xref: /openbmc/linux/drivers/opp/core.c (revision 131ce3ed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/export.h>
19 #include <linux/pm_domain.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include "opp.h"
23 
24 /*
25  * The root of the list of all opp-tables. All opp_table structures branch off
26  * from here, with each opp_table containing the list of opps it supports in
27  * various states of availability.
28  */
29 LIST_HEAD(opp_tables);
30 /* Lock to allow exclusive modification to the device and opp lists */
31 DEFINE_MUTEX(opp_table_lock);
32 
33 static struct opp_device *_find_opp_dev(const struct device *dev,
34 					struct opp_table *opp_table)
35 {
36 	struct opp_device *opp_dev;
37 
38 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 		if (opp_dev->dev == dev)
40 			return opp_dev;
41 
42 	return NULL;
43 }
44 
45 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46 {
47 	struct opp_table *opp_table;
48 	bool found;
49 
50 	list_for_each_entry(opp_table, &opp_tables, node) {
51 		mutex_lock(&opp_table->lock);
52 		found = !!_find_opp_dev(dev, opp_table);
53 		mutex_unlock(&opp_table->lock);
54 
55 		if (found) {
56 			_get_opp_table_kref(opp_table);
57 
58 			return opp_table;
59 		}
60 	}
61 
62 	return ERR_PTR(-ENODEV);
63 }
64 
65 /**
66  * _find_opp_table() - find opp_table struct using device pointer
67  * @dev:	device pointer used to lookup OPP table
68  *
69  * Search OPP table for one containing matching device.
70  *
71  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72  * -EINVAL based on type of error.
73  *
74  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75  */
76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 	struct opp_table *opp_table;
79 
80 	if (IS_ERR_OR_NULL(dev)) {
81 		pr_err("%s: Invalid parameters\n", __func__);
82 		return ERR_PTR(-EINVAL);
83 	}
84 
85 	mutex_lock(&opp_table_lock);
86 	opp_table = _find_opp_table_unlocked(dev);
87 	mutex_unlock(&opp_table_lock);
88 
89 	return opp_table;
90 }
91 
92 /**
93  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94  * @opp:	opp for which voltage has to be returned for
95  *
96  * Return: voltage in micro volt corresponding to the opp, else
97  * return 0
98  *
99  * This is useful only for devices with single power supply.
100  */
101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102 {
103 	if (IS_ERR_OR_NULL(opp)) {
104 		pr_err("%s: Invalid parameters\n", __func__);
105 		return 0;
106 	}
107 
108 	return opp->supplies[0].u_volt;
109 }
110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111 
112 /**
113  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114  * @opp:	opp for which frequency has to be returned for
115  *
116  * Return: frequency in hertz corresponding to the opp, else
117  * return 0
118  */
119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120 {
121 	if (IS_ERR_OR_NULL(opp)) {
122 		pr_err("%s: Invalid parameters\n", __func__);
123 		return 0;
124 	}
125 
126 	return opp->rate;
127 }
128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129 
130 /**
131  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132  * @opp:	opp for which level value has to be returned for
133  *
134  * Return: level read from device tree corresponding to the opp, else
135  * return 0.
136  */
137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138 {
139 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 		pr_err("%s: Invalid parameters\n", __func__);
141 		return 0;
142 	}
143 
144 	return opp->level;
145 }
146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147 
148 /**
149  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150  * @opp: opp for which turbo mode is being verified
151  *
152  * Turbo OPPs are not for normal use, and can be enabled (under certain
153  * conditions) for short duration of times to finish high throughput work
154  * quickly. Running on them for longer times may overheat the chip.
155  *
156  * Return: true if opp is turbo opp, else false.
157  */
158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159 {
160 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 		pr_err("%s: Invalid parameters\n", __func__);
162 		return false;
163 	}
164 
165 	return opp->turbo;
166 }
167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168 
169 /**
170  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171  * @dev:	device for which we do this operation
172  *
173  * Return: This function returns the max clock latency in nanoseconds.
174  */
175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176 {
177 	struct opp_table *opp_table;
178 	unsigned long clock_latency_ns;
179 
180 	opp_table = _find_opp_table(dev);
181 	if (IS_ERR(opp_table))
182 		return 0;
183 
184 	clock_latency_ns = opp_table->clock_latency_ns_max;
185 
186 	dev_pm_opp_put_opp_table(opp_table);
187 
188 	return clock_latency_ns;
189 }
190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191 
192 /**
193  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194  * @dev: device for which we do this operation
195  *
196  * Return: This function returns the max voltage latency in nanoseconds.
197  */
198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199 {
200 	struct opp_table *opp_table;
201 	struct dev_pm_opp *opp;
202 	struct regulator *reg;
203 	unsigned long latency_ns = 0;
204 	int ret, i, count;
205 	struct {
206 		unsigned long min;
207 		unsigned long max;
208 	} *uV;
209 
210 	opp_table = _find_opp_table(dev);
211 	if (IS_ERR(opp_table))
212 		return 0;
213 
214 	/* Regulator may not be required for the device */
215 	if (!opp_table->regulators)
216 		goto put_opp_table;
217 
218 	count = opp_table->regulator_count;
219 
220 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 	if (!uV)
222 		goto put_opp_table;
223 
224 	mutex_lock(&opp_table->lock);
225 
226 	for (i = 0; i < count; i++) {
227 		uV[i].min = ~0;
228 		uV[i].max = 0;
229 
230 		list_for_each_entry(opp, &opp_table->opp_list, node) {
231 			if (!opp->available)
232 				continue;
233 
234 			if (opp->supplies[i].u_volt_min < uV[i].min)
235 				uV[i].min = opp->supplies[i].u_volt_min;
236 			if (opp->supplies[i].u_volt_max > uV[i].max)
237 				uV[i].max = opp->supplies[i].u_volt_max;
238 		}
239 	}
240 
241 	mutex_unlock(&opp_table->lock);
242 
243 	/*
244 	 * The caller needs to ensure that opp_table (and hence the regulator)
245 	 * isn't freed, while we are executing this routine.
246 	 */
247 	for (i = 0; i < count; i++) {
248 		reg = opp_table->regulators[i];
249 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 		if (ret > 0)
251 			latency_ns += ret * 1000;
252 	}
253 
254 	kfree(uV);
255 put_opp_table:
256 	dev_pm_opp_put_opp_table(opp_table);
257 
258 	return latency_ns;
259 }
260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261 
262 /**
263  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264  *					     nanoseconds
265  * @dev: device for which we do this operation
266  *
267  * Return: This function returns the max transition latency, in nanoseconds, to
268  * switch from one OPP to other.
269  */
270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271 {
272 	return dev_pm_opp_get_max_volt_latency(dev) +
273 		dev_pm_opp_get_max_clock_latency(dev);
274 }
275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276 
277 /**
278  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279  * @dev:	device for which we do this operation
280  *
281  * Return: This function returns the frequency of the OPP marked as suspend_opp
282  * if one is available, else returns 0;
283  */
284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285 {
286 	struct opp_table *opp_table;
287 	unsigned long freq = 0;
288 
289 	opp_table = _find_opp_table(dev);
290 	if (IS_ERR(opp_table))
291 		return 0;
292 
293 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295 
296 	dev_pm_opp_put_opp_table(opp_table);
297 
298 	return freq;
299 }
300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301 
302 int _get_opp_count(struct opp_table *opp_table)
303 {
304 	struct dev_pm_opp *opp;
305 	int count = 0;
306 
307 	mutex_lock(&opp_table->lock);
308 
309 	list_for_each_entry(opp, &opp_table->opp_list, node) {
310 		if (opp->available)
311 			count++;
312 	}
313 
314 	mutex_unlock(&opp_table->lock);
315 
316 	return count;
317 }
318 
319 /**
320  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321  * @dev:	device for which we do this operation
322  *
323  * Return: This function returns the number of available opps if there are any,
324  * else returns 0 if none or the corresponding error value.
325  */
326 int dev_pm_opp_get_opp_count(struct device *dev)
327 {
328 	struct opp_table *opp_table;
329 	int count;
330 
331 	opp_table = _find_opp_table(dev);
332 	if (IS_ERR(opp_table)) {
333 		count = PTR_ERR(opp_table);
334 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 			__func__, count);
336 		return count;
337 	}
338 
339 	count = _get_opp_count(opp_table);
340 	dev_pm_opp_put_opp_table(opp_table);
341 
342 	return count;
343 }
344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345 
346 /**
347  * dev_pm_opp_find_freq_exact() - search for an exact frequency
348  * @dev:		device for which we do this operation
349  * @freq:		frequency to search for
350  * @available:		true/false - match for available opp
351  *
352  * Return: Searches for exact match in the opp table and returns pointer to the
353  * matching opp if found, else returns ERR_PTR in case of error and should
354  * be handled using IS_ERR. Error return values can be:
355  * EINVAL:	for bad pointer
356  * ERANGE:	no match found for search
357  * ENODEV:	if device not found in list of registered devices
358  *
359  * Note: available is a modifier for the search. if available=true, then the
360  * match is for exact matching frequency and is available in the stored OPP
361  * table. if false, the match is for exact frequency which is not available.
