xref: /openbmc/linux/drivers/of/property.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/of/property.c - Procedures for accessing and interpreting
4  *			   Devicetree properties and graphs.
5  *
6  * Initially created by copying procedures from drivers/of/base.c. This
7  * file contains the OF property as well as the OF graph interface
8  * functions.
9  *
10  * Paul Mackerras	August 1996.
11  * Copyright (C) 1996-2005 Paul Mackerras.
12  *
13  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14  *    {engebret|bergner}@us.ibm.com
15  *
16  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17  *
18  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19  *  Grant Likely.
20  */
21 
22 #define pr_fmt(fmt)	"OF: " fmt
23 
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/string.h>
28 #include <linux/moduleparam.h>
29 
30 #include "of_private.h"
31 
32 /**
33  * of_graph_is_present() - check graph's presence
34  * @node: pointer to device_node containing graph port
35  *
36  * Return: True if @node has a port or ports (with a port) sub-node,
37  * false otherwise.
38  */
39 bool of_graph_is_present(const struct device_node *node)
40 {
41 	struct device_node *ports, *port;
42 
43 	ports = of_get_child_by_name(node, "ports");
44 	if (ports)
45 		node = ports;
46 
47 	port = of_get_child_by_name(node, "port");
48 	of_node_put(ports);
49 	of_node_put(port);
50 
51 	return !!port;
52 }
53 EXPORT_SYMBOL(of_graph_is_present);
54 
55 /**
56  * of_property_count_elems_of_size - Count the number of elements in a property
57  *
58  * @np:		device node from which the property value is to be read.
59  * @propname:	name of the property to be searched.
60  * @elem_size:	size of the individual element
61  *
62  * Search for a property in a device node and count the number of elements of
63  * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
64  * property does not exist or its length does not match a multiple of elem_size
65  * and -ENODATA if the property does not have a value.
66  */
67 int of_property_count_elems_of_size(const struct device_node *np,
68 				const char *propname, int elem_size)
69 {
70 	struct property *prop = of_find_property(np, propname, NULL);
71 
72 	if (!prop)
73 		return -EINVAL;
74 	if (!prop->value)
75 		return -ENODATA;
76 
77 	if (prop->length % elem_size != 0) {
78 		pr_err("size of %s in node %pOF is not a multiple of %d\n",
79 		       propname, np, elem_size);
80 		return -EINVAL;
81 	}
82 
83 	return prop->length / elem_size;
84 }
85 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
86 
87 /**
88  * of_find_property_value_of_size
89  *
90  * @np:		device node from which the property value is to be read.
91  * @propname:	name of the property to be searched.
92  * @min:	minimum allowed length of property value
93  * @max:	maximum allowed length of property value (0 means unlimited)
94  * @len:	if !=NULL, actual length is written to here
95  *
96  * Search for a property in a device node and valid the requested size.
97  * Returns the property value on success, -EINVAL if the property does not
98  *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
99  * property data is too small or too large.
100  *
101  */
102 static void *of_find_property_value_of_size(const struct device_node *np,
103 			const char *propname, u32 min, u32 max, size_t *len)
104 {
105 	struct property *prop = of_find_property(np, propname, NULL);
106 
107 	if (!prop)
108 		return ERR_PTR(-EINVAL);
109 	if (!prop->value)
110 		return ERR_PTR(-ENODATA);
111 	if (prop->length < min)
112 		return ERR_PTR(-EOVERFLOW);
113 	if (max && prop->length > max)
114 		return ERR_PTR(-EOVERFLOW);
115 
116 	if (len)
117 		*len = prop->length;
118 
119 	return prop->value;
120 }
121 
122 /**
123  * of_property_read_u32_index - Find and read a u32 from a multi-value property.
124  *
125  * @np:		device node from which the property value is to be read.
126  * @propname:	name of the property to be searched.
127  * @index:	index of the u32 in the list of values
128  * @out_value:	pointer to return value, modified only if no error.
129  *
130  * Search for a property in a device node and read nth 32-bit value from
131  * it. Returns 0 on success, -EINVAL if the property does not exist,
132  * -ENODATA if property does not have a value, and -EOVERFLOW if the
133  * property data isn't large enough.
134  *
135  * The out_value is modified only if a valid u32 value can be decoded.
136  */
137 int of_property_read_u32_index(const struct device_node *np,
138 				       const char *propname,
139 				       u32 index, u32 *out_value)
140 {
141 	const u32 *val = of_find_property_value_of_size(np, propname,
142 					((index + 1) * sizeof(*out_value)),
143 					0,
144 					NULL);
145 
146 	if (IS_ERR(val))
147 		return PTR_ERR(val);
148 
149 	*out_value = be32_to_cpup(((__be32 *)val) + index);
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
153 
154 /**
155  * of_property_read_u64_index - Find and read a u64 from a multi-value property.
156  *
157  * @np:		device node from which the property value is to be read.
158  * @propname:	name of the property to be searched.
159  * @index:	index of the u64 in the list of values
160  * @out_value:	pointer to return value, modified only if no error.
161  *
162  * Search for a property in a device node and read nth 64-bit value from
163  * it. Returns 0 on success, -EINVAL if the property does not exist,
164  * -ENODATA if property does not have a value, and -EOVERFLOW if the
165  * property data isn't large enough.
166  *
167  * The out_value is modified only if a valid u64 value can be decoded.
168  */
169 int of_property_read_u64_index(const struct device_node *np,
170 				       const char *propname,
171 				       u32 index, u64 *out_value)
172 {
173 	const u64 *val = of_find_property_value_of_size(np, propname,
174 					((index + 1) * sizeof(*out_value)),
175 					0, NULL);
176 
177 	if (IS_ERR(val))
178 		return PTR_ERR(val);
179 
180 	*out_value = be64_to_cpup(((__be64 *)val) + index);
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
184 
185 /**
186  * of_property_read_variable_u8_array - Find and read an array of u8 from a
187  * property, with bounds on the minimum and maximum array size.
