1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp)) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 /** 405 * dev_pm_opp_find_level_exact() - search for an exact level 406 * @dev: device for which we do this operation 407 * @level: level to search for 408 * 409 * Return: Searches for exact match in the opp table and returns pointer to the 410 * matching opp if found, else returns ERR_PTR in case of error and should 411 * be handled using IS_ERR. Error return values can be: 412 * EINVAL: for bad pointer 413 * ERANGE: no match found for search 414 * ENODEV: if device not found in list of registered devices 415 * 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after 417 * use. 418 */ 419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 420 unsigned int level) 421 { 422 struct opp_table *opp_table; 423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 424 425 opp_table = _find_opp_table(dev); 426 if (IS_ERR(opp_table)) { 427 int r = PTR_ERR(opp_table); 428 429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 430 return ERR_PTR(r); 431 } 432 433 mutex_lock(&opp_table->lock); 434 435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 436 if (temp_opp->level == level) { 437 opp = temp_opp; 438 439 /* Increment the reference count of OPP */ 440 dev_pm_opp_get(opp); 441 break; 442 } 443 } 444 445 mutex_unlock(&opp_table->lock); 446 dev_pm_opp_put_opp_table(opp_table); 447 448 return opp; 449 } 450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 451 452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 453 unsigned long *freq) 454 { 455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 456 457 mutex_lock(&opp_table->lock); 458 459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 460 if (temp_opp->available && temp_opp->rate >= *freq) { 461 opp = temp_opp; 462 *freq = opp->rate; 463 464 /* Increment the reference count of OPP */ 465 dev_pm_opp_get(opp); 466 break; 467 } 468 } 469 470 mutex_unlock(&opp_table->lock); 471 472 return opp; 473 } 474 475 /** 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 477 * @dev: device for which we do this operation 478 * @freq: Start frequency 479 * 480 * Search for the matching ceil *available* OPP from a starting freq 481 * for a device. 482 * 483 * Return: matching *opp and refreshes *freq accordingly, else returns 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 485 * values can be: 486 * EINVAL: for bad pointer 487 * ERANGE: no match found for search 488 * ENODEV: if device not found in list of registered devices 489 * 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after 491 * use. 492 */ 493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 494 unsigned long *freq) 495 { 496 struct opp_table *opp_table; 497 struct dev_pm_opp *opp; 498 499 if (!dev || !freq) { 500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 501 return ERR_PTR(-EINVAL); 502 } 503 504 opp_table = _find_opp_table(dev); 505 if (IS_ERR(opp_table)) 506 return ERR_CAST(opp_table); 507 508 opp = _find_freq_ceil(opp_table, freq); 509 510 dev_pm_opp_put_opp_table(opp_table); 511 512 return opp; 513 } 514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 515 516 /** 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 518 * @dev: device for which we do this operation 519 * @freq: Start frequency 520 * 521 * Search for the matching floor *available* OPP from a starting freq 522 * for a device. 523 * 524 * Return: matching *opp and refreshes *freq accordingly, else returns 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 526 * values can be: 527 * EINVAL: for bad pointer 528 * ERANGE: no match found for search 529 * ENODEV: if device not found in list of registered devices 530 * 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after 532 * use. 533 */ 534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 535 unsigned long *freq) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 539 540 if (!dev || !freq) { 541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 542 return ERR_PTR(-EINVAL); 543 } 544 545 opp_table = _find_opp_table(dev); 546 if (IS_ERR(opp_table)) 547 return ERR_CAST(opp_table); 548 549 mutex_lock(&opp_table->lock); 550 551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 552 if (temp_opp->available) { 553 /* go to the next node, before choosing prev */ 554 if (temp_opp->rate > *freq) 555 break; 556 else 557 opp = temp_opp; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) 563 dev_pm_opp_get(opp); 564 mutex_unlock(&opp_table->lock); 565 dev_pm_opp_put_opp_table(opp_table); 566 567 if (!IS_ERR(opp)) 568 *freq = opp->rate; 569 570 return opp; 571 } 572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 573 574 /** 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 576 * target voltage. 577 * @dev: Device for which we do this operation. 578 * @u_volt: Target voltage. 579 * 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 581 * 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be 583 * handled using IS_ERR. 584 * 585 * Error return values can be: 586 * EINVAL: bad parameters 587 * 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after 589 * use. 590 */ 591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 592 unsigned long u_volt) 593 { 594 struct opp_table *opp_table; 595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 596 597 if (!dev || !u_volt) { 598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 599 u_volt); 600 return ERR_PTR(-EINVAL); 601 } 602 603 opp_table = _find_opp_table(dev); 604 if (IS_ERR(opp_table)) 605 return ERR_CAST(opp_table); 606 607 mutex_lock(&opp_table->lock); 608 609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 610 if (temp_opp->available) { 611 if (temp_opp->supplies[0].u_volt > u_volt) 612 break; 613 opp = temp_opp; 614 } 615 } 616 617 /* Increment the reference count of OPP */ 618 if (!IS_ERR(opp)) 619 dev_pm_opp_get(opp); 620 621 mutex_unlock(&opp_table->lock); 622 dev_pm_opp_put_opp_table(opp_table); 623 624 return opp; 625 } 626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 627 628 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 629 struct dev_pm_opp_supply *supply) 630 { 631 int ret; 632 633 /* Regulator not available for device */ 634 if (IS_ERR(reg)) { 635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 636 PTR_ERR(reg)); 637 return 0; 638 } 639 640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 641 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 642 643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 644 supply->u_volt, supply->u_volt_max); 645 if (ret) 646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 647 __func__, supply->u_volt_min, supply->u_volt, 648 supply->u_volt_max, ret); 649 650 return ret; 651 } 652 653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 654 unsigned long freq) 655 { 656 int ret; 657 658 ret = clk_set_rate(clk, freq); 659 if (ret) { 660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 661 ret); 662 } 663 664 return ret; 665 } 666 667 static int _generic_set_opp_regulator(struct opp_table *opp_table, 668 struct device *dev, 669 unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct regulator *reg = opp_table->regulators[0]; 675 int ret; 676 677 /* This function only supports single regulator per device */ 678 if (WARN_ON(opp_table->regulator_count > 1)) { 679 dev_err(dev, "multiple regulators are not supported\n"); 680 return -EINVAL; 681 } 682 683 /* Scaling up? Scale voltage before frequency */ 684 if (freq >= old_freq) { 685 ret = _set_opp_voltage(dev, reg, new_supply); 686 if (ret) 687 goto restore_voltage; 688 } 689 690 /* Change frequency */ 691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 692 if (ret) 693 goto restore_voltage; 694 695 /* Scaling down? Scale voltage after frequency */ 696 if (freq < old_freq) { 697 ret = _set_opp_voltage(dev, reg, new_supply); 698 if (ret) 699 goto restore_freq; 700 } 701 702 /* 703 * Enable the regulator after setting its voltages, otherwise it breaks 704 * some boot-enabled regulators. 