362  *
363  * This provides a mechanism to enable an opp which is not available currently
364  * or the opposite as well.
365  *
366  * The callers are required to call dev_pm_opp_put() for the returned OPP after
367  * use.
368  */
369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 					      unsigned long freq,
371 					      bool available)
372 {
373 	struct opp_table *opp_table;
374 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375 
376 	opp_table = _find_opp_table(dev);
377 	if (IS_ERR(opp_table)) {
378 		int r = PTR_ERR(opp_table);
379 
380 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 		return ERR_PTR(r);
382 	}
383 
384 	mutex_lock(&opp_table->lock);
385 
386 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 		if (temp_opp->available == available &&
388 				temp_opp->rate == freq) {
389 			opp = temp_opp;
390 
391 			/* Increment the reference count of OPP */
392 			dev_pm_opp_get(opp);
393 			break;
394 		}
395 	}
396 
397 	mutex_unlock(&opp_table->lock);
398 	dev_pm_opp_put_opp_table(opp_table);
399 
400 	return opp;
401 }
402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403 
404 /**
405  * dev_pm_opp_find_level_exact() - search for an exact level
406  * @dev:		device for which we do this operation
407  * @level:		level to search for
408  *
409  * Return: Searches for exact match in the opp table and returns pointer to the
410  * matching opp if found, else returns ERR_PTR in case of error and should
411  * be handled using IS_ERR. Error return values can be:
412  * EINVAL:	for bad pointer
413  * ERANGE:	no match found for search
414  * ENODEV:	if device not found in list of registered devices
415  *
416  * The callers are required to call dev_pm_opp_put() for the returned OPP after
417  * use.
418  */
419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 					       unsigned int level)
421 {
422 	struct opp_table *opp_table;
423 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424 
425 	opp_table = _find_opp_table(dev);
426 	if (IS_ERR(opp_table)) {
427 		int r = PTR_ERR(opp_table);
428 
429 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 		return ERR_PTR(r);
431 	}
432 
433 	mutex_lock(&opp_table->lock);
434 
435 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 		if (temp_opp->level == level) {
437 			opp = temp_opp;
438 
439 			/* Increment the reference count of OPP */
440 			dev_pm_opp_get(opp);
441 			break;
442 		}
443 	}
444 
445 	mutex_unlock(&opp_table->lock);
446 	dev_pm_opp_put_opp_table(opp_table);
447 
448 	return opp;
449 }
450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451 
452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 						   unsigned long *freq)
454 {
455 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456 
457 	mutex_lock(&opp_table->lock);
458 
459 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 		if (temp_opp->available && temp_opp->rate >= *freq) {
461 			opp = temp_opp;
462 			*freq = opp->rate;
463 
464 			/* Increment the reference count of OPP */
465 			dev_pm_opp_get(opp);
466 			break;
467 		}
468 	}
469 
470 	mutex_unlock(&opp_table->lock);
471 
472 	return opp;
473 }
474 
475 /**
476  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477  * @dev:	device for which we do this operation
478  * @freq:	Start frequency
479  *
480  * Search for the matching ceil *available* OPP from a starting freq
481  * for a device.
482  *
483  * Return: matching *opp and refreshes *freq accordingly, else returns
484  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485  * values can be:
486  * EINVAL:	for bad pointer
487  * ERANGE:	no match found for search
488  * ENODEV:	if device not found in list of registered devices
489  *
490  * The callers are required to call dev_pm_opp_put() for the returned OPP after
491  * use.
492  */
493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 					     unsigned long *freq)
495 {
496 	struct opp_table *opp_table;
497 	struct dev_pm_opp *opp;
498 
499 	if (!dev || !freq) {
500 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 		return ERR_PTR(-EINVAL);
502 	}
503 
504 	opp_table = _find_opp_table(dev);
505 	if (IS_ERR(opp_table))
506 		return ERR_CAST(opp_table);
507 
508 	opp = _find_freq_ceil(opp_table, freq);
509 
510 	dev_pm_opp_put_opp_table(opp_table);
511 
512 	return opp;
513 }
514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515 
516 /**
517  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518  * @dev:	device for which we do this operation
519  * @freq:	Start frequency
520  *
521  * Search for the matching floor *available* OPP from a starting freq
522  * for a device.
523  *
524  * Return: matching *opp and refreshes *freq accordingly, else returns
525  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526  * values can be:
527  * EINVAL:	for bad pointer
528  * ERANGE:	no match found for search
529  * ENODEV:	if device not found in list of registered devices
530  *
531  * The callers are required to call dev_pm_opp_put() for the returned OPP after
532  * use.
533  */
534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 					      unsigned long *freq)
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539 
540 	if (!dev || !freq) {
541 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 		return ERR_PTR(-EINVAL);
543 	}
544 
545 	opp_table = _find_opp_table(dev);
546 	if (IS_ERR(opp_table))
547 		return ERR_CAST(opp_table);
548 
549 	mutex_lock(&opp_table->lock);
550 
551 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 		if (temp_opp->available) {
553 			/* go to the next node, before choosing prev */
554 			if (temp_opp->rate > *freq)
555 				break;
556 			else
557 				opp = temp_opp;
558 		}
559 	}
560 
561 	/* Increment the reference count of OPP */
562 	if (!IS_ERR(opp))
563 		dev_pm_opp_get(opp);
564 	mutex_unlock(&opp_table->lock);
565 	dev_pm_opp_put_opp_table(opp_table);
566 
567 	if (!IS_ERR(opp))
568 		*freq = opp->rate;
569 
570 	return opp;
571 }
572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573 
574 /**
575  * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576  *					 target voltage.
577  * @dev:	Device for which we do this operation.
578  * @u_volt:	Target voltage.
579  *
580  * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581  *
582  * Return: matching *opp, else returns ERR_PTR in case of error which should be
583  * handled using IS_ERR.
584  *
585  * Error return values can be:
586  * EINVAL:	bad parameters
587  *
588  * The callers are required to call dev_pm_opp_put() for the returned OPP after
589  * use.
590  */
591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 						     unsigned long u_volt)
593 {
594 	struct opp_table *opp_table;
595 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596 
597 	if (!dev || !u_volt) {
598 		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 			u_volt);
600 		return ERR_PTR(-EINVAL);
601 	}
602 
603 	opp_table = _find_opp_table(dev);
604 	if (IS_ERR(opp_table))
605 		return ERR_CAST(opp_table);
606 
607 	mutex_lock(&opp_table->lock);
608 
609 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 		if (temp_opp->available) {
611 			if (temp_opp->supplies[0].u_volt > u_volt)
612 				break;
613 			opp = temp_opp;
614 		}
615 	}
616 
617 	/* Increment the reference count of OPP */
618 	if (!IS_ERR(opp))
619 		dev_pm_opp_get(opp);
620 
621 	mutex_unlock(&opp_table->lock);
622 	dev_pm_opp_put_opp_table(opp_table);
623 
624 	return opp;
625 }
626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627 
628 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 			    struct dev_pm_opp_supply *supply)
630 {
631 	int ret;
632 
633 	/* Regulator not available for device */
634 	if (IS_ERR(reg)) {
635 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 			PTR_ERR(reg));
637 		return 0;
638 	}
639 
640 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642 
643 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 					    supply->u_volt, supply->u_volt_max);
645 	if (ret)
646 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 			__func__, supply->u_volt_min, supply->u_volt,
648 			supply->u_volt_max, ret);
649 
650 	return ret;
651 }
652 
653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 					    unsigned long freq)
655 {
656 	int ret;
657 
658 	ret = clk_set_rate(clk, freq);
659 	if (ret) {
660 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 			ret);
662 	}
663 
664 	return ret;
665 }
666 
667 static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 				      struct device *dev,
669 				      unsigned long old_freq,
670 				      unsigned long freq,
671 				      struct dev_pm_opp_supply *old_supply,
672 				      struct dev_pm_opp_supply *new_supply)
673 {
674 	struct regulator *reg = opp_table->regulators[0];
675 	int ret;
676 
677 	/* This function only supports single regulator per device */
678 	if (WARN_ON(opp_table->regulator_count > 1)) {
679 		dev_err(dev, "multiple regulators are not supported\n");
680 		return -EINVAL;
681 	}
682 
683 	/* Scaling up? Scale voltage before frequency */
684 	if (freq >= old_freq) {
685 		ret = _set_opp_voltage(dev, reg, new_supply);
686 		if (ret)
687 			goto restore_voltage;
688 	}
689 
690 	/* Change frequency */
691 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 	if (ret)
693 		goto restore_voltage;
694 
695 	/* Scaling down? Scale voltage after frequency */
696 	if (freq < old_freq) {
697 		ret = _set_opp_voltage(dev, reg, new_supply);
698 		if (ret)
699 			goto restore_freq;
700 	}
701 
702 	/*
703 	 * Enable the regulator after setting its voltages, otherwise it breaks
704 	 * some boot-enabled regulators.