188  *
189  * @np:		device node from which the property value is to be read.
190  * @propname:	name of the property to be searched.
191  * @out_values:	pointer to found values.
192  * @sz_min:	minimum number of array elements to read
193  * @sz_max:	maximum number of array elements to read, if zero there is no
194  *		upper limit on the number of elements in the dts entry but only
195  *		sz_min will be read.
196  *
197  * Search for a property in a device node and read 8-bit value(s) from
198  * it. Returns number of elements read on success, -EINVAL if the property
199  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
200  * if the property data is smaller than sz_min or longer than sz_max.
201  *
202  * dts entry of array should be like:
203  *	property = /bits/ 8 <0x50 0x60 0x70>;
204  *
205  * The out_values is modified only if a valid u8 value can be decoded.
206  */
207 int of_property_read_variable_u8_array(const struct device_node *np,
208 					const char *propname, u8 *out_values,
209 					size_t sz_min, size_t sz_max)
210 {
211 	size_t sz, count;
212 	const u8 *val = of_find_property_value_of_size(np, propname,
213 						(sz_min * sizeof(*out_values)),
214 						(sz_max * sizeof(*out_values)),
215 						&sz);
216 
217 	if (IS_ERR(val))
218 		return PTR_ERR(val);
219 
220 	if (!sz_max)
221 		sz = sz_min;
222 	else
223 		sz /= sizeof(*out_values);
224 
225 	count = sz;
226 	while (count--)
227 		*out_values++ = *val++;
228 
229 	return sz;
230 }
231 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
232 
233 /**
234  * of_property_read_variable_u16_array - Find and read an array of u16 from a
235  * property, with bounds on the minimum and maximum array size.
236  *
237  * @np:		device node from which the property value is to be read.
238  * @propname:	name of the property to be searched.
239  * @out_values:	pointer to found values.
240  * @sz_min:	minimum number of array elements to read
241  * @sz_max:	maximum number of array elements to read, if zero there is no
242  *		upper limit on the number of elements in the dts entry but only
243  *		sz_min will be read.
244  *
245  * Search for a property in a device node and read 16-bit value(s) from
246  * it. Returns number of elements read on success, -EINVAL if the property
247  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
248  * if the property data is smaller than sz_min or longer than sz_max.
249  *
250  * dts entry of array should be like:
251  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
252  *
253  * The out_values is modified only if a valid u16 value can be decoded.
254  */
255 int of_property_read_variable_u16_array(const struct device_node *np,
256 					const char *propname, u16 *out_values,
257 					size_t sz_min, size_t sz_max)
258 {
259 	size_t sz, count;
260 	const __be16 *val = of_find_property_value_of_size(np, propname,
261 						(sz_min * sizeof(*out_values)),
262 						(sz_max * sizeof(*out_values)),
263 						&sz);
264 
265 	if (IS_ERR(val))
266 		return PTR_ERR(val);
267 
268 	if (!sz_max)
269 		sz = sz_min;
270 	else
271 		sz /= sizeof(*out_values);
272 
273 	count = sz;
274 	while (count--)
275 		*out_values++ = be16_to_cpup(val++);
276 
277 	return sz;
278 }
279 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
280 
281 /**
282  * of_property_read_variable_u32_array - Find and read an array of 32 bit
283  * integers from a property, with bounds on the minimum and maximum array size.
284  *
285  * @np:		device node from which the property value is to be read.
286  * @propname:	name of the property to be searched.
287  * @out_values:	pointer to return found values.
288  * @sz_min:	minimum number of array elements to read
289  * @sz_max:	maximum number of array elements to read, if zero there is no
290  *		upper limit on the number of elements in the dts entry but only
291  *		sz_min will be read.
292  *
293  * Search for a property in a device node and read 32-bit value(s) from
294  * it. Returns number of elements read on success, -EINVAL if the property
295  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
296  * if the property data is smaller than sz_min or longer than sz_max.
297  *
298  * The out_values is modified only if a valid u32 value can be decoded.
299  */
300 int of_property_read_variable_u32_array(const struct device_node *np,
301 			       const char *propname, u32 *out_values,
302 			       size_t sz_min, size_t sz_max)
303 {
304 	size_t sz, count;
305 	const __be32 *val = of_find_property_value_of_size(np, propname,
306 						(sz_min * sizeof(*out_values)),
307 						(sz_max * sizeof(*out_values)),
308 						&sz);
309 
310 	if (IS_ERR(val))
311 		return PTR_ERR(val);
312 
313 	if (!sz_max)
314 		sz = sz_min;
315 	else
316 		sz /= sizeof(*out_values);
317 
318 	count = sz;
319 	while (count--)
320 		*out_values++ = be32_to_cpup(val++);
321 
322 	return sz;
323 }
324 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
325 
326 /**
327  * of_property_read_u64 - Find and read a 64 bit integer from a property
328  * @np:		device node from which the property value is to be read.
329  * @propname:	name of the property to be searched.
330  * @out_value:	pointer to return value, modified only if return value is 0.
331  *
332  * Search for a property in a device node and read a 64-bit value from
333  * it. Returns 0 on success, -EINVAL if the property does not exist,
334  * -ENODATA if property does not have a value, and -EOVERFLOW if the
335  * property data isn't large enough.
336  *
337  * The out_value is modified only if a valid u64 value can be decoded.
338  */
339 int of_property_read_u64(const struct device_node *np, const char *propname,
340 			 u64 *out_value)
341 {
342 	const __be32 *val = of_find_property_value_of_size(np, propname,
343 						sizeof(*out_value),
344 						0,
345 						NULL);
346 
347 	if (IS_ERR(val))
348 		return PTR_ERR(val);
349 
350 	*out_value = of_read_number(val, 2);
351 	return 0;
352 }
353 EXPORT_SYMBOL_GPL(of_property_read_u64);
354 
355 /**
356  * of_property_read_variable_u64_array - Find and read an array of 64 bit
357  * integers from a property, with bounds on the minimum and maximum array size.
