1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/of/property.c - Procedures for accessing and interpreting 4 * Devicetree properties and graphs. 5 * 6 * Initially created by copying procedures from drivers/of/base.c. This 7 * file contains the OF property as well as the OF graph interface 8 * functions. 9 * 10 * Paul Mackerras August 1996. 11 * Copyright (C) 1996-2005 Paul Mackerras. 12 * 13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 14 * {engebret|bergner}@us.ibm.com 15 * 16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 17 * 18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 19 * Grant Likely. 20 */ 21 22 #define pr_fmt(fmt) "OF: " fmt 23 24 #include <linux/of.h> 25 #include <linux/of_address.h> 26 #include <linux/of_device.h> 27 #include <linux/of_graph.h> 28 #include <linux/of_irq.h> 29 #include <linux/string.h> 30 #include <linux/moduleparam.h> 31 32 #include "of_private.h" 33 34 /** 35 * of_graph_is_present() - check graph's presence 36 * @node: pointer to device_node containing graph port 37 * 38 * Return: True if @node has a port or ports (with a port) sub-node, 39 * false otherwise. 40 */ 41 bool of_graph_is_present(const struct device_node *node) 42 { 43 struct device_node *ports, *port; 44 45 ports = of_get_child_by_name(node, "ports"); 46 if (ports) 47 node = ports; 48 49 port = of_get_child_by_name(node, "port"); 50 of_node_put(ports); 51 of_node_put(port); 52 53 return !!port; 54 } 55 EXPORT_SYMBOL(of_graph_is_present); 56 57 /** 58 * of_property_count_elems_of_size - Count the number of elements in a property 59 * 60 * @np: device node from which the property value is to be read. 61 * @propname: name of the property to be searched. 62 * @elem_size: size of the individual element 63 * 64 * Search for a property in a device node and count the number of elements of 65 * size elem_size in it. 66 * 67 * Return: The number of elements on sucess, -EINVAL if the property does not 68 * exist or its length does not match a multiple of elem_size and -ENODATA if 69 * the property does not have a value. 70 */ 71 int of_property_count_elems_of_size(const struct device_node *np, 72 const char *propname, int elem_size) 73 { 74 struct property *prop = of_find_property(np, propname, NULL); 75 76 if (!prop) 77 return -EINVAL; 78 if (!prop->value) 79 return -ENODATA; 80 81 if (prop->length % elem_size != 0) { 82 pr_err("size of %s in node %pOF is not a multiple of %d\n", 83 propname, np, elem_size); 84 return -EINVAL; 85 } 86 87 return prop->length / elem_size; 88 } 89 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 90 91 /** 92 * of_find_property_value_of_size 93 * 94 * @np: device node from which the property value is to be read. 95 * @propname: name of the property to be searched. 96 * @min: minimum allowed length of property value 97 * @max: maximum allowed length of property value (0 means unlimited) 98 * @len: if !=NULL, actual length is written to here 99 * 100 * Search for a property in a device node and valid the requested size. 101 * 102 * Return: The property value on success, -EINVAL if the property does not 103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 104 * property data is too small or too large. 105 * 106 */ 107 static void *of_find_property_value_of_size(const struct device_node *np, 108 const char *propname, u32 min, u32 max, size_t *len) 109 { 110 struct property *prop = of_find_property(np, propname, NULL); 111 112 if (!prop) 113 return ERR_PTR(-EINVAL); 114 if (!prop->value) 115 return ERR_PTR(-ENODATA); 116 if (prop->length < min) 117 return ERR_PTR(-EOVERFLOW); 118 if (max && prop->length > max) 119 return ERR_PTR(-EOVERFLOW); 120 121 if (len) 122 *len = prop->length; 123 124 return prop->value; 125 } 126 127 /** 128 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 129 * 130 * @np: device node from which the property value is to be read. 131 * @propname: name of the property to be searched. 132 * @index: index of the u32 in the list of values 133 * @out_value: pointer to return value, modified only if no error. 134 * 135 * Search for a property in a device node and read nth 32-bit value from 136 * it. 137 * 138 * Return: 0 on success, -EINVAL if the property does not exist, 139 * -ENODATA if property does not have a value, and -EOVERFLOW if the 140 * property data isn't large enough. 141 * 142 * The out_value is modified only if a valid u32 value can be decoded. 143 */ 144 int of_property_read_u32_index(const struct device_node *np, 145 const char *propname, 146 u32 index, u32 *out_value) 147 { 148 const u32 *val = of_find_property_value_of_size(np, propname, 149 ((index + 1) * sizeof(*out_value)), 150 0, 151 NULL); 152 153 if (IS_ERR(val)) 154 return PTR_ERR(val); 155 156 *out_value = be32_to_cpup(((__be32 *)val) + index); 157 return 0; 158 } 159 EXPORT_SYMBOL_GPL(of_property_read_u32_index); 160 161 /** 162 * of_property_read_u64_index - Find and read a u64 from a multi-value property. 163 * 164 * @np: device node from which the property value is to be read. 165 * @propname: name of the property to be searched. 166 * @index: index of the u64 in the list of values 167 * @out_value: pointer to return value, modified only if no error. 168 * 169 * Search for a property in a device node and read nth 64-bit value from 170 * it. 171 * 172 * Return: 0 on success, -EINVAL if the property does not exist, 173 * -ENODATA if property does not have a value, and -EOVERFLOW if the 174 * property data isn't large enough. 175 * 176 * The out_value is modified only if a valid u64 value can be decoded. 177 */ 178 int of_property_read_u64_index(const struct device_node *np, 179 const char *propname, 180 u32 index, u64 *out_value) 181 { 182 const u64 *val = of_find_property_value_of_size(np, propname, 183 ((index + 1) * sizeof(*out_value)), 184 0, NULL); 185 186 if (IS_ERR(val)) 187 return PTR_ERR(val); 188 189 *out_value = be64_to_cpup(((__be64 *)val) + index); 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(of_property_read_u64_index); 193 194 /** 195 * of_property_read_variable_u8_array - Find and read an array of u8 from a 196 * property, with bounds on the minimum and maximum array size. 197 * 198 * @np: device node from which the property value is to be read. 199 * @propname: name of the property to be searched. 