to search for
687  *
688  * Return: Searches for rounded up match in the opp table and returns pointer
689  * to the  matching opp if found, else returns ERR_PTR in case of error and
690  * should be handled using IS_ERR. Error return values can be:
691  * EINVAL:	for bad pointer
692  * ERANGE:	no match found for search
693  * ENODEV:	if device not found in list of registered devices
694  *
695  * The callers are required to call dev_pm_opp_put() for the returned OPP after
696  * use.
697  */
698 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
699 					      unsigned int *level)
700 {
701 	struct opp_table *opp_table;
702 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
703 
704 	opp_table = _find_opp_table(dev);
705 	if (IS_ERR(opp_table)) {
706 		int r = PTR_ERR(opp_table);
707 
708 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
709 		return ERR_PTR(r);
710 	}
711 
712 	mutex_lock(&opp_table->lock);
713 
714 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
715 		if (temp_opp->available && temp_opp->level >= *level) {
716 			opp = temp_opp;
717 			*level = opp->level;
718 
719 			/* Increment the reference count of OPP */
720 			dev_pm_opp_get(opp);
721 			break;
722 		}
723 	}
724 
725 	mutex_unlock(&opp_table->lock);
726 	dev_pm_opp_put_opp_table(opp_table);
727 
728 	return opp;
729 }
730 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
731 
732 /**
733  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
734  * @dev:	device for which we do this operation
735  * @freq:	start bandwidth
736  * @index:	which bandwidth to compare, in case of OPPs with several values
737  *
738  * Search for the matching floor *available* OPP from a starting bandwidth
739  * for a device.
740  *
741  * Return: matching *opp and refreshes *bw accordingly, else returns
742  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
743  * values can be:
744  * EINVAL:	for bad pointer
745  * ERANGE:	no match found for search
746  * ENODEV:	if device not found in list of registered devices
747  *
748  * The callers are required to call dev_pm_opp_put() for the returned OPP after
749  * use.
750  */
751 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev,
752 					   unsigned int *bw, int index)
753 {
754 	struct opp_table *opp_table;
755 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
756 
757 	if (!dev || !bw) {
758 		dev_err(dev, "%s: Invalid argument bw=%p\n", __func__, bw);
759 		return ERR_PTR(-EINVAL);
760 	}
761 
762 	opp_table = _find_opp_table(dev);
763 	if (IS_ERR(opp_table))
764 		return ERR_CAST(opp_table);
765 
766 	if (index >= opp_table->path_count)
767 		return ERR_PTR(-EINVAL);
768 
769 	mutex_lock(&opp_table->lock);
770 
771 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
772 		if (temp_opp->available && temp_opp->bandwidth) {
773 			if (temp_opp->bandwidth[index].peak >= *bw) {
774 				opp = temp_opp;
775 				*bw = opp->bandwidth[index].peak;
776 
777 				/* Increment the reference count of OPP */
778 				dev_pm_opp_get(opp);
779 				break;
780 			}
781 		}
782 	}
783 
784 	mutex_unlock(&opp_table->lock);
785 	dev_pm_opp_put_opp_table(opp_table);
786 
787 	return opp;
788 }
789 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
790 
791 /**
792  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
793  * @dev:	device for which we do this operation
794  * @freq:	start bandwidth
795  * @index:	which bandwidth to compare, in case of OPPs with several values
796  *
797  * Search for the matching floor *available* OPP from a starting bandwidth
798  * for a device.
799  *
800  * Return: matching *opp and refreshes *bw accordingly, else returns
801  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
802  * values can be:
803  * EINVAL:	for bad pointer
804  * ERANGE:	no match found for search
805  * ENODEV:	if device not found in list of registered devices
806  *
807  * The callers are required to call dev_pm_opp_put() for the returned OPP after
808  * use.
809  */
810 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
811 					    unsigned int *bw, int index)
812 {
813 	struct opp_table *opp_table;
814 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
815 
816 	if (!dev || !bw) {
817 		dev_err(dev, "%s: Invalid argument bw=%p\n", __func__, bw);
818 		return ERR_PTR(-EINVAL);
819 	}
820 
821 	opp_table = _find_opp_table(dev);
822 	if (IS_ERR(opp_table))
823 		return ERR_CAST(opp_table);
824 
825 	if (index >= opp_table->path_count)
826 		return ERR_PTR(-EINVAL);
827 
828 	mutex_lock(&opp_table->lock);
829 
830 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
831 		if (temp_opp->available && temp_opp->bandwidth) {
832 			/* go to the next node, before choosing prev */
833 			if (temp_opp->bandwidth[index].peak > *bw)
834 				break;
835 			opp = temp_opp;
836 		}
837 	}
838 
839 	/* Increment the reference count of OPP */
840 	if (!IS_ERR(opp))
841 		dev_pm_opp_get(opp);
842 	mutex_unlock(&opp_table->lock);
843 	dev_pm_opp_put_opp_table(opp_table);
844 
845 	if (!IS_ERR(opp))
846 		*bw = opp->bandwidth[index].peak;
847 
848 	return opp;
849 }
850 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
851 
852 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
853 			    struct dev_pm_opp_supply *supply)
854 {
855 	int ret;
856 
857 	/* Regulator not available for device */
858 	if (IS_ERR(reg)) {
859 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
860 			PTR_ERR(reg));
861 		return 0;
862 	}
863 
864 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
865 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
866 
867 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
868 					    supply->u_volt, supply->u_volt_max);
869 	if (ret)
870 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
871 			__func__, supply->u_volt_min, supply->u_volt,
872 			supply->u_volt_max, ret);
873 
874 	return ret;
875 }
876 
877 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
878 					    unsigned long freq)
879 {
880 	int ret;
881 
882 	/* We may reach here for devices which don't change frequency */
883 	if (IS_ERR(clk))
884 		return 0;
885 
886 	ret = clk_set_rate(clk, freq);
887 	if (ret) {
888 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
889 			ret);
890 	}
891 
892 	return ret;
893 }
894 
895 static int _generic_set_opp_regulator(struct opp_table *opp_table,
896 				      struct device *dev,
897 				      struct dev_pm_opp *opp,
898 				      unsigned long freq,
899 				      int scaling_down)
900 {
901 	struct regulator *reg = opp_table->regulators[0];
902 	struct dev_pm_opp *old_opp = opp_table->current_opp;
903 	int ret;
904 
905 	/* This function only supports single regulator per device */
906 	if (WARN_ON(opp_table->regulator_count > 1)) {
907 		dev_err(dev, "multiple regulators are not supported\n");
908 		return -EINVAL;
909 	}
910 
911 	/* Scaling up? Scale voltage before frequency */
912 	if (!scaling_down) {
913 		ret = _set_opp_voltage(dev, reg, opp->supplies);
914 		if (ret)
915 			goto restore_voltage;
916 	}
917 
918 	/* Change frequency */
919 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
920 	if (ret)
921 		goto restore_voltage;
922 
923 	/* Scaling down? Scale voltage after frequency */
924 	if (scaling_down) {
925 		ret = _set_opp_voltage(dev, reg, opp->supplies);
926 		if (ret)
927 			goto restore_freq;
928 	}
929 
930 	/*
931 	 * Enable the regulator after setting its voltages, otherwise it breaks
932 	 * some boot-enabled regulators.
933 	 */
934 	if (unlikely(!opp_table->enabled)) {
935 		ret = regulator_enable(reg);
936 		if (ret < 0)
937 			dev_warn(dev, "Failed to enable regulator: %d", ret);
938 	}
939 
940 	return 0;
941 
942 restore_freq:
943 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
944 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
945 			__func__, old_opp->rate);
946 restore_voltage:
947 	/* This shouldn't harm even if the voltages weren't updated earlier */
948 	_set_opp_voltage(dev, reg, old_opp->supplies);
949 
950 	return ret;
951 }
952 
953 static int _set_opp_bw(const struct opp_table *opp_table,
954 		       struct dev_pm_opp *opp, struct device *dev)
955 {
956 	u32 avg, peak;
957 	int i, ret;
958 
959 	if (!opp_table->paths)
960 		return 0;
961 
962 	for (i = 0; i < opp_table->path_count; i++) {
963 		if (!opp) {
964 			avg = 0;
965 			peak = 0;
966 		} else {
967 			avg = opp->bandwidth[i].avg;
968 			peak = opp->bandwidth[i].peak;
969 		}
970 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
971 		if (ret) {
972 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
973 				opp ? "set" : "remove", i, ret);
974 			return ret;
975 		}
976 	}
977 
978 	return 0;
979 }
980 
981 static int _set_opp_custom(const struct opp_table *opp_table,
982 			   struct device *dev, struct dev_pm_opp *opp,
983 			   unsigned long freq)
984 {
985 	struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
986 	struct dev_pm_opp *old_opp = opp_table->current_opp;
987 	int size;
988 
989 	/*
990 	 * We support this only if dev_pm_opp_set_regulators() was called
991 	 * earlier.