358  *
359  * @np:		device node from which the property value is to be read.
360  * @propname:	name of the property to be searched.
361  * @out_values:	pointer to found values.
362  * @sz_min:	minimum number of array elements to read
363  * @sz_max:	maximum number of array elements to read, if zero there is no
364  *		upper limit on the number of elements in the dts entry but only
365  *		sz_min will be read.
366  *
367  * Search for a property in a device node and read 64-bit value(s) from
368  * it. Returns number of elements read on success, -EINVAL if the property
369  * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
370  * if the property data is smaller than sz_min or longer than sz_max.
371  *
372  * The out_values is modified only if a valid u64 value can be decoded.
373  */
374 int of_property_read_variable_u64_array(const struct device_node *np,
375 			       const char *propname, u64 *out_values,
376 			       size_t sz_min, size_t sz_max)
377 {
378 	size_t sz, count;
379 	const __be32 *val = of_find_property_value_of_size(np, propname,
380 						(sz_min * sizeof(*out_values)),
381 						(sz_max * sizeof(*out_values)),
382 						&sz);
383 
384 	if (IS_ERR(val))
385 		return PTR_ERR(val);
386 
387 	if (!sz_max)
388 		sz = sz_min;
389 	else
390 		sz /= sizeof(*out_values);
391 
392 	count = sz;
393 	while (count--) {
394 		*out_values++ = of_read_number(val, 2);
395 		val += 2;
396 	}
397 
398 	return sz;
399 }
400 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
401 
402 /**
403  * of_property_read_string - Find and read a string from a property
404  * @np:		device node from which the property value is to be read.
405  * @propname:	name of the property to be searched.
406  * @out_string:	pointer to null terminated return string, modified only if
407  *		return value is 0.
408  *
409  * Search for a property in a device tree node and retrieve a null
410  * terminated string value (pointer to data, not a copy). Returns 0 on
411  * success, -EINVAL if the property does not exist, -ENODATA if property
412  * does not have a value, and -EILSEQ if the string is not null-terminated
413  * within the length of the property data.
414  *
415  * The out_string pointer is modified only if a valid string can be decoded.
416  */
417 int of_property_read_string(const struct device_node *np, const char *propname,
418 				const char **out_string)
419 {
420 	const struct property *prop = of_find_property(np, propname, NULL);
421 	if (!prop)
422 		return -EINVAL;
423 	if (!prop->value)
424 		return -ENODATA;
425 	if (strnlen(prop->value, prop->length) >= prop->length)
426 		return -EILSEQ;
427 	*out_string = prop->value;
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(of_property_read_string);
431 
432 /**
433  * of_property_match_string() - Find string in a list and return index
434  * @np: pointer to node containing string list property
435  * @propname: string list property name
436  * @string: pointer to string to search for in string list
437  *
438  * This function searches a string list property and returns the index
439  * of a specific string value.
440  */
441 int of_property_match_string(const struct device_node *np, const char *propname,
442 			     const char *string)
443 {
444 	const struct property *prop = of_find_property(np, propname, NULL);
445 	size_t l;
446 	int i;
447 	const char *p, *end;
448 
449 	if (!prop)
450 		return -EINVAL;
451 	if (!prop->value)
452 		return -ENODATA;
453 
454 	p = prop->value;
455 	end = p + prop->length;
456 
457 	for (i = 0; p < end; i++, p += l) {
458 		l = strnlen(p, end - p) + 1;
459 		if (p + l > end)
460 			return -EILSEQ;
461 		pr_debug("comparing %s with %s\n", string, p);
462 		if (strcmp(string, p) == 0)
463 			return i; /* Found it; return index */
464 	}
465 	return -ENODATA;
466 }
467 EXPORT_SYMBOL_GPL(of_property_match_string);
468 
469 /**
470  * of_property_read_string_helper() - Utility helper for parsing string properties
471  * @np:		device node from which the property value is to be read.
472  * @propname:	name of the property to be searched.
473  * @out_strs:	output array of string pointers.
474  * @sz:		number of array elements to read.
475  * @skip:	Number of strings to skip over at beginning of list.
476  *
477  * Don't call this function directly. It is a utility helper for the
478  * of_property_read_string*() family of functions.
479  */
480 int of_property_read_string_helper(const struct device_node *np,
481 				   const char *propname, const char **out_strs,
482 				   size_t sz, int skip)
483 {
484 	const struct property *prop = of_find_property(np, propname, NULL);
485 	int l = 0, i = 0;
486 	const char *p, *end;
487 
488 	if (!prop)
489 		return -EINVAL;
490 	if (!prop->value)
491 		return -ENODATA;
492 	p = prop->value;
493 	end = p + prop->length;
494 
495 	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
496 		l = strnlen(p, end - p) + 1;
497 		if (p + l > end)
498 			return -EILSEQ;
499 		if (out_strs && i >= skip)
500 			*out_strs++ = p;
501 	}
502 	i -= skip;
503 	return i <= 0 ? -ENODATA : i;
504 }
505 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
506 
507 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
508 			       u32 *pu)
509 {
510 	const void *curv = cur;
511 
512 	if (!prop)
513 		return NULL;
514 
515 	if (!cur) {
516 		curv = prop->value;
517 		goto out_val;
518 	}
519 
520 	curv += sizeof(*cur);
521 	if (curv >= prop->value + prop->length)
522 		return NULL;
523 
524 out_val:
525 	*pu = be32_to_cpup(curv);
526 	return curv;
527 }
528 EXPORT_SYMBOL_GPL(of_prop_next_u32);
529 
530 const char *of_prop_next_string(struct property *prop, const char *cur)
531 {
532 	const void *curv = cur;
533 
534 	if (!prop)
535 		return NULL;
536 
537 	if (!cur)
538 		return prop->value;
539 
540 	curv += strlen(cur) + 1;
541 	if (curv >= prop->value + prop->length)
542 		return NULL;
543 
544 	return curv;
545 }
546 EXPORT_SYMBOL_GPL(of_prop_next_string);
547 
548 /**
549  * of_graph_parse_endpoint() - parse common endpoint node properties
550  * @node: pointer to endpoint device_node
551  * @endpoint: pointer to the OF endpoint data structure
552  *
553  * The caller should hold a reference to @node.