705 	 */
706 	if (unlikely(!opp_table->enabled)) {
707 		ret = regulator_enable(reg);
708 		if (ret < 0)
709 			dev_warn(dev, "Failed to enable regulator: %d", ret);
710 	}
711 
712 	return 0;
713 
714 restore_freq:
715 	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717 			__func__, old_freq);
718 restore_voltage:
719 	/* This shouldn't harm even if the voltages weren't updated earlier */
720 	if (old_supply)
721 		_set_opp_voltage(dev, reg, old_supply);
722 
723 	return ret;
724 }
725 
726 static int _set_opp_bw(const struct opp_table *opp_table,
727 		       struct dev_pm_opp *opp, struct device *dev, bool remove)
728 {
729 	u32 avg, peak;
730 	int i, ret;
731 
732 	if (!opp_table->paths)
733 		return 0;
734 
735 	for (i = 0; i < opp_table->path_count; i++) {
736 		if (remove) {
737 			avg = 0;
738 			peak = 0;
739 		} else {
740 			avg = opp->bandwidth[i].avg;
741 			peak = opp->bandwidth[i].peak;
742 		}
743 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
744 		if (ret) {
745 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746 				remove ? "remove" : "set", i, ret);
747 			return ret;
748 		}
749 	}
750 
751 	return 0;
752 }
753 
754 static int _set_opp_custom(const struct opp_table *opp_table,
755 			   struct device *dev, unsigned long old_freq,
756 			   unsigned long freq,
757 			   struct dev_pm_opp_supply *old_supply,
758 			   struct dev_pm_opp_supply *new_supply)
759 {
760 	struct dev_pm_set_opp_data *data;
761 	int size;
762 
763 	data = opp_table->set_opp_data;
764 	data->regulators = opp_table->regulators;
765 	data->regulator_count = opp_table->regulator_count;
766 	data->clk = opp_table->clk;
767 	data->dev = dev;
768 
769 	data->old_opp.rate = old_freq;
770 	size = sizeof(*old_supply) * opp_table->regulator_count;
771 	if (!old_supply)
772 		memset(data->old_opp.supplies, 0, size);
773 	else
774 		memcpy(data->old_opp.supplies, old_supply, size);
775 
776 	data->new_opp.rate = freq;
777 	memcpy(data->new_opp.supplies, new_supply, size);
778 
779 	return opp_table->set_opp(data);
780 }
781 
782 static int _set_required_opp(struct device *dev, struct device *pd_dev,
783 			     struct dev_pm_opp *opp, int i)
784 {
785 	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786 	int ret;
787 
788 	if (!pd_dev)
789 		return 0;
790 
791 	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792 	if (ret) {
793 		dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794 			dev_name(pd_dev), pstate, ret);
795 	}
796 
797 	return ret;
798 }
799 
800 /* This is only called for PM domain for now */
801 static int _set_required_opps(struct device *dev,
802 			      struct opp_table *opp_table,
803 			      struct dev_pm_opp *opp, bool up)
804 {
805 	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806 	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807 	int i, ret = 0;
808 
809 	if (!required_opp_tables)
810 		return 0;
811 
812 	/* Single genpd case */
813 	if (!genpd_virt_devs)
814 		return _set_required_opp(dev, dev, opp, 0);
815 
816 	/* Multiple genpd case */
817 
818 	/*
819 	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820 	 * after it is freed from another thread.
821 	 */
822 	mutex_lock(&opp_table->genpd_virt_dev_lock);
823 
824 	/* Scaling up? Set required OPPs in normal order, else reverse */
825 	if (up) {
826 		for (i = 0; i < opp_table->required_opp_count; i++) {
827 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828 			if (ret)
829 				break;
830 		}
831 	} else {
832 		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833 			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834 			if (ret)
835 				break;
836 		}
837 	}
838 
839 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
840 
841 	return ret;
842 }
843 
844 /**
845  * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846  * @dev:	device for which we do this operation
847  * @opp:	opp based on which the bandwidth levels are to be configured
848  *
849  * This configures the bandwidth to the levels specified by the OPP. However
850  * if the OPP specified is NULL the bandwidth levels are cleared out.
851  *
852  * Return: 0 on success or a negative error value.
853  */
854 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
855 {
856 	struct opp_table *opp_table;
857 	int ret;
858 
859 	opp_table = _find_opp_table(dev);
860 	if (IS_ERR(opp_table)) {
861 		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862 		return PTR_ERR(opp_table);
863 	}
864 
865 	if (opp)
866 		ret = _set_opp_bw(opp_table, opp, dev, false);
867 	else
868 		ret = _set_opp_bw(opp_table, NULL, dev, true);
869 
870 	dev_pm_opp_put_opp_table(opp_table);
871 	return ret;
872 }
873 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
874 
875 static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
876 {
877 	int ret;
878 
879 	if (!opp_table->enabled)
880 		return 0;
881 
882 	/*
883 	 * Some drivers need to support cases where some platforms may
884 	 * have OPP table for the device, while others don't and
885 	 * opp_set_rate() just needs to behave like clk_set_rate().
886 	 */
887 	if (!_get_opp_count(opp_table))
888 		return 0;
889 
890 	ret = _set_opp_bw(opp_table, NULL, dev, true);
891 	if (ret)
892 		return ret;
893 
894 	if (opp_table->regulators)
895 		regulator_disable(opp_table->regulators[0]);
896 
897 	ret = _set_required_opps(dev, opp_table, NULL, false);
898 
899 	opp_table->enabled = false;
900 	return ret;
901 }
902 
903 /**
904  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905  * @dev:	 device for which we do this operation
906  * @target_freq: frequency to achieve
907  *
908  * This configures the power-supplies to the levels specified by the OPP
909  * corresponding to the target_freq, and programs the clock to a value <=
910  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911  * provided by the opp, should have already rounded to the target OPP's
912  * frequency.
913  */
914 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
915 {
916 	struct opp_table *opp_table;
917 	unsigned long freq, old_freq, temp_freq;
918 	struct dev_pm_opp *old_opp, *opp;
919 	struct clk *clk;
920 	int ret;
921 
922 	opp_table = _find_opp_table(dev);
923 	if (IS_ERR(opp_table)) {
924 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925 		return PTR_ERR(opp_table);
926 	}
927 
928 	if (unlikely(!target_freq)) {
929 		ret = _opp_set_rate_zero(dev, opp_table);
930 		goto put_opp_table;
931 	}
932 
933 	clk = opp_table->clk;
934 	if (IS_ERR(clk)) {
935 		dev_err(dev, "%s: No clock available for the device\n",
936 			__func__);
937 		ret = PTR_ERR(clk);
938 		goto put_opp_table;
939 	}
940 
941 	freq = clk_round_rate(clk, target_freq);
942 	if ((long)freq <= 0)
943 		freq = target_freq;
944 
945 	old_freq = clk_get_rate(clk);
946 
947 	/* Return early if nothing to do */
948 	if (opp_table->enabled && old_freq == freq) {
949 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950 			__func__, freq);
951 		ret = 0;
952 		goto put_opp_table;
953 	}
954 
955 	/*
956 	 * For IO devices which require an OPP on some platforms/SoCs
957 	 * while just needing to scale the clock on some others
958 	 * we look for empty OPP tables with just a clock handle and
959 	 * scale only the clk. This makes dev_pm_opp_set_rate()
960 	 * equivalent to a clk_set_rate()
961 	 */
962 	if (!_get_opp_count(opp_table)) {
963 		ret = _generic_set_opp_clk_only(dev, clk, freq);
964 		goto put_opp_table;
965 	}
966 
967 	temp_freq = old_freq;
968 	old_opp = _find_freq_ceil(opp_table, &temp_freq);
969 	if (IS_ERR(old_opp)) {
970 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971 			__func__, old_freq, PTR_ERR(old_opp));
972 	}
973 
974 	temp_freq = freq;
975 	opp = _find_freq_ceil(opp_table, &temp_freq);
976 	if (IS_ERR(opp)) {
977 		ret = PTR_ERR(opp);
978 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979 			__func__, freq, ret);
980 		goto put_old_opp;
981 	}
982 
983 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984 		old_freq, freq);
985 
986 	/* Scaling up? Configure required OPPs before frequency */
987 	if (freq >= old_freq) {
988 		ret = _set_required_opps(dev, opp_table, opp, true);
989 		if (ret)
990 			goto put_opp;
991 	}
992 
993 	if (opp_table->set_opp) {
994 		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995 				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
996 				      opp->supplies);
997 	} else if (opp_table->regulators) {
998 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000 						 opp->supplies);
1001 	} else {
1002 		/* Only frequency scaling */
1003 		ret = _generic_set_opp_clk_only(dev, clk, freq);
1004 	}
1005 
1006 	/* Scaling down? Configure required OPPs after frequency */
1007 	if (!ret && freq < old_freq) {
1008 		ret = _set_required_opps(dev, opp_table, opp, false);
1009 		if (ret)
1010 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1011 	}
1012 
1013 	if (!ret) {
1014 		ret = _set_opp_bw(opp_table, opp, dev, false);
1015 		if (!ret)
1016 			opp_table->enabled = true;
1017 	}
1018 
1019 put_opp:
1020 	dev_pm_opp_put(opp);
1021 put_old_opp:
1022 	if (!IS_ERR(old_opp))
1023 		dev_pm_opp_put(old_opp);
1024 put_opp_table:
1025 	dev_pm_opp_put_opp_table(opp_table);
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1029 
1030 /* OPP-dev Helpers */
1031 static void _remove_opp_dev(struct opp_device *opp_dev,
1032 			    struct opp_table *opp_table)
1033 {
1034 	opp_debug_unregister(opp_dev, opp_table);
1035 	list_del(&opp_dev->node);
1036 	kfree(opp_dev);
1037 }
1038 
1039 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1040 						struct opp_table *opp_table)
1041 {
1042 	struct opp_device *opp_dev;
1043 
1044 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045 	if (!opp_dev)
1046 		return NULL;
1047 
1048 	/* Initialize opp-dev */
1049 	opp_dev->dev = dev;
1050 
1051 	list_add(&opp_dev->node, &opp_table->dev_list);
1052 
1053 	/* Create debugfs entries for the opp_table */
1054 	opp_debug_register(opp_dev, opp_table);
1055 
1056 	return opp_dev;
1057 }
1058 
1059 struct opp_device *_add_opp_dev(const struct device *dev,
1060 				struct opp_table *opp_table)
1061 {
1062 	struct opp_device *opp_dev;
1063 
1064 	mutex_lock(&opp_table->lock);
1065 	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1066 	mutex_unlock(&opp_table->lock);
1067 
1068 	return opp_dev;
1069 }
1070 
1071 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1072 {
1073 	struct opp_table *opp_table;
1074 	struct opp_device *opp_dev;
1075 	int ret;
1076 
1077 	/*
1078 	 * Allocate a new OPP table. In the infrequent case where a new
1079 	 * device is needed to be added, we pay this penalty.