992 	 */
993 	if (opp_table->sod_supplies) {
994 		size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
995 		memcpy(data->old_opp.supplies, old_opp->supplies, size);
996 		memcpy(data->new_opp.supplies, opp->supplies, size);
997 		data->regulator_count = opp_table->regulator_count;
998 	} else {
999 		data->regulator_count = 0;
1000 	}
1001 
1002 	data->regulators = opp_table->regulators;
1003 	data->clk = opp_table->clk;
1004 	data->dev = dev;
1005 	data->old_opp.rate = old_opp->rate;
1006 	data->new_opp.rate = freq;
1007 
1008 	return opp_table->set_opp(data);
1009 }
1010 
1011 static int _set_required_opp(struct device *dev, struct device *pd_dev,
1012 			     struct dev_pm_opp *opp, int i)
1013 {
1014 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
1015 	int ret;
1016 
1017 	if (!pd_dev)
1018 		return 0;
1019 
1020 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
1021 	if (ret) {
1022 		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
1023 			dev_name(pd_dev), pstate, ret);
1024 	}
1025 
1026 	return ret;
1027 }
1028 
1029 /* This is only called for PM domain for now */
1030 static int _set_required_opps(struct device *dev,
1031 			      struct opp_table *opp_table,
1032 			      struct dev_pm_opp *opp, bool up)
1033 {
1034 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
1035 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
1036 	int i, ret = 0;
1037 
1038 	if (!required_opp_tables)
1039 		return 0;
1040 
1041 	/* required-opps not fully initialized yet */
1042 	if (lazy_linking_pending(opp_table))
1043 		return -EBUSY;
1044 
1045 	/*
1046 	 * We only support genpd's OPPs in the "required-opps" for now, as we
1047 	 * don't know much about other use cases. Error out if the required OPP
1048 	 * doesn't belong to a genpd.
1049 	 */
1050 	if (unlikely(!required_opp_tables[0]->is_genpd)) {
1051 		dev_err(dev, "required-opps don't belong to a genpd\n");
1052 		return -ENOENT;
1053 	}
1054 
1055 	/* Single genpd case */
1056 	if (!genpd_virt_devs)
1057 		return _set_required_opp(dev, dev, opp, 0);
1058 
1059 	/* Multiple genpd case */
1060 
1061 	/*
1062 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
1063 	 * after it is freed from another thread.
1064 	 */
1065 	mutex_lock(&opp_table->genpd_virt_dev_lock);
1066 
1067 	/* Scaling up? Set required OPPs in normal order, else reverse */
1068 	if (up) {
1069 		for (i = 0; i < opp_table->required_opp_count; i++) {
1070 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1071 			if (ret)
1072 				break;
1073 		}
1074 	} else {
1075 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1076 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1077 			if (ret)
1078 				break;
1079 		}
1080 	}
1081 
1082 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1083 
1084 	return ret;
1085 }
1086 
1087 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1088 {
1089 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1090 	unsigned long freq;
1091 
1092 	if (!IS_ERR(opp_table->clk)) {
1093 		freq = clk_get_rate(opp_table->clk);
1094 		opp = _find_freq_ceil(opp_table, &freq);
1095 	}
1096 
1097 	/*
1098 	 * Unable to find the current OPP ? Pick the first from the list since
1099 	 * it is in ascending order, otherwise rest of the code will need to
1100 	 * make special checks to validate current_opp.
1101 	 */
1102 	if (IS_ERR(opp)) {
1103 		mutex_lock(&opp_table->lock);
1104 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1105 		dev_pm_opp_get(opp);
1106 		mutex_unlock(&opp_table->lock);
1107 	}
1108 
1109 	opp_table->current_opp = opp;
1110 }
1111 
1112 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1113 {
1114 	int ret;
1115 
1116 	if (!opp_table->enabled)
1117 		return 0;
1118 
1119 	/*
1120 	 * Some drivers need to support cases where some platforms may
1121 	 * have OPP table for the device, while others don't and
1122 	 * opp_set_rate() just needs to behave like clk_set_rate().
1123 	 */
1124 	if (!_get_opp_count(opp_table))
1125 		return 0;
1126 
1127 	ret = _set_opp_bw(opp_table, NULL, dev);
1128 	if (ret)
1129 		return ret;
1130 
1131 	if (opp_table->regulators)
1132 		regulator_disable(opp_table->regulators[0]);
1133 
1134 	ret = _set_required_opps(dev, opp_table, NULL, false);
1135 
1136 	opp_table->enabled = false;
1137 	return ret;
1138 }
1139 
1140 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1141 		    struct dev_pm_opp *opp, unsigned long freq)
1142 {
1143 	struct dev_pm_opp *old_opp;
1144 	int scaling_down, ret;
1145 
1146 	if (unlikely(!opp))
1147 		return _disable_opp_table(dev, opp_table);
1148 
1149 	/* Find the currently set OPP if we don't know already */
1150 	if (unlikely(!opp_table->current_opp))
1151 		_find_current_opp(dev, opp_table);
1152 
1153 	old_opp = opp_table->current_opp;
1154 
1155 	/* Return early if nothing to do */
1156 	if (old_opp == opp && opp_table->current_rate == freq &&
1157 	    opp_table->enabled) {
1158 		dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1159 		return 0;
1160 	}
1161 
1162 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1163 		__func__, opp_table->current_rate, freq, old_opp->level,
1164 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1165 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1166 
1167 	scaling_down = _opp_compare_key(old_opp, opp);
1168 	if (scaling_down == -1)
1169 		scaling_down = 0;
1170 
1171 	/* Scaling up? Configure required OPPs before frequency */
1172 	if (!scaling_down) {
1173 		ret = _set_required_opps(dev, opp_table, opp, true);
1174 		if (ret) {
1175 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1176 			return ret;
1177 		}
1178 
1179 		ret = _set_opp_bw(opp_table, opp, dev);
1180 		if (ret) {
1181 			dev_err(dev, "Failed to set bw: %d\n", ret);
1182 			return ret;
1183 		}
1184 	}
1185 
1186 	if (opp_table->set_opp) {
1187 		ret = _set_opp_custom(opp_table, dev, opp, freq);
1188 	} else if (opp_table->regulators) {
1189 		ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1190 						 scaling_down);
1191 	} else {
1192 		/* Only frequency scaling */
1193 		ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1194 	}
1195 
1196 	if (ret)
1197 		return ret;
1198 
1199 	/* Scaling down? Configure required OPPs after frequency */
1200 	if (scaling_down) {
1201 		ret = _set_opp_bw(opp_table, opp, dev);
1202 		if (ret) {
1203 			dev_err(dev, "Failed to set bw: %d\n", ret);
1204 			return ret;
1205 		}
1206 
1207 		ret = _set_required_opps(dev, opp_table, opp, false);
1208 		if (ret) {
1209 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1210 			return ret;
1211 		}
1212 	}
1213 
1214 	opp_table->enabled = true;
1215 	dev_pm_opp_put(old_opp);
1216 
1217 	/* Make sure current_opp doesn't get freed */
1218 	dev_pm_opp_get(opp);
1219 	opp_table->current_opp = opp;
1220 	opp_table->current_rate = freq;
1221 
1222 	return ret;
1223 }
1224 
1225 /**
1226  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1227  * @dev:	 device for which we do this operation
1228  * @target_freq: frequency to achieve
1229  *
1230  * This configures the power-supplies to the levels specified by the OPP
1231  * corresponding to the target_freq, and programs the clock to a value <=
1232  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1233  * provided by the opp, should have already rounded to the target OPP's
1234  * frequency.
1235  */
1236 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1237 {
1238 	struct opp_table *opp_table;
1239 	unsigned long freq = 0, temp_freq;
1240 	struct dev_pm_opp *opp = NULL;
1241 	int ret;
1242 
1243 	opp_table = _find_opp_table(dev);
1244 	if (IS_ERR(opp_table)) {
1245 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1246 		return PTR_ERR(opp_table);
1247 	}
1248 
1249 	if (target_freq) {
1250 		/*
1251 		 * For IO devices which require an OPP on some platforms/SoCs
1252 		 * while just needing to scale the clock on some others
1253 		 * we look for empty OPP tables with just a clock handle and
1254 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1255 		 * equivalent to a clk_set_rate()
1256 		 */
1257 		if (!_get_opp_count(opp_table)) {
1258 			ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1259 			goto put_opp_table;
1260 		}
1261 
1262 		freq = clk_round_rate(opp_table->clk, target_freq);
1263 		if ((long)freq <= 0)
1264 			freq = target_freq;
1265 
1266 		/*
1267 		 * The clock driver may support finer resolution of the
1268 		 * frequencies than the OPP table, don't update the frequency we
1269 		 * pass to clk_set_rate() here.
1270 		 */
1271 		temp_freq = freq;
1272 		opp = _find_freq_ceil(opp_table, &temp_freq);
1273 		if (IS_ERR(opp)) {
1274 			ret = PTR_ERR(opp);
1275 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1276 				__func__, freq, ret);
1277 			goto put_opp_table;
1278 		}
1279 	}
1280 
1281 	ret = _set_opp(dev, opp_table, opp, freq);
1282 
1283 	if (target_freq)
1284 		dev_pm_opp_put(opp);
1285 put_opp_table:
1286 	dev_pm_opp_put_opp_table(opp_table);
1287 	return ret;
1288 }
1289 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1290 
1291 /**
1292  * dev_pm_opp_set_opp() - Configure device for OPP
1293  * @dev: device for which we do this operation
1294  * @opp: OPP to set to
1295  *
1296  * This configures the device based on the properties of the OPP passed to this
1297  * routine.