200 * @out_values: pointer to found values. 201 * @sz_min: minimum number of array elements to read 202 * @sz_max: maximum number of array elements to read, if zero there is no 203 * upper limit on the number of elements in the dts entry but only 204 * sz_min will be read. 205 * 206 * Search for a property in a device node and read 8-bit value(s) from 207 * it. 208 * 209 * dts entry of array should be like: 210 * ``property = /bits/ 8 <0x50 0x60 0x70>;`` 211 * 212 * Return: The number of elements read on success, -EINVAL if the property 213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 214 * if the property data is smaller than sz_min or longer than sz_max. 215 * 216 * The out_values is modified only if a valid u8 value can be decoded. 217 */ 218 int of_property_read_variable_u8_array(const struct device_node *np, 219 const char *propname, u8 *out_values, 220 size_t sz_min, size_t sz_max) 221 { 222 size_t sz, count; 223 const u8 *val = of_find_property_value_of_size(np, propname, 224 (sz_min * sizeof(*out_values)), 225 (sz_max * sizeof(*out_values)), 226 &sz); 227 228 if (IS_ERR(val)) 229 return PTR_ERR(val); 230 231 if (!sz_max) 232 sz = sz_min; 233 else 234 sz /= sizeof(*out_values); 235 236 count = sz; 237 while (count--) 238 *out_values++ = *val++; 239 240 return sz; 241 } 242 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array); 243 244 /** 245 * of_property_read_variable_u16_array - Find and read an array of u16 from a 246 * property, with bounds on the minimum and maximum array size. 247 * 248 * @np: device node from which the property value is to be read. 249 * @propname: name of the property to be searched. 250 * @out_values: pointer to found values. 251 * @sz_min: minimum number of array elements to read 252 * @sz_max: maximum number of array elements to read, if zero there is no 253 * upper limit on the number of elements in the dts entry but only 254 * sz_min will be read. 255 * 256 * Search for a property in a device node and read 16-bit value(s) from 257 * it. 258 * 259 * dts entry of array should be like: 260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;`` 261 * 262 * Return: The number of elements read on success, -EINVAL if the property 263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 264 * if the property data is smaller than sz_min or longer than sz_max. 265 * 266 * The out_values is modified only if a valid u16 value can be decoded. 267 */ 268 int of_property_read_variable_u16_array(const struct device_node *np, 269 const char *propname, u16 *out_values, 270 size_t sz_min, size_t sz_max) 271 { 272 size_t sz, count; 273 const __be16 *val = of_find_property_value_of_size(np, propname, 274 (sz_min * sizeof(*out_values)), 275 (sz_max * sizeof(*out_values)), 276 &sz); 277 278 if (IS_ERR(val)) 279 return PTR_ERR(val); 280 281 if (!sz_max) 282 sz = sz_min; 283 else 284 sz /= sizeof(*out_values); 285 286 count = sz; 287 while (count--) 288 *out_values++ = be16_to_cpup(val++); 289 290 return sz; 291 } 292 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array); 293 294 /** 295 * of_property_read_variable_u32_array - Find and read an array of 32 bit 296 * integers from a property, with bounds on the minimum and maximum array size. 297 * 298 * @np: device node from which the property value is to be read. 299 * @propname: name of the property to be searched. 300 * @out_values: pointer to return found values. 301 * @sz_min: minimum number of array elements to read 302 * @sz_max: maximum number of array elements to read, if zero there is no 303 * upper limit on the number of elements in the dts entry but only 304 * sz_min will be read. 305 * 306 * Search for a property in a device node and read 32-bit value(s) from 307 * it. 308 * 309 * Return: The number of elements read on success, -EINVAL if the property 310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 311 * if the property data is smaller than sz_min or longer than sz_max. 312 * 313 * The out_values is modified only if a valid u32 value can be decoded. 314 */ 315 int of_property_read_variable_u32_array(const struct device_node *np, 316 const char *propname, u32 *out_values, 317 size_t sz_min, size_t sz_max) 318 { 319 size_t sz, count; 320 const __be32 *val = of_find_property_value_of_size(np, propname, 321 (sz_min * sizeof(*out_values)), 322 (sz_max * sizeof(*out_values)), 323 &sz); 324 325 if (IS_ERR(val)) 326 return PTR_ERR(val); 327 328 if (!sz_max) 329 sz = sz_min; 330 else 331 sz /= sizeof(*out_values); 332 333 count = sz; 334 while (count--) 335 *out_values++ = be32_to_cpup(val++); 336 337 return sz; 338 } 339 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array); 340 341 /** 342 * of_property_read_u64 - Find and read a 64 bit integer from a property 343 * @np: device node from which the property value is to be read. 344 * @propname: name of the property to be searched. 345 * @out_value: pointer to return value, modified only if return value is 0. 346 * 347 * Search for a property in a device node and read a 64-bit value from 348 * it. 349 * 350 * Return: 0 on success, -EINVAL if the property does not exist, 351 * -ENODATA if property does not have a value, and -EOVERFLOW if the 352 * property data isn't large enough. 353 * 354 * The out_value is modified only if a valid u64 value can be decoded. 355 */ 356 int of_property_read_u64(const struct device_node *np, const char *propname, 357 u64 *out_value) 358 { 359 const __be32 *val = of_find_property_value_of_size(np, propname, 360 sizeof(*out_value), 361 0, 362 NULL); 363 364 if (IS_ERR(val)) 365 return PTR_ERR(val); 366 367 *out_value = of_read_number(val, 2); 368 return 0; 369 } 370 EXPORT_SYMBOL_GPL(of_property_read_u64); 371 372 /** 373 * of_property_read_variable_u64_array - Find and read an array of 64 bit 374 * integers from a property, with bounds on the minimum and maximum array size. 375 * 376 * @np: device node from which the property value is to be read. 377 * @propname: name of the property to be searched. 