1080 	 */
1081 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1082 	if (!opp_table)
1083 		return ERR_PTR(-ENOMEM);
1084 
1085 	mutex_init(&opp_table->lock);
1086 	mutex_init(&opp_table->genpd_virt_dev_lock);
1087 	INIT_LIST_HEAD(&opp_table->dev_list);
1088 
1089 	/* Mark regulator count uninitialized */
1090 	opp_table->regulator_count = -1;
1091 
1092 	opp_dev = _add_opp_dev(dev, opp_table);
1093 	if (!opp_dev) {
1094 		ret = -ENOMEM;
1095 		goto err;
1096 	}
1097 
1098 	_of_init_opp_table(opp_table, dev, index);
1099 
1100 	/* Find clk for the device */
1101 	opp_table->clk = clk_get(dev, NULL);
1102 	if (IS_ERR(opp_table->clk)) {
1103 		ret = PTR_ERR(opp_table->clk);
1104 		if (ret == -EPROBE_DEFER)
1105 			goto err;
1106 
1107 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1108 	}
1109 
1110 	/* Find interconnect path(s) for the device */
1111 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1112 	if (ret) {
1113 		if (ret == -EPROBE_DEFER)
1114 			goto err;
1115 
1116 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1117 			 __func__, ret);
1118 	}
1119 
1120 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1121 	INIT_LIST_HEAD(&opp_table->opp_list);
1122 	kref_init(&opp_table->kref);
1123 
1124 	/* Secure the device table modification */
1125 	list_add(&opp_table->node, &opp_tables);
1126 	return opp_table;
1127 
1128 err:
1129 	kfree(opp_table);
1130 	return ERR_PTR(ret);
1131 }
1132 
1133 void _get_opp_table_kref(struct opp_table *opp_table)
1134 {
1135 	kref_get(&opp_table->kref);
1136 }
1137 
1138 static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1139 {
1140 	struct opp_table *opp_table;
1141 
1142 	/* Hold our table modification lock here */
1143 	mutex_lock(&opp_table_lock);
1144 
1145 	opp_table = _find_opp_table_unlocked(dev);
1146 	if (!IS_ERR(opp_table))
1147 		goto unlock;
1148 
1149 	opp_table = _managed_opp(dev, index);
1150 	if (opp_table) {
1151 		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1152 			dev_pm_opp_put_opp_table(opp_table);
1153 			opp_table = ERR_PTR(-ENOMEM);
1154 		}
1155 		goto unlock;
1156 	}
1157 
1158 	opp_table = _allocate_opp_table(dev, index);
1159 
1160 unlock:
1161 	mutex_unlock(&opp_table_lock);
1162 
1163 	return opp_table;
1164 }
1165 
1166 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1167 {
1168 	return _opp_get_opp_table(dev, 0);
1169 }
1170 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1171 
1172 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1173 						   int index)
1174 {
1175 	return _opp_get_opp_table(dev, index);
1176 }
1177 
1178 static void _opp_table_kref_release(struct kref *kref)
1179 {
1180 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1181 	struct opp_device *opp_dev, *temp;
1182 	int i;
1183 
1184 	/* Drop the lock as soon as we can */
1185 	list_del(&opp_table->node);
1186 	mutex_unlock(&opp_table_lock);
1187 
1188 	_of_clear_opp_table(opp_table);
1189 
1190 	/* Release clk */
1191 	if (!IS_ERR(opp_table->clk))
1192 		clk_put(opp_table->clk);
1193 
1194 	if (opp_table->paths) {
1195 		for (i = 0; i < opp_table->path_count; i++)
1196 			icc_put(opp_table->paths[i]);
1197 		kfree(opp_table->paths);
1198 	}
1199 
1200 	WARN_ON(!list_empty(&opp_table->opp_list));
1201 
1202 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1203 		/*
1204 		 * The OPP table is getting removed, drop the performance state
1205 		 * constraints.
1206 		 */
1207 		if (opp_table->genpd_performance_state)
1208 			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1209 
1210 		_remove_opp_dev(opp_dev, opp_table);
1211 	}
1212 
1213 	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1214 	mutex_destroy(&opp_table->lock);
1215 	kfree(opp_table);
1216 }
1217 
1218 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1219 {
1220 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1221 		       &opp_table_lock);
1222 }
1223 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1224 
1225 void _opp_free(struct dev_pm_opp *opp)
1226 {
1227 	kfree(opp);
1228 }
1229 
1230 static void _opp_kref_release(struct dev_pm_opp *opp,
1231 			      struct opp_table *opp_table)
1232 {
1233 	/*
1234 	 * Notify the changes in the availability of the operable
1235 	 * frequency/voltage list.
1236 	 */
1237 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1238 	_of_opp_free_required_opps(opp_table, opp);
1239 	opp_debug_remove_one(opp);
1240 	list_del(&opp->node);
1241 	kfree(opp);
1242 }
1243 
1244 static void _opp_kref_release_unlocked(struct kref *kref)
1245 {
1246 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1247 	struct opp_table *opp_table = opp->opp_table;
1248 
1249 	_opp_kref_release(opp, opp_table);
1250 }
1251 
1252 static void _opp_kref_release_locked(struct kref *kref)
1253 {
1254 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1255 	struct opp_table *opp_table = opp->opp_table;
1256 
1257 	_opp_kref_release(opp, opp_table);
1258 	mutex_unlock(&opp_table->lock);
1259 }
1260 
1261 void dev_pm_opp_get(struct dev_pm_opp *opp)
1262 {
1263 	kref_get(&opp->kref);
1264 }
1265 
1266 void dev_pm_opp_put(struct dev_pm_opp *opp)
1267 {
1268 	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1269 		       &opp->opp_table->lock);
1270 }
1271 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1272 
1273 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1274 {
1275 	kref_put(&opp->kref, _opp_kref_release_unlocked);
1276 }
1277 
1278 /**
1279  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1280  * @dev:	device for which we do this operation
1281  * @freq:	OPP to remove with matching 'freq'
1282  *
1283  * This function removes an opp from the opp table.