705 */ 706 if (unlikely(!opp_table->regulator_enabled)) { 707 ret = regulator_enable(reg); 708 if (ret < 0) 709 dev_warn(dev, "Failed to enable regulator: %d", ret); 710 else 711 opp_table->regulator_enabled = true; 712 } 713 714 return 0; 715 716 restore_freq: 717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 719 __func__, old_freq); 720 restore_voltage: 721 /* This shouldn't harm even if the voltages weren't updated earlier */ 722 if (old_supply) 723 _set_opp_voltage(dev, reg, old_supply); 724 725 return ret; 726 } 727 728 static int _set_opp_bw(const struct opp_table *opp_table, 729 struct dev_pm_opp *opp, struct device *dev, bool remove) 730 { 731 u32 avg, peak; 732 int i, ret; 733 734 if (!opp_table->paths) 735 return 0; 736 737 for (i = 0; i < opp_table->path_count; i++) { 738 if (remove) { 739 avg = 0; 740 peak = 0; 741 } else { 742 avg = opp->bandwidth[i].avg; 743 peak = opp->bandwidth[i].peak; 744 } 745 ret = icc_set_bw(opp_table->paths[i], avg, peak); 746 if (ret) { 747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 748 remove ? "remove" : "set", i, ret); 749 return ret; 750 } 751 } 752 753 return 0; 754 } 755 756 static int _set_opp_custom(const struct opp_table *opp_table, 757 struct device *dev, unsigned long old_freq, 758 unsigned long freq, 759 struct dev_pm_opp_supply *old_supply, 760 struct dev_pm_opp_supply *new_supply) 761 { 762 struct dev_pm_set_opp_data *data; 763 int size; 764 765 data = opp_table->set_opp_data; 766 data->regulators = opp_table->regulators; 767 data->regulator_count = opp_table->regulator_count; 768 data->clk = opp_table->clk; 769 data->dev = dev; 770 771 data->old_opp.rate = old_freq; 772 size = sizeof(*old_supply) * opp_table->regulator_count; 773 if (!old_supply) 774 memset(data->old_opp.supplies, 0, size); 775 else 776 memcpy(data->old_opp.supplies, old_supply, size); 777 778 data->new_opp.rate = freq; 779 memcpy(data->new_opp.supplies, new_supply, size); 780 781 return opp_table->set_opp(data); 782 } 783 784 /* This is only called for PM domain for now */ 785 static int _set_required_opps(struct device *dev, 786 struct opp_table *opp_table, 787 struct dev_pm_opp *opp) 788 { 789 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 791 unsigned int pstate; 792 int i, ret = 0; 793 794 if (!required_opp_tables) 795 return 0; 796 797 /* Single genpd case */ 798 if (!genpd_virt_devs) { 799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0; 800 ret = dev_pm_genpd_set_performance_state(dev, pstate); 801 if (ret) { 802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 803 dev_name(dev), pstate, ret); 804 } 805 return ret; 806 } 807 808 /* Multiple genpd case */ 809 810 /* 811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 812 * after it is freed from another thread. 813 */ 814 mutex_lock(&opp_table->genpd_virt_dev_lock); 815 816 for (i = 0; i < opp_table->required_opp_count; i++) { 817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 818 819 if (!genpd_virt_devs[i]) 820 continue; 821 822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 823 if (ret) { 824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 825 dev_name(genpd_virt_devs[i]), pstate, ret); 826 break; 827 } 828 } 829 mutex_unlock(&opp_table->genpd_virt_dev_lock); 830 831 return ret; 832 } 833 834 /** 835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp 836 * @dev: device for which we do this operation 837 * @opp: opp based on which the bandwidth levels are to be configured 838 * 839 * This configures the bandwidth to the levels specified by the OPP. However 840 * if the OPP specified is NULL the bandwidth levels are cleared out. 841 * 842 * Return: 0 on success or a negative error value. 843 */ 844 int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp) 845 { 846 struct opp_table *opp_table; 847 int ret; 848 849 opp_table = _find_opp_table(dev); 850 if (IS_ERR(opp_table)) { 851 dev_err(dev, "%s: device opp table doesn't exist\n", __func__); 852 return PTR_ERR(opp_table); 853 } 854 855 if (opp) 856 ret = _set_opp_bw(opp_table, opp, dev, false); 857 else 858 ret = _set_opp_bw(opp_table, NULL, dev, true); 859 860 dev_pm_opp_put_opp_table(opp_table); 861 return ret; 862 } 863 EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw); 864 865 /** 866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 867 * @dev: device for which we do this operation 868 * @target_freq: frequency to achieve 869 * 870 * This configures the power-supplies to the levels specified by the OPP 871 * corresponding to the target_freq, and programs the clock to a value <= 872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 873 * provided by the opp, should have already rounded to the target OPP's 874 * frequency. 875 */ 876 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 877 { 878 struct opp_table *opp_table; 879 unsigned long freq, old_freq, temp_freq; 880 struct dev_pm_opp *old_opp, *opp; 881 struct clk *clk; 882 int ret; 883 884 opp_table = _find_opp_table(dev); 885 if (IS_ERR(opp_table)) { 886 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 887 return PTR_ERR(opp_table); 888 } 889 890 if (unlikely(!target_freq)) { 891 /* 892 * Some drivers need to support cases where some platforms may 893 * have OPP table for the device, while others don't and 894 * opp_set_rate() just needs to behave like clk_set_rate(). 895 */ 896 if (!_get_opp_count(opp_table)) 897 return 0; 898 899 if (!opp_table->required_opp_tables && !opp_table->regulators && 900 !opp_table->paths) { 901 dev_err(dev, "target frequency can't be 0\n"); 902 ret = -EINVAL; 903 goto put_opp_table; 904 } 905 906 ret = _set_opp_bw(opp_table, NULL, dev, true); 907 if (ret) 908 return ret; 909 910 if (opp_table->regulator_enabled) { 911 regulator_disable(opp_table->regulators[0]); 912 opp_table->regulator_enabled = false; 913 } 914 915 ret = _set_required_opps(dev, opp_table, NULL); 916 goto put_opp_table; 917 } 918 919 clk = opp_table->clk; 920 if (IS_ERR(clk)) { 921 dev_err(dev, "%s: No clock available for the device\n", 922 __func__); 923 ret = PTR_ERR(clk); 924 goto put_opp_table; 925 } 926 927 freq = clk_round_rate(clk, target_freq); 928 if ((long)freq <= 0) 929 freq = target_freq; 930 931 old_freq = clk_get_rate(clk); 932 933 /* Return early if nothing to do */ 934 if (old_freq == freq) { 935 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 936 __func__, freq); 937 ret = 0; 938 goto put_opp_table; 939 } 940 941 /* 942 * For IO devices which require an OPP on some platforms/SoCs 943 * while just needing to scale the clock on some others 944 * we look for empty OPP tables with just a clock handle and 945 * scale only the clk. This makes dev_pm_opp_set_rate() 946 * equivalent to a clk_set_rate() 947 */ 948 if (!