378 * @out_values: pointer to found values. 379 * @sz_min: minimum number of array elements to read 380 * @sz_max: maximum number of array elements to read, if zero there is no 381 * upper limit on the number of elements in the dts entry but only 382 * sz_min will be read. 383 * 384 * Search for a property in a device node and read 64-bit value(s) from 385 * it. 386 * 387 * Return: The number of elements read on success, -EINVAL if the property 388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW 389 * if the property data is smaller than sz_min or longer than sz_max. 390 * 391 * The out_values is modified only if a valid u64 value can be decoded. 392 */ 393 int of_property_read_variable_u64_array(const struct device_node *np, 394 const char *propname, u64 *out_values, 395 size_t sz_min, size_t sz_max) 396 { 397 size_t sz, count; 398 const __be32 *val = of_find_property_value_of_size(np, propname, 399 (sz_min * sizeof(*out_values)), 400 (sz_max * sizeof(*out_values)), 401 &sz); 402 403 if (IS_ERR(val)) 404 return PTR_ERR(val); 405 406 if (!sz_max) 407 sz = sz_min; 408 else 409 sz /= sizeof(*out_values); 410 411 count = sz; 412 while (count--) { 413 *out_values++ = of_read_number(val, 2); 414 val += 2; 415 } 416 417 return sz; 418 } 419 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array); 420 421 /** 422 * of_property_read_string - Find and read a string from a property 423 * @np: device node from which the property value is to be read. 424 * @propname: name of the property to be searched. 425 * @out_string: pointer to null terminated return string, modified only if 426 * return value is 0. 427 * 428 * Search for a property in a device tree node and retrieve a null 429 * terminated string value (pointer to data, not a copy). 430 * 431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if 432 * property does not have a value, and -EILSEQ if the string is not 433 * null-terminated within the length of the property data. 434 * 435 * Note that the empty string "" has length of 1, thus -ENODATA cannot 436 * be interpreted as an empty string. 437 * 438 * The out_string pointer is modified only if a valid string can be decoded. 439 */ 440 int of_property_read_string(const struct device_node *np, const char *propname, 441 const char **out_string) 442 { 443 const struct property *prop = of_find_property(np, propname, NULL); 444 if (!prop) 445 return -EINVAL; 446 if (!prop->length) 447 return -ENODATA; 448 if (strnlen(prop->value, prop->length) >= prop->length) 449 return -EILSEQ; 450 *out_string = prop->value; 451 return 0; 452 } 453 EXPORT_SYMBOL_GPL(of_property_read_string); 454 455 /** 456 * of_property_match_string() - Find string in a list and return index 457 * @np: pointer to node containing string list property 458 * @propname: string list property name 459 * @string: pointer to string to search for in string list 460 * 461 * This function searches a string list property and returns the index 462 * of a specific string value. 463 */ 464 int of_property_match_string(const struct device_node *np, const char *propname, 465 const char *string) 466 { 467 const struct property *prop = of_find_property(np, propname, NULL); 468 size_t l; 469 int i; 470 const char *p, *end; 471 472 if (!prop) 473 return -EINVAL; 474 if (!prop->value) 475 return -ENODATA; 476 477 p = prop->value; 478 end = p + prop->length; 479 480 for (i = 0; p < end; i++, p += l) { 481 l = strnlen(p, end - p) + 1; 482 if (p + l > end) 483 return -EILSEQ; 484 pr_debug("comparing %s with %s\n", string, p); 485 if (strcmp(string, p) == 0) 486 return i; /* Found it; return index */ 487 } 488 return -ENODATA; 489 } 490 EXPORT_SYMBOL_GPL(of_property_match_string); 491 492 /** 493 * of_property_read_string_helper() - Utility helper for parsing string properties 494 * @np: device node from which the property value is to be read. 495 * @propname: name of the property to be searched. 496 * @out_strs: output array of string pointers. 497 * @sz: number of array elements to read. 498 * @skip: Number of strings to skip over at beginning of list. 499 * 500 * Don't call this function directly. It is a utility helper for the 501 * of_property_read_string*() family of functions. 502 */ 503 int of_property_read_string_helper(const struct device_node *np, 504 const char *propname, const char **out_strs, 505 size_t sz, int skip) 506 { 507 const struct property *prop = of_find_property(np, propname, NULL); 508 int l = 0, i = 0; 509 const char *p, *end; 510 511 if (!prop) 512 return -EINVAL; 513 if (!prop->value) 514 return -ENODATA; 515 p = prop->value; 516 end = p + prop->length; 517 518 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 519 l = strnlen(p, end - p) + 1; 520 if (p + l > end) 521 return -EILSEQ; 522 if (out_strs && i >= skip) 523 *out_strs++ = p; 524 } 525 i -= skip; 526 return i <= 0 ? -ENODATA : i; 527 } 528 EXPORT_SYMBOL_GPL(of_property_read_string_helper); 529 530 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 531 u32 *pu) 532 { 533 const void *curv = cur; 534 535 if (!prop) 536 return NULL; 537 538 if (!cur) { 539 curv = prop->value; 540 goto out_val; 541 } 542 543 curv += sizeof(*cur); 544 if (curv >= prop->value + prop->length) 545 return NULL; 546 547 out_val: 548 *pu = be32_to_cpup(curv); 549 return curv; 550 } 551 EXPORT_SYMBOL_GPL(of_prop_next_u32); 552 553 const char *of_prop_next_string(struct property *prop, const char *cur) 554 { 555 const void *curv = cur; 556 557 if (!prop) 558 return NULL; 559 560 if (!cur) 561 return prop->value; 562 563 curv += strlen(cur) + 1; 564 if (curv >= prop->value + prop->length) 565 return NULL; 566 567 return curv; 568 } 569 EXPORT_SYMBOL_GPL(of_prop_next_string); 570 571 /** 572 * of_graph_parse_endpoint() - parse common endpoint node properties 573 * @node: pointer to endpoint device_node 574 * @endpoint: pointer to the OF endpoint data structure 575 * 576 * The caller should hold a reference to @node. 577 */ 578 int of_graph_parse_endpoint(const struct device_node *node, 579 struct of_endpoint *endpoint) 580 { 581 struct device_node *port_node = of_get_parent(node); 582 583 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n", 584 __func__, node); 585 586 memset(endpoint, 0, sizeof(*endpoint)); 587 588 endpoint->local_node = node; 589 /* 590 * It doesn't matter whether the two calls below succeed. 