1284  */
1285 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1286 {
1287 	struct dev_pm_opp *opp;
1288 	struct opp_table *opp_table;
1289 	bool found = false;
1290 
1291 	opp_table = _find_opp_table(dev);
1292 	if (IS_ERR(opp_table))
1293 		return;
1294 
1295 	mutex_lock(&opp_table->lock);
1296 
1297 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1298 		if (opp->rate == freq) {
1299 			found = true;
1300 			break;
1301 		}
1302 	}
1303 
1304 	mutex_unlock(&opp_table->lock);
1305 
1306 	if (found) {
1307 		dev_pm_opp_put(opp);
1308 
1309 		/* Drop the reference taken by dev_pm_opp_add() */
1310 		dev_pm_opp_put_opp_table(opp_table);
1311 	} else {
1312 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1313 			 __func__, freq);
1314 	}
1315 
1316 	/* Drop the reference taken by _find_opp_table() */
1317 	dev_pm_opp_put_opp_table(opp_table);
1318 }
1319 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1320 
1321 bool _opp_remove_all_static(struct opp_table *opp_table)
1322 {
1323 	struct dev_pm_opp *opp, *tmp;
1324 	bool ret = true;
1325 
1326 	mutex_lock(&opp_table->lock);
1327 
1328 	if (!opp_table->parsed_static_opps) {
1329 		ret = false;
1330 		goto unlock;
1331 	}
1332 
1333 	if (--opp_table->parsed_static_opps)
1334 		goto unlock;
1335 
1336 	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1337 		if (!opp->dynamic)
1338 			dev_pm_opp_put_unlocked(opp);
1339 	}
1340 
1341 unlock:
1342 	mutex_unlock(&opp_table->lock);
1343 
1344 	return ret;
1345 }
1346 
1347 /**
1348  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1349  * @dev:	device for which we do this operation
1350  *
1351  * This function removes all dynamically created OPPs from the opp table.
1352  */
1353 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1354 {
1355 	struct opp_table *opp_table;
1356 	struct dev_pm_opp *opp, *temp;
1357 	int count = 0;
1358 
1359 	opp_table = _find_opp_table(dev);
1360 	if (IS_ERR(opp_table))
1361 		return;
1362 
1363 	mutex_lock(&opp_table->lock);
1364 	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1365 		if (opp->dynamic) {
1366 			dev_pm_opp_put_unlocked(opp);
1367 			count++;
1368 		}
1369 	}
1370 	mutex_unlock(&opp_table->lock);
1371 
1372 	/* Drop the references taken by dev_pm_opp_add() */
1373 	while (count--)
1374 		dev_pm_opp_put_opp_table(opp_table);
1375 
1376 	/* Drop the reference taken by _find_opp_table() */
1377 	dev_pm_opp_put_opp_table(opp_table);
1378 }
1379 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1380 
1381 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1382 {
1383 	struct dev_pm_opp *opp;
1384 	int supply_count, supply_size, icc_size;
1385 
1386 	/* Allocate space for at least one supply */
1387 	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1388 	supply_size = sizeof(*opp->supplies) * supply_count;
1389 	icc_size = sizeof(*opp->bandwidth) * table->path_count;
1390 
1391 	/* allocate new OPP node and supplies structures */
1392 	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1393 
1394 	if (!opp)
1395 		return NULL;
1396 
1397 	/* Put the supplies at the end of the OPP structure as an empty array */
1398 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1399 	if (icc_size)
1400 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1401 	INIT_LIST_HEAD(&opp->node);
1402 
1403 	return opp;
1404 }
1405 
1406 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1407 					 struct opp_table *opp_table)
1408 {
1409 	struct regulator *reg;
1410 	int i;
1411 
1412 	if (!opp_table->regulators)
1413 		return true;
1414 
1415 	for (i = 0; i < opp_table->regulator_count; i++) {
1416 		reg = opp_table->regulators[i];
1417 
1418 		if (!regulator_is_supported_voltage(reg,
1419 					opp->supplies[i].u_volt_min,
1420 					opp->supplies[i].u_volt_max)) {
1421 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1422 				__func__, opp->supplies[i].u_volt_min,
1423 				opp->supplies[i].u_volt_max);
1424 			return false;
1425 		}
1426 	}
1427 
1428 	return true;
1429 }
1430 
1431 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1432 {
1433 	if (opp1->rate != opp2->rate)
1434 		return opp1->rate < opp2->rate ? -1 : 1;
1435 	if (opp1->bandwidth && opp2->bandwidth &&
1436 	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1437 		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1438 	if (opp1->level != opp2->level)
1439 		return opp1->level < opp2->level ? -1 : 1;
1440 	return 0;
1441 }
1442 
1443 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1444 			     struct opp_table *opp_table,
1445 			     struct list_head **head)
1446 {
1447 	struct dev_pm_opp *opp;
1448 	int opp_cmp;
1449 
1450 	/*
1451 	 * Insert new OPP in order of increasing frequency and discard if
1452 	 * already present.
1453 	 *
1454 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1455 	 * loop, don't replace it with head otherwise it will become an infinite
1456 	 * loop.
1457 	 */
1458 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1459 		opp_cmp = _opp_compare_key(new_opp, opp);
1460 		if (opp_cmp > 0) {
1461 			*head = &opp->node;
1462 			continue;
1463 		}
1464 
1465 		if (opp_cmp < 0)
1466 			return 0;
1467 
1468 		/* Duplicate OPPs */
1469 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1470 			 __func__, opp->rate, opp->supplies[0].u_volt,
1471 			 opp->available, new_opp->rate,
1472 			 new_opp->supplies[0].u_volt, new_opp->available);
1473 
1474 		/* Should we compare voltages for all regulators here ? */
1475 		return opp->available &&
1476 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  * Returns:
1484  * 0: On success. And appropriate error message for duplicate OPPs.
1485  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1486  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1487  *  sure we don't print error messages unnecessarily if different parts of
1488  *  kernel try to initialize the OPP table.
1489  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1490  *  should be considered an error by the callers of _opp_add().
1491  */
1492 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1493 	     struct opp_table *opp_table, bool rate_not_available)
1494 {
1495 	struct list_head *head;
1496 	int ret;
1497 
1498 	mutex_lock(&opp_table->lock);
1499 	head = &opp_table->opp_list;
1500 
1501 	if (likely(!rate_not_available)) {
1502 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1503 		if (ret) {
1504 			mutex_unlock(&opp_table->lock);
1505 			return ret;
1506 		}
1507 	}
1508 
1509 	list_add(&new_opp->node, head);
1510 	mutex_unlock(&opp_table->lock);
1511 
1512 	new_opp->opp_table = opp_table;
1513 	kref_init(&new_opp->kref);
1514 
1515 	opp_debug_create_one(new_opp, opp_table);
1516 
1517 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1518 		new_opp->available = false;
1519 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1520 			 __func__, new_opp->rate);
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 /**
1527  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1528  * @opp_table:	OPP table
1529  * @dev:	device for which we do this operation
1530  * @freq:	Frequency in Hz for this OPP
1531  * @u_volt:	Voltage in uVolts for this OPP
1532  * @dynamic:	Dynamically added OPPs.
1533  *
1534  * This function adds an opp definition to the opp table and returns status.
1535  * The opp is made available by default and it can be controlled using
1536  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1537  *
1538  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1539  * and freed by dev_pm_opp_of_remove_table.
1540  *
1541  * Return:
1542  * 0		On success OR
1543  *		Duplicate OPPs (both freq and volt are same) and opp->available
1544  * -EEXIST	Freq are same and volt are different OR
1545  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1546  * -ENOMEM	Memory allocation failure
1547  */
1548 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1549 		unsigned long freq, long u_volt, bool dynamic)
1550 {
1551 	struct dev_pm_opp *new_opp;
1552 	unsigned long tol;
1553 	int ret;
1554 
1555 	new_opp = _opp_allocate(opp_table);
1556 	if (!new_opp)
1557 		return -ENOMEM;
1558 
1559 	/* populate the opp table */
1560 	new_opp->rate = freq;
1561 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1562 	new_opp->supplies[0].u_volt = u_volt;
1563 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1564 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1565 	new_opp->available = true;
1566 	new_opp->dynamic = dynamic;
1567 
1568 	ret = _opp_add(dev, new_opp, opp_table, false);
1569 	if (ret) {
1570 		/* Don't return error for duplicate OPPs */
1571 		if (ret == -EBUSY)
1572 			ret = 0;
1573 		goto free_opp;
1574 	}
1575 
1576 	/*
1577 	 * Notify the changes in the availability of the operable
1578 	 * frequency/voltage list.
1579 	 */
1580 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1581 	return 0;
1582 
1583 free_opp:
1584 	_opp_free(new_opp);
1585 
1586 	return ret;
1587 }
1588 
1589 /**
1590  * dev_pm_opp_set_supported_hw() - Set supported platforms
1591  * @dev: Device for which supported-hw has to be set.
1592  * @versions: Array of hierarchy of versions to match.
1593  * @count: Number of elements in the array.
1594  *
1595  * This is required only for the V2 bindings, and it enables a platform to
1596  * specify the hierarchy of versions it supports. OPP layer will then enable
1597  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1598  * property.