_get_opp_count(opp_table)) { 949 ret = _generic_set_opp_clk_only(dev, clk, freq); 950 goto put_opp_table; 951 } 952 953 temp_freq = old_freq; 954 old_opp = _find_freq_ceil(opp_table, &temp_freq); 955 if (IS_ERR(old_opp)) { 956 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 957 __func__, old_freq, PTR_ERR(old_opp)); 958 } 959 960 temp_freq = freq; 961 opp = _find_freq_ceil(opp_table, &temp_freq); 962 if (IS_ERR(opp)) { 963 ret = PTR_ERR(opp); 964 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 965 __func__, freq, ret); 966 goto put_old_opp; 967 } 968 969 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 970 old_freq, freq); 971 972 /* Scaling up? Configure required OPPs before frequency */ 973 if (freq >= old_freq) { 974 ret = _set_required_opps(dev, opp_table, opp); 975 if (ret) 976 goto put_opp; 977 } 978 979 if (opp_table->set_opp) { 980 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 981 IS_ERR(old_opp) ? NULL : old_opp->supplies, 982 opp->supplies); 983 } else if (opp_table->regulators) { 984 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 985 IS_ERR(old_opp) ? NULL : old_opp->supplies, 986 opp->supplies); 987 } else { 988 /* Only frequency scaling */ 989 ret = _generic_set_opp_clk_only(dev, clk, freq); 990 } 991 992 /* Scaling down? Configure required OPPs after frequency */ 993 if (!ret && freq < old_freq) { 994 ret = _set_required_opps(dev, opp_table, opp); 995 if (ret) 996 dev_err(dev, "Failed to set required opps: %d\n", ret); 997 } 998 999 if (!ret) 1000 ret = _set_opp_bw(opp_table, opp, dev, false); 1001 1002 put_opp: 1003 dev_pm_opp_put(opp); 1004 put_old_opp: 1005 if (!IS_ERR(old_opp)) 1006 dev_pm_opp_put(old_opp); 1007 put_opp_table: 1008 dev_pm_opp_put_opp_table(opp_table); 1009 return ret; 1010 } 1011 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1012 1013 /* OPP-dev Helpers */ 1014 static void _remove_opp_dev(struct opp_device *opp_dev, 1015 struct opp_table *opp_table) 1016 { 1017 opp_debug_unregister(opp_dev, opp_table); 1018 list_del(&opp_dev->node); 1019 kfree(opp_dev); 1020 } 1021 1022 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 1023 struct opp_table *opp_table) 1024 { 1025 struct opp_device *opp_dev; 1026 1027 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1028 if (!opp_dev) 1029 return NULL; 1030 1031 /* Initialize opp-dev */ 1032 opp_dev->dev = dev; 1033 1034 list_add(&opp_dev->node, &opp_table->dev_list); 1035 1036 /* Create debugfs entries for the opp_table */ 1037 opp_debug_register(opp_dev, opp_table); 1038 1039 return opp_dev; 1040 } 1041 1042 struct opp_device *_add_opp_dev(const struct device *dev, 1043 struct opp_table *opp_table) 1044 { 1045 struct opp_device *opp_dev; 1046 1047 mutex_lock(&opp_table->lock); 1048 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 1049 mutex_unlock(&opp_table->lock); 1050 1051 return opp_dev; 1052 } 1053 1054 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1055 { 1056 struct opp_table *opp_table; 1057 struct opp_device *opp_dev; 1058 int ret; 1059 1060 /* 1061 * Allocate a new OPP table. In the infrequent case where a new 1062 * device is needed to be added, we pay this penalty. 1063 */ 1064 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1065 if (!opp_table) 1066 return NULL; 1067 1068 mutex_init(&opp_table->lock); 1069 mutex_init(&opp_table->genpd_virt_dev_lock); 1070 INIT_LIST_HEAD(&opp_table->dev_list); 1071 1072 /* Mark regulator count uninitialized */ 1073 opp_table->regulator_count = -1; 1074 1075 opp_dev = _add_opp_dev(dev, opp_table); 1076 if (!opp_dev) { 1077 kfree(opp_table); 1078 return NULL; 1079 } 1080 1081 _of_init_opp_table(opp_table, dev, index); 1082 1083 /* Find clk for the device */ 1084 opp_table->clk = clk_get(dev, NULL); 1085 if (IS_ERR(opp_table->clk)) { 1086 ret = PTR_ERR(opp_table->clk); 1087 if (ret != -EPROBE_DEFER) 1088 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 1089 ret); 1090 } 1091 1092 /* Find interconnect path(s) for the device */ 1093 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1094 if (ret) 1095 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1096 __func__, ret); 1097 1098 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1099 INIT_LIST_HEAD(&opp_table->opp_list); 1100 kref_init(&opp_table->kref); 1101 1102 /* Secure the device table modification */ 1103 list_add(&opp_table->node, &opp_tables); 1104 return opp_table; 1105 } 1106 1107 void _get_opp_table_kref(struct opp_table *opp_table) 1108 { 1109 kref_get(&opp_table->kref); 1110 } 1111 1112 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 1113 { 1114 struct opp_table *opp_table; 1115 1116 /* Hold our table modification lock here */ 1117 mutex_lock(&opp_table_lock); 1118 1119 opp_table = _find_opp_table_unlocked(dev); 1120 if (!IS_ERR(opp_table)) 1121 goto unlock; 1122 1123 opp_table = _managed_opp(dev, index); 1124 if (opp_table) { 1125 if (!_add_opp_dev_unlocked(dev, opp_table)) { 1126 dev_pm_opp_put_opp_table(opp_table); 1127 opp_table = NULL; 1128 } 1129 goto unlock; 1130 } 1131 1132 opp_table = _allocate_opp_table(dev, index); 1133 1134 unlock: 1135 mutex_unlock(&opp_table_lock); 1136 1137 return opp_table; 1138 } 1139 1140 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1141 { 1142 return _opp_get_opp_table(dev, 0); 1143 } 1144 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1145 1146 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 1147 int index) 1148 { 1149 return _opp_get_opp_table(dev, index); 1150 } 1151 1152 static void _opp_table_kref_release(struct kref *kref) 1153 { 1154 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1155 struct opp_device *opp_dev, *temp; 1156 int i; 1157 1158 _of_clear_opp_table(opp_table); 1159 1160 /* Release clk */ 1161 if (!IS_ERR(opp_table->clk)) 1162 clk_put(opp_table->clk); 1163 1164 if (opp_table->paths) { 1165 for (i = 0; i < opp_table->path_count; i++) 1166 icc_put(opp_table->paths[i]); 1167 kfree(opp_table->paths); 1168 } 1169 1170 WARN_ON(!list_empty(&opp_table->opp_list)); 1171 1172 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1173 /* 1174 * The OPP table is getting removed, drop the performance state 1175 * constraints. 1176 */ 1177 if (opp_table->genpd_performance_state) 1178 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1179 1180 _remove_opp_dev(opp_dev, opp_table); 1181 } 1182 1183 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1184 mutex_destroy(&opp_table->lock); 1185 list_del(&opp_table->node); 1186 kfree(opp_table); 1187 1188 mutex_unlock(&opp_table_lock); 1189 } 1190 1191 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1192 { 1193 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1194 &opp_table_lock); 1195 } 1196 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1197 1198 void _opp_free(struct dev_pm_opp *opp) 1199 { 1200 kfree(opp); 1201 } 1202 1203 static void _opp_kref_release(struct dev_pm_opp *opp, 1204 struct opp_table *opp_table) 1205 { 1206 /* 1207 * Notify the changes in the availability of the operable 1208 * frequency/voltage list. 1209 */ 1210 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1211 _of_opp_free_required_opps(opp_table, opp); 1212 opp_debug_remove_one(opp); 1213 list_del(&opp->node); 1214 kfree(opp); 1215 } 1216 1217 static void _opp_kref_release_unlocked(struct kref *kref) 1218 { 1219 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1220 struct opp_table *opp_table = opp->opp_table; 1221 1222 _opp_kref_release(opp, opp_table); 1223 } 1224 1225 static void _opp_kref_release_locked(struct kref *kref) 1226 { 1227 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1228 struct opp_table *opp_table = opp->opp_table; 1229 1230 _opp_kref_release(opp, opp_table); 1231 mutex_unlock(&opp_table->lock); 1232 } 1233 1234 void dev_pm_opp_get(struct dev_pm_opp *opp) 1235 { 1236 kref_get(&opp->kref); 1237 } 1238 1239 void dev_pm_opp_put(struct dev_pm_opp *opp) 1240 { 1241 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1242 &opp->opp_table->lock); 1243 } 1244 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1245 1246 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1247 { 1248 kref_put(&opp->kref, _opp_kref_release_unlocked); 1249 } 1250 1251 /** 1252 * dev_pm_opp_remove() - Remove an OPP from OPP table 1253 * @dev: device for which we do this operation 1254 * @freq: OPP to remove with matching 'freq' 1255 * 1256 * This function removes an opp from the opp table. 