591 * If they don't then the default value 0 is used. 592 */ 593 of_property_read_u32(port_node, "reg", &endpoint->port); 594 of_property_read_u32(node, "reg", &endpoint->id); 595 596 of_node_put(port_node); 597 598 return 0; 599 } 600 EXPORT_SYMBOL(of_graph_parse_endpoint); 601 602 /** 603 * of_graph_get_port_by_id() - get the port matching a given id 604 * @parent: pointer to the parent device node 605 * @id: id of the port 606 * 607 * Return: A 'port' node pointer with refcount incremented. The caller 608 * has to use of_node_put() on it when done. 609 */ 610 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 611 { 612 struct device_node *node, *port; 613 614 node = of_get_child_by_name(parent, "ports"); 615 if (node) 616 parent = node; 617 618 for_each_child_of_node(parent, port) { 619 u32 port_id = 0; 620 621 if (!of_node_name_eq(port, "port")) 622 continue; 623 of_property_read_u32(port, "reg", &port_id); 624 if (id == port_id) 625 break; 626 } 627 628 of_node_put(node); 629 630 return port; 631 } 632 EXPORT_SYMBOL(of_graph_get_port_by_id); 633 634 /** 635 * of_graph_get_next_endpoint() - get next endpoint node 636 * @parent: pointer to the parent device node 637 * @prev: previous endpoint node, or NULL to get first 638 * 639 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 640 * of the passed @prev node is decremented. 641 */ 642 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 643 struct device_node *prev) 644 { 645 struct device_node *endpoint; 646 struct device_node *port; 647 648 if (!parent) 649 return NULL; 650 651 /* 652 * Start by locating the port node. If no previous endpoint is specified 653 * search for the first port node, otherwise get the previous endpoint 654 * parent port node. 655 */ 656 if (!prev) { 657 struct device_node *node; 658 659 node = of_get_child_by_name(parent, "ports"); 660 if (node) 661 parent = node; 662 663 port = of_get_child_by_name(parent, "port"); 664 of_node_put(node); 665 666 if (!port) { 667 pr_err("graph: no port node found in %pOF\n", parent); 668 return NULL; 669 } 670 } else { 671 port = of_get_parent(prev); 672 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n", 673 __func__, prev)) 674 return NULL; 675 } 676 677 while (1) { 678 /* 679 * Now that we have a port node, get the next endpoint by 680 * getting the next child. If the previous endpoint is NULL this 681 * will return the first child. 682 */ 683 endpoint = of_get_next_child(port, prev); 684 if (endpoint) { 685 of_node_put(port); 686 return endpoint; 687 } 688 689 /* No more endpoints under this port, try the next one. */ 690 prev = NULL; 691 692 do { 693 port = of_get_next_child(parent, port); 694 if (!port) 695 return NULL; 696 } while (!of_node_name_eq(port, "port")); 697 } 698 } 699 EXPORT_SYMBOL(of_graph_get_next_endpoint); 700 701 /** 702 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers 703 * @parent: pointer to the parent device node 704 * @port_reg: identifier (value of reg property) of the parent port node 705 * @reg: identifier (value of reg property) of the endpoint node 706 * 707 * Return: An 'endpoint' node pointer which is identified by reg and at the same 708 * is the child of a port node identified by port_reg. reg and port_reg are 709 * ignored when they are -1. Use of_node_put() on the pointer when done. 710 */ 711 struct device_node *of_graph_get_endpoint_by_regs( 712 const struct device_node *parent, int port_reg, int reg) 713 { 714 struct of_endpoint endpoint; 715 struct device_node *node = NULL; 716 717 for_each_endpoint_of_node(parent, node) { 718 of_graph_parse_endpoint(node, &endpoint); 719 if (((port_reg == -1) || (endpoint.port == port_reg)) && 720 ((reg == -1) || (endpoint.id == reg))) 721 return node; 722 } 723 724 return NULL; 725 } 726 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs); 727 728 /** 729 * of_graph_get_remote_endpoint() - get remote endpoint node 730 * @node: pointer to a local endpoint device_node 731 * 732 * Return: Remote endpoint node associated with remote endpoint node linked 733 * to @node. Use of_node_put() on it when done. 734 */ 735 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node) 736 { 737 /* Get remote endpoint node. */ 738 return of_parse_phandle(node, "remote-endpoint", 0); 739 } 740 EXPORT_SYMBOL(of_graph_get_remote_endpoint); 741 742 /** 743 * of_graph_get_port_parent() - get port's parent node 744 * @node: pointer to a local endpoint device_node 745 * 746 * Return: device node associated with endpoint node linked 747 * to @node. Use of_node_put() on it when done. 748 */ 749 struct device_node *of_graph_get_port_parent(struct device_node *node) 750 { 751 unsigned int depth; 752 753 if (!node) 754 return NULL; 755 756 /* 757 * Preserve usecount for passed in node as of_get_next_parent() 758 * will do of_node_put() on it. 759 */ 760 of_node_get(node); 761 762 /* Walk 3 levels up only if there is 'ports' node. */ 763 for (depth = 3; depth && node; depth--) { 764 node = of_get_next_parent(node); 765 if (depth == 2 && !of_node_name_eq(node, "ports")) 766 break; 767 } 768 return node; 769 } 770 EXPORT_SYMBOL(of_graph_get_port_parent); 771 772 /** 773 * of_graph_get_remote_port_parent() - get remote port's parent node 774 * @node: pointer to a local endpoint device_node 775 * 776 * Return: Remote device node associated with remote endpoint node linked 777 * to @node. Use of_node_put() on it when done. 778 */ 779 struct device_node *of_graph_get_remote_port_parent( 780 const struct device_node *node) 781 { 782 struct device_node *np, *pp; 783 784 /* Get remote endpoint node. */ 785 np = of_graph_get_remote_endpoint(node); 786 787 pp = of_graph_get_port_parent(np); 788 789 of_node_put(np); 790 791 return pp; 792 } 793 EXPORT_SYMBOL(of_graph_get_remote_port_parent); 794 795 /** 796 * of_graph_get_remote_port() - get remote port node 797 * @node: pointer to a local endpoint device_node 798 * 799 * Return: Remote port node associated with remote endpoint node linked 800 * to @node. Use of_node_put() on it when done. 801 */ 802 struct device_node *of_graph_get_remote_port(const struct device_node *node) 803 { 804 struct device_node *np; 805 806 /* Get remote endpoint node. */ 807 np = of_graph_get_remote_endpoint(node); 808 if (!np) 809 return NULL; 810 return of_get_next_parent(np); 811 } 812 EXPORT_SYMBOL(of_graph_get_remote_port); 813 814 int of_graph_get_endpoint_count(const struct device_node *np) 815 { 816 struct device_node *endpoint; 817 int num = 0; 818 819 for_each_endpoint_of_node(np, endpoint) 820 num++; 821 822 return num; 823 } 824 EXPORT_SYMBOL(of_graph_get_endpoint_count); 825 826 /** 827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint 828 * @node: pointer to parent device_node containing graph port/endpoint 829 * @port: identifier (value of reg property) of the parent port node 830 * @endpoint: identifier (value of reg property) of the endpoint node 831 * 832 * Return: Remote device node associated with remote endpoint node linked 833 * to @node. Use of_node_put() on it when done. 834 */ 835 struct device_node *of_graph_get_remote_node(const struct device_node *node, 836 u32 port, u32 endpoint) 837 { 838 struct device_node *endpoint_node, *remote; 839 840 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint); 841 if (!endpoint_node) { 842 pr_debug("no valid endpoint (%d, %d) for node %pOF\n", 843 port, endpoint, node); 844 return NULL; 845 } 846 847 remote = of_graph_get_remote_port_parent(endpoint_node); 848 of_node_put(endpoint_node); 849 if (!remote) { 850 pr_debug("no valid remote node\n"); 851 return NULL; 852 } 853 854 if (!of_device_is_available(remote)) { 855 pr_debug("not available for remote node\n"); 856 of_node_put(remote); 857 return NULL; 858 } 859 860 return remote; 861 } 862 EXPORT_SYMBOL(of_graph_get_remote_node); 863 864 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode) 865 { 866 return of_fwnode_handle(of_node_get(to_of_node(fwnode))); 867 } 868 869 static void of_fwnode_put(struct fwnode_handle *fwnode) 870 { 871 of_node_put(to_of_node(fwnode)); 872 } 873 874 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode) 875 { 876 return of_device_is_available(to_of_node(fwnode)); 877 } 878 879 static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode) 880 { 881 return true; 882 } 883 884 static enum dev_dma_attr 885 of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode) 886 { 887 if (of_dma_is_coherent(to_of_node(fwnode))) 888 return DEV_DMA_COHERENT; 889 else 890 return DEV_DMA_NON_COHERENT; 891 } 892 893 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode, 894 const char *propname) 895 { 896 return of_property_read_bool(to_of_node(fwnode), propname); 897 } 898 899 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 900 const char *propname, 901 unsigned int elem_size, void *val, 902 size_t nval) 903 { 904 const struct device_node *node = to_of_node(fwnode); 905 906 if (!val) 907 return of_property_count_elems_of_size(node, propname, 908 elem_size); 909 910 switch (elem_size) { 911 case sizeof(u8): 912 return of_property_read_u8_array(node, propname, val, nval); 913 case sizeof(u16): 914 return of_property_read_u16_array(node, propname, val, nval); 915 case sizeof(u32): 916 return of_property_read_u32_array(node, propname, val, nval); 917 case sizeof(u64): 918 return of_property_read_u64_array(node, propname, val, nval); 919 } 920 921 return -ENXIO; 922 } 923 924 static int 925 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 926 const char *propname, const char **val, 927 size_t nval) 928 { 929 const struct device_node *node = to_of_node(fwnode); 930 931 return val ? 932 of_property_read_string_array(node, propname, val, nval) : 933 of_property_count_strings(node, propname); 934 } 935 936 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode) 937 { 938 return kbasename(to_of_node(fwnode)->full_name); 939 } 940 941 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 942 { 943 /* Root needs no prefix here (its name is "/"). */ 944 if (!to_of_node(fwnode)->parent) 945 return ""; 946 947 return "/"; 948 } 949 950 static struct fwnode_handle * 951 of_fwnode_get_parent(const struct fwnode_handle *fwnode) 952 { 953 return of_fwnode_handle(of_get_parent(to_of_node(fwnode))); 954 } 955 956 static struct fwnode_handle * 957 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 958 struct fwnode_handle *child) 959 { 960 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode), 961 to_of_node(child))); 962 } 963 964 static struct fwnode_handle * 965 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 966 const char *childname) 967 { 968 const struct device_node *node = to_of_node(fwnode); 969 struct device_node *child; 970 971 for_each_available_child_of_node(node, child) 972 if (of_node_name_eq(child, childname)) 973 return of_fwnode_handle(child); 974 975 return NULL; 976 } 977 978 static int 979 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode, 980 const char *prop, const char *nargs_prop, 981 unsigned int nargs, unsigned int index, 982 struct fwnode_reference_args *args) 983 { 984 struct of_phandle_args of_args; 985 unsigned int i; 986 int ret; 987 988 if (nargs_prop) 989 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop, 990 nargs_prop, index, &of_args); 991 else 992 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop, 993 nargs, index, &of_args); 994 if (ret < 0) 995 return ret; 996 if (!args) 997 return 0; 998 999 args->nargs = of_args.args_count; 