554  */
555 int of_graph_parse_endpoint(const struct device_node *node,
556 			    struct of_endpoint *endpoint)
557 {
558 	struct device_node *port_node = of_get_parent(node);
559 
560 	WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
561 		  __func__, node);
562 
563 	memset(endpoint, 0, sizeof(*endpoint));
564 
565 	endpoint->local_node = node;
566 	/*
567 	 * It doesn't matter whether the two calls below succeed.
568 	 * If they don't then the default value 0 is used.
569 	 */
570 	of_property_read_u32(port_node, "reg", &endpoint->port);
571 	of_property_read_u32(node, "reg", &endpoint->id);
572 
573 	of_node_put(port_node);
574 
575 	return 0;
576 }
577 EXPORT_SYMBOL(of_graph_parse_endpoint);
578 
579 /**
580  * of_graph_get_port_by_id() - get the port matching a given id
581  * @parent: pointer to the parent device node
582  * @id: id of the port
583  *
584  * Return: A 'port' node pointer with refcount incremented. The caller
585  * has to use of_node_put() on it when done.
586  */
587 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
588 {
589 	struct device_node *node, *port;
590 
591 	node = of_get_child_by_name(parent, "ports");
592 	if (node)
593 		parent = node;
594 
595 	for_each_child_of_node(parent, port) {
596 		u32 port_id = 0;
597 
598 		if (!of_node_name_eq(port, "port"))
599 			continue;
600 		of_property_read_u32(port, "reg", &port_id);
601 		if (id == port_id)
602 			break;
603 	}
604 
605 	of_node_put(node);
606 
607 	return port;
608 }
609 EXPORT_SYMBOL(of_graph_get_port_by_id);
610 
611 /**
612  * of_graph_get_next_endpoint() - get next endpoint node
613  * @parent: pointer to the parent device node
614  * @prev: previous endpoint node, or NULL to get first
615  *
616  * Return: An 'endpoint' node pointer with refcount incremented. Refcount
617  * of the passed @prev node is decremented.
618  */
619 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
620 					struct device_node *prev)
621 {
622 	struct device_node *endpoint;
623 	struct device_node *port;
624 
625 	if (!parent)
626 		return NULL;
627 
628 	/*
629 	 * Start by locating the port node. If no previous endpoint is specified
630 	 * search for the first port node, otherwise get the previous endpoint
631 	 * parent port node.
632 	 */
633 	if (!prev) {
634 		struct device_node *node;
635 
636 		node = of_get_child_by_name(parent, "ports");
637 		if (node)
638 			parent = node;
639 
640 		port = of_get_child_by_name(parent, "port");
641 		of_node_put(node);
642 
643 		if (!port) {
644 			pr_err("graph: no port node found in %pOF\n", parent);
645 			return NULL;
646 		}
647 	} else {
648 		port = of_get_parent(prev);
649 		if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
650 			      __func__, prev))
651 			return NULL;
652 	}
653 
654 	while (1) {
655 		/*
656 		 * Now that we have a port node, get the next endpoint by
657 		 * getting the next child. If the previous endpoint is NULL this
658 		 * will return the first child.
659 		 */
660 		endpoint = of_get_next_child(port, prev);
661 		if (endpoint) {
662 			of_node_put(port);
663 			return endpoint;
664 		}
665 
666 		/* No more endpoints under this port, try the next one. */
667 		prev = NULL;
668 
669 		do {
670 			port = of_get_next_child(parent, port);
671 			if (!port)
672 				return NULL;
673 		} while (!of_node_name_eq(port, "port"));
674 	}
675 }
676 EXPORT_SYMBOL(of_graph_get_next_endpoint);
677 
678 /**
679  * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
680  * @parent: pointer to the parent device node
681  * @port_reg: identifier (value of reg property) of the parent port node
682  * @reg: identifier (value of reg property) of the endpoint node
683  *
684  * Return: An 'endpoint' node pointer which is identified by reg and at the same
685  * is the child of a port node identified by port_reg. reg and port_reg are
686  * ignored when they are -1. Use of_node_put() on the pointer when done.
687  */
688 struct device_node *of_graph_get_endpoint_by_regs(
689 	const struct device_node *parent, int port_reg, int reg)
690 {
691 	struct of_endpoint endpoint;
692 	struct device_node *node = NULL;
693 
694 	for_each_endpoint_of_node(parent, node) {
695 		of_graph_parse_endpoint(node, &endpoint);
696 		if (((port_reg == -1) || (endpoint.port == port_reg)) &&
697 			((reg == -1) || (endpoint.id == reg)))
698 			return node;
699 	}
700 
701 	return NULL;
702 }
703 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
704 
705 /**
706  * of_graph_get_remote_endpoint() - get remote endpoint node
707  * @node: pointer to a local endpoint device_node
708  *
709  * Return: Remote endpoint node associated with remote endpoint node linked
710  *	   to @node. Use of_node_put() on it when done.
711  */
712 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
713 {
714 	/* Get remote endpoint node. */
715 	return of_parse_phandle(node, "remote-endpoint", 0);
716 }
717 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
718 
719 /**
720  * of_graph_get_port_parent() - get port's parent node
721  * @node: pointer to a local endpoint device_node
722  *
723  * Return: device node associated with endpoint node linked
724  *	   to @node. Use of_node_put() on it when done.