1257 */ 1258 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1259 { 1260 struct dev_pm_opp *opp; 1261 struct opp_table *opp_table; 1262 bool found = false; 1263 1264 opp_table = _find_opp_table(dev); 1265 if (IS_ERR(opp_table)) 1266 return; 1267 1268 mutex_lock(&opp_table->lock); 1269 1270 list_for_each_entry(opp, &opp_table->opp_list, node) { 1271 if (opp->rate == freq) { 1272 found = true; 1273 break; 1274 } 1275 } 1276 1277 mutex_unlock(&opp_table->lock); 1278 1279 if (found) { 1280 dev_pm_opp_put(opp); 1281 1282 /* Drop the reference taken by dev_pm_opp_add() */ 1283 dev_pm_opp_put_opp_table(opp_table); 1284 } else { 1285 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1286 __func__, freq); 1287 } 1288 1289 /* Drop the reference taken by _find_opp_table() */ 1290 dev_pm_opp_put_opp_table(opp_table); 1291 } 1292 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1293 1294 void _opp_remove_all_static(struct opp_table *opp_table) 1295 { 1296 struct dev_pm_opp *opp, *tmp; 1297 1298 mutex_lock(&opp_table->lock); 1299 1300 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps) 1301 goto unlock; 1302 1303 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1304 if (!opp->dynamic) 1305 dev_pm_opp_put_unlocked(opp); 1306 } 1307 1308 unlock: 1309 mutex_unlock(&opp_table->lock); 1310 } 1311 1312 /** 1313 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1314 * @dev: device for which we do this operation 1315 * 1316 * This function removes all dynamically created OPPs from the opp table. 1317 */ 1318 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1319 { 1320 struct opp_table *opp_table; 1321 struct dev_pm_opp *opp, *temp; 1322 int count = 0; 1323 1324 opp_table = _find_opp_table(dev); 1325 if (IS_ERR(opp_table)) 1326 return; 1327 1328 mutex_lock(&opp_table->lock); 1329 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1330 if (opp->dynamic) { 1331 dev_pm_opp_put_unlocked(opp); 1332 count++; 1333 } 1334 } 1335 mutex_unlock(&opp_table->lock); 1336 1337 /* Drop the references taken by dev_pm_opp_add() */ 1338 while (count--) 1339 dev_pm_opp_put_opp_table(opp_table); 1340 1341 /* Drop the reference taken by _find_opp_table() */ 1342 dev_pm_opp_put_opp_table(opp_table); 1343 } 1344 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1345 1346 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1347 { 1348 struct dev_pm_opp *opp; 1349 int supply_count, supply_size, icc_size; 1350 1351 /* Allocate space for at least one supply */ 1352 supply_count = table->regulator_count > 0 ? table->regulator_count : 1; 1353 supply_size = sizeof(*opp->supplies) * supply_count; 1354 icc_size = sizeof(*opp->bandwidth) * table->path_count; 1355 1356 /* allocate new OPP node and supplies structures */ 1357 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL); 1358 1359 if (!opp) 1360 return NULL; 1361 1362 /* Put the supplies at the end of the OPP structure as an empty array */ 1363 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1364 if (icc_size) 1365 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count); 1366 INIT_LIST_HEAD(&opp->node); 1367 1368 return opp; 1369 } 1370 1371 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1372 struct opp_table *opp_table) 1373 { 1374 struct regulator *reg; 1375 int i; 1376 1377 if (!opp_table->regulators) 1378 return true; 1379 1380 for (i = 0; i < opp_table->regulator_count; i++) { 1381 reg = opp_table->regulators[i]; 1382 1383 if (!regulator_is_supported_voltage(reg, 1384 opp->supplies[i].u_volt_min, 1385 opp->supplies[i].u_volt_max)) { 1386 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1387 __func__, opp->supplies[i].u_volt_min, 1388 opp->supplies[i].u_volt_max); 1389 return false; 1390 } 1391 } 1392 1393 return true; 1394 } 1395 1396 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1397 { 1398 if (opp1->rate != opp2->rate) 1399 return opp1->rate < opp2->rate ? -1 : 1; 1400 if (opp1->bandwidth && opp2->bandwidth && 1401 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak) 1402 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1; 1403 if (opp1->level != opp2->level) 1404 return opp1->level < opp2->level ? -1 : 1; 1405 return 0; 1406 } 1407 1408 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1409 struct opp_table *opp_table, 1410 struct list_head **head) 1411 { 1412 struct dev_pm_opp *opp; 1413 int opp_cmp; 1414 1415 /* 1416 * Insert new OPP in order of increasing frequency and discard if 1417 * already present. 1418 * 1419 * Need to use &opp_table->opp_list in the condition part of the 'for' 1420 * loop, don't replace it with head otherwise it will become an infinite 1421 * loop. 1422 */ 1423 list_for_each_entry(opp, &opp_table->opp_list, node) { 1424 opp_cmp = _opp_compare_key(new_opp, opp); 1425 if (opp_cmp > 0) { 1426 *head = &opp->node; 1427 continue; 1428 } 1429 1430 if (opp_cmp < 0) 1431 return 0; 1432 1433 /* Duplicate OPPs */ 1434 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1435 __func__, opp->rate, opp->supplies[0].u_volt, 1436 opp->available, new_opp->rate, 1437 new_opp->supplies[0].u_volt, new_opp->available); 1438 1439 /* Should we compare voltages for all regulators here ? */ 1440 return opp->available && 1441 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1442 } 1443 1444 return 0; 1445 } 1446 1447 /* 1448 * Returns: 1449 * 0: On success. And appropriate error message for duplicate OPPs. 1450 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1451 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1452 * sure we don't print error messages unnecessarily if different parts of 1453 * kernel try to initialize the OPP table. 1454 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1455 * should be considered an error by the callers of _opp_add(). 