1298  *
1299  * Return: 0 on success, a negative error number otherwise.
1300  */
1301 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1302 {
1303 	struct opp_table *opp_table;
1304 	int ret;
1305 
1306 	opp_table = _find_opp_table(dev);
1307 	if (IS_ERR(opp_table)) {
1308 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1309 		return PTR_ERR(opp_table);
1310 	}
1311 
1312 	ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1313 	dev_pm_opp_put_opp_table(opp_table);
1314 
1315 	return ret;
1316 }
1317 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1318 
1319 /* OPP-dev Helpers */
1320 static void _remove_opp_dev(struct opp_device *opp_dev,
1321 			    struct opp_table *opp_table)
1322 {
1323 	opp_debug_unregister(opp_dev, opp_table);
1324 	list_del(&opp_dev->node);
1325 	kfree(opp_dev);
1326 }
1327 
1328 struct opp_device *_add_opp_dev(const struct device *dev,
1329 				struct opp_table *opp_table)
1330 {
1331 	struct opp_device *opp_dev;
1332 
1333 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1334 	if (!opp_dev)
1335 		return NULL;
1336 
1337 	/* Initialize opp-dev */
1338 	opp_dev->dev = dev;
1339 
1340 	mutex_lock(&opp_table->lock);
1341 	list_add(&opp_dev->node, &opp_table->dev_list);
1342 	mutex_unlock(&opp_table->lock);
1343 
1344 	/* Create debugfs entries for the opp_table */
1345 	opp_debug_register(opp_dev, opp_table);
1346 
1347 	return opp_dev;
1348 }
1349 
1350 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1351 {
1352 	struct opp_table *opp_table;
1353 	struct opp_device *opp_dev;
1354 	int ret;
1355 
1356 	/*
1357 	 * Allocate a new OPP table. In the infrequent case where a new
1358 	 * device is needed to be added, we pay this penalty.
1359 	 */
1360 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1361 	if (!opp_table)
1362 		return ERR_PTR(-ENOMEM);
1363 
1364 	mutex_init(&opp_table->lock);
1365 	mutex_init(&opp_table->genpd_virt_dev_lock);
1366 	INIT_LIST_HEAD(&opp_table->dev_list);
1367 	INIT_LIST_HEAD(&opp_table->lazy);
1368 
1369 	/* Mark regulator count uninitialized */
1370 	opp_table->regulator_count = -1;
1371 
1372 	opp_dev = _add_opp_dev(dev, opp_table);
1373 	if (!opp_dev) {
1374 		ret = -ENOMEM;
1375 		goto err;
1376 	}
1377 
1378 	_of_init_opp_table(opp_table, dev, index);
1379 
1380 	/* Find interconnect path(s) for the device */
1381 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1382 	if (ret) {
1383 		if (ret == -EPROBE_DEFER)
1384 			goto remove_opp_dev;
1385 
1386 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1387 			 __func__, ret);
1388 	}
1389 
1390 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1391 	INIT_LIST_HEAD(&opp_table->opp_list);
1392 	kref_init(&opp_table->kref);
1393 
1394 	return opp_table;
1395 
1396 remove_opp_dev:
1397 	_remove_opp_dev(opp_dev, opp_table);
1398 err:
1399 	kfree(opp_table);
1400 	return ERR_PTR(ret);
1401 }
1402 
1403 void _get_opp_table_kref(struct opp_table *opp_table)
1404 {
1405 	kref_get(&opp_table->kref);
1406 }
1407 
1408 static struct opp_table *_update_opp_table_clk(struct device *dev,
1409 					       struct opp_table *opp_table,
1410 					       bool getclk)
1411 {
1412 	int ret;
1413 
1414 	/*
1415 	 * Return early if we don't need to get clk or we have already tried it
1416 	 * earlier.
1417 	 */
1418 	if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1419 		return opp_table;
1420 
1421 	/* Find clk for the device */
1422 	opp_table->clk = clk_get(dev, NULL);
1423 
1424 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1425 	if (!ret)
1426 		return opp_table;
1427 
1428 	if (ret == -ENOENT) {
1429 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1430 		return opp_table;
1431 	}
1432 
1433 	dev_pm_opp_put_opp_table(opp_table);
1434 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1435 
1436 	return ERR_PTR(ret);
1437 }
1438 
1439 /*
1440  * We need to make sure that the OPP table for a device doesn't get added twice,
1441  * if this routine gets called in parallel with the same device pointer.
1442  *
1443  * The simplest way to enforce that is to perform everything (find existing
1444  * table and if not found, create a new one) under the opp_table_lock, so only
1445  * one creator gets access to the same. But that expands the critical section
1446  * under the lock and may end up causing circular dependencies with frameworks
1447  * like debugfs, interconnect or clock framework as they may be direct or
1448  * indirect users of OPP core.
1449  *
1450  * And for that reason we have to go for a bit tricky implementation here, which
1451  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1452  * of adding an OPP table and others should wait for it to finish.
1453  */
1454 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1455 					 bool getclk)
1456 {
1457 	struct opp_table *opp_table;
1458 
1459 again:
1460 	mutex_lock(&opp_table_lock);
1461 
1462 	opp_table = _find_opp_table_unlocked(dev);
1463 	if (!IS_ERR(opp_table))
1464 		goto unlock;
1465 
1466 	/*
1467 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1468 	 * another user, wait for it to finish.
1469 	 */
1470 	if (unlikely(opp_tables_busy)) {
1471 		mutex_unlock(&opp_table_lock);
1472 		cpu_relax();
1473 		goto again;
1474 	}
1475 
1476 	opp_tables_busy = true;
1477 	opp_table = _managed_opp(dev, index);
1478 
1479 	/* Drop the lock to reduce the size of critical section */
1480 	mutex_unlock(&opp_table_lock);
1481 
1482 	if (opp_table) {
1483 		if (!_add_opp_dev(dev, opp_table)) {
1484 			dev_pm_opp_put_opp_table(opp_table);
1485 			opp_table = ERR_PTR(-ENOMEM);
1486 		}
1487 
1488 		mutex_lock(&opp_table_lock);
1489 	} else {
1490 		opp_table = _allocate_opp_table(dev, index);
1491 
1492 		mutex_lock(&opp_table_lock);
1493 		if (!IS_ERR(opp_table))
1494 			list_add(&opp_table->node, &opp_tables);
1495 	}
1496 
1497 	opp_tables_busy = false;
1498 
1499 unlock:
1500 	mutex_unlock(&opp_table_lock);
1501 
1502 	return _update_opp_table_clk(dev, opp_table, getclk);
1503 }
1504 
1505 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1506 {
1507 	return _add_opp_table_indexed(dev, 0, getclk);
1508 }
1509 
1510 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1511 {
1512 	return _find_opp_table(dev);
1513 }
1514 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1515 
1516 static void _opp_table_kref_release(struct kref *kref)
1517 {
1518 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1519 	struct opp_device *opp_dev, *temp;
1520 	int i;
1521 
1522 	/* Drop the lock as soon as we can */
1523 	list_del(&opp_table->node);
1524 	mutex_unlock(&opp_table_lock);
1525 
1526 	if (opp_table->current_opp)
1527 		dev_pm_opp_put(opp_table->current_opp);
1528 
1529 	_of_clear_opp_table(opp_table);
1530 
1531 	/* Release clk */
1532 	if (!IS_ERR(opp_table->clk))
1533 		clk_put(opp_table->clk);
1534 
1535 	if (opp_table->paths) {
1536 		for (i = 0; i < opp_table->path_count; i++)
1537 			icc_put(opp_table->paths[i]);
1538 		kfree(opp_table->paths);
1539 	}
1540 
1541 	WARN_ON(!list_empty(&opp_table->opp_list));
1542 
1543 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1544 		/*
1545 		 * The OPP table is getting removed, drop the performance state
1546 		 * constraints.
1547 		 */
1548 		if (opp_table->genpd_performance_state)
1549 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1550 
1551 		_remove_opp_dev(opp_dev, opp_table);
1552 	}
1553 
1554 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1555 	mutex_destroy(&opp_table->lock);
1556 	kfree(opp_table);
1557 }
1558 
1559 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1560 {
1561 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1562 		       &opp_table_lock);
1563 }
1564 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1565 
1566 void _opp_free(struct dev_pm_opp *opp)
1567 {
1568 	kfree(opp);
1569 }
1570 
1571 static void _opp_kref_release(struct kref *kref)
1572 {
1573 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1574 	struct opp_table *opp_table = opp->opp_table;
1575 
1576 	list_del(&opp->node);
1577 	mutex_unlock(&opp_table->lock);
1578 
1579 	/*
1580 	 * Notify the changes in the availability of the operable
1581 	 * frequency/voltage list.