725  */
726 struct device_node *of_graph_get_port_parent(struct device_node *node)
727 {
728 	unsigned int depth;
729 
730 	if (!node)
731 		return NULL;
732 
733 	/*
734 	 * Preserve usecount for passed in node as of_get_next_parent()
735 	 * will do of_node_put() on it.
736 	 */
737 	of_node_get(node);
738 
739 	/* Walk 3 levels up only if there is 'ports' node. */
740 	for (depth = 3; depth && node; depth--) {
741 		node = of_get_next_parent(node);
742 		if (depth == 2 && !of_node_name_eq(node, "ports"))
743 			break;
744 	}
745 	return node;
746 }
747 EXPORT_SYMBOL(of_graph_get_port_parent);
748 
749 /**
750  * of_graph_get_remote_port_parent() - get remote port's parent node
751  * @node: pointer to a local endpoint device_node
752  *
753  * Return: Remote device node associated with remote endpoint node linked
754  *	   to @node. Use of_node_put() on it when done.
755  */
756 struct device_node *of_graph_get_remote_port_parent(
757 			       const struct device_node *node)
758 {
759 	struct device_node *np, *pp;
760 
761 	/* Get remote endpoint node. */
762 	np = of_graph_get_remote_endpoint(node);
763 
764 	pp = of_graph_get_port_parent(np);
765 
766 	of_node_put(np);
767 
768 	return pp;
769 }
770 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
771 
772 /**
773  * of_graph_get_remote_port() - get remote port node
774  * @node: pointer to a local endpoint device_node
775  *
776  * Return: Remote port node associated with remote endpoint node linked
777  *	   to @node. Use of_node_put() on it when done.
778  */
779 struct device_node *of_graph_get_remote_port(const struct device_node *node)
780 {
781 	struct device_node *np;
782 
783 	/* Get remote endpoint node. */
784 	np = of_graph_get_remote_endpoint(node);
785 	if (!np)
786 		return NULL;
787 	return of_get_next_parent(np);
788 }
789 EXPORT_SYMBOL(of_graph_get_remote_port);
790 
791 int of_graph_get_endpoint_count(const struct device_node *np)
792 {
793 	struct device_node *endpoint;
794 	int num = 0;
795 
796 	for_each_endpoint_of_node(np, endpoint)
797 		num++;
798 
799 	return num;
800 }
801 EXPORT_SYMBOL(of_graph_get_endpoint_count);
802 
803 /**
804  * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
805  * @node: pointer to parent device_node containing graph port/endpoint
806  * @port: identifier (value of reg property) of the parent port node
807  * @endpoint: identifier (value of reg property) of the endpoint node
808  *
809  * Return: Remote device node associated with remote endpoint node linked
810  *	   to @node. Use of_node_put() on it when done.
811  */
812 struct device_node *of_graph_get_remote_node(const struct device_node *node,
813 					     u32 port, u32 endpoint)
814 {
815 	struct device_node *endpoint_node, *remote;
816 
817 	endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
818 	if (!endpoint_node) {
819 		pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
820 			 port, endpoint, node);
821 		return NULL;
822 	}
823 
824 	remote = of_graph_get_remote_port_parent(endpoint_node);
825 	of_node_put(endpoint_node);
826 	if (!remote) {
827 		pr_debug("no valid remote node\n");
828 		return NULL;
829 	}
830 
831 	if (!of_device_is_available(remote)) {
832 		pr_debug("not available for remote node\n");
833 		of_node_put(remote);
834 		return NULL;
835 	}
836 
837 	return remote;
838 }
839 EXPORT_SYMBOL(of_graph_get_remote_node);
840 
841 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
842 {
843 	return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
844 }
845 
846 static void of_fwnode_put(struct fwnode_handle *fwnode)
847 {
848 	of_node_put(to_of_node(fwnode));
849 }
850 
851 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
852 {
853 	return of_device_is_available(to_of_node(fwnode));
854 }
855 
856 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
857 				       const char *propname)
858 {
859 	return of_property_read_bool(to_of_node(fwnode), propname);
860 }
861 
862 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
863 					     const char *propname,
864 					     unsigned int elem_size, void *val,
865 					     size_t nval)
866 {
867 	const struct device_node *node = to_of_node(fwnode);
868 
869 	if (!val)
870 		return of_property_count_elems_of_size(node, propname,
871 						       elem_size);
872 
873 	switch (elem_size) {
874 	case sizeof(u8):
875 		return of_property_read_u8_array(node, propname, val, nval);
876 	case sizeof(u16):
877 		return of_property_read_u16_array(node, propname, val, nval);
878 	case sizeof(u32):
879 		return of_property_read_u32_array(node, propname, val, nval);
880 	case sizeof(u64):
881 		return of_property_read_u64_array(node, propname, val, nval);
882 	}
883 
884 	return -ENXIO;
885 }
886 
887 static int
888 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
889 				     const char *propname, const char **val,
890 				     size_t nval)
891 {
892 	const struct device_node *node = to_of_node(fwnode);
893 
894 	return val ?