1456 */ 1457 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1458 struct opp_table *opp_table, bool rate_not_available) 1459 { 1460 struct list_head *head; 1461 int ret; 1462 1463 mutex_lock(&opp_table->lock); 1464 head = &opp_table->opp_list; 1465 1466 if (likely(!rate_not_available)) { 1467 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1468 if (ret) { 1469 mutex_unlock(&opp_table->lock); 1470 return ret; 1471 } 1472 } 1473 1474 list_add(&new_opp->node, head); 1475 mutex_unlock(&opp_table->lock); 1476 1477 new_opp->opp_table = opp_table; 1478 kref_init(&new_opp->kref); 1479 1480 opp_debug_create_one(new_opp, opp_table); 1481 1482 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1483 new_opp->available = false; 1484 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1485 __func__, new_opp->rate); 1486 } 1487 1488 return 0; 1489 } 1490 1491 /** 1492 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1493 * @opp_table: OPP table 1494 * @dev: device for which we do this operation 1495 * @freq: Frequency in Hz for this OPP 1496 * @u_volt: Voltage in uVolts for this OPP 1497 * @dynamic: Dynamically added OPPs. 1498 * 1499 * This function adds an opp definition to the opp table and returns status. 1500 * The opp is made available by default and it can be controlled using 1501 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1502 * 1503 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1504 * and freed by dev_pm_opp_of_remove_table. 1505 * 1506 * Return: 1507 * 0 On success OR 1508 * Duplicate OPPs (both freq and volt are same) and opp->available 1509 * -EEXIST Freq are same and volt are different OR 1510 * Duplicate OPPs (both freq and volt are same) and !opp->available 1511 * -ENOMEM Memory allocation failure 1512 */ 1513 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1514 unsigned long freq, long u_volt, bool dynamic) 1515 { 1516 struct dev_pm_opp *new_opp; 1517 unsigned long tol; 1518 int ret; 1519 1520 new_opp = _opp_allocate(opp_table); 1521 if (!new_opp) 1522 return -ENOMEM; 1523 1524 /* populate the opp table */ 1525 new_opp->rate = freq; 1526 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1527 new_opp->supplies[0].u_volt = u_volt; 1528 new_opp->supplies[0].u_volt_min = u_volt - tol; 1529 new_opp->supplies[0].u_volt_max = u_volt + tol; 1530 new_opp->available = true; 1531 new_opp->dynamic = dynamic; 1532 1533 ret = _opp_add(dev, new_opp, opp_table, false); 1534 if (ret) { 1535 /* Don't return error for duplicate OPPs */ 1536 if (ret == -EBUSY) 1537 ret = 0; 1538 goto free_opp; 1539 } 1540 1541 /* 1542 * Notify the changes in the availability of the operable 1543 * frequency/voltage list. 1544 */ 1545 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1546 return 0; 1547 1548 free_opp: 1549 _opp_free(new_opp); 1550 1551 return ret; 1552 } 1553 1554 /** 1555 * dev_pm_opp_set_supported_hw() - Set supported platforms 1556 * @dev: Device for which supported-hw has to be set. 1557 * @versions: Array of hierarchy of versions to match. 1558 * @count: Number of elements in the array. 1559 * 1560 * This is required only for the V2 bindings, and it enables a platform to 1561 * specify the hierarchy of versions it supports. OPP layer will then enable 1562 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1563 * property. 1564 */ 1565 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1566 const u32 *versions, unsigned int count) 1567 { 1568 struct opp_table *opp_table; 1569 1570 opp_table = dev_pm_opp_get_opp_table(dev); 1571 if (!opp_table) 1572 return ERR_PTR(-ENOMEM); 1573 1574 /* Make sure there are no concurrent readers while updating opp_table */ 1575 WARN_ON(!list_empty(&opp_table->opp_list)); 1576 1577 /* Another CPU that shares the OPP table has set the property ? */ 1578 if (opp_table->supported_hw) 1579 return opp_table; 1580 1581 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1582 GFP_KERNEL); 1583 if (!opp_table->supported_hw) { 1584 dev_pm_opp_put_opp_table(opp_table); 1585 return ERR_PTR(-ENOMEM); 1586 } 1587 1588 opp_table->supported_hw_count = count; 1589 1590 return opp_table; 1591 } 1592 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1593 1594 /** 1595 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1596 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1597 * 1598 * This is required only for the V2 bindings, and is called for a matching 1599 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1600 * will not be freed. 1601 */ 1602 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1603 { 1604 /* Make sure there are no concurrent readers while updating opp_table */ 1605 WARN_ON(!list_empty(&opp_table->opp_list)); 1606 1607 kfree(opp_table->supported_hw); 1608 opp_table->supported_hw = NULL; 1609 opp_table->supported_hw_count = 0; 1610 1611 dev_pm_opp_put_opp_table(opp_table); 1612 } 1613 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1614 1615 /** 1616 * dev_pm_opp_set_prop_name() - Set prop-extn name 1617 * @dev: Device for which the prop-name has to be set. 1618 * @name: name to postfix to properties. 1619 * 1620 * This is required only for the V2 bindings, and it enables a platform to 1621 * specify the extn to be used for certain property names. The properties to 1622 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1623 * should postfix the property name with -<name> while looking for them. 1624 */ 1625 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1626 { 1627 struct opp_table *opp_table; 1628 1629 opp_table = dev_pm_opp_get_opp_table(dev); 1630 if (!opp_table) 1631 return ERR_PTR(-ENOMEM); 1632 1633 /* Make sure there are no concurrent readers while updating opp_table */ 1634 WARN_ON(!list_empty(&opp_table->opp_list)); 1635 1636 /* Another CPU that shares the OPP table has set the property ? */ 1637 if (opp_table->prop_name) 1638 return opp_table; 1639 1640 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1641 if (!opp_table->prop_name) { 1642 dev_pm_opp_put_opp_table(opp_table); 1643 return ERR_PTR(-ENOMEM); 1644 } 1645 1646 return opp_table; 1647 } 1648 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1649 1650 /** 1651 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1652 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1653 * 1654 * This is required only for the V2 bindings, and is called for a matching 1655 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1656 * will not be freed. 1657 */ 1658 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1659 { 1660 /* Make sure there are no concurrent readers while updating opp_table */ 1661 WARN_ON(!list_empty(&opp_table->opp_list)); 1662 1663 kfree(opp_table->prop_name); 1664 opp_table->prop_name = NULL; 1665 1666 dev_pm_opp_put_opp_table(opp_table); 1667 } 1668 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1669 1670 static int _allocate_set_opp_data(struct opp_table *opp_table) 1671 { 1672 struct dev_pm_set_opp_data *data; 1673 int len, count = opp_table->regulator_count; 1674 1675 if (WARN_ON(!opp_table->regulators)) 1676 return -EINVAL; 1677 1678 /* space for set_opp_data */ 1679 len = sizeof(*data); 1680 1681 /* space for old_opp.supplies and new_opp.supplies */ 1682 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1683 1684 data = kzalloc(len, GFP_KERNEL); 1685 if (!data) 1686 return -ENOMEM; 1687 1688 data->old_opp.supplies = (void *)(data + 1); 1689 data->new_opp.supplies = data->old_opp.supplies + count; 1690 1691 opp_table->set_opp_data = data; 1692 1693 return 0; 1694 } 1695 1696 static void _free_set_opp_data(struct opp_table *opp_table) 1697 { 1698 kfree(opp_table->set_opp_data); 1699 opp_table->set_opp_data = NULL; 1700 } 1701 1702 /** 1703 * dev_pm_opp_set_regulators() - Set regulator names for the device 1704 * @dev: Device for which regulator name is being set. 1705 * @names: Array of pointers to the names of the regulator. 1706 * @count: Number of regulators. 