1599  */
1600 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1601 			const u32 *versions, unsigned int count)
1602 {
1603 	struct opp_table *opp_table;
1604 
1605 	opp_table = dev_pm_opp_get_opp_table(dev);
1606 	if (IS_ERR(opp_table))
1607 		return opp_table;
1608 
1609 	/* Make sure there are no concurrent readers while updating opp_table */
1610 	WARN_ON(!list_empty(&opp_table->opp_list));
1611 
1612 	/* Another CPU that shares the OPP table has set the property ? */
1613 	if (opp_table->supported_hw)
1614 		return opp_table;
1615 
1616 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1617 					GFP_KERNEL);
1618 	if (!opp_table->supported_hw) {
1619 		dev_pm_opp_put_opp_table(opp_table);
1620 		return ERR_PTR(-ENOMEM);
1621 	}
1622 
1623 	opp_table->supported_hw_count = count;
1624 
1625 	return opp_table;
1626 }
1627 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1628 
1629 /**
1630  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1631  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1632  *
1633  * This is required only for the V2 bindings, and is called for a matching
1634  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1635  * will not be freed.
1636  */
1637 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1638 {
1639 	/* Make sure there are no concurrent readers while updating opp_table */
1640 	WARN_ON(!list_empty(&opp_table->opp_list));
1641 
1642 	kfree(opp_table->supported_hw);
1643 	opp_table->supported_hw = NULL;
1644 	opp_table->supported_hw_count = 0;
1645 
1646 	dev_pm_opp_put_opp_table(opp_table);
1647 }
1648 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1649 
1650 /**
1651  * dev_pm_opp_set_prop_name() - Set prop-extn name
1652  * @dev: Device for which the prop-name has to be set.
1653  * @name: name to postfix to properties.
1654  *
1655  * This is required only for the V2 bindings, and it enables a platform to
1656  * specify the extn to be used for certain property names. The properties to
1657  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1658  * should postfix the property name with -<name> while looking for them.
1659  */
1660 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1661 {
1662 	struct opp_table *opp_table;
1663 
1664 	opp_table = dev_pm_opp_get_opp_table(dev);
1665 	if (IS_ERR(opp_table))
1666 		return opp_table;
1667 
1668 	/* Make sure there are no concurrent readers while updating opp_table */
1669 	WARN_ON(!list_empty(&opp_table->opp_list));
1670 
1671 	/* Another CPU that shares the OPP table has set the property ? */
1672 	if (opp_table->prop_name)
1673 		return opp_table;
1674 
1675 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1676 	if (!opp_table->prop_name) {
1677 		dev_pm_opp_put_opp_table(opp_table);
1678 		return ERR_PTR(-ENOMEM);
1679 	}
1680 
1681 	return opp_table;
1682 }
1683 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1684 
1685 /**
1686  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1687  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1688  *
1689  * This is required only for the V2 bindings, and is called for a matching
1690  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1691  * will not be freed.
1692  */
1693 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1694 {
1695 	/* Make sure there are no concurrent readers while updating opp_table */
1696 	WARN_ON(!list_empty(&opp_table->opp_list));
1697 
1698 	kfree(opp_table->prop_name);
1699 	opp_table->prop_name = NULL;
1700 
1701 	dev_pm_opp_put_opp_table(opp_table);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1704 
1705 static int _allocate_set_opp_data(struct opp_table *opp_table)
1706 {
1707 	struct dev_pm_set_opp_data *data;
1708 	int len, count = opp_table->regulator_count;
1709 
1710 	if (WARN_ON(!opp_table->regulators))
1711 		return -EINVAL;
1712 
1713 	/* space for set_opp_data */
1714 	len = sizeof(*data);
1715 
1716 	/* space for old_opp.supplies and new_opp.supplies */
1717 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1718 
1719 	data = kzalloc(len, GFP_KERNEL);
1720 	if (!data)
1721 		return -ENOMEM;
1722 
1723 	data->old_opp.supplies = (void *)(data + 1);
1724 	data->new_opp.supplies = data->old_opp.supplies + count;
1725 
1726 	opp_table->set_opp_data = data;
1727 
1728 	return 0;
1729 }
1730 
1731 static void _free_set_opp_data(struct opp_table *opp_table)
1732 {
1733 	kfree(opp_table->set_opp_data);
1734 	opp_table->set_opp_data = NULL;
1735 }
1736 
1737 /**
1738  * dev_pm_opp_set_regulators() - Set regulator names for the device
1739  * @dev: Device for which regulator name is being set.
1740  * @names: Array of pointers to the names of the regulator.
1741  * @count: Number of regulators.
1742  *
1743  * In order to support OPP switching, OPP layer needs to know the name of the
1744  * device's regulators, as the core would be required to switch voltages as
1745  * well.
1746  *
1747  * This must be called before any OPPs are initialized for the device.
1748  */
1749 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1750 					    const char * const names[],
1751 					    unsigned int count)
1752 {
1753 	struct opp_table *opp_table;
1754 	struct regulator *reg;
1755 	int ret, i;
1756 
1757 	opp_table = dev_pm_opp_get_opp_table(dev);
1758 	if (IS_ERR(opp_table))
1759 		return opp_table;
1760 
1761 	/* This should be called before OPPs are initialized */
1762 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1763 		ret = -EBUSY;
1764 		goto err;
1765 	}
1766 
1767 	/* Another CPU that shares the OPP table has set the regulators ? */
1768 	if (opp_table->regulators)
1769 		return opp_table;
1770 
1771 	opp_table->regulators = kmalloc_array(count,
1772 					      sizeof(*opp_table->regulators),
1773 					      GFP_KERNEL);
1774 	if (!opp_table->regulators) {
1775 		ret = -ENOMEM;
1776 		goto err;
1777 	}
1778 
1779 	for (i = 0; i < count; i++) {
1780 		reg = regulator_get_optional(dev, names[i]);
1781 		if (IS_ERR(reg)) {
1782 			ret = PTR_ERR(reg);
1783 			if (ret != -EPROBE_DEFER)
1784 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1785 					__func__, names[i], ret);
1786 			goto free_regulators;
1787 		}
1788 
1789 		opp_table->regulators[i] = reg;
1790 	}
1791 
1792 	opp_table->regulator_count = count;
1793 
1794 	/* Allocate block only once to pass to set_opp() routines */
1795 	ret = _allocate_set_opp_data(opp_table);
1796 	if (ret)
1797 		goto free_regulators;
1798 
1799 	return opp_table;
1800 
1801 free_regulators:
1802 	while (i != 0)
1803 		regulator_put(opp_table->regulators[--i]);
1804 
1805 	kfree(opp_table->regulators);
1806 	opp_table->regulators = NULL;
1807 	opp_table->regulator_count = -1;
1808 err:
1809 	dev_pm_opp_put_opp_table(opp_table);
1810 
1811 	return ERR_PTR(ret);
1812 }
1813 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1814 
1815 /**
1816  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1817  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1818  */
1819 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1820 {
1821 	int i;
1822 
1823 	if (!opp_table->regulators)
1824 		goto put_opp_table;
1825 
1826 	/* Make sure there are no concurrent readers while updating opp_table */
1827 	WARN_ON(!list_empty(&opp_table->opp_list));
1828 
1829 	if (opp_table->enabled) {
1830 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1831 			regulator_disable(opp_table->regulators[i]);
1832 	}
1833 
1834 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1835 		regulator_put(opp_table->regulators[i]);
1836 
1837 	_free_set_opp_data(opp_table);
1838 
1839 	kfree(opp_table->regulators);
1840 	opp_table->regulators = NULL;
1841 	opp_table->regulator_count = -1;
1842 
1843 put_opp_table:
1844 	dev_pm_opp_put_opp_table(opp_table);
1845 }
1846 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1847 
1848 /**
1849  * dev_pm_opp_set_clkname() - Set clk name for the device
1850  * @dev: Device for which clk name is being set.
1851  * @name: Clk name.
1852  *
1853  * In order to support OPP switching, OPP layer needs to get pointer to the
1854  * clock for the device. Simple cases work fine without using this routine (i.e.
1855  * by passing connection-id as NULL), but for a device with multiple clocks
1856  * available, the OPP core needs to know the exact name of the clk to use.
1857  *
1858  * This must be called before any OPPs are initialized for the device.