895 		of_property_read_string_array(node, propname, val, nval) :
896 		of_property_count_strings(node, propname);
897 }
898 
899 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
900 {
901 	return kbasename(to_of_node(fwnode)->full_name);
902 }
903 
904 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
905 {
906 	/* Root needs no prefix here (its name is "/"). */
907 	if (!to_of_node(fwnode)->parent)
908 		return "";
909 
910 	return "/";
911 }
912 
913 static struct fwnode_handle *
914 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
915 {
916 	return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
917 }
918 
919 static struct fwnode_handle *
920 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
921 			      struct fwnode_handle *child)
922 {
923 	return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
924 							    to_of_node(child)));
925 }
926 
927 static struct fwnode_handle *
928 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
929 			       const char *childname)
930 {
931 	const struct device_node *node = to_of_node(fwnode);
932 	struct device_node *child;
933 
934 	for_each_available_child_of_node(node, child)
935 		if (of_node_name_eq(child, childname))
936 			return of_fwnode_handle(child);
937 
938 	return NULL;
939 }
940 
941 static int
942 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
943 			     const char *prop, const char *nargs_prop,
944 			     unsigned int nargs, unsigned int index,
945 			     struct fwnode_reference_args *args)
946 {
947 	struct of_phandle_args of_args;
948 	unsigned int i;
949 	int ret;
950 
951 	if (nargs_prop)
952 		ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
953 						 nargs_prop, index, &of_args);
954 	else
955 		ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
956 						       nargs, index, &of_args);
957 	if (ret < 0)
958 		return ret;
959 	if (!args)
960 		return 0;
961 
962 	args->nargs = of_args.args_count;
963 	args->fwnode = of_fwnode_handle(of_args.np);
964 
965 	for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
966 		args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
967 
968 	return 0;
969 }
970 
971 static struct fwnode_handle *
972 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
973 				  struct fwnode_handle *prev)
974 {
975 	return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
976 							   to_of_node(prev)));
977 }
978 
979 static struct fwnode_handle *
980 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
981 {
982 	return of_fwnode_handle(
983 		of_graph_get_remote_endpoint(to_of_node(fwnode)));
984 }
985 
986 static struct fwnode_handle *
987 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
988 {
989 	struct device_node *np;
990 
991 	/* Get the parent of the port */
992 	np = of_get_parent(to_of_node(fwnode));
993 	if (!np)
994 		return NULL;
995 
996 	/* Is this the "ports" node? If not, it's the port parent. */
997 	if (!of_node_name_eq(np, "ports"))
998 		return of_fwnode_handle(np);
999 
1000 	return of_fwnode_handle(of_get_next_parent(np));
1001 }
1002 
1003 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1004 					  struct fwnode_endpoint *endpoint)
1005 {
1006 	const struct device_node *node = to_of_node(fwnode);
1007 	struct device_node *port_node = of_get_parent(node);
1008 
1009 	endpoint->local_fwnode = fwnode;
1010 
1011 	of_property_read_u32(port_node, "reg", &endpoint->port);
1012 	of_property_read_u32(node, "reg", &endpoint->id);
1013 
1014 	of_node_put(port_node);
1015 
1016 	return 0;
1017 }
1018 
1019 static const void *
1020 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1021 				const struct device *dev)
1022 {
1023 	return of_device_get_match_data(dev);
1024 }
1025 
1026 static bool of_is_ancestor_of(struct device_node *test_ancestor,
1027 			      struct device_node *child)
1028 {
1029 	of_node_get(child);
1030 	while (child) {
1031 		if (child == test_ancestor) {
1032 			of_node_put(child);
1033 			return true;
1034 		}
1035 		child = of_get_next_parent(child);
1036 	}
1037 	return false;
1038 }
1039 
1040 /**
1041  * of_get_next_parent_dev - Add device link to supplier from supplier phandle
1042  * @np: device tree node
1043  *
1044  * Given a device tree node (@np), this function finds its closest ancestor
1045  * device tree node that has a corresponding struct device.
1046  *
1047  * The caller of this function is expected to call put_device() on the returned
1048  * device when they are done.
1049  */
1050 static struct device *of_get_next_parent_dev(struct device_node *np)
1051 {
1052 	struct device *dev = NULL;
1053 
1054 	of_node_get(np);
1055 	do {
1056 		np = of_get_next_parent(np);
1057 		if (np)
1058 			dev = get_dev_from_fwnode(&np->fwnode);
1059 	} while (np && !dev);
1060 	of_node_put(np);
1061 	return dev;
1062 }
1063 
1064 /**
1065  * of_link_to_phandle - Add device link to supplier from supplier phandle
1066  * @dev: consumer device
1067  * @sup_np: phandle to supplier device tree node
1068  *
1069  * Given a phandle to a supplier device tree node (@sup_np), this function
1070  * finds the device that owns the supplier device tree node and creates a
1071  * device link from @dev consumer device to the supplier device. This function
1072  * doesn't create device links for invalid scenarios such as trying to create a
1073  * link with a parent device as the consumer of its child device. In such
1074  * cases, it returns an error.
1075  *
1076  * Returns:
1077  * - 0 if link successfully created to supplier
1078  * - -EAGAIN if linking to the supplier should be reattempted
1079  * - -EINVAL if the supplier link is invalid and should not be created
1080  * - -ENODEV if there is no device that corresponds to the supplier phandle
1081  */
1082 static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1083 			      u32 dl_flags)
1084 {
1085 	struct device *sup_dev, *sup_par_dev;
1086 	int ret = 0;
1087 	struct device_node *tmp_np = sup_np;
1088 
1089 	of_node_get(sup_np);
1090 	/*
1091 	 * Find the device node that contains the supplier phandle.  It may be
1092 	 * @sup_np or it may be an ancestor of @sup_np.
1093 	 */
1094 	while (sup_np) {
1095 
1096 		/* Don't allow linking to a disabled supplier */
1097 		if (!of_device_is_available(sup_np)) {
1098 			of_node_put(sup_np);
1099 			sup_np = NULL;
1100 		}
1101 
1102 		if (of_find_property(sup_np, "compatible", NULL))
1103 			break;
1104 
1105 		sup_np = of_get_next_parent(sup_np);
1106 	}
1107 
1108 	if (!sup_np) {
1109 		dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1110 		return -ENODEV;
1111 	}
1112 
1113 	/*
1114 	 * Don't allow linking a device node as a consumer of one of its
1115 	 * descendant nodes. By definition, a child node can't be a functional
1116 	 * dependency for the parent node.
1117 	 */
1118 	if (of_is_ancestor_of(dev->of_node, sup_np)) {
1119 		dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1120 		of_node_put(sup_np);
1121 		return -EINVAL;
1122 	}
1123 	sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1124 	if (!sup_dev && of_node_check_flag(sup_np, OF_POPULATED)) {
1125 		/* Early device without struct device. */
1126 		dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1127 			sup_np);
1128 		of_node_put(sup_np);
1129 		return -ENODEV;
1130 	} else if (!sup_dev) {
1131 		/*
1132 		 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1133 		 * cycles. So cycle detection isn't necessary and shouldn't be
1134 		 * done.