1707 * 1708 * In order to support OPP switching, OPP layer needs to know the name of the 1709 * device's regulators, as the core would be required to switch voltages as 1710 * well. 1711 * 1712 * This must be called before any OPPs are initialized for the device. 1713 */ 1714 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1715 const char * const names[], 1716 unsigned int count) 1717 { 1718 struct opp_table *opp_table; 1719 struct regulator *reg; 1720 int ret, i; 1721 1722 opp_table = dev_pm_opp_get_opp_table(dev); 1723 if (!opp_table) 1724 return ERR_PTR(-ENOMEM); 1725 1726 /* This should be called before OPPs are initialized */ 1727 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1728 ret = -EBUSY; 1729 goto err; 1730 } 1731 1732 /* Another CPU that shares the OPP table has set the regulators ? */ 1733 if (opp_table->regulators) 1734 return opp_table; 1735 1736 opp_table->regulators = kmalloc_array(count, 1737 sizeof(*opp_table->regulators), 1738 GFP_KERNEL); 1739 if (!opp_table->regulators) { 1740 ret = -ENOMEM; 1741 goto err; 1742 } 1743 1744 for (i = 0; i < count; i++) { 1745 reg = regulator_get_optional(dev, names[i]); 1746 if (IS_ERR(reg)) { 1747 ret = PTR_ERR(reg); 1748 if (ret != -EPROBE_DEFER) 1749 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1750 __func__, names[i], ret); 1751 goto free_regulators; 1752 } 1753 1754 opp_table->regulators[i] = reg; 1755 } 1756 1757 opp_table->regulator_count = count; 1758 1759 /* Allocate block only once to pass to set_opp() routines */ 1760 ret = _allocate_set_opp_data(opp_table); 1761 if (ret) 1762 goto free_regulators; 1763 1764 return opp_table; 1765 1766 free_regulators: 1767 while (i != 0) 1768 regulator_put(opp_table->regulators[--i]); 1769 1770 kfree(opp_table->regulators); 1771 opp_table->regulators = NULL; 1772 opp_table->regulator_count = -1; 1773 err: 1774 dev_pm_opp_put_opp_table(opp_table); 1775 1776 return ERR_PTR(ret); 1777 } 1778 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1779 1780 /** 1781 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1782 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1783 */ 1784 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1785 { 1786 int i; 1787 1788 if (!opp_table->regulators) 1789 goto put_opp_table; 1790 1791 /* Make sure there are no concurrent readers while updating opp_table */ 1792 WARN_ON(!list_empty(&opp_table->opp_list)); 1793 1794 if (opp_table->regulator_enabled) { 1795 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1796 regulator_disable(opp_table->regulators[i]); 1797 1798 opp_table->regulator_enabled = false; 1799 } 1800 1801 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1802 regulator_put(opp_table->regulators[i]); 1803 1804 _free_set_opp_data(opp_table); 1805 1806 kfree(opp_table->regulators); 1807 opp_table->regulators = NULL; 1808 opp_table->regulator_count = -1; 1809 1810 put_opp_table: 1811 dev_pm_opp_put_opp_table(opp_table); 1812 } 1813 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1814 1815 /** 1816 * dev_pm_opp_set_clkname() - Set clk name for the device 1817 * @dev: Device for which clk name is being set. 1818 * @name: Clk name. 1819 * 1820 * In order to support OPP switching, OPP layer needs to get pointer to the 1821 * clock for the device. Simple cases work fine without using this routine (i.e. 1822 * by passing connection-id as NULL), but for a device with multiple clocks 1823 * available, the OPP core needs to know the exact name of the clk to use. 1824 * 1825 * This must be called before any OPPs are initialized for the device. 1826 */ 1827 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1828 { 1829 struct opp_table *opp_table; 1830 int ret; 1831 1832 opp_table = dev_pm_opp_get_opp_table(dev); 1833 if (!opp_table) 1834 return ERR_PTR(-ENOMEM); 1835 1836 /* This should be called before OPPs are initialized */ 1837 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1838 ret = -EBUSY; 1839 goto err; 1840 } 1841 1842 /* Already have default clk set, free it */ 1843 if (!IS_ERR(opp_table->clk)) 1844 clk_put(opp_table->clk); 1845 1846 /* Find clk for the device */ 1847 opp_table->clk = clk_get(dev, name); 1848 if (IS_ERR(opp_table->clk)) { 1849 ret = PTR_ERR(opp_table->clk); 1850 if (ret != -EPROBE_DEFER) { 1851 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1852 ret); 1853 } 1854 goto err; 1855 } 1856 1857 return opp_table; 1858 1859 err: 1860 dev_pm_opp_put_opp_table(opp_table); 1861 1862 return ERR_PTR(ret); 1863 } 1864 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1865 1866 /** 1867 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1868 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1869 */ 1870 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1871 { 1872 /* Make sure there are no concurrent readers while updating opp_table */ 1873 WARN_ON(!list_empty(&opp_table->opp_list)); 1874 1875 clk_put(opp_table->clk); 1876 opp_table->clk = ERR_PTR(-EINVAL); 1877 1878 dev_pm_opp_put_opp_table(opp_table); 1879 } 1880 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1881 1882 /** 1883 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1884 * @dev: Device for which the helper is getting registered. 1885 * @set_opp: Custom set OPP helper. 1886 * 1887 * This is useful to support complex platforms (like platforms with multiple 1888 * regulators per device), instead of the generic OPP set rate helper. 1889 * 1890 * This must be called before any OPPs are initialized for the device. 1891 */ 1892 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1893 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1894 { 1895 struct opp_table *opp_table; 1896 1897 if (!set_opp) 1898 return ERR_PTR(-EINVAL); 1899 1900 opp_table = dev_pm_opp_get_opp_table(dev); 1901 if (!opp_table) 1902 return ERR_PTR(-ENOMEM); 1903 1904 /* This should be called before OPPs are initialized */ 1905 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1906 dev_pm_opp_put_opp_table(opp_table); 1907 return ERR_PTR(-EBUSY); 1908 } 1909 1910 /* Another CPU that shares the OPP table has set the helper ? */ 1911 if (!opp_table->set_opp) 1912 opp_table->set_opp = set_opp; 1913 1914 return opp_table; 1915 } 1916 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1917 1918 /** 1919 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1920 * set_opp helper 1921 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1922 * 1923 * Release resources blocked for platform specific set_opp helper. 1924 */ 1925 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1926 { 1927 /* Make sure there are no concurrent readers while updating opp_table */ 1928 WARN_ON(!list_empty(&opp_table->opp_list)); 1929 1930 opp_table->set_opp = NULL; 1931 dev_pm_opp_put_opp_table(opp_table); 1932 } 1933 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1934 1935 static void _opp_detach_genpd(struct opp_table *opp_table) 1936 { 1937 int index; 1938 1939 for (index = 0; index < opp_table->required_opp_count; index++) { 1940 if (!opp_table->genpd_virt_devs[index]) 1941 continue; 1942 1943 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1944 opp_table->genpd_virt_devs[index] = NULL; 1945 } 1946 1947 kfree(opp_table->genpd_virt_devs); 1948 opp_table->genpd_virt_devs = NULL; 1949 } 1950 1951 /** 1952 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1953 * @dev: Consumer device for which the genpd is getting attached. 