1000 args->fwnode = of_fwnode_handle(of_args.np); 1001 1002 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++) 1003 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0; 1004 1005 return 0; 1006 } 1007 1008 static struct fwnode_handle * 1009 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1010 struct fwnode_handle *prev) 1011 { 1012 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode), 1013 to_of_node(prev))); 1014 } 1015 1016 static struct fwnode_handle * 1017 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1018 { 1019 return of_fwnode_handle( 1020 of_graph_get_remote_endpoint(to_of_node(fwnode))); 1021 } 1022 1023 static struct fwnode_handle * 1024 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode) 1025 { 1026 struct device_node *np; 1027 1028 /* Get the parent of the port */ 1029 np = of_get_parent(to_of_node(fwnode)); 1030 if (!np) 1031 return NULL; 1032 1033 /* Is this the "ports" node? If not, it's the port parent. */ 1034 if (!of_node_name_eq(np, "ports")) 1035 return of_fwnode_handle(np); 1036 1037 return of_fwnode_handle(of_get_next_parent(np)); 1038 } 1039 1040 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1041 struct fwnode_endpoint *endpoint) 1042 { 1043 const struct device_node *node = to_of_node(fwnode); 1044 struct device_node *port_node = of_get_parent(node); 1045 1046 endpoint->local_fwnode = fwnode; 1047 1048 of_property_read_u32(port_node, "reg", &endpoint->port); 1049 of_property_read_u32(node, "reg", &endpoint->id); 1050 1051 of_node_put(port_node); 1052 1053 return 0; 1054 } 1055 1056 static const void * 1057 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode, 1058 const struct device *dev) 1059 { 1060 return of_device_get_match_data(dev); 1061 } 1062 1063 static bool of_is_ancestor_of(struct device_node *test_ancestor, 1064 struct device_node *child) 1065 { 1066 of_node_get(child); 1067 while (child) { 1068 if (child == test_ancestor) { 1069 of_node_put(child); 1070 return true; 1071 } 1072 child = of_get_next_parent(child); 1073 } 1074 return false; 1075 } 1076 1077 static struct device_node *of_get_compat_node(struct device_node *np) 1078 { 1079 of_node_get(np); 1080 1081 while (np) { 1082 if (!of_device_is_available(np)) { 1083 of_node_put(np); 1084 np = NULL; 1085 } 1086 1087 if (of_find_property(np, "compatible", NULL)) 1088 break; 1089 1090 np = of_get_next_parent(np); 1091 } 1092 1093 return np; 1094 } 1095 1096 static struct device_node *of_get_compat_node_parent(struct device_node *np) 1097 { 1098 struct device_node *parent, *node; 1099 1100 parent = of_get_parent(np); 1101 node = of_get_compat_node(parent); 1102 of_node_put(parent); 1103 1104 return node; 1105 } 1106 1107 /** 1108 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle 1109 * @con_np: consumer device tree node 1110 * @sup_np: supplier device tree node 1111 * 1112 * Given a phandle to a supplier device tree node (@sup_np), this function 1113 * finds the device that owns the supplier device tree node and creates a 1114 * device link from @dev consumer device to the supplier device. This function 1115 * doesn't create device links for invalid scenarios such as trying to create a 1116 * link with a parent device as the consumer of its child device. In such 1117 * cases, it returns an error. 1118 * 1119 * Returns: 1120 * - 0 if fwnode link successfully created to supplier 1121 * - -EINVAL if the supplier link is invalid and should not be created 1122 * - -ENODEV if struct device will never be create for supplier 1123 */ 1124 static int of_link_to_phandle(struct device_node *con_np, 1125 struct device_node *sup_np) 1126 { 1127 struct device *sup_dev; 1128 struct device_node *tmp_np = sup_np; 1129 1130 /* 1131 * Find the device node that contains the supplier phandle. It may be 1132 * @sup_np or it may be an ancestor of @sup_np. 1133 */ 1134 sup_np = of_get_compat_node(sup_np); 1135 if (!sup_np) { 1136 pr_debug("Not linking %pOFP to %pOFP - No device\n", 1137 con_np, tmp_np); 1138 return -ENODEV; 1139 } 1140 1141 /* 1142 * Don't allow linking a device node as a consumer of one of its 1143 * descendant nodes. By definition, a child node can't be a functional 1144 * dependency for the parent node. 1145 */ 1146 if (of_is_ancestor_of(con_np, sup_np)) { 1147 pr_debug("Not linking %pOFP to %pOFP - is descendant\n", 1148 con_np, sup_np); 1149 of_node_put(sup_np); 1150 return -EINVAL; 1151 } 1152 1153 /* 1154 * Don't create links to "early devices" that won't have struct devices 1155 * created for them. 1156 */ 1157 sup_dev = get_dev_from_fwnode(&sup_np->fwnode); 1158 if (!sup_dev && 1159 (of_node_check_flag(sup_np, OF_POPULATED) || 1160 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) { 1161 pr_debug("Not linking %pOFP to %pOFP - No struct device\n", 1162 con_np, sup_np); 1163 of_node_put(sup_np); 1164 return -ENODEV; 1165 } 1166 put_device(sup_dev); 1167 1168 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np)); 1169 of_node_put(sup_np); 1170 1171 return 0; 1172 } 1173 1174 /** 1175 * parse_prop_cells - Property parsing function for suppliers 1176 * 1177 * @np: Pointer to device tree node containing a list 1178 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1179 * @index: For properties holding a list of phandles, this is the index 1180 * into the list. 1181 * @list_name: Property name that is known to contain list of phandle(s) to 1182 * supplier(s) 1183 * @cells_name: property name that specifies phandles' arguments count 1184 * 1185 * This is a helper function to parse properties that have a known fixed name 1186 * and are a list of phandles and phandle arguments. 