1135 		 */
1136 		if (dl_flags & DL_FLAG_SYNC_STATE_ONLY) {
1137 			of_node_put(sup_np);
1138 			return -EAGAIN;
1139 		}
1140 
1141 		sup_par_dev = of_get_next_parent_dev(sup_np);
1142 
1143 		if (sup_par_dev && device_is_dependent(dev, sup_par_dev)) {
1144 			/* Cyclic dependency detected, don't try to link */
1145 			dev_dbg(dev, "Not linking to %pOFP - cycle detected\n",
1146 				sup_np);
1147 			ret = -EINVAL;
1148 		} else {
1149 			/*
1150 			 * Can't check for cycles or no cycles. So let's try
1151 			 * again later.
1152 			 */
1153 			ret = -EAGAIN;
1154 		}
1155 
1156 		of_node_put(sup_np);
1157 		put_device(sup_par_dev);
1158 		return ret;
1159 	}
1160 	of_node_put(sup_np);
1161 	if (!device_link_add(dev, sup_dev, dl_flags))
1162 		ret = -EINVAL;
1163 	put_device(sup_dev);
1164 	return ret;
1165 }
1166 
1167 /**
1168  * parse_prop_cells - Property parsing function for suppliers
1169  *
1170  * @np:		Pointer to device tree node containing a list
1171  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1172  * @index:	For properties holding a list of phandles, this is the index
1173  *		into the list.
1174  * @list_name:	Property name that is known to contain list of phandle(s) to
1175  *		supplier(s)
1176  * @cells_name:	property name that specifies phandles' arguments count
1177  *
1178  * This is a helper function to parse properties that have a known fixed name
1179  * and are a list of phandles and phandle arguments.
1180  *
1181  * Returns:
1182  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1183  *   on it when done.
1184  * - NULL if no phandle found at index
1185  */
1186 static struct device_node *parse_prop_cells(struct device_node *np,
1187 					    const char *prop_name, int index,
1188 					    const char *list_name,
1189 					    const char *cells_name)
1190 {
1191 	struct of_phandle_args sup_args;
1192 
1193 	if (strcmp(prop_name, list_name))
1194 		return NULL;
1195 
1196 	if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1197 				       &sup_args))
1198 		return NULL;
1199 
1200 	return sup_args.np;
1201 }
1202 
1203 #define DEFINE_SIMPLE_PROP(fname, name, cells)				  \
1204 static struct device_node *parse_##fname(struct device_node *np,	  \
1205 					const char *prop_name, int index) \
1206 {									  \
1207 	return parse_prop_cells(np, prop_name, index, name, cells);	  \
1208 }
1209 
1210 static int strcmp_suffix(const char *str, const char *suffix)
1211 {
1212 	unsigned int len, suffix_len;
1213 
1214 	len = strlen(str);
1215 	suffix_len = strlen(suffix);
1216 	if (len <= suffix_len)
1217 		return -1;
1218 	return strcmp(str + len - suffix_len, suffix);
1219 }
1220 
1221 /**
1222  * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1223  *
1224  * @np:		Pointer to device tree node containing a list
1225  * @prop_name:	Name of property to be parsed. Expected to hold phandle values
1226  * @index:	For properties holding a list of phandles, this is the index
1227  *		into the list.
1228  * @suffix:	Property suffix that is known to contain list of phandle(s) to
1229  *		supplier(s)
1230  * @cells_name:	property name that specifies phandles' arguments count
1231  *
1232  * This is a helper function to parse properties that have a known fixed suffix
1233  * and are a list of phandles and phandle arguments.
1234  *
1235  * Returns:
1236  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1237  *   on it when done.
1238  * - NULL if no phandle found at index
1239  */
1240 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1241 					    const char *prop_name, int index,
1242 					    const char *suffix,
1243 					    const char *cells_name)
1244 {
1245 	struct of_phandle_args sup_args;
1246 
1247 	if (strcmp_suffix(prop_name, suffix))
1248 		return NULL;
1249 
1250 	if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1251 				       &sup_args))
1252 		return NULL;
1253 
1254 	return sup_args.np;
1255 }
1256 
1257 #define DEFINE_SUFFIX_PROP(fname, suffix, cells)			     \
1258 static struct device_node *parse_##fname(struct device_node *np,	     \
1259 					const char *prop_name, int index)    \
1260 {									     \
1261 	return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1262 }
1263 
1264 /**
1265  * struct supplier_bindings - Property parsing functions for suppliers
1266  *
1267  * @parse_prop: function name
1268  *	parse_prop() finds the node corresponding to a supplier phandle
1269  * @parse_prop.np: Pointer to device node holding supplier phandle property
1270  * @parse_prop.prop_name: Name of property holding a phandle value
1271  * @parse_prop.index: For properties holding a list of phandles, this is the
1272  *		      index into the list
1273  *
1274  * Returns:
1275  * parse_prop() return values are
1276  * - phandle node pointer with refcount incremented. Caller must of_node_put()
1277  *   on it when done.