1954 * @names: Null terminated array of pointers containing names of genpd to attach. 1955 * @virt_devs: Pointer to return the array of virtual devices. 1956 * 1957 * Multiple generic power domains for a device are supported with the help of 1958 * virtual genpd devices, which are created for each consumer device - genpd 1959 * pair. These are the device structures which are attached to the power domain 1960 * and are required by the OPP core to set the performance state of the genpd. 1961 * The same API also works for the case where single genpd is available and so 1962 * we don't need to support that separately. 1963 * 1964 * This helper will normally be called by the consumer driver of the device 1965 * "dev", as only that has details of the genpd names. 1966 * 1967 * This helper needs to be called once with a list of all genpd to attach. 1968 * Otherwise the original device structure will be used instead by the OPP core. 1969 * 1970 * The order of entries in the names array must match the order in which 1971 * "required-opps" are added in DT. 1972 */ 1973 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 1974 const char **names, struct device ***virt_devs) 1975 { 1976 struct opp_table *opp_table; 1977 struct device *virt_dev; 1978 int index = 0, ret = -EINVAL; 1979 const char **name = names; 1980 1981 opp_table = dev_pm_opp_get_opp_table(dev); 1982 if (!opp_table) 1983 return ERR_PTR(-ENOMEM); 1984 1985 /* 1986 * If the genpd's OPP table isn't already initialized, parsing of the 1987 * required-opps fail for dev. We should retry this after genpd's OPP 1988 * table is added. 1989 */ 1990 if (!opp_table->required_opp_count) { 1991 ret = -EPROBE_DEFER; 1992 goto put_table; 1993 } 1994 1995 mutex_lock(&opp_table->genpd_virt_dev_lock); 1996 1997 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 1998 sizeof(*opp_table->genpd_virt_devs), 1999 GFP_KERNEL); 2000 if (!opp_table->genpd_virt_devs) 2001 goto unlock; 2002 2003 while (*name) { 2004 if (index >= opp_table->required_opp_count) { 2005 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2006 *name, opp_table->required_opp_count, index); 2007 goto err; 2008 } 2009 2010 if (opp_table->genpd_virt_devs[index]) { 2011 dev_err(dev, "Genpd virtual device already set %s\n", 2012 *name); 2013 goto err; 2014 } 2015 2016 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2017 if (IS_ERR(virt_dev)) { 2018 ret = PTR_ERR(virt_dev); 2019 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2020 goto err; 2021 } 2022 2023 opp_table->genpd_virt_devs[index] = virt_dev; 2024 index++; 2025 name++; 2026 } 2027 2028 if (virt_devs) 2029 *virt_devs = opp_table->genpd_virt_devs; 2030 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2031 2032 return opp_table; 2033 2034 err: 2035 _opp_detach_genpd(opp_table); 2036 unlock: 2037 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2038 2039 put_table: 2040 dev_pm_opp_put_opp_table(opp_table); 2041 2042 return ERR_PTR(ret); 2043 } 2044 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 2045 2046 /** 2047 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 2048 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 2049 * 2050 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2051 * OPP table. 2052 */ 2053 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 2054 { 2055 /* 2056 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2057 * used in parallel. 2058 */ 2059 mutex_lock(&opp_table->genpd_virt_dev_lock); 2060 _opp_detach_genpd(opp_table); 2061 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2062 2063 dev_pm_opp_put_opp_table(opp_table); 2064 } 2065 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 2066 2067 /** 2068 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2069 * @src_table: OPP table which has dst_table as one of its required OPP table. 2070 * @dst_table: Required OPP table of the src_table. 2071 * @pstate: Current performance state of the src_table. 2072 * 2073 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2074 * "required-opps" property of the OPP (present in @src_table) which has 2075 * performance state set to @pstate. 2076 * 2077 * Return: Zero or positive performance state on success, otherwise negative 2078 * value on errors. 2079 */ 2080 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2081 struct opp_table *dst_table, 2082 unsigned int pstate) 2083 { 2084 struct dev_pm_opp *opp; 2085 int dest_pstate = -EINVAL; 2086 int i; 2087 2088 if (!pstate) 2089 return 0; 2090 2091 /* 2092 * Normally the src_table will have the "required_opps" property set to 2093 * point to one of the OPPs in the dst_table, but in some cases the 2094 * genpd and its master have one to one mapping of performance states 2095 * and so none of them have the "required-opps" property set. Return the 2096 * pstate of the src_table as it is in such cases. 2097 */ 2098 if (!src_table->required_opp_count) 2099 return pstate; 2100 2101 for (i = 0; i < src_table->required_opp_count; i++) { 2102 if (src_table->required_opp_tables[i]->np == dst_table->np) 2103 break; 2104 } 2105 2106 if (unlikely(i == src_table->required_opp_count)) { 2107 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2108 __func__, src_table, dst_table); 2109 return -EINVAL; 2110 } 2111 2112 mutex_lock(&src_table->lock); 2113 2114 list_for_each_entry(opp, &src_table->opp_list, node) { 2115 if (opp->pstate == pstate) { 2116 dest_pstate = opp->required_opps[i]->pstate; 2117 goto unlock; 2118 } 2119 } 2120 2121 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2122 dst_table); 2123 2124 unlock: 2125 mutex_unlock(&src_table->lock); 2126 2127 return dest_pstate; 2128 } 2129 2130 /** 2131 * dev_pm_opp_add() - Add an OPP table from a table definitions 2132 * @dev: device for which we do this operation 2133 * @freq: Frequency in Hz for this OPP 2134 * @u_volt: Voltage in uVolts for this OPP 2135 * 2136 * This function adds an opp definition to the opp table and returns status. 2137 * The opp is made available by default and it can be controlled using 2138 * dev_pm_opp_enable/disable functions. 2139 * 2140 * Return: 2141 * 0 On success OR 2142 * Duplicate OPPs (both freq and volt are same) and opp->available 2143 * -EEXIST Freq are same and volt are different OR 2144 * Duplicate OPPs (both freq and volt are same) and !opp->available 2145 * -ENOMEM Memory allocation failure 2146 */ 2147 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2148 { 2149 struct opp_table *opp_table; 2150 int ret; 2151 2152 opp_table = dev_pm_opp_get_opp_table(dev); 2153 if (!opp_table) 2154 return -ENOMEM; 2155 2156 /* Fix regulator count for dynamic OPPs */ 2157 opp_table->regulator_count = 1; 2158 2159 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2160 if (ret) 2161 dev_pm_opp_put_opp_table(opp_table); 2162 2163 return ret; 2164 } 2165 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2166 2167 /** 2168 * _opp_set_availability() - helper to set the availability of an opp 2169 * @dev: device for which we do this operation 2170 * @freq: OPP frequency to modify availability 2171 * @availability_req: availability status requested for this opp 2172 * 2173 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2174 * which is isolated here. 2175 * 2176 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2177 * copy operation, returns 0 if no modification was done OR modification was 2178 * successful. 