1187 * 1188 * Returns: 1189 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1190 * on it when done. 1191 * - NULL if no phandle found at index 1192 */ 1193 static struct device_node *parse_prop_cells(struct device_node *np, 1194 const char *prop_name, int index, 1195 const char *list_name, 1196 const char *cells_name) 1197 { 1198 struct of_phandle_args sup_args; 1199 1200 if (strcmp(prop_name, list_name)) 1201 return NULL; 1202 1203 if (of_parse_phandle_with_args(np, list_name, cells_name, index, 1204 &sup_args)) 1205 return NULL; 1206 1207 return sup_args.np; 1208 } 1209 1210 #define DEFINE_SIMPLE_PROP(fname, name, cells) \ 1211 static struct device_node *parse_##fname(struct device_node *np, \ 1212 const char *prop_name, int index) \ 1213 { \ 1214 return parse_prop_cells(np, prop_name, index, name, cells); \ 1215 } 1216 1217 static int strcmp_suffix(const char *str, const char *suffix) 1218 { 1219 unsigned int len, suffix_len; 1220 1221 len = strlen(str); 1222 suffix_len = strlen(suffix); 1223 if (len <= suffix_len) 1224 return -1; 1225 return strcmp(str + len - suffix_len, suffix); 1226 } 1227 1228 /** 1229 * parse_suffix_prop_cells - Suffix property parsing function for suppliers 1230 * 1231 * @np: Pointer to device tree node containing a list 1232 * @prop_name: Name of property to be parsed. Expected to hold phandle values 1233 * @index: For properties holding a list of phandles, this is the index 1234 * into the list. 1235 * @suffix: Property suffix that is known to contain list of phandle(s) to 1236 * supplier(s) 1237 * @cells_name: property name that specifies phandles' arguments count 1238 * 1239 * This is a helper function to parse properties that have a known fixed suffix 1240 * and are a list of phandles and phandle arguments. 1241 * 1242 * Returns: 1243 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1244 * on it when done. 1245 * - NULL if no phandle found at index 1246 */ 1247 static struct device_node *parse_suffix_prop_cells(struct device_node *np, 1248 const char *prop_name, int index, 1249 const char *suffix, 1250 const char *cells_name) 1251 { 1252 struct of_phandle_args sup_args; 1253 1254 if (strcmp_suffix(prop_name, suffix)) 1255 return NULL; 1256 1257 if (of_parse_phandle_with_args(np, prop_name, cells_name, index, 1258 &sup_args)) 1259 return NULL; 1260 1261 return sup_args.np; 1262 } 1263 1264 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \ 1265 static struct device_node *parse_##fname(struct device_node *np, \ 1266 const char *prop_name, int index) \ 1267 { \ 1268 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \ 1269 } 1270 1271 /** 1272 * struct supplier_bindings - Property parsing functions for suppliers 1273 * 1274 * @parse_prop: function name 1275 * parse_prop() finds the node corresponding to a supplier phandle 1276 * @parse_prop.np: Pointer to device node holding supplier phandle property 1277 * @parse_prop.prop_name: Name of property holding a phandle value 1278 * @parse_prop.index: For properties holding a list of phandles, this is the 1279 * index into the list 1280 * @optional: Describes whether a supplier is mandatory or not 1281 * @node_not_dev: The consumer node containing the property is never converted 1282 * to a struct device. Instead, parse ancestor nodes for the 1283 * compatible property to find a node corresponding to a device. 1284 * 1285 * Returns: 1286 * parse_prop() return values are 1287 * - phandle node pointer with refcount incremented. Caller must of_node_put() 1288 * on it when done. 1289 * - NULL if no phandle found at index 1290 */ 1291 struct supplier_bindings { 1292 struct device_node *(*parse_prop)(struct device_node *np, 1293 const char *prop_name, int index); 1294 bool optional; 1295 bool node_not_dev; 1296 }; 1297 1298 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells") 1299 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells") 1300 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells") 1301 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells") 1302 DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells") 1303 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL) 1304 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells") 1305 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells") 1306 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells") 1307 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL) 1308 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL) 1309 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells") 1310 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL) 1311 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL) 1312 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL) 1313 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL) 1314 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL) 1315 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL) 1316 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL) 1317 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL) 1318 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL) 1319 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL) 1320 DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL) 1321 DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells") 1322 DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells") 1323 DEFINE_SIMPLE_PROP(leds, "leds", NULL) 1324 DEFINE_SIMPLE_PROP(backlight, "backlight", NULL) 1325 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL) 1326 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells") 1327 1328 static struct device_node *parse_gpios(struct device_node *np, 1329 const char *prop_name, int index) 1330 { 1331 if (!strcmp_suffix(prop_name, ",nr-gpios")) 1332 return NULL; 1333 1334 return parse_suffix_prop_cells(np, prop_name, index, "-gpios", 1335 "#gpio-cells"); 1336 } 1337 1338 static struct device_node *parse_iommu_maps(struct device_node *np, 1339 const char *prop_name, int index) 1340 { 1341 if (strcmp(prop_name, "iommu-map")) 1342 return NULL; 1343 1344 return of_parse_phandle(np, prop_name, (index * 4) + 1); 1345 } 1346 1347 static struct device_node *parse_gpio_compat(struct device_node *np, 1348 const char *prop_name, int index) 1349 { 1350 struct of_phandle_args sup_args; 1351 1352 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios")) 1353 return NULL; 1354 1355 /* 1356 * Ignore node with gpio-hog property since its gpios are all provided 1357 * by its parent. 