1859  */
1860 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1861 {
1862 	struct opp_table *opp_table;
1863 	int ret;
1864 
1865 	opp_table = dev_pm_opp_get_opp_table(dev);
1866 	if (IS_ERR(opp_table))
1867 		return opp_table;
1868 
1869 	/* This should be called before OPPs are initialized */
1870 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1871 		ret = -EBUSY;
1872 		goto err;
1873 	}
1874 
1875 	/* Already have default clk set, free it */
1876 	if (!IS_ERR(opp_table->clk))
1877 		clk_put(opp_table->clk);
1878 
1879 	/* Find clk for the device */
1880 	opp_table->clk = clk_get(dev, name);
1881 	if (IS_ERR(opp_table->clk)) {
1882 		ret = PTR_ERR(opp_table->clk);
1883 		if (ret != -EPROBE_DEFER) {
1884 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1885 				ret);
1886 		}
1887 		goto err;
1888 	}
1889 
1890 	return opp_table;
1891 
1892 err:
1893 	dev_pm_opp_put_opp_table(opp_table);
1894 
1895 	return ERR_PTR(ret);
1896 }
1897 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1898 
1899 /**
1900  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1901  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1902  */
1903 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1904 {
1905 	/* Make sure there are no concurrent readers while updating opp_table */
1906 	WARN_ON(!list_empty(&opp_table->opp_list));
1907 
1908 	clk_put(opp_table->clk);
1909 	opp_table->clk = ERR_PTR(-EINVAL);
1910 
1911 	dev_pm_opp_put_opp_table(opp_table);
1912 }
1913 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1914 
1915 /**
1916  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1917  * @dev: Device for which the helper is getting registered.
1918  * @set_opp: Custom set OPP helper.
1919  *
1920  * This is useful to support complex platforms (like platforms with multiple
1921  * regulators per device), instead of the generic OPP set rate helper.
1922  *
1923  * This must be called before any OPPs are initialized for the device.
1924  */
1925 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1926 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1927 {
1928 	struct opp_table *opp_table;
1929 
1930 	if (!set_opp)
1931 		return ERR_PTR(-EINVAL);
1932 
1933 	opp_table = dev_pm_opp_get_opp_table(dev);
1934 	if (IS_ERR(opp_table))
1935 		return opp_table;
1936 
1937 	/* This should be called before OPPs are initialized */
1938 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1939 		dev_pm_opp_put_opp_table(opp_table);
1940 		return ERR_PTR(-EBUSY);
1941 	}
1942 
1943 	/* Another CPU that shares the OPP table has set the helper ? */
1944 	if (!opp_table->set_opp)
1945 		opp_table->set_opp = set_opp;
1946 
1947 	return opp_table;
1948 }
1949 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1950 
1951 /**
1952  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1953  *					   set_opp helper
1954  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1955  *
1956  * Release resources blocked for platform specific set_opp helper.
1957  */
1958 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1959 {
1960 	/* Make sure there are no concurrent readers while updating opp_table */
1961 	WARN_ON(!list_empty(&opp_table->opp_list));
1962 
1963 	opp_table->set_opp = NULL;
1964 	dev_pm_opp_put_opp_table(opp_table);
1965 }
1966 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1967 
1968 static void _opp_detach_genpd(struct opp_table *opp_table)
1969 {
1970 	int index;
1971 
1972 	if (!opp_table->genpd_virt_devs)
1973 		return;
1974 
1975 	for (index = 0; index < opp_table->required_opp_count; index++) {
1976 		if (!opp_table->genpd_virt_devs[index])
1977 			continue;
1978 
1979 		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1980 		opp_table->genpd_virt_devs[index] = NULL;
1981 	}
1982 
1983 	kfree(opp_table->genpd_virt_devs);
1984 	opp_table->genpd_virt_devs = NULL;
1985 }
1986 
1987 /**
1988  * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1989  * @dev: Consumer device for which the genpd is getting attached.
1990  * @names: Null terminated array of pointers containing names of genpd to attach.
1991  * @virt_devs: Pointer to return the array of virtual devices.
1992  *
1993  * Multiple generic power domains for a device are supported with the help of
1994  * virtual genpd devices, which are created for each consumer device - genpd
1995  * pair. These are the device structures which are attached to the power domain
1996  * and are required by the OPP core to set the performance state of the genpd.
1997  * The same API also works for the case where single genpd is available and so
1998  * we don't need to support that separately.
1999  *
2000  * This helper will normally be called by the consumer driver of the device
2001  * "dev", as only that has details of the genpd names.
2002  *
2003  * This helper needs to be called once with a list of all genpd to attach.
2004  * Otherwise the original device structure will be used instead by the OPP core.
2005  *
2006  * The order of entries in the names array must match the order in which
2007  * "required-opps" are added in DT.
2008  */
2009 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2010 		const char **names, struct device ***virt_devs)
2011 {
2012 	struct opp_table *opp_table;
2013 	struct device *virt_dev;
2014 	int index = 0, ret = -EINVAL;
2015 	const char **name = names;
2016 
2017 	opp_table = dev_pm_opp_get_opp_table(dev);
2018 	if (IS_ERR(opp_table))
2019 		return opp_table;
2020 
2021 	if (opp_table->genpd_virt_devs)
2022 		return opp_table;
2023 
2024 	/*
2025 	 * If the genpd's OPP table isn't already initialized, parsing of the
2026 	 * required-opps fail for dev. We should retry this after genpd's OPP
2027 	 * table is added.
2028 	 */
2029 	if (!opp_table->required_opp_count) {
2030 		ret = -EPROBE_DEFER;
2031 		goto put_table;
2032 	}
2033 
2034 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2035 
2036 	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2037 					     sizeof(*opp_table->genpd_virt_devs),
2038 					     GFP_KERNEL);
2039 	if (!opp_table->genpd_virt_devs)
2040 		goto unlock;
2041 
2042 	while (*name) {
2043 		if (index >= opp_table->required_opp_count) {
2044 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2045 				*name, opp_table->required_opp_count, index);
2046 			goto err;
2047 		}
2048 
2049 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2050 		if (IS_ERR(virt_dev)) {
2051 			ret = PTR_ERR(virt_dev);
2052 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2053 			goto err;
2054 		}
2055 
2056 		opp_table->genpd_virt_devs[index] = virt_dev;
2057 		index++;
2058 		name++;
2059 	}
2060 
2061 	if (virt_devs)
2062 		*virt_devs = opp_table->genpd_virt_devs;
2063 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2064 
2065 	return opp_table;
2066 
2067 err:
2068 	_opp_detach_genpd(opp_table);
2069 unlock:
2070 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2071 
2072 put_table:
2073 	dev_pm_opp_put_opp_table(opp_table);
2074 
2075 	return ERR_PTR(ret);
2076 }
2077 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2078 
2079 /**
2080  * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2081  * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2082  *
2083  * This detaches the genpd(s), resets the virtual device pointers, and puts the
2084  * OPP table.
2085  */
2086 void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2087 {
2088 	/*
2089 	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2090 	 * used in parallel.
2091 	 */
2092 	mutex_lock(&opp_table->genpd_virt_dev_lock);
2093 	_opp_detach_genpd(opp_table);
2094 	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2095 
2096 	dev_pm_opp_put_opp_table(opp_table);
2097 }
2098 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2099 
2100 /**
2101  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2102  * @src_table: OPP table which has dst_table as one of its required OPP table.
2103  * @dst_table: Required OPP table of the src_table.
2104  * @pstate: Current performance state of the src_table.
2105  *
2106  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2107  * "required-opps" property of the OPP (present in @src_table) which has
2108  * performance state set to @pstate.
2109  *
2110  * Return: Zero or positive performance state on success, otherwise negative
2111  * value on errors.
2112  */
2113 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2114 				       struct opp_table *dst_table,
2115 				       unsigned int pstate)
2116 {
2117 	struct dev_pm_opp *opp;
2118 	int dest_pstate = -EINVAL;
2119 	int i;
2120 
2121 	/*
2122 	 * Normally the src_table will have the "required_opps" property set to
2123 	 * point to one of the OPPs in the dst_table, but in some cases the
2124 	 * genpd and its master have one to one mapping of performance states
2125 	 * and so none of them have the "required-opps" property set. Return the
2126 	 * pstate of the src_table as it is in such cases.
2127 	 */
2128 	if (!src_table->required_opp_count)
2129 		return pstate;
2130 
2131 	for (i = 0; i < src_table->required_opp_count; i++) {
2132 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2133 			break;
2134 	}
2135 
2136 	if (unlikely(i == src_table->required_opp_count)) {
2137 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2138 		       __func__, src_table, dst_table);
2139 		return -EINVAL;
2140 	}
2141 
2142 	mutex_lock(&src_table->lock);
2143 
2144 	list_for_each_entry(opp, &src_table->opp_list, node) {
2145 		if (opp->pstate == pstate) {
2146 			dest_pstate = opp->required_opps[i]->pstate;
2147 			goto unlock;
2148 		}
2149 	}
2150 
2151 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2152 	       dst_table);
2153 
2154 unlock:
2155 	mutex_unlock(&src_table->lock);
2156 
2157 	return dest_pstate;
2158 }
2159 
2160 /**
2161  * dev_pm_opp_add()  - Add an OPP table from a table definitions
2162  * @dev:	device for which we do this operation
2163  * @freq:	Frequency in Hz for this OPP
2164  * @u_volt:	Voltage in uVolts for this OPP
2165  *
2166  * This function adds an opp definition to the opp table and returns status.
2167  * The opp is made available by default and it can be controlled using
2168  * dev_pm_opp_enable/disable functions.