1582 	 */
1583 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1584 	_of_opp_free_required_opps(opp_table, opp);
1585 	opp_debug_remove_one(opp);
1586 	kfree(opp);
1587 }
1588 
1589 void dev_pm_opp_get(struct dev_pm_opp *opp)
1590 {
1591 	kref_get(&opp->kref);
1592 }
1593 
1594 void dev_pm_opp_put(struct dev_pm_opp *opp)
1595 {
1596 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1597 }
1598 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1599 
1600 /**
1601  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1602  * @dev:	device for which we do this operation
1603  * @freq:	OPP to remove with matching 'freq'
1604  *
1605  * This function removes an opp from the opp table.
1606  */
1607 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1608 {
1609 	struct dev_pm_opp *opp = NULL, *iter;
1610 	struct opp_table *opp_table;
1611 
1612 	opp_table = _find_opp_table(dev);
1613 	if (IS_ERR(opp_table))
1614 		return;
1615 
1616 	mutex_lock(&opp_table->lock);
1617 
1618 	list_for_each_entry(iter, &opp_table->opp_list, node) {
1619 		if (iter->rate == freq) {
1620 			opp = iter;
1621 			break;
1622 		}
1623 	}
1624 
1625 	mutex_unlock(&opp_table->lock);
1626 
1627 	if (opp) {
1628 		dev_pm_opp_put(opp);
1629 
1630 		/* Drop the reference taken by dev_pm_opp_add() */
1631 		dev_pm_opp_put_opp_table(opp_table);
1632 	} else {
1633 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1634 			 __func__, freq);
1635 	}
1636 
1637 	/* Drop the reference taken by _find_opp_table() */
1638 	dev_pm_opp_put_opp_table(opp_table);
1639 }
1640 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1641 
1642 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1643 					bool dynamic)
1644 {
1645 	struct dev_pm_opp *opp = NULL, *temp;
1646 
1647 	mutex_lock(&opp_table->lock);
1648 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1649 		/*
1650 		 * Refcount must be dropped only once for each OPP by OPP core,
1651 		 * do that with help of "removed" flag.
1652 		 */
1653 		if (!temp->removed && dynamic == temp->dynamic) {
1654 			opp = temp;
1655 			break;
1656 		}
1657 	}
1658 
1659 	mutex_unlock(&opp_table->lock);
1660 	return opp;
1661 }
1662 
1663 /*
1664  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1665  * happen lock less to avoid circular dependency issues. This routine must be
1666  * called without the opp_table->lock held.
1667  */
1668 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1669 {
1670 	struct dev_pm_opp *opp;
1671 
1672 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1673 		opp->removed = true;
1674 		dev_pm_opp_put(opp);
1675 
1676 		/* Drop the references taken by dev_pm_opp_add() */
1677 		if (dynamic)
1678 			dev_pm_opp_put_opp_table(opp_table);
1679 	}
1680 }
1681 
1682 bool _opp_remove_all_static(struct opp_table *opp_table)
1683 {
1684 	mutex_lock(&opp_table->lock);
1685 
1686 	if (!opp_table->parsed_static_opps) {
1687 		mutex_unlock(&opp_table->lock);
1688 		return false;
1689 	}
1690 
1691 	if (--opp_table->parsed_static_opps) {
1692 		mutex_unlock(&opp_table->lock);
1693 		return true;
1694 	}
1695 
1696 	mutex_unlock(&opp_table->lock);
1697 
1698 	_opp_remove_all(opp_table, false);
1699 	return true;
1700 }
1701 
1702 /**
1703  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1704  * @dev:	device for which we do this operation
1705  *
1706  * This function removes all dynamically created OPPs from the opp table.
1707  */
1708 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1709 {
1710 	struct opp_table *opp_table;
1711 
1712 	opp_table = _find_opp_table(dev);
1713 	if (IS_ERR(opp_table))
1714 		return;
1715 
1716 	_opp_remove_all(opp_table, true);
1717 
1718 	/* Drop the reference taken by _find_opp_table() */
1719 	dev_pm_opp_put_opp_table(opp_table);
1720 }
1721 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1722 
1723 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1724 {
1725 	struct dev_pm_opp *opp;
1726 	int supply_count, supply_size, icc_size;
1727 
1728 	/* Allocate space for at least one supply */
1729 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1730 	supply_size = sizeof(*opp->supplies) * supply_count;
1731 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1732 
1733 	/* allocate new OPP node and supplies structures */
1734 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1735 
1736 	if (!opp)
1737 		return NULL;
1738 
1739 	/* Put the supplies at the end of the OPP structure as an empty array */
1740 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1741 	if (icc_size)
1742 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1743 	INIT_LIST_HEAD(&opp->node);
1744 
1745 	return opp;
1746 }
1747 
1748 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1749 					 struct opp_table *opp_table)
1750 {
1751 	struct regulator *reg;
1752 	int i;
1753 
1754 	if (!opp_table->regulators)
1755 		return true;
1756 
1757 	for (i = 0; i < opp_table->regulator_count; i++) {
1758 		reg = opp_table->regulators[i];
1759 
1760 		if (!regulator_is_supported_voltage(reg,
1761 					opp->supplies[i].u_volt_min,
1762 					opp->supplies[i].u_volt_max)) {
1763 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1764 				__func__, opp->supplies[i].u_volt_min,
1765 				opp->supplies[i].u_volt_max);
1766 			return false;
1767 		}
1768 	}
1769 
1770 	return true;
1771 }
1772 
1773 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1774 {
1775 	if (opp1->rate != opp2->rate)
1776 		return opp1->rate < opp2->rate ? -1 : 1;
1777 	if (opp1->bandwidth && opp2->bandwidth &&
1778 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1779 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1780 	if (opp1->level != opp2->level)
1781 		return opp1->level < opp2->level ? -1 : 1;
1782 	return 0;
1783 }
1784 
1785 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1786 			     struct opp_table *opp_table,
1787 			     struct list_head **head)
1788 {
1789 	struct dev_pm_opp *opp;
1790 	int opp_cmp;
1791 
1792 	/*
1793 	 * Insert new OPP in order of increasing frequency and discard if
1794 	 * already present.
1795 	 *
1796 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1797 	 * loop, don't replace it with head otherwise it will become an infinite
1798 	 * loop.
1799 	 */
1800 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1801 		opp_cmp = _opp_compare_key(new_opp, opp);
1802 		if (opp_cmp > 0) {
1803 			*head = &opp->node;
1804 			continue;
1805 		}
1806 
1807 		if (opp_cmp < 0)
1808 			return 0;
1809 
1810 		/* Duplicate OPPs */
1811 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1812 			 __func__, opp->rate, opp->supplies[0].u_volt,
1813 			 opp->available, new_opp->rate,
1814 			 new_opp->supplies[0].u_volt, new_opp->available);
1815 
1816 		/* Should we compare voltages for all regulators here ? */
1817 		return opp->available &&
1818 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1819 	}
1820 
1821 	return 0;
1822 }
1823 
1824 void _required_opps_available(struct dev_pm_opp *opp, int count)
1825 {
1826 	int i;
1827 
1828 	for (i = 0; i < count; i++) {
1829 		if (opp->required_opps[i]->available)
1830 			continue;
1831 
1832 		opp->available = false;
1833 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1834 			 __func__, opp->required_opps[i]->np, opp->rate);
1835 		return;
1836 	}
1837 }
1838 
1839 /*
1840  * Returns:
1841  * 0: On success. And appropriate error message for duplicate OPPs.
1842  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1843  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1844  *  sure we don't print error messages unnecessarily if different parts of
1845  *  kernel try to initialize the OPP table.
1846  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1847  *  should be considered an error by the callers of _opp_add().
1848  */
1849 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1850 	     struct opp_table *opp_table, bool rate_not_available)
1851 {
1852 	struct list_head *head;
1853 	int ret;
1854 
1855 	mutex_lock(&opp_table->lock);
1856 	head = &opp_table->opp_list;
1857 
1858 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1859 	if (ret) {
1860 		mutex_unlock(&opp_table->lock);
1861 		return ret;
1862 	}
1863 
1864 	list_add(&new_opp->node, head);
1865 	mutex_unlock(&opp_table->lock);
1866 
1867 	new_opp->opp_table = opp_table;
1868 	kref_init(&new_opp->kref);
1869 
1870 	opp_debug_create_one(new_opp, opp_table);
1871 
1872 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1873 		new_opp->available = false;
1874 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1875 			 __func__, new_opp->rate);
1876 	}
1877 
1878 	/* required-opps not fully initialized yet */
1879 	if (lazy_linking_pending(opp_table))
1880 		return 0;
1881 
1882 	_required_opps_available(new_opp, opp_table->required_opp_count);
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1889  * @opp_table:	OPP table
1890  * @dev:	device for which we do this operation
1891  * @freq:	Frequency in Hz for this OPP
1892  * @u_volt:	Voltage in uVolts for this OPP
1893  * @dynamic:	Dynamically added OPPs.
1894  *
1895  * This function adds an opp definition to the opp table and returns status.
1896  * The opp is made available by default and it can be controlled using
1897  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1898  *
1899  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1900  * and freed by dev_pm_opp_of_remove_table.