1358 */ 1359 if (of_find_property(np, "gpio-hog", NULL)) 1360 return NULL; 1361 1362 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index, 1363 &sup_args)) 1364 return NULL; 1365 1366 return sup_args.np; 1367 } 1368 1369 static struct device_node *parse_interrupts(struct device_node *np, 1370 const char *prop_name, int index) 1371 { 1372 struct of_phandle_args sup_args; 1373 1374 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC)) 1375 return NULL; 1376 1377 if (strcmp(prop_name, "interrupts") && 1378 strcmp(prop_name, "interrupts-extended")) 1379 return NULL; 1380 1381 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np; 1382 } 1383 1384 static const struct supplier_bindings of_supplier_bindings[] = { 1385 { .parse_prop = parse_clocks, }, 1386 { .parse_prop = parse_interconnects, }, 1387 { .parse_prop = parse_iommus, .optional = true, }, 1388 { .parse_prop = parse_iommu_maps, .optional = true, }, 1389 { .parse_prop = parse_mboxes, }, 1390 { .parse_prop = parse_io_channels, }, 1391 { .parse_prop = parse_interrupt_parent, }, 1392 { .parse_prop = parse_dmas, .optional = true, }, 1393 { .parse_prop = parse_power_domains, }, 1394 { .parse_prop = parse_hwlocks, }, 1395 { .parse_prop = parse_extcon, }, 1396 { .parse_prop = parse_nvmem_cells, }, 1397 { .parse_prop = parse_phys, }, 1398 { .parse_prop = parse_wakeup_parent, }, 1399 { .parse_prop = parse_pinctrl0, }, 1400 { .parse_prop = parse_pinctrl1, }, 1401 { .parse_prop = parse_pinctrl2, }, 1402 { .parse_prop = parse_pinctrl3, }, 1403 { .parse_prop = parse_pinctrl4, }, 1404 { .parse_prop = parse_pinctrl5, }, 1405 { .parse_prop = parse_pinctrl6, }, 1406 { .parse_prop = parse_pinctrl7, }, 1407 { .parse_prop = parse_pinctrl8, }, 1408 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, }, 1409 { .parse_prop = parse_pwms, }, 1410 { .parse_prop = parse_resets, }, 1411 { .parse_prop = parse_leds, }, 1412 { .parse_prop = parse_backlight, }, 1413 { .parse_prop = parse_gpio_compat, }, 1414 { .parse_prop = parse_interrupts, }, 1415 { .parse_prop = parse_regulators, }, 1416 { .parse_prop = parse_gpio, }, 1417 { .parse_prop = parse_gpios, }, 1418 {} 1419 }; 1420 1421 /** 1422 * of_link_property - Create device links to suppliers listed in a property 1423 * @con_np: The consumer device tree node which contains the property 1424 * @prop_name: Name of property to be parsed 1425 * 1426 * This function checks if the property @prop_name that is present in the 1427 * @con_np device tree node is one of the known common device tree bindings 1428 * that list phandles to suppliers. If @prop_name isn't one, this function 1429 * doesn't do anything. 1430 * 1431 * If @prop_name is one, this function attempts to create fwnode links from the 1432 * consumer device tree node @con_np to all the suppliers device tree nodes 1433 * listed in @prop_name. 1434 * 1435 * Any failed attempt to create a fwnode link will NOT result in an immediate 1436 * return. of_link_property() must create links to all the available supplier 1437 * device tree nodes even when attempts to create a link to one or more 1438 * suppliers fail. 1439 */ 1440 static int of_link_property(struct device_node *con_np, const char *prop_name) 1441 { 1442 struct device_node *phandle; 1443 const struct supplier_bindings *s = of_supplier_bindings; 1444 unsigned int i = 0; 1445 bool matched = false; 1446 1447 /* Do not stop at first failed link, link all available suppliers. */ 1448 while (!matched && s->parse_prop) { 1449 if (s->optional && !fw_devlink_is_strict()) { 1450 s++; 1451 continue; 1452 } 1453 1454 while ((phandle = s->parse_prop(con_np, prop_name, i))) { 1455 struct device_node *con_dev_np; 1456 1457 con_dev_np = s->node_not_dev 1458 ? of_get_compat_node_parent(con_np) 1459 : of_node_get(con_np); 1460 matched = true; 1461 i++; 1462 of_link_to_phandle(con_dev_np, phandle); 1463 of_node_put(phandle); 1464 of_node_put(con_dev_np); 1465 } 1466 s++; 1467 } 1468 return 0; 1469 } 1470 1471 static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index) 1472 { 1473 #ifdef CONFIG_OF_ADDRESS 1474 return of_iomap(to_of_node(fwnode), index); 1475 #else 1476 return NULL; 1477 #endif 1478 } 1479 1480 static int of_fwnode_irq_get(const struct fwnode_handle *fwnode, 1481 unsigned int index) 1482 { 1483 return of_irq_get(to_of_node(fwnode), index); 1484 } 1485 1486 static int of_fwnode_add_links(struct fwnode_handle *fwnode) 1487 { 1488 struct property *p; 1489 struct device_node *con_np = to_of_node(fwnode); 1490 1491 if (IS_ENABLED(CONFIG_X86)) 1492 return 0; 1493 1494 if (!con_np) 1495 return -EINVAL; 1496 1497 for_each_property_of_node(con_np, p) 1498 of_link_property(con_np, p->name); 1499 1500 return 0; 1501 } 1502 1503 const struct fwnode_operations of_fwnode_ops = { 1504 .get = of_fwnode_get, 1505 .put = of_fwnode_put, 1506 .device_is_available = of_fwnode_device_is_available, 1507 .device_get_match_data = of_fwnode_device_get_match_data, 1508 .device_dma_supported = of_fwnode_device_dma_supported, 1509 .device_get_dma_attr = of_fwnode_device_get_dma_attr, 1510 .property_present = of_fwnode_property_present, 1511 .property_read_int_array = of_fwnode_property_read_int_array, 1512 .property_read_string_array = of_fwnode_property_read_string_array, 1513 .get_name = of_fwnode_get_name, 1514 .get_name_prefix = of_fwnode_get_name_prefix, 1515 .get_parent = of_fwnode_get_parent, 1516 .get_next_child_node = of_fwnode_get_next_child_node, 1517 .get_named_child_node = of_fwnode_get_named_child_node, 1518 .get_reference_args = of_fwnode_get_reference_args, 1519 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint, 1520 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint, 1521 .graph_get_port_parent = of_fwnode_graph_get_port_parent, 1522 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint, 1523 .iomap = of_fwnode_iomap, 1524 .irq_get = of_fwnode_irq_get, 1525 .add_links = of_fwnode_add_links, 1526 }; 1527 EXPORT_SYMBOL_GPL(of_fwnode_ops); 1528