2169  *
2170  * Return:
2171  * 0		On success OR
2172  *		Duplicate OPPs (both freq and volt are same) and opp->available
2173  * -EEXIST	Freq are same and volt are different OR
2174  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2175  * -ENOMEM	Memory allocation failure
2176  */
2177 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2178 {
2179 	struct opp_table *opp_table;
2180 	int ret;
2181 
2182 	opp_table = dev_pm_opp_get_opp_table(dev);
2183 	if (IS_ERR(opp_table))
2184 		return PTR_ERR(opp_table);
2185 
2186 	/* Fix regulator count for dynamic OPPs */
2187 	opp_table->regulator_count = 1;
2188 
2189 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2190 	if (ret)
2191 		dev_pm_opp_put_opp_table(opp_table);
2192 
2193 	return ret;
2194 }
2195 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2196 
2197 /**
2198  * _opp_set_availability() - helper to set the availability of an opp
2199  * @dev:		device for which we do this operation
2200  * @freq:		OPP frequency to modify availability
2201  * @availability_req:	availability status requested for this opp
2202  *
2203  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2204  * which is isolated here.
2205  *
2206  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2207  * copy operation, returns 0 if no modification was done OR modification was
2208  * successful.
2209  */
2210 static int _opp_set_availability(struct device *dev, unsigned long freq,
2211 				 bool availability_req)
2212 {
2213 	struct opp_table *opp_table;
2214 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2215 	int r = 0;
2216 
2217 	/* Find the opp_table */
2218 	opp_table = _find_opp_table(dev);
2219 	if (IS_ERR(opp_table)) {
2220 		r = PTR_ERR(opp_table);
2221 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2222 		return r;
2223 	}
2224 
2225 	mutex_lock(&opp_table->lock);
2226 
2227 	/* Do we have the frequency? */
2228 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2229 		if (tmp_opp->rate == freq) {
2230 			opp = tmp_opp;
2231 			break;
2232 		}
2233 	}
2234 
2235 	if (IS_ERR(opp)) {
2236 		r = PTR_ERR(opp);
2237 		goto unlock;
2238 	}
2239 
2240 	/* Is update really needed? */
2241 	if (opp->available == availability_req)
2242 		goto unlock;
2243 
2244 	opp->available = availability_req;
2245 
2246 	dev_pm_opp_get(opp);
2247 	mutex_unlock(&opp_table->lock);
2248 
2249 	/* Notify the change of the OPP availability */
2250 	if (availability_req)
2251 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2252 					     opp);
2253 	else
2254 		blocking_notifier_call_chain(&opp_table->head,
2255 					     OPP_EVENT_DISABLE, opp);
2256 
2257 	dev_pm_opp_put(opp);
2258 	goto put_table;
2259 
2260 unlock:
2261 	mutex_unlock(&opp_table->lock);
2262 put_table:
2263 	dev_pm_opp_put_opp_table(opp_table);
2264 	return r;
2265 }
2266 
2267 /**
2268  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2269  * @dev:		device for which we do this operation
2270  * @freq:		OPP frequency to adjust voltage of
2271  * @u_volt:		new OPP target voltage
2272  * @u_volt_min:		new OPP min voltage
2273  * @u_volt_max:		new OPP max voltage
2274  *
2275  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2276  * copy operation, returns 0 if no modifcation was done OR modification was
2277  * successful.
2278  */
2279 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2280 			      unsigned long u_volt, unsigned long u_volt_min,
2281 			      unsigned long u_volt_max)
2282 
2283 {
2284 	struct opp_table *opp_table;
2285 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2286 	int r = 0;
2287 
2288 	/* Find the opp_table */
2289 	opp_table = _find_opp_table(dev);
2290 	if (IS_ERR(opp_table)) {
2291 		r = PTR_ERR(opp_table);
2292 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2293 		return r;
2294 	}
2295 
2296 	mutex_lock(&opp_table->lock);
2297 
2298 	/* Do we have the frequency? */
2299 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2300 		if (tmp_opp->rate == freq) {
2301 			opp = tmp_opp;
2302 			break;
2303 		}
2304 	}
2305 
2306 	if (IS_ERR(opp)) {
2307 		r = PTR_ERR(opp);
2308 		goto adjust_unlock;
2309 	}
2310 
2311 	/* Is update really needed? */
2312 	if (opp->supplies->u_volt == u_volt)
2313 		goto adjust_unlock;
2314 
2315 	opp->supplies->u_volt = u_volt;
2316 	opp->supplies->u_volt_min = u_volt_min;
2317 	opp->supplies->u_volt_max = u_volt_max;
2318 
2319 	dev_pm_opp_get(opp);
2320 	mutex_unlock(&opp_table->lock);
2321 
2322 	/* Notify the voltage change of the OPP */
2323 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2324 				     opp);
2325 
2326 	dev_pm_opp_put(opp);
2327 	goto adjust_put_table;
2328 
2329 adjust_unlock:
2330 	mutex_unlock(&opp_table->lock);
2331 adjust_put_table:
2332 	dev_pm_opp_put_opp_table(opp_table);
2333 	return r;
2334 }
2335 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2336 
2337 /**
2338  * dev_pm_opp_enable() - Enable a specific OPP
2339  * @dev:	device for which we do this operation
2340  * @freq:	OPP frequency to enable
2341  *
2342  * Enables a provided opp. If the operation is valid, this returns 0, else the
2343  * corresponding error value. It is meant to be used for users an OPP available
2344  * after being temporarily made unavailable with dev_pm_opp_disable.
2345  *
2346  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2347  * copy operation, returns 0 if no modification was done OR modification was
2348  * successful.
2349  */
2350 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2351 {
2352 	return _opp_set_availability(dev, freq, true);
2353 }
2354 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2355 
2356 /**
2357  * dev_pm_opp_disable() - Disable a specific OPP
2358  * @dev:	device for which we do this operation
2359  * @freq:	OPP frequency to disable
2360  *
2361  * Disables a provided opp. If the operation is valid, this returns
2362  * 0, else the corresponding error value. It is meant to be a temporary
2363  * control by users to make this OPP not available until the circumstances are
2364  * right to make it available again (with a call to dev_pm_opp_enable).
2365  *
2366  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2367  * copy operation, returns 0 if no modification was done OR modification was
2368  * successful.
2369  */
2370 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2371 {
2372 	return _opp_set_availability(dev, freq, false);
2373 }
2374 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2375 
2376 /**
2377  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2378  * @dev:	Device for which notifier needs to be registered
2379  * @nb:		Notifier block to be registered
2380  *
2381  * Return: 0 on success or a negative error value.
2382  */
2383 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2384 {
2385 	struct opp_table *opp_table;
2386 	int ret;
2387 
2388 	opp_table = _find_opp_table(dev);
2389 	if (IS_ERR(opp_table))
2390 		return PTR_ERR(opp_table);
2391 
2392 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2393 
2394 	dev_pm_opp_put_opp_table(opp_table);
2395 
2396 	return ret;
2397 }
2398 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2399 
2400 /**
2401  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2402  * @dev:	Device for which notifier needs to be unregistered
2403  * @nb:		Notifier block to be unregistered
2404  *
2405  * Return: 0 on success or a negative error value.
2406  */
2407 int dev_pm_opp_unregister_notifier(struct device *dev,
2408 				   struct notifier_block *nb)
2409 {
2410 	struct opp_table *opp_table;
2411 	int ret;
2412 
2413 	opp_table = _find_opp_table(dev);
2414 	if (IS_ERR(opp_table))
2415 		return PTR_ERR(opp_table);
2416 
2417 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2418 
2419 	dev_pm_opp_put_opp_table(opp_table);
2420 
2421 	return ret;
2422 }
2423 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2424 
2425 /**
2426  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2427  * @dev:	device pointer used to lookup OPP table.
2428  *
2429  * Free both OPPs created using static entries present in DT and the
2430  * dynamically added entries.
2431  */
2432 void dev_pm_opp_remove_table(struct device *dev)
2433 {
2434 	struct opp_table *opp_table;
2435 
2436 	/* Check for existing table for 'dev' */
2437 	opp_table = _find_opp_table(dev);
2438 	if (IS_ERR(opp_table)) {
2439 		int error = PTR_ERR(opp_table);
2440 
2441 		if (error != -ENODEV)
2442 			WARN(1, "%s: opp_table: %d\n",
2443 			     IS_ERR_OR_NULL(dev) ?
2444 					"Invalid device" : dev_name(dev),
2445 			     error);
2446 		return;
2447 	}
2448 
2449 	/*
2450 	 * Drop the extra reference only if the OPP table was successfully added
2451 	 * with dev_pm_opp_of_add_table() earlier.
2452 	 **/
2453 	if (_opp_remove_all_static(opp_table))
2454 		dev_pm_opp_put_opp_table(opp_table);
2455 
2456 	/* Drop reference taken by _find_opp_table() */
2457 	dev_pm_opp_put_opp_table(opp_table);
2458 }
2459 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2460