2179 */ 2180 static int _opp_set_availability(struct device *dev, unsigned long freq, 2181 bool availability_req) 2182 { 2183 struct opp_table *opp_table; 2184 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2185 int r = 0; 2186 2187 /* Find the opp_table */ 2188 opp_table = _find_opp_table(dev); 2189 if (IS_ERR(opp_table)) { 2190 r = PTR_ERR(opp_table); 2191 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2192 return r; 2193 } 2194 2195 mutex_lock(&opp_table->lock); 2196 2197 /* Do we have the frequency? */ 2198 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2199 if (tmp_opp->rate == freq) { 2200 opp = tmp_opp; 2201 break; 2202 } 2203 } 2204 2205 if (IS_ERR(opp)) { 2206 r = PTR_ERR(opp); 2207 goto unlock; 2208 } 2209 2210 /* Is update really needed? */ 2211 if (opp->available == availability_req) 2212 goto unlock; 2213 2214 opp->available = availability_req; 2215 2216 dev_pm_opp_get(opp); 2217 mutex_unlock(&opp_table->lock); 2218 2219 /* Notify the change of the OPP availability */ 2220 if (availability_req) 2221 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2222 opp); 2223 else 2224 blocking_notifier_call_chain(&opp_table->head, 2225 OPP_EVENT_DISABLE, opp); 2226 2227 dev_pm_opp_put(opp); 2228 goto put_table; 2229 2230 unlock: 2231 mutex_unlock(&opp_table->lock); 2232 put_table: 2233 dev_pm_opp_put_opp_table(opp_table); 2234 return r; 2235 } 2236 2237 /** 2238 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2239 * @dev: device for which we do this operation 2240 * @freq: OPP frequency to adjust voltage of 2241 * @u_volt: new OPP target voltage 2242 * @u_volt_min: new OPP min voltage 2243 * @u_volt_max: new OPP max voltage 2244 * 2245 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2246 * copy operation, returns 0 if no modifcation was done OR modification was 2247 * successful. 2248 */ 2249 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2250 unsigned long u_volt, unsigned long u_volt_min, 2251 unsigned long u_volt_max) 2252 2253 { 2254 struct opp_table *opp_table; 2255 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2256 int r = 0; 2257 2258 /* Find the opp_table */ 2259 opp_table = _find_opp_table(dev); 2260 if (IS_ERR(opp_table)) { 2261 r = PTR_ERR(opp_table); 2262 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2263 return r; 2264 } 2265 2266 mutex_lock(&opp_table->lock); 2267 2268 /* Do we have the frequency? */ 2269 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2270 if (tmp_opp->rate == freq) { 2271 opp = tmp_opp; 2272 break; 2273 } 2274 } 2275 2276 if (IS_ERR(opp)) { 2277 r = PTR_ERR(opp); 2278 goto adjust_unlock; 2279 } 2280 2281 /* Is update really needed? */ 2282 if (opp->supplies->u_volt == u_volt) 2283 goto adjust_unlock; 2284 2285 opp->supplies->u_volt = u_volt; 2286 opp->supplies->u_volt_min = u_volt_min; 2287 opp->supplies->u_volt_max = u_volt_max; 2288 2289 dev_pm_opp_get(opp); 2290 mutex_unlock(&opp_table->lock); 2291 2292 /* Notify the voltage change of the OPP */ 2293 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2294 opp); 2295 2296 dev_pm_opp_put(opp); 2297 goto adjust_put_table; 2298 2299 adjust_unlock: 2300 mutex_unlock(&opp_table->lock); 2301 adjust_put_table: 2302 dev_pm_opp_put_opp_table(opp_table); 2303 return r; 2304 } 2305 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2306 2307 /** 2308 * dev_pm_opp_enable() - Enable a specific OPP 2309 * @dev: device for which we do this operation 2310 * @freq: OPP frequency to enable 2311 * 2312 * Enables a provided opp. If the operation is valid, this returns 0, else the 2313 * corresponding error value. It is meant to be used for users an OPP available 2314 * after being temporarily made unavailable with dev_pm_opp_disable. 2315 * 2316 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2317 * copy operation, returns 0 if no modification was done OR modification was 2318 * successful. 2319 */ 2320 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2321 { 2322 return _opp_set_availability(dev, freq, true); 2323 } 2324 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2325 2326 /** 2327 * dev_pm_opp_disable() - Disable a specific OPP 2328 * @dev: device for which we do this operation 2329 * @freq: OPP frequency to disable 2330 * 2331 * Disables a provided opp. If the operation is valid, this returns 2332 * 0, else the corresponding error value. It is meant to be a temporary 2333 * control by users to make this OPP not available until the circumstances are 2334 * right to make it available again (with a call to dev_pm_opp_enable). 2335 * 2336 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2337 * copy operation, returns 0 if no modification was done OR modification was 2338 * successful. 2339 */ 2340 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2341 { 2342 return _opp_set_availability(dev, freq, false); 2343 } 2344 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2345 2346 /** 2347 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2348 * @dev: Device for which notifier needs to be registered 2349 * @nb: Notifier block to be registered 2350 * 2351 * Return: 0 on success or a negative error value. 2352 */ 2353 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2354 { 2355 struct opp_table *opp_table; 2356 int ret; 2357 2358 opp_table = _find_opp_table(dev); 2359 if (IS_ERR(opp_table)) 2360 return PTR_ERR(opp_table); 2361 2362 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2363 2364 dev_pm_opp_put_opp_table(opp_table); 2365 2366 return ret; 2367 } 2368 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2369 2370 /** 2371 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2372 * @dev: Device for which notifier needs to be unregistered 2373 * @nb: Notifier block to be unregistered 2374 * 2375 * Return: 0 on success or a negative error value. 2376 */ 2377 int dev_pm_opp_unregister_notifier(struct device *dev, 2378 struct notifier_block *nb) 2379 { 2380 struct opp_table *opp_table; 2381 int ret; 2382 2383 opp_table = _find_opp_table(dev); 2384 if (IS_ERR(opp_table)) 2385 return PTR_ERR(opp_table); 2386 2387 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2388 2389 dev_pm_opp_put_opp_table(opp_table); 2390 2391 return ret; 2392 } 2393 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2394 2395 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2396 { 2397 struct opp_table *opp_table; 2398 2399 /* Check for existing table for 'dev' */ 2400 opp_table = _find_opp_table(dev); 2401 if (IS_ERR(opp_table)) { 2402 int error = PTR_ERR(opp_table); 2403 2404 if (error != -ENODEV) 2405 WARN(1, "%s: opp_table: %d\n", 2406 IS_ERR_OR_NULL(dev) ? 2407 "Invalid device" : dev_name(dev), 2408 error); 2409 return; 2410 } 2411 2412 _opp_remove_all_static(opp_table); 2413 2414 /* Drop reference taken by _find_opp_table() */ 2415 dev_pm_opp_put_opp_table(opp_table); 2416 2417 /* Drop reference taken while the OPP table was added */ 2418 dev_pm_opp_put_opp_table(opp_table); 2419 } 2420 2421 /** 2422 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2423 * @dev: device pointer used to lookup OPP table. 2424 * 2425 * Free both OPPs created using static entries present in DT and the 2426 * dynamically added entries. 2427 */ 2428 void dev_pm_opp_remove_table(struct device *dev) 2429 { 2430 _dev_pm_opp_find_and_remove_table(dev); 2431 } 2432 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2433