1278  * - NULL if no phandle found at index
1279  */
1280 struct supplier_bindings {
1281 	struct device_node *(*parse_prop)(struct device_node *np,
1282 					  const char *prop_name, int index);
1283 };
1284 
1285 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1286 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1287 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1288 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1289 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1290 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1291 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1292 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1293 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1294 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1295 DEFINE_SIMPLE_PROP(interrupts_extended, "interrupts-extended",
1296 					"#interrupt-cells")
1297 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1298 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1299 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1300 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1301 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1302 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1303 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1304 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1305 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1306 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1307 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1308 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1309 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1310 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1311 DEFINE_SUFFIX_PROP(gpios, "-gpios", "#gpio-cells")
1312 
1313 static struct device_node *parse_iommu_maps(struct device_node *np,
1314 					    const char *prop_name, int index)
1315 {
1316 	if (strcmp(prop_name, "iommu-map"))
1317 		return NULL;
1318 
1319 	return of_parse_phandle(np, prop_name, (index * 4) + 1);
1320 }
1321 
1322 static const struct supplier_bindings of_supplier_bindings[] = {
1323 	{ .parse_prop = parse_clocks, },
1324 	{ .parse_prop = parse_interconnects, },
1325 	{ .parse_prop = parse_iommus, },
1326 	{ .parse_prop = parse_iommu_maps, },
1327 	{ .parse_prop = parse_mboxes, },
1328 	{ .parse_prop = parse_io_channels, },
1329 	{ .parse_prop = parse_interrupt_parent, },
1330 	{ .parse_prop = parse_dmas, },
1331 	{ .parse_prop = parse_power_domains, },
1332 	{ .parse_prop = parse_hwlocks, },
1333 	{ .parse_prop = parse_extcon, },
1334 	{ .parse_prop = parse_interrupts_extended, },
1335 	{ .parse_prop = parse_nvmem_cells, },
1336 	{ .parse_prop = parse_phys, },
1337 	{ .parse_prop = parse_wakeup_parent, },
1338 	{ .parse_prop = parse_pinctrl0, },
1339 	{ .parse_prop = parse_pinctrl1, },
1340 	{ .parse_prop = parse_pinctrl2, },
1341 	{ .parse_prop = parse_pinctrl3, },
1342 	{ .parse_prop = parse_pinctrl4, },
1343 	{ .parse_prop = parse_pinctrl5, },
1344 	{ .parse_prop = parse_pinctrl6, },
1345 	{ .parse_prop = parse_pinctrl7, },
1346 	{ .parse_prop = parse_pinctrl8, },
1347 	{ .parse_prop = parse_regulators, },
1348 	{ .parse_prop = parse_gpio, },
1349 	{ .parse_prop = parse_gpios, },
1350 	{}
1351 };
1352 
1353 /**
1354  * of_link_property - Create device links to suppliers listed in a property
1355  * @dev: Consumer device
1356  * @con_np: The consumer device tree node which contains the property
1357  * @prop_name: Name of property to be parsed
1358  *
1359  * This function checks if the property @prop_name that is present in the
1360  * @con_np device tree node is one of the known common device tree bindings
1361  * that list phandles to suppliers. If @prop_name isn't one, this function
1362  * doesn't do anything.
1363  *
1364  * If @prop_name is one, this function attempts to create device links from the
1365  * consumer device @dev to all the devices of the suppliers listed in
1366  * @prop_name.
1367  *
1368  * Any failed attempt to create a device link will NOT result in an immediate
1369  * return.  of_link_property() must create links to all the available supplier
1370  * devices even when attempts to create a link to one or more suppliers fail.
1371  */
1372 static int of_link_property(struct device *dev, struct device_node *con_np,
1373 			     const char *prop_name)
1374 {
1375 	struct device_node *phandle;
1376 	const struct supplier_bindings *s = of_supplier_bindings;
1377 	unsigned int i = 0;
1378 	bool matched = false;
1379 	int ret = 0;
1380 	u32 dl_flags;
1381 
1382 	if (dev->of_node == con_np)
1383 		dl_flags = fw_devlink_get_flags();
1384 	else
1385 		dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1386 
1387 	/* Do not stop at first failed link, link all available suppliers. */
1388 	while (!matched && s->parse_prop) {
1389 		while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1390 			matched = true;
1391 			i++;
1392 			if (of_link_to_phandle(dev, phandle, dl_flags)
1393 								== -EAGAIN)
1394 				ret = -EAGAIN;
1395 			of_node_put(phandle);
1396 		}
1397 		s++;
1398 	}
1399 	return ret;
1400 }
1401 
1402 static int of_link_to_suppliers(struct device *dev,
1403 				  struct device_node *con_np)
1404 {
1405 	struct device_node *child;
1406 	struct property *p;
1407 	int ret = 0;
1408 
1409 	for_each_property_of_node(con_np, p)
1410 		if (of_link_property(dev, con_np, p->name))
1411 			ret = -ENODEV;
1412 
1413 	for_each_available_child_of_node(con_np, child)
1414 		if (of_link_to_suppliers(dev, child) && !ret)
1415 			ret = -EAGAIN;
1416 
1417 	return ret;
1418 }
1419 
1420 static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1421 			       struct device *dev)
1422 {
1423 	if (unlikely(!is_of_node(fwnode)))
1424 		return 0;
1425 
1426 	return of_link_to_suppliers(dev, to_of_node(fwnode));
1427 }
1428 
1429 const struct fwnode_operations of_fwnode_ops = {
1430 	.get = of_fwnode_get,
1431 	.put = of_fwnode_put,
1432 	.device_is_available = of_fwnode_device_is_available,
1433 	.device_get_match_data = of_fwnode_device_get_match_data,
1434 	.property_present = of_fwnode_property_present,
1435 	.property_read_int_array = of_fwnode_property_read_int_array,
1436 	.property_read_string_array = of_fwnode_property_read_string_array,
1437 	.get_name = of_fwnode_get_name,
1438 	.get_name_prefix = of_fwnode_get_name_prefix,
1439 	.get_parent = of_fwnode_get_parent,
1440 	.get_next_child_node = of_fwnode_get_next_child_node,
1441 	.get_named_child_node = of_fwnode_get_named_child_node,
1442 	.get_reference_args = of_fwnode_get_reference_args,
1443 	.graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1444 	.graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1445 	.graph_get_port_parent = of_fwnode_graph_get_port_parent,
1446 	.graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1447 	.add_links = of_fwnode_add_links,
1448 };
1449 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1450