1901  *
1902  * Return:
1903  * 0		On success OR
1904  *		Duplicate OPPs (both freq and volt are same) and opp->available
1905  * -EEXIST	Freq are same and volt are different OR
1906  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1907  * -ENOMEM	Memory allocation failure
1908  */
1909 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1910 		unsigned long freq, long u_volt, bool dynamic)
1911 {
1912 	struct dev_pm_opp *new_opp;
1913 	unsigned long tol;
1914 	int ret;
1915 
1916 	new_opp = _opp_allocate(opp_table);
1917 	if (!new_opp)
1918 		return -ENOMEM;
1919 
1920 	/* populate the opp table */
1921 	new_opp->rate = freq;
1922 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1923 	new_opp->supplies[0].u_volt = u_volt;
1924 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1925 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1926 	new_opp->available = true;
1927 	new_opp->dynamic = dynamic;
1928 
1929 	ret = _opp_add(dev, new_opp, opp_table, false);
1930 	if (ret) {
1931 		/* Don't return error for duplicate OPPs */
1932 		if (ret == -EBUSY)
1933 			ret = 0;
1934 		goto free_opp;
1935 	}
1936 
1937 	/*
1938 	 * Notify the changes in the availability of the operable
1939 	 * frequency/voltage list.
1940 	 */
1941 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1942 	return 0;
1943 
1944 free_opp:
1945 	_opp_free(new_opp);
1946 
1947 	return ret;
1948 }
1949 
1950 /**
1951  * dev_pm_opp_set_supported_hw() - Set supported platforms
1952  * @dev: Device for which supported-hw has to be set.
1953  * @versions: Array of hierarchy of versions to match.
1954  * @count: Number of elements in the array.
1955  *
1956  * This is required only for the V2 bindings, and it enables a platform to
1957  * specify the hierarchy of versions it supports. OPP layer will then enable
1958  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1959  * property.
1960  */
1961 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1962 			const u32 *versions, unsigned int count)
1963 {
1964 	struct opp_table *opp_table;
1965 
1966 	opp_table = _add_opp_table(dev, false);
1967 	if (IS_ERR(opp_table))
1968 		return opp_table;
1969 
1970 	/* Make sure there are no concurrent readers while updating opp_table */
1971 	WARN_ON(!list_empty(&opp_table->opp_list));
1972 
1973 	/* Another CPU that shares the OPP table has set the property ? */
1974 	if (opp_table->supported_hw)
1975 		return opp_table;
1976 
1977 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1978 					GFP_KERNEL);
1979 	if (!opp_table->supported_hw) {
1980 		dev_pm_opp_put_opp_table(opp_table);
1981 		return ERR_PTR(-ENOMEM);
1982 	}
1983 
1984 	opp_table->supported_hw_count = count;
1985 
1986 	return opp_table;
1987 }
1988 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1989 
1990 /**
1991  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1992  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1993  *
1994  * This is required only for the V2 bindings, and is called for a matching
1995  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1996  * will not be freed.
1997  */
1998 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1999 {
2000 	if (unlikely(!opp_table))
2001 		return;
2002 
2003 	kfree(opp_table->supported_hw);
2004 	opp_table->supported_hw = NULL;
2005 	opp_table->supported_hw_count = 0;
2006 
2007 	dev_pm_opp_put_opp_table(opp_table);
2008 }
2009 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
2010 
2011 static void devm_pm_opp_supported_hw_release(void *data)
2012 {
2013 	dev_pm_opp_put_supported_hw(data);
2014 }
2015 
2016 /**
2017  * devm_pm_opp_set_supported_hw() - Set supported platforms
2018  * @dev: Device for which supported-hw has to be set.
2019  * @versions: Array of hierarchy of versions to match.
2020  * @count: Number of elements in the array.
2021  *
2022  * This is a resource-managed variant of dev_pm_opp_set_supported_hw().
2023  *
2024  * Return: 0 on success and errorno otherwise.
2025  */
2026 int devm_pm_opp_set_supported_hw(struct device *dev, const u32 *versions,
2027 				 unsigned int count)
2028 {
2029 	struct opp_table *opp_table;
2030 
2031 	opp_table = dev_pm_opp_set_supported_hw(dev, versions, count);
2032 	if (IS_ERR(opp_table))
2033 		return PTR_ERR(opp_table);
2034 
2035 	return devm_add_action_or_reset(dev, devm_pm_opp_supported_hw_release,
2036 					opp_table);
2037 }
2038 EXPORT_SYMBOL_GPL(devm_pm_opp_set_supported_hw);
2039 
2040 /**
2041  * dev_pm_opp_set_prop_name() - Set prop-extn name
2042  * @dev: Device for which the prop-name has to be set.
2043  * @name: name to postfix to properties.
2044  *
2045  * This is required only for the V2 bindings, and it enables a platform to
2046  * specify the extn to be used for certain property names. The properties to
2047  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2048  * should postfix the property name with -<name> while looking for them.
2049  */
2050 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
2051 {
2052 	struct opp_table *opp_table;
2053 
2054 	opp_table = _add_opp_table(dev, false);
2055 	if (IS_ERR(opp_table))
2056 		return opp_table;
2057 
2058 	/* Make sure there are no concurrent readers while updating opp_table */
2059 	WARN_ON(!list_empty(&opp_table->opp_list));
2060 
2061 	/* Another CPU that shares the OPP table has set the property ? */
2062 	if (opp_table->prop_name)
2063 		return opp_table;
2064 
2065 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2066 	if (!opp_table->prop_name) {
2067 		dev_pm_opp_put_opp_table(opp_table);
2068 		return ERR_PTR(-ENOMEM);
2069 	}
2070 
2071 	return opp_table;
2072 }
2073 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
2074 
2075 /**
2076  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
2077  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
2078  *
2079  * This is required only for the V2 bindings, and is called for a matching
2080  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
2081  * will not be freed.
2082  */
2083 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
2084 {
2085 	if (unlikely(!opp_table))
2086 		return;
2087 
2088 	kfree(opp_table->prop_name);
2089 	opp_table->prop_name = NULL;
2090 
2091 	dev_pm_opp_put_opp_table(opp_table);
2092 }
2093 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
2094 
2095 /**
2096  * dev_pm_opp_set_regulators() - Set regulator names for the device
2097  * @dev: Device for which regulator name is being set.
2098  * @names: Array of pointers to the names of the regulator.
2099  * @count: Number of regulators.
2100  *
2101  * In order to support OPP switching, OPP layer needs to know the name of the
2102  * device's regulators, as the core would be required to switch voltages as
2103  * well.
2104  *
2105  * This must be called before any OPPs are initialized for the device.
2106  */
2107 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
2108 					    const char * const names[],
2109 					    unsigned int count)
2110 {
2111 	struct dev_pm_opp_supply *supplies;
2112 	struct opp_table *opp_table;
2113 	struct regulator *reg;
2114 	int ret, i;
2115 
2116 	opp_table = _add_opp_table(dev, false);
2117 	if (IS_ERR(opp_table))
2118 		return opp_table;
2119 
2120 	/* This should be called before OPPs are initialized */
2121 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2122 		ret = -EBUSY;
2123 		goto err;
2124 	}
2125 
2126 	/* Another CPU that shares the OPP table has set the regulators ? */
2127 	if (opp_table->regulators)
2128 		return opp_table;
2129 
2130 	opp_table->regulators = kmalloc_array(count,
2131 					      sizeof(*opp_table->regulators),
2132 					      GFP_KERNEL);
2133 	if (!opp_table->regulators) {
2134 		ret = -ENOMEM;
2135 		goto err;
2136 	}
2137 
2138 	for (i = 0; i < count; i++) {
2139 		reg = regulator_get_optional(dev, names[i]);
2140 		if (IS_ERR(reg)) {
2141 			ret = dev_err_probe(dev, PTR_ERR(reg),
2142 					    "%s: no regulator (%s) found\n",
2143 					    __func__, names[i]);
2144 			goto free_regulators;
2145 		}
2146 
2147 		opp_table->regulators[i] = reg;
2148 	}
2149 
2150 	opp_table->regulator_count = count;
2151 
2152 	supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
2153 	if (!supplies) {
2154 		ret = -ENOMEM;
2155 		goto free_regulators;
2156 	}
2157 
2158 	mutex_lock(&opp_table->lock);
2159 	opp_table->sod_supplies = supplies;
2160 	if (opp_table->set_opp_data) {
2161 		opp_table->set_opp_data->old_opp.supplies = supplies;
2162 		opp_table->set_opp_data->new_opp.supplies = supplies + count;
2163 	}
2164 	mutex_unlock(&opp_table->lock);
2165 
2166 	return opp_table;
2167 
2168 free_regulators:
2169 	while (i != 0)
2170 		regulator_put(opp_table->regulators[--i]);
2171 
2172 	kfree(opp_table->regulators);
2173 	opp_table->regulators = NULL;
2174 	opp_table->regulator_count = -1;
2175 err:
2176 	dev_pm_opp_put_opp_table(opp_table);
2177 
2178 	return ERR_PTR(ret);
2179 }
2180 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2181 
2182 /**
2183  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2184  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2185  */
2186 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2187 {
2188 	int i;
2189 
2190 	if (unlikely(!opp_table))
2191 		return;
2192 
2193 	if (!opp_table->regulators)
2194 		goto put_opp_table;
2195 
2196 	if (opp_table->enabled) {
2197 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2198 			regulator_disable(opp_table->regulators[i]);
2199 	}
2200 
2201 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2202 		regulator_put(opp_table->regulators[i]);
2203 
2204 	mutex_lock(&opp_table->lock);
2205 	if (opp_table->set_opp_data) {
2206 		opp_table->set_opp_data->old_opp.supplies = NULL;
2207 		opp_table->set_opp_data->new_opp.supplies = NULL;
2208 	}
2209 
2210 	kfree(opp_table->sod_supplies);
2211 	opp_table->sod_supplies = NULL;
2212 	mutex_unlock(&opp_table->lock);
2213 
2214 	kfree(opp_table->regulators);
2215 	opp_table->regulators = NULL;
2216 	opp_table->regulator_count = -1;
2217 
2218 put_opp_table:
2219 	dev_pm_opp_put_opp_table(opp_table);
2220 }
2221 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2222 
2223 static void devm_pm_opp_regulators_release(void *data)
2224 {
2225 	dev_pm_opp_put_regulators(data);
2226 }
2227 
2228 /**
2229  * devm_pm_opp_set_regulators() - Set regulator names for the device
2230  * @dev: Device for which regulator name is being set.
2231  * @names: Array of pointers to the names of the regulator.
2232  * @count: Number of regulators.
2233  *
2234  * This is a resource-managed variant of dev_pm_opp_set_regulators().
2235  *
2236  * Return: 0 on success and errorno otherwise.
2237  */
2238 int devm_pm_opp_set_regulators(struct device *dev,
2239 			       const char * const names[],
2240 			       unsigned int count)
2241 {
2242 	struct opp_table *opp_table;
2243 
2244 	opp_table = dev_pm_opp_set_regulators(dev, names, count);
2245 	if (IS_ERR(opp_table))
2246 		return PTR_ERR(opp_table);
2247 
2248 	return devm_add_action_or_reset(dev, devm_pm_opp_regulators_release,
2249 					opp_table);
2250 }
2251 EXPORT_SYMBOL_GPL(devm_pm_opp_set_regulators);
2252 
2253 /**
2254  * dev_pm_opp_set_clkname() - Set clk name for the device
2255  * @dev: Device for which clk name is being set.
2256  * @name: Clk name.
2257  *
2258  * In order to support OPP switching, OPP layer needs to get pointer to the
2259  * clock for the device. Simple cases work fine without using this routine (i.e.
2260  * by passing connection-id as NULL), but for a device with multiple clocks
2261  * available, the OPP core needs to know the exact name of the clk to use.
2262  *
2263  * This must be called before any OPPs are initialized for the device.
2264  */
2265 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2266 {
2267 	struct opp_table *opp_table;
2268 	int ret;
2269 
2270 	opp_table = _add_opp_table(dev, false);
2271 	if (IS_ERR(opp_table))
2272 		return opp_table;
2273 
2274 	/* This should be called before OPPs are initialized */
2275 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2276 		ret = -EBUSY;
2277 		goto err;
2278 	}
2279 
2280 	/* clk shouldn't be initialized at this point */
2281 	if (WARN_ON(opp_table->clk)) {
2282 		ret = -EBUSY;
2283 		goto err;
2284 	}
2285 
2286 	/* Find clk for the device */
2287 	opp_table->clk = clk_get(dev, name);
2288 	if (IS_ERR(opp_table->clk)) {
2289 		ret = dev_err_probe(dev, PTR_ERR(opp_table->clk),
2290 				    "%s: Couldn't find clock\n", __func__);
2291 		goto err;
2292 	}
2293 
2294 	return opp_table;
2295 
2296 err:
2297 	dev_pm_opp_put_opp_table(opp_table);
2298 
2299 	return ERR_PTR(ret);
2300 }
2301 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2302 
2303 /**
2304  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2305  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2306  */
2307 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2308 {
2309 	if (unlikely(!opp_table))
2310 		return;
2311 
2312 	clk_put(opp_table->clk);
2313 	opp_table->clk = ERR_PTR(-EINVAL);
2314 
2315 	dev_pm_opp_put_opp_table(opp_table);
2316 }
2317 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2318 
2319 static void devm_pm_opp_clkname_release(void *data)
2320 {
2321 	dev_pm_opp_put_clkname(data);
2322 }
2323 
2324 /**
2325  * devm_pm_opp_set_clkname() - Set clk name for the device
2326  * @dev: Device for which clk name is being set.
2327  * @name: Clk name.
2328  *
2329  * This is a resource-managed variant of dev_pm_opp_set_clkname().
2330  *
2331  * Return: 0 on success and errorno otherwise.
2332  */
2333 int devm_pm_opp_set_clkname(struct device *dev, const char *name)
2334 {
2335 	struct opp_table *opp_table;
2336 
2337 	opp_table = dev_pm_opp_set_clkname(dev, name);
2338 	if (IS_ERR(opp_table))
2339 		return PTR_ERR(opp_table);
2340 
2341 	return devm_add_action_or_reset(dev, devm_pm_opp_clkname_release,
2342 					opp_table);
2343 }
2344 EXPORT_SYMBOL_GPL(devm_pm_opp_set_clkname);
2345 
2346 /**
2347  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2348  * @dev: Device for which the helper is getting registered.
2349  * @set_opp: Custom set OPP helper.
2350  *
2351  * This is useful to support complex platforms (like platforms with multiple
2352  * regulators per device), instead of the generic OPP set rate helper.
2353  *
2354  * This must be called before any OPPs are initialized for the device.
2355  */
2356 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2357 			int (*set_opp)(struct dev_pm_set_opp_data *data))
2358 {
2359 	struct dev_pm_set_opp_data *data;
2360 	struct opp_table *opp_table;
2361 
2362 	if (!set_opp)
2363 		return ERR_PTR(-EINVAL);
2364 
2365 	opp_table = _add_opp_table(dev, false);
2366 	if (IS_ERR(opp_table))
2367 		return opp_table;
2368 
2369 	/* This should be called before OPPs are initialized */
2370 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2371 		dev_pm_opp_put_opp_table(opp_table);
2372 		return ERR_PTR(-EBUSY);
2373 	}
2374 
2375 	/* Another CPU that shares the OPP table has set the helper ? */
2376 	if (opp_table->set_opp)
2377 		return opp_table;
2378 
2379 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2380 	if (!data)
2381 		return ERR_PTR(-ENOMEM);
2382 
2383 	mutex_lock(&opp_table->lock);
2384 	opp_table->set_opp_data = data;
2385 	if (opp_table->sod_supplies) {
2386 		data->old_opp.supplies = opp_table->sod_supplies;
2387 		data->new_opp.supplies = opp_table->sod_supplies +
2388 					 opp_table->regulator_count;
2389 	}
2390 	mutex_unlock(&opp_table->lock);
2391 
2392 	opp_table->set_opp = set_opp;
2393 
2394 	return opp_table;
2395 }
2396 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2397 
2398 /**
2399  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2400  *					   set_opp helper
2401  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2402  *
2403  * Release resources blocked for platform specific set_opp helper.
2404  */
2405 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2406 {
2407 	if (unlikely(!opp_table))
2408 		return;
2409 
2410 	opp_table->set_opp = NULL;
2411 
2412 	mutex_lock(&opp_table->lock);
2413 	kfree(opp_table->set_opp_data);
2414 	opp_table->set_opp_data = NULL;
2415 	mutex_unlock(&opp_table->lock);
2416 
2417 	dev_pm_opp_put_opp_table(opp_table);
2418 }
2419 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2420 
2421 static void devm_pm_opp_unregister_set_opp_helper(void *data)
2422 {
2423 	dev_pm_opp_unregister_set_opp_helper(data);
2424 }
2425 
2426 /**
2427  * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2428  * @dev: Device for which the helper is getting registered.
2429  * @set_opp: Custom set OPP helper.
2430  *
2431  * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2432  *
2433  * Return: 0 on success and errorno otherwise.
2434  */
2435 int devm_pm_opp_register_set_opp_helper(struct device *dev,
2436 					int (*set_opp)(struct dev_pm_set_opp_data *data))
2437 {
2438 	struct opp_table *opp_table;
2439 
2440 	opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2441 	if (IS_ERR(opp_table))
2442 		return PTR_ERR(opp_table);
2443 
2444 	return devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2445 					opp_table);
2446 }
2447 EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2448 
2449 static void _opp_detach_genpd(struct opp_table *opp_table)
2450 {
2451 	int index;
2452 
2453 	if (!opp_table->genpd_virt_devs)
2454 		return;
2455 
2456 	for (index = 0; index < opp_table->required_opp_count; index++) {
2457 		if (!opp_table->genpd_virt_devs[index])
2458 			continue;
2459 
2460 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2461 		opp_table->genpd_virt_devs[index] = NULL;
2462 	}
2463 
2464 	kfree(opp_table->genpd_virt_devs);
2465 	opp_table->genpd_virt_devs = NULL;
2466 }
2467 
2468 /**
2469  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2470  * @dev: Consumer device for which the genpd is getting attached.
2471  * @names: Null terminated array of pointers containing names of genpd to attach.
2472  * @virt_devs: Pointer to return the array of virtual devices.
2473  *
2474  * Multiple generic power domains for a device are supported with the help of
2475  * virtual genpd devices, which are created for each consumer device - genpd
2476  * pair. These are the device structures which are attached to the power domain
2477  * and are required by the OPP core to set the performance state of the genpd.
2478  * The same API also works for the case where single genpd is available and so
2479  * we don't need to support that separately.
2480  *
2481  * This helper will normally be called by the consumer driver of the device
2482  * "dev", as only that has details of the genpd names.
2483  *
2484  * This helper needs to be called once with a list of all genpd to attach.
2485  * Otherwise the original device structure will be used instead by the OPP core.
2486  *
2487  * The order of entries in the names array must match the order in which
2488  * "required-opps" are added in DT.
2489  */
2490 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2491 		const char * const *names, struct device ***virt_devs)
2492 {
2493 	struct opp_table *opp_table;
2494 	struct device *virt_dev;
2495 	int index = 0, ret = -EINVAL;
2496 	const char * const *name = names;
2497 
2498 	opp_table = _add_opp_table(dev, false);
2499 	if (IS_ERR(opp_table))
2500 		return opp_table;
2501 
2502 	if (opp_table->genpd_virt_devs)
2503 		return opp_table;
2504 
2505 	/*
2506 	 * If the genpd's OPP table isn't already initialized, parsing of the
2507 	 * required-opps fail for dev. We should retry this after genpd's OPP
2508 	 * table is added.
2509 	 */
2510 	if (!opp_table->required_opp_count) {
2511 		ret = -EPROBE_DEFER;
2512 		goto put_table;
2513 	}
2514 
2515 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2516 
2517 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2518 					     sizeof(*opp_table->genpd_virt_devs),
2519 					     GFP_KERNEL);
2520 	if (!opp_table->genpd_virt_devs)
2521 		goto unlock;
2522 
2523 	while (*name) {
2524 		if (index >= opp_table->required_opp_count) {
2525 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2526 				*name, opp_table->required_opp_count, index);
2527 			goto err;
2528 		}
2529 
2530 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2531 		if (IS_ERR(virt_dev)) {
2532 			ret = PTR_ERR(virt_dev);
2533 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2534 			goto err;
2535 		}
2536 
2537 		opp_table->genpd_virt_devs[index] = virt_dev;
2538 		index++;
2539 		name++;
2540 	}
2541 
2542 	if (virt_devs)
2543 		*virt_devs = opp_table->genpd_virt_devs;
2544 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2545 
2546 	return opp_table;
2547 
2548 err:
2549 	_opp_detach_genpd(opp_table);
2550 unlock:
2551 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2552 
2553 put_table:
2554 	dev_pm_opp_put_opp_table(opp_table);
2555 
2556 	return ERR_PTR(ret);
2557 }
2558 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2559 
2560 /**
2561  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2562  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2563  *
2564  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2565  * OPP table.
2566  */
2567 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2568 {
2569 	if (unlikely(!opp_table))
2570 		return;
2571 
2572 	/*
2573 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2574 	 * used in parallel.
2575 	 */
2576 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2577 	_opp_detach_genpd(opp_table);
2578 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2579 
2580 	dev_pm_opp_put_opp_table(opp_table);
2581 }
2582 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2583 
2584 static void devm_pm_opp_detach_genpd(void *data)
2585 {
2586 	dev_pm_opp_detach_genpd(data);
2587 }
2588 
2589 /**
2590  * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2591  *			      device pointer
2592  * @dev: Consumer device for which the genpd is getting attached.
2593  * @names: Null terminated array of pointers containing names of genpd to attach.
2594  * @virt_devs: Pointer to return the array of virtual devices.
2595  *
2596  * This is a resource-managed version of dev_pm_opp_attach_genpd().
2597  *
2598  * Return: 0 on success and errorno otherwise.
2599  */
2600 int devm_pm_opp_attach_genpd(struct device *dev, const char * const *names,
2601 			     struct device ***virt_devs)
2602 {
2603 	struct opp_table *opp_table;
2604 
2605 	opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2606 	if (IS_ERR(opp_table))
2607 		return PTR_ERR(opp_table);
2608 
2609 	return devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2610 					opp_table);
2611 }
2612 EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2613 
2614 /**
2615  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2616  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2617  * @dst_table: Required OPP table of the @src_table.
2618  * @src_opp: OPP from the @src_table.
2619  *
2620  * This function returns the OPP (present in @dst_table) pointed out by the
2621  * "required-opps" property of the @src_opp (present in @src_table).
2622  *
2623  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2624  * use.
2625  *
2626  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2627  */
2628 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2629 						 struct opp_table *dst_table,
2630 						 struct dev_pm_opp *src_opp)
2631 {
2632 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2633 	int i;
2634 
2635 	if (!src_table || !dst_table || !src_opp ||
2636 	    !src_table->required_opp_tables)
2637 		return ERR_PTR(-EINVAL);
2638 
2639 	/* required-opps not fully initialized yet */
2640 	if (lazy_linking_pending(src_table))
2641 		return ERR_PTR(-EBUSY);
2642 
2643 	for (i = 0; i < src_table->required_opp_count; i++) {
2644 		if (src_table->required_opp_tables[i] == dst_table) {
2645 			mutex_lock(&src_table->lock);
2646 
2647 			list_for_each_entry(opp, &src_table->opp_list, node) {
2648 				if (opp == src_opp) {
2649 					dest_opp = opp->required_opps[i];
2650 					dev_pm_opp_get(dest_opp);
2651 					break;
2652 				}
2653 			}
2654 
2655 			mutex_unlock(&src_table->lock);
2656 			break;
2657 		}
2658 	}
2659 
2660 	if (IS_ERR(dest_opp)) {
2661 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2662 		       src_table, dst_table);
2663 	}
2664 
2665 	return dest_opp;
2666 }
2667 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2668 
2669 /**
2670  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2671  * @src_table: OPP table which has dst_table as one of its required OPP table.
2672  * @dst_table: Required OPP table of the src_table.
2673  * @pstate: Current performance state of the src_table.
2674  *
2675  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2676  * "required-opps" property of the OPP (present in @src_table) which has
2677  * performance state set to @pstate.
2678  *
2679  * Return: Zero or positive performance state on success, otherwise negative
2680  * value on errors.
2681  */
2682 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2683 				       struct opp_table *dst_table,
2684 				       unsigned int pstate)
2685 {
2686 	struct dev_pm_opp *opp;
2687 	int dest_pstate = -EINVAL;
2688 	int i;
2689 
2690 	/*
2691 	 * Normally the src_table will have the "required_opps" property set to
2692 	 * point to one of the OPPs in the dst_table, but in some cases the
2693 	 * genpd and its master have one to one mapping of performance states
2694 	 * and so none of them have the "required-opps" property set. Return the
2695 	 * pstate of the src_table as it is in such cases.
2696 	 */
2697 	if (!src_table || !src_table->required_opp_count)
2698 		return pstate;
2699 
2700 	/* required-opps not fully initialized yet */
2701 	if (lazy_linking_pending(src_table))
2702 		return -EBUSY;
2703 
2704 	for (i = 0; i < src_table->required_opp_count; i++) {
2705 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2706 			break;
2707 	}
2708 
2709 	if (unlikely(i == src_table->required_opp_count)) {
2710 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2711 		       __func__, src_table, dst_table);
2712 		return -EINVAL;
2713 	}
2714 
2715 	mutex_lock(&src_table->lock);
2716 
2717 	list_for_each_entry(opp, &src_table->opp_list, node) {
2718 		if (opp->pstate == pstate) {
2719 			dest_pstate = opp->required_opps[i]->pstate;
2720 			goto unlock;
2721 		}
2722 	}
2723 
2724 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2725 	       dst_table);
2726 
2727 unlock:
2728 	mutex_unlock(&src_table->lock);
2729 
2730 	return dest_pstate;
2731 }
2732 
2733 /**
2734  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2735  * @dev:	device for which we do this operation
2736  * @freq:	Frequency in Hz for this OPP
2737  * @u_volt:	Voltage in uVolts for this OPP
2738  *
2739  * This function adds an opp definition to the opp table and returns status.
2740  * The opp is made available by default and it can be controlled using
2741  * dev_pm_opp_enable/disable functions.
2742  *
2743  * Return:
2744  * 0		On success OR
2745  *		Duplicate OPPs (both freq and volt are same) and opp->available
2746  * -EEXIST	Freq are same and volt are different OR
2747  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2748  * -ENOMEM	Memory allocation failure
2749  */
2750 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2751 {
2752 	struct opp_table *opp_table;
2753 	int ret;
2754 
2755 	opp_table = _add_opp_table(dev, true);
2756 	if (IS_ERR(opp_table))
2757 		return PTR_ERR(opp_table);
2758 
2759 	/* Fix regulator count for dynamic OPPs */
2760 	opp_table->regulator_count = 1;
2761 
2762 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2763 	if (ret)
2764 		dev_pm_opp_put_opp_table(opp_table);
2765 
2766 	return ret;
2767 }
2768 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2769 
2770 /**
2771  * _opp_set_availability() - helper to set the availability of an opp
2772  * @dev:		device for which we do this operation
2773  * @freq:		OPP frequency to modify availability
2774  * @availability_req:	availability status requested for this opp
2775  *
2776  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2777  * which is isolated here.
2778  *
2779  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2780  * copy operation, returns 0 if no modification was done OR modification was
2781  * successful.
2782  */
2783 static int _opp_set_availability(struct device *dev, unsigned long freq,
2784 				 bool availability_req)
2785 {
2786 	struct opp_table *opp_table;
2787 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2788 	int r = 0;
2789 
2790 	/* Find the opp_table */
2791 	opp_table = _find_opp_table(dev);
2792 	if (IS_ERR(opp_table)) {
2793 		r = PTR_ERR(opp_table);
2794 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2795 		return r;
2796 	}
2797 
2798 	mutex_lock(&opp_table->lock);
2799 
2800 	/* Do we have the frequency? */
2801 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2802 		if (tmp_opp->rate == freq) {
2803 			opp = tmp_opp;
2804 			break;
2805 		}
2806 	}
2807 
2808 	if (IS_ERR(opp)) {
2809 		r = PTR_ERR(opp);
2810 		goto unlock;
2811 	}
2812 
2813 	/* Is update really needed? */
2814 	if (opp->available == availability_req)
2815 		goto unlock;
2816 
2817 	opp->available = availability_req;
2818 
2819 	dev_pm_opp_get(opp);
2820 	mutex_unlock(&opp_table->lock);
2821 
2822 	/* Notify the change of the OPP availability */
2823 	if (availability_req)
2824 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2825 					     opp);
2826 	else
2827 		blocking_notifier_call_chain(&opp_table->head,
2828 					     OPP_EVENT_DISABLE, opp);
2829 
2830 	dev_pm_opp_put(opp);
2831 	goto put_table;
2832 
2833 unlock:
2834 	mutex_unlock(&opp_table->lock);
2835 put_table:
2836 	dev_pm_opp_put_opp_table(opp_table);
2837 	return r;
2838 }
2839 
2840 /**
2841  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2842  * @dev:		device for which we do this operation
2843  * @freq:		OPP frequency to adjust voltage of
2844  * @u_volt:		new OPP target voltage
2845  * @u_volt_min:		new OPP min voltage
2846  * @u_volt_max:		new OPP max voltage
2847  *
2848  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2849  * copy operation, returns 0 if no modifcation was done OR modification was
2850  * successful.
2851  */
2852 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2853 			      unsigned long u_volt, unsigned long u_volt_min,
2854 			      unsigned long u_volt_max)
2855 
2856 {
2857 	struct opp_table *opp_table;
2858 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2859 	int r = 0;
2860 
2861 	/* Find the opp_table */
2862 	opp_table = _find_opp_table(dev);
2863 	if (IS_ERR(opp_table)) {
2864 		r = PTR_ERR(opp_table);
2865 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2866 		return r;
2867 	}
2868 
2869 	mutex_lock(&opp_table->lock);
2870 
2871 	/* Do we have the frequency? */
2872 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2873 		if (tmp_opp->rate == freq) {
2874 			opp = tmp_opp;
2875 			break;
2876 		}
2877 	}
2878 
2879 	if (IS_ERR(opp)) {
2880 		r = PTR_ERR(opp);
2881 		goto adjust_unlock;
2882 	}
2883 
2884 	/* Is update really needed? */
2885 	if (opp->supplies->u_volt == u_volt)
2886 		goto adjust_unlock;
2887 
2888 	opp->supplies->u_volt = u_volt;
2889 	opp->supplies->u_volt_min = u_volt_min;
2890 	opp->supplies->u_volt_max = u_volt_max;
2891 
2892 	dev_pm_opp_get(opp);
2893 	mutex_unlock(&opp_table->lock);
2894 
2895 	/* Notify the voltage change of the OPP */
2896 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2897 				     opp);
2898 
2899 	dev_pm_opp_put(opp);
2900 	goto adjust_put_table;
2901 
2902 adjust_unlock:
2903 	mutex_unlock(&opp_table->lock);
2904 adjust_put_table:
2905 	dev_pm_opp_put_opp_table(opp_table);
2906 	return r;
2907 }
2908 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2909 
2910 /**
2911  * dev_pm_opp_enable() - Enable a specific OPP
2912  * @dev:	device for which we do this operation
2913  * @freq:	OPP frequency to enable
2914  *
2915  * Enables a provided opp. If the operation is valid, this returns 0, else the
2916  * corresponding error value. It is meant to be used for users an OPP available
2917  * after being temporarily made unavailable with dev_pm_opp_disable.
2918  *
2919  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2920  * copy operation, returns 0 if no modification was done OR modification was
2921  * successful.
2922  */
2923 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2924 {
2925 	return _opp_set_availability(dev, freq, true);
2926 }
2927 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2928 
2929 /**
2930  * dev_pm_opp_disable() - Disable a specific OPP
2931  * @dev:	device for which we do this operation
2932  * @freq:	OPP frequency to disable
2933  *
2934  * Disables a provided opp. If the operation is valid, this returns
2935  * 0, else the corresponding error value. It is meant to be a temporary
2936  * control by users to make this OPP not available until the circumstances are
2937  * right to make it available again (with a call to dev_pm_opp_enable).
2938  *
2939  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2940  * copy operation, returns 0 if no modification was done OR modification was
2941  * successful.
2942  */
2943 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2944 {
2945 	return _opp_set_availability(dev, freq, false);
2946 }
2947 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2948 
2949 /**
2950  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2951  * @dev:	Device for which notifier needs to be registered
2952  * @nb:		Notifier block to be registered
2953  *
2954  * Return: 0 on success or a negative error value.
2955  */
2956 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2957 {
2958 	struct opp_table *opp_table;
2959 	int ret;
2960 
2961 	opp_table = _find_opp_table(dev);
2962 	if (IS_ERR(opp_table))
2963 		return PTR_ERR(opp_table);
2964 
2965 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2966 
2967 	dev_pm_opp_put_opp_table(opp_table);
2968 
2969 	return ret;
2970 }
2971 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2972 
2973 /**
2974  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2975  * @dev:	Device for which notifier needs to be unregistered
2976  * @nb:		Notifier block to be unregistered
2977  *
2978  * Return: 0 on success or a negative error value.
2979  */
2980 int dev_pm_opp_unregister_notifier(struct device *dev,
2981 				   struct notifier_block *nb)
2982 {
2983 	struct opp_table *opp_table;
2984 	int ret;
2985 
2986 	opp_table = _find_opp_table(dev);
2987 	if (IS_ERR(opp_table))
2988 		return PTR_ERR(opp_table);
2989 
2990 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2991 
2992 	dev_pm_opp_put_opp_table(opp_table);
2993 
2994 	return ret;
2995 }
2996 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2997 
2998 /**
2999  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3000  * @dev:	device pointer used to lookup OPP table.
3001  *
3002  * Free both OPPs created using static entries present in DT and the
3003  * dynamically added entries.
3004  */
3005 void dev_pm_opp_remove_table(struct device *dev)
3006 {
3007 	struct opp_table *opp_table;
3008 
3009 	/* Check for existing table for 'dev' */
3010 	opp_table = _find_opp_table(dev);
3011 	if (IS_ERR(opp_table)) {
3012 		int error = PTR_ERR(opp_table);
3013 
3014 		if (error != -ENODEV)
3015 			WARN(1, "%s: opp_table: %d\n",
3016 			     IS_ERR_OR_NULL(dev) ?
3017 					"Invalid device" : dev_name(dev),
3018 			     error);
3019 		return;
3020 	}
3021 
3022 	/*
3023 	 * Drop the extra reference only if the OPP table was successfully added
3024 	 * with dev_pm_opp_of_add_table() earlier.
3025 	 **/
3026 	if (_opp_remove_all_static(opp_table))
3027 		dev_pm_opp_put_opp_table(opp_table);
3028 
3029 	/* Drop reference taken by _find_opp_table() */
3030 	dev_pm_opp_put_opp_table(opp_table);
3031 }
3032 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3033 
3034 /**
3035  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3036  * @dev:	device for which we do this operation
3037  *
3038  * Sync voltage state of the OPP table regulators.
3039  *
3040  * Return: 0 on success or a negative error value.
3041  */
3042 int dev_pm_opp_sync_regulators(struct device *dev)
3043 {
3044 	struct opp_table *opp_table;
3045 	struct regulator *reg;
3046 	int i, ret = 0;
3047 
3048 	/* Device may not have OPP table */
3049 	opp_table = _find_opp_table(dev);
3050 	if (IS_ERR(opp_table))
3051 		return 0;
3052 
3053 	/* Regulator may not be required for the device */
3054 	if (unlikely(!opp_table->regulators))
3055 		goto put_table;
3056 
3057 	/* Nothing to sync if voltage wasn't changed */
3058 	if (!opp_table->enabled)
3059 		goto put_table;
3060 
3061 	for (i = 0; i < opp_table->regulator_count; i++) {
3062 		reg = opp_table->regulators[i];
3063 		ret = regulator_sync_voltage(reg);
3064 		if (ret)
3065 			break;
3066 	}
3067 put_table:
3068 	/* Drop reference taken by _find_opp_table() */
3069 	dev_pm_opp_put_opp_table(opp_table);
3070 
3071 	